1
|
Ghiasi Hafezi S, Behkamal B, Rashidmayvan M, Hosseini M, Yadegari M, Ghoflchi S, Mansoori A, Ghamsary M, Ferns G, Saberi MR, Esmaily H, Ghayour-Mobarhan M. Comparison between statistical and machine learning methods to detect the hematological indices with the greatest influence on elevated serum levels of low-density lipoprotein cholesterol. Chem Phys Lipids 2024; 265:105446. [PMID: 39369864 DOI: 10.1016/j.chemphyslip.2024.105446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
INTRODUCTION Elevated levels of low-density lipoprotein-cholesterol (LDL-C) is a significant risk factor for the development of cardiovascular diseases (CVD)s. Furthermore, studies have revealed an association between indices of the complete blood count (CBC) and dyslipidemia. We aimed to investigate the relationship between CBC parameters and serum levels of LDL. METHOD In a prospective study involving 9704 participants aged 35-65 years, comprehensive screening was conducted to estimate LDL-C levels and CBC indicators. The association between these biomarkers and high LDL-C (LDL-C≥130 mg/dL (3.25 mmol/L)) was investigated using various analytical methods, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) methodologies. RESULT The present study found that age, hemoglobin (HGB), hematocrit (HCT), platelet count (PLT), lymphocyte (LYM), PLT-LYM ratio (PLR), PLT-High-Density Lipoprotein (HDL) ratio (PHR), HGB-LYM ratio (HLR), red blood cell count (RBC), Neutrophil-HDL ratio (NHR), and PLT-RBC ratio (PRR) were all statistically significant between the two groups (p<0.05). Another important finding was that red cell distribution width (RDW) was a significant predictor for higher LDL levels in women. Furthermore, in men, RDW-PLT ratio (RPR) and PHR were the most important indicators for assessing the elevated LDL levels. CONCLUSION The study found that sex increases LDL-C odds in females by 52.9 %, while age and HCT increase it by 4.1 % and 5.5 %, respectively. RPR and PHR were the most influential variables for both genders. Elevated RPR and PHR were negatively correlated with increased LDL levels in men, and RDW levels was a statistically significant factor for women. Moreover, RDW was a significant factor in women for high levels of HDL-C. The study revealed that females have higher LDL-C levels (16 % compared to 14 % of males), with significant differences across variables like age, HGB, HCT, PLT, RLR, PHR, RBC, LYM, NHR, RPR, and key factors like RDW and SII.
Collapse
Affiliation(s)
- Somayeh Ghiasi Hafezi
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahareh Behkamal
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Medicinal, Chemistry Department, School of Pharmacy, Mashhad University Medical Sciences, Mashhad, Iran
| | - Mohammad Rashidmayvan
- Department of Nutrition, Food Sciences and Clinical Biochemistry, School of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Marzieh Hosseini
- Department of Biostatistics, College of health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Yadegari
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghoflchi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Mansoori
- Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mark Ghamsary
- School of Public Health, Loma Linda University, Loma Linda, CA, USA
| | - Gordon Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Mohammad Reza Saberi
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Habibollah Esmaily
- Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran; Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Ghayour-Mobarhan
- International UNESCO center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kumar R, Chhillar N, Gupta DS, Kaur G, Singhal S, Chauhan T. Cholesterol Homeostasis, Mechanisms of Molecular Pathways, and Cardiac Health: A Current Outlook. Curr Probl Cardiol 2024; 49:102081. [PMID: 37716543 DOI: 10.1016/j.cpcardiol.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
The metabolism of lipoproteins, which regulate the transit of the lipid to and from tissues, is crucial to maintaining cholesterol homeostasis. Cardiac remodeling is referred to as a set of molecular, cellular, and interstitial changes that, following injury, affect the size, shape, function, mass, and geometry of the heart. Acetyl coenzyme A (acetyl CoA), which can be made from glucose, amino acids, or fatty acids, is the precursor for the synthesis of cholesterol. In this article, the authors explain concepts behind cardiac remodeling, its clinical ramifications, and the pathophysiological roles played by numerous various components, such as cell death, neurohormonal activation, oxidative stress, contractile proteins, energy metabolism, collagen, calcium transport, inflammation, and geometry. The levels of cholesterol are traditionally regulated by 2 biological mechanisms at the transcriptional stage. First, the SREBP transcription factor family regulates the transcription of crucial rate-limiting cholesterogenic and lipogenic proteins, which in turn limits cholesterol production. Immune cells become activated, differentiated, and divided, during an immune response with the objective of eradicating the danger signal. In addition to creating ATP, which is used as energy, this process relies on metabolic reprogramming of both catabolic and anabolic pathways to create metabolites that play a crucial role in regulating the response. Because of changes in signal transduction, malfunction of the sarcoplasmic reticulum and sarcolemma, impairment of calcium handling, increases in cardiac fibrosis, and progressive loss of cardiomyocytes, oxidative stress appears to be the primary mechanism that causes the transition from cardiac hypertrophy to heart failure. De novo cholesterol production, intestinal cholesterol absorption, and biliary cholesterol output are consequently crucial processes in cholesterol homeostasis. In the article's final section, the pharmacological management of cardiac remodeling is explored. The route of treatment is explained in different steps: including, promising, and potential strategies. This chapter offers a brief overview of the history of the study of cholesterol absorption as well as the different potential therapeutic targets.
Collapse
Affiliation(s)
| | - Neelam Chhillar
- Deparetment of Biochemistry, School of Medicine, DY Patil University, Navi Mumbai, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Ginpreet Kaur
- Department of Pharmacology, SPP School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Shailey Singhal
- Cluster of Applied Sciences, University of Petroleum and Energy Studies, Dehradun, India
| | - Tanya Chauhan
- Division of Forensic Biology, National Forensic Sciences University, Delhi Campus (LNJN NICFS) Delhi, India
| |
Collapse
|
3
|
Analysis of Low Molecular Weight Substances and Related Processes Influencing Cellular Cholesterol Efflux. Pharmaceut Med 2020; 33:465-498. [PMID: 31933239 PMCID: PMC7101889 DOI: 10.1007/s40290-019-00308-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cholesterol efflux is the key process protecting the vascular system from the development of atherosclerotic lesions. Various extracellular and intracellular events affect the ability of the cell to efflux excess cholesterol. To explore the possible pathways and processes that promote or inhibit cholesterol efflux, we applied a combined cheminformatic and bioinformatic approach. We performed a comprehensive analysis of published data on the various substances influencing cholesterol efflux and found 153 low molecular weight substances that are included in the Chemical Entities of Biological Interest (ChEBI) database. Pathway enrichment was performed for substances identified within the Reactome database, and 45 substances were selected in 93 significant pathways. The most common pathways included the energy-dependent processes related to active cholesterol transport from the cell, lipoprotein metabolism and lipid transport, and signaling pathways. The activators and inhibitors of cholesterol efflux were non-uniformly distributed among the different pathways: the substances influencing ‘biological oxidations’ activate cholesterol efflux and the substances influencing ‘Signaling by GPCR and PTK6’ inhibit efflux. This analysis may be used in the search and design of efflux effectors for therapies targeting structural and functional high-density lipoprotein deficiency.
Collapse
|
4
|
The potential applications of mushrooms against some facets of atherosclerosis: A review. Food Res Int 2018; 105:517-536. [DOI: 10.1016/j.foodres.2017.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/08/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022]
|
5
|
Berberine-sonodynamic therapy induces autophagy and lipid unloading in macrophage. Cell Death Dis 2017; 8:e2558. [PMID: 28102849 PMCID: PMC5386349 DOI: 10.1038/cddis.2016.354] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/19/2016] [Accepted: 09/27/2016] [Indexed: 01/28/2023]
Abstract
Impaired autophagy in macrophages accompanies the progression of atherosclerosis and contributes to lipid loading in plaques and ineffective lipid degradation. Therefore, evoking autophagy and its associated cholesterol efflux may provide a therapeutic treatment for atherosclerosis. In the present study, berberine-mediated sonodynamic therapy (BBR-SDT) was used to induce autophagy and cholesterol efflux in THP-1 macrophages and derived foam cells. Following BBR-SDT, autophagy was increased in the macrophages, autophagy resistance in the foam cells was prevented, and cholesterol efflux was induced. The first two effects were blocked by the reactive oxygen species scavenger, N-acetyl cysteine. BBR-SDT also reduced the phosphorylation of Akt and mTOR, two key molecules in the PI3K/AKT/mTOR signaling pathway, which is responsible for inducing autophagy. Correspondingly, treatment with the autophagy inhibitor, 3-methyladenine, or the PI3K inhibitor, LY294002, abolished the autophagy-induced effects of BBR-SDT. Furthermore, induction of cholesterol efflux by BBR-SDT was reversed by an inhibition of autophagy by 3-methyladenine or by a small interfering RNA targeting Atg5. Taken together, these results demonstrate that BBR-SDT effectively promotes cholesterol efflux by increasing reactive oxygen species generation, and this subsequently induces autophagy via the PI3K/AKT/mTOR signaling pathway in both ‘normal' macrophages and lipid-loaded macrophages (foam cells). Thus, BBR-SDT may be a promising atheroprotective therapy to inhibit the progression of atherosclerosis and should be further studied.
Collapse
|
6
|
Liu Y, Kong X, Wang W, Fan F, Zhang Y, Zhao M, Wang Y, Wang Y, Wang Y, Qin X, Tang G, Wang B, Xu X, Hou FF, Gao W, Sun N, Li J, Venners SA, Jiang S, Huo Y. Association of peripheral differential leukocyte counts with dyslipidemia risk in Chinese patients with hypertension: insight from the China Stroke Primary Prevention Trial. J Lipid Res 2016; 58:256-266. [PMID: 27879312 PMCID: PMC5234728 DOI: 10.1194/jlr.p067686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 11/08/2016] [Indexed: 01/08/2023] Open
Abstract
The aim of the present study was to examine the association between peripheral differential leukocyte counts and dyslipidemia in a Chinese hypertensive population. A total of 10,866 patients with hypertension were enrolled for a comprehensive assessment of cardiovascular risk factors using data from the China Stroke Primary Prevention Trial. Plasma lipid levels and total leukocyte, neutrophil, and lymphocyte counts were determined according to standard methods. Peripheral differential leukocyte counts were consistently and positively associated with serum total cholesterol (TC), LDL cholesterol (LDL-C), and TG levels (all P < 0.001 for trend), while inversely associated with HDL cholesterol levels (P < 0.05 for trend). In subsequent analyses where serum lipids were dichotomized (dyslipidemia/normolipidemia), we found that patients in the highest quartile of total leukocyte count (≥7.6 × 109 cells/l) had 1.64 times the risk of high TG [95% confidence interval (CI): 1.46, 1.85], 1.34 times the risk of high TC (95% CI: 1.20, 1.50), and 1.24 times the risk of high LDL-C (95% CI: 1.12, 1.39) compared with their counterparts in the lowest quartile of total leukocyte count. Similar patterns were also observed with neutrophils and lymphocytes. In summary, these findings indicate that elevated differential leukocyte counts are directly associated with serum lipid levels and increased odds of dyslipidemia.
Collapse
Affiliation(s)
- Yanhong Liu
- School of Life Sciences, Anhui University, Hefei, China
| | - Xiangyi Kong
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Wen Wang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Fangfang Fan
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Yan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Min Zhao
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yupeng Wang
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Yu Wang
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Genfu Tang
- Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Binyan Wang
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Fan Hou
- National Clinical Research Study Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Gao
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Ningling Sun
- Department of Cardiology, Peking University People's Hospital, Beijing, China
| | - Jianping Li
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Scott A Venners
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shanqun Jiang
- School of Life Sciences, Anhui University, Hefei, China .,Institute for Biomedicine, Anhui Medical University, Hefei, China
| | - Yong Huo
- Department of Cardiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Rafatian N, Milne RW, Leenen FHH, Whitman SC. Role of renin-angiotensin system in activation of macrophages by modified lipoproteins. Am J Physiol Heart Circ Physiol 2013; 305:H1309-20. [DOI: 10.1152/ajpheart.00826.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II favors the development of atherosclerosis. Our goal was to determine if foam cell formation increases angiotensin II generation by the endogenous renin-angiotensin system (RAS) and if endogenously produced angiotensin II promotes lipid accumulation in macrophages. Differentiated THP-1 cells were treated with acetylated low-density lipoproteins (ac-LDL), native LDL (n-LDL), or no LDL. Expression of RAS genes was assessed and angiotensin I/II levels were quantified in media and cell lysate. Ac-LDL increased angiotensin I/II levels and the angiotensin II/I ratio in cells and media after foam cell formation. Renin mRNA or activity did not change, but renin blockade completely inhibited the increase in angiotensin II. Angiotensinogen mRNA but not protein level was increased. Angiotensin-converting enzyme (ACE) and cathepsin G mRNA and activities were enhanced by ac-LDL. Inhibition of renin, ACE, or the angiotensin II receptor 1 (AT1-receptor) largely abolished cholesteryl ester formation in cells exposed to ac-LDL and decreased scavenger receptor A (SR-A) and acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT-1) protein levels. Inhibition of renin or the AT1-receptor in cells treated with oxidized LDL also decreased SR-A and ACAT-1 protein and foam cell formation. ac-LDL also increased angiotensin II by human peripheral blood monocyte-derived macrophages, whereas blockade of renin decreased cholesterol ester formation in these macrophages. These findings indicate that, during foam cell formation, angiotensin II generation by the endogenous RAS is stimulated and that endogenously generated angiotensin II is crucial for cholesterol ester accumulation in macrophages exposed to modified LDL.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Ross W. Milne
- Diabetes and Atherosclerosis Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Frans H. H. Leenen
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| | - Stewart C. Whitman
- Vascular Biology Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada; and
| |
Collapse
|
8
|
Rafatian N, Karunakaran D, Rayner KJ, Leenen FHH, Milne RW, Whitman SC. Cathepsin G deficiency decreases complexity of atherosclerotic lesions in apolipoprotein E-deficient mice. Am J Physiol Heart Circ Physiol 2013; 305:H1141-8. [PMID: 23934850 DOI: 10.1152/ajpheart.00618.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cathepsin G is a serine protease with a broad range of catalytic activities, including production of angiotensin II, degradation of extracellular matrix and cell-cell junctions, modulation of chemotactic responses, and induction of apoptosis. Cathepsin G mRNA expression is increased in human coronary atheroma vs. the normal vessel. To assess whether cathepsin G modulates atherosclerosis, cathepsin G knockout (Cstg(-/-)) mice were bred with apolipoprotein E knockout (Apoe(-/-)) mice to obtain Ctsg(+/-)Apoe(-/-) and Ctsg(+/+)Apoe(-/-) mice. Heterozygous cathepsin G deficiency led to a 70% decrease in cathepsin G activity in bone marrow cells, but this reduced activity did not impair generation of angiotensin II in bone marrow-derived macrophages (BMDM). Atherosclerotic lesions were compared in male Cstg(+/-)Apoe(-/-) and Cstg(+/+)Apoe(-/-) mice after 8 wk on a high-fat diet. Plasma cholesterol levels and cholesterol distribution within serum lipoprotein fractions did not differ between genotypes nor did the atherosclerotic lesion areas in either the aortic root or aortic arch. Cstg(+/-)Apoe(-/-) mice, however, showed a lower percentage of complex lesions within the aortic root and a smaller number of apoptotic cells compared with Cstg(+/+)Apoe(-/-) littermates. Furthermore, apoptotic Cstg(-/-) BMDM were more efficiently engulfed by phagocytic BMDM than were apoptotic Ctsg(+/+) BMDM. Thus cathepsin G activity may impair efferocytosis, which could lead to an accumulation of lesion-associated apoptotic cells and the accelerated progression of early atherosclerotic lesions to more complex lesions in Apoe(-/-) mice.
Collapse
Affiliation(s)
- Naimeh Rafatian
- Hypertension Unit, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
9
|
Pannu PS, Allahverdian S, Francis GA. Oxysterol generation and liver X receptor-dependent reverse cholesterol transport: not all roads lead to Rome. Mol Cell Endocrinol 2013; 368:99-107. [PMID: 22884520 DOI: 10.1016/j.mce.2012.07.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 12/31/2022]
Abstract
Cell cholesterol metabolism is a tightly regulated process, dependent in part on activation of nuclear liver X receptors (LXRs) to increase expression of genes mediating removal of excess cholesterol from cells in the reverse cholesterol transport pathway. LXRs are thought to be activated predominantly by oxysterols generated enzymatically from cholesterol in different cell organelles. Defects resulting in slowed release of cholesterol from late endosomes and lysosomes or reduction in sterol-27-hydroxylase activity lead to specific blocks in oxysterol production and impaired LXR-dependent gene activation. This block does not appear to be compensated by oxysterol production in other cell compartments. The purpose of this review is to summarize current knowledge about oxysterol-dependent activation by LXR of genes involved in reverse cholesterol transport, and what these defects of cell cholesterol homeostasis can teach us about the critical pathways of oxysterol generation for expression of LXR-dependent genes.
Collapse
Affiliation(s)
- Parveer S Pannu
- Department of Medicine, UBC James Hogg Research Centre, Institute of Heart and Lung Health at St. Paul's Hospital, Vancouver, BC, Canada V6Z 1Y6.
| | | | | |
Collapse
|
10
|
Brown AJ. Cholesterol versus other sterols: How do they compare as physiological regulators of cholesterol homeostasis? EUR J LIPID SCI TECH 2012. [DOI: 10.1002/ejlt.201100295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrew J. Brown
- BABS, School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| |
Collapse
|
11
|
Oxysterols and their cellular effectors. Biomolecules 2012; 2:76-103. [PMID: 24970128 PMCID: PMC4030866 DOI: 10.3390/biom2010076] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/03/2012] [Accepted: 02/07/2012] [Indexed: 11/23/2022] Open
Abstract
Oxysterols are oxidized 27-carbon cholesterol derivatives or by-products of cholesterol biosynthesis, with a spectrum of biologic activities. Several oxysterols have cytotoxic and pro-apoptotic activities, the ability to interfere with the lateral domain organization, and packing of membrane lipids. These properties may account for their suggested roles in the pathology of diseases such as atherosclerosis, age-onset macular degeneration and Alzheimer’s disease. Oxysterols also have the capacity to induce inflammatory responses and play roles in cell differentiation processes. The functions of oxysterols as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol, are well established. Furthermore, their actions as endogenous regulators of gene expression in lipid metabolism via liver X receptors and the Insig (insulin-induced gene) proteins have been investigated in detail. The cytoplasmic oxysterol-binding protein (OSBP) homologues form a group of oxysterol/cholesterol sensors that has recently attracted a lot of attention. However, their mode of action is, as yet, poorly understood. Retinoic acid receptor-related orphan receptors (ROR) α and γ, and Epstein-Barr virus induced gene 2 (EBI2) have been identified as novel oxysterol receptors, revealing new physiologic oxysterol effector mechanisms in development, metabolism, and immunity, and evoking enhanced interest in these compounds in the field of biomedicine.
Collapse
|
12
|
Yan N, Ding T, Dong J, Li Y, Wu M. Sphingomyelin synthase overexpression increases cholesterol accumulation and decreases cholesterol secretion in liver cells. Lipids Health Dis 2011; 10:46. [PMID: 21418611 PMCID: PMC3070670 DOI: 10.1186/1476-511x-10-46] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Studies have shown that plasma high density lipoprotein cholesterol levels are negatively correlated with the development of atherosclerosis, whereas epidemiological studies have also shown that plasma sphingomyelin level is an independent risk factor for atherosclerosis. METHODS To evaluate the relationship between cellular sphingomyelin level and cholesterol metabolism, we created two cell lines that overexpressed sphingomyelin synthase 1 or 2 (SMS1 or SMS2), using the Tet-off expression system. RESULTS We found that SMS1 or SMS2 overexpression in Huh7 cells, a human hepatoma cell line, significantly increased the levels of intracellular sphingomyelin, cholesterol, and apolipoprotein A-I and decreased levels of apolipoprotein A-I and cholesterol in the cell culture medium, implying a defect in both processes. CONCLUSIONS Our findings indicate that the manipulation of sphingomyelin synthase activity could influence the metabolism of sphingomyelin, cholesterol and apolipoprotein A-I.
Collapse
Affiliation(s)
- Nianlong Yan
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
13
|
Molgat ASD, Gagnon A, Sorisky A. Macrophage-induced preadipocyte survival depends on signaling through Akt, ERK1/2, and reactive oxygen species. Exp Cell Res 2010; 317:521-30. [PMID: 21056559 DOI: 10.1016/j.yexcr.2010.10.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 10/25/2010] [Accepted: 10/27/2010] [Indexed: 01/11/2023]
Abstract
Obesity is associated with adipose tissue remodeling, characterized by macrophage accumulation, adipocyte hypertrophy, and apoptosis. We previously reported that macrophage-conditioned medium (MacCM) protects preadipocytes from apoptosis, due to serum withdrawal, in a platelet-derived growth factor (PDGF)-dependent manner. We have now investigated the role of intracellular signaling pathways, activated in response to MacCM versus PDGF, in promoting preadipocyte survival. Exposure of 3T3-L1 preadipocytes to J774A.1-MacCM or PDGF strongly stimulated Akt and ERK1/2 phosphorylation from initially undetectable levels. Inhibition of the upstream regulators of Akt or ERK1/2, i.e. phosphoinositide 3-kinase (PI3K; using wortmannin or LY294002) or MEK1/2 (using UO126 or PD98509), abrogated the respective phosphorylation responses, and significantly impaired pro-survival activity. J774A.1-MacCM increased reactive oxygen species (ROS) levels by 3.4-fold, and diphenyleneiodonium (DPI) or N-acetyl cysteine (NAC) significantly inhibited pro-survival signaling and preadipocyte survival in response to J774A.1-MacCM. Serum withdrawal itself also increased ROS levels (2.1-fold), and the associated cell death was attenuated by DPI or NAC. In summary, J774A.1-MacCM-dependent 3T3-L1 preadipocyte survival requires the Akt and ERK1/2 signaling pathways. Furthermore, ROS generation by J774A.1-MacCM is required for Akt and ERK1/2 signaling to promote 3T3-L1 preadipocyte survival. These data suggest potential mechanisms by which macrophages may alter preadipocyte fate.
Collapse
Affiliation(s)
- André S D Molgat
- Chronic Disease Program, Ottawa Hospital Research Institute, Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | |
Collapse
|
14
|
Mast cell death induced by 24(S),25-epoxycholesterol. Exp Cell Res 2010; 316:3272-81. [DOI: 10.1016/j.yexcr.2010.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/11/2010] [Accepted: 09/06/2010] [Indexed: 11/23/2022]
|
15
|
Crow JA, Herring KL, Xie S, Borazjani A, Potter PM, Ross MK. Inhibition of carboxylesterase activity of THP1 monocytes/macrophages and recombinant human carboxylesterase 1 by oxysterols and fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1801:31-41. [PMID: 19761868 PMCID: PMC2787731 DOI: 10.1016/j.bbalip.2009.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/27/2009] [Accepted: 09/06/2009] [Indexed: 11/24/2022]
Abstract
Two major isoforms of human carboxylesterases (CEs) are found in metabolically active tissues, CES1 and CES2. These hydrolytic enzymes are involved in xenobiotic and endobiotic metabolism. CES1 is abundantly expressed in human liver and monocytes/macrophages, including the THP1 cell line; CES2 is expressed in liver but not in monocytes/macrophages. The cholesteryl ester hydrolysis activity in human macrophages has been attributed to CES1. Here, we report the direct inhibitory effects of several endogenous oxysterols and fatty acids on the CE activity of THP1 monocytes/macrophages and recombinant human CES1 and CES2. Using THP1 whole-cell lysates we found: (1) 27-hydroxycholesterol (27-HC) is a potent inhibitor of carboxylesterase activity (IC50=33 nM); (2) 24(S),25-epoxycholesterol had moderate inhibitory activity (IC(50)=8.1 microM); and (3) cholesterol, 7-ketocholesterol, 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, and 25-hydroxycholesterol each had little inhibitory activity. 27-HC was a partially noncompetitive inhibitor of recombinant CES1 (K(iapp)=10 nM) and impaired intracellular CES1 activity following treatment of intact THP1 cells. In contrast, recombinant CES2 activity was not inhibited by 27-HC, suggesting isoform-selective inhibition by 27-HC. Furthermore, unsaturated fatty acids were better inhibitors of CES1 activity than saturated fatty acids, while CES2 activity was unaffected by any fatty acid. Arachidonic acid (AA) was the most potent fatty acid inhibitor of recombinant CES1 and acted by a noncompetitive mechanism (K(iapp)=1.7 microM); when not complexed to albumin, exogenous AA penetrated intact THP1 cells and inhibited CES1. Inhibition results are discussed in light of recent structural models for CES1 that describe ligand binding sites separate from the active site. In addition, oxysterol-mediated inhibition of CES1 activity was demonstrated by pretreatment of human liver homogenates or intact THP1 cells with exogenous 27-HC, which resulted in significantly reduced hydrolysis of the pyrethroid insecticide bioresmethrin, a CES1-specific xenobiotic substrate. Collectively, these findings suggest that CE activity of recombinant CES1, cell lysates, and intact cells can be impaired by naturally occurring lipids, which may compromise the ability of CES1 to both detoxify environmental pollutants and metabolize endogenous compounds in vivo.
Collapse
Affiliation(s)
- J. Allen Crow
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Katye L. Herring
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Shuqi Xie
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Abdolsamad Borazjani
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| | - Philip M. Potter
- Department of Molecular Pharmacology, St. Jude Children’s Research Hospital, 332 N. Lauderdale, Memphis, TN 38105
| | - Matthew K. Ross
- Center for Environmental Health Sciences, Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, P.O. Box 6100, Mississippi State, MS 39762
| |
Collapse
|
16
|
Weibel GL, Joshi MR, Alexander ET, Zhu P, Blair IA, Rothblat GH. Overexpression of human 15(S)-lipoxygenase-1 in RAW macrophages leads to increased cholesterol mobilization and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2009; 29:837-42. [PMID: 19325142 DOI: 10.1161/atvbaha.109.186163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the effect of 15-lipoxygenase-1 (15-LO-1) on cholesterol mobilization from macrophages. METHODS AND RESULTS Overexpression of human 15-LO-1 in RAW mouse macrophages led to enhanced cholesterol efflux, increased cholesteryl ester (CE) hydrolysis, and increased reverse cholesterol transport (RCT). Efflux studies comparing 15-LO-1 overexpressing cells to mock-transfected RAW macrophages resulted in a 3- to 7-fold increase in cholesterol efflux to apolipoprotein A-I and a modest increase in efflux to HDL. Additional experiments revealed an increase in mRNA and protein levels of ABCA1 and ABCG1 in the RAW expressing 15-LO-1 compared to controls. Efforts to examine whether the arachidonic acid metabolite of 15-LO-1, (15S)-hydroxyeicosatetraenoic acid (HETE), was responsible for the enhanced efflux revealed this eicosanoid metabolite did not play a role. Enhanced steryl ester hydrolysis was observed in 15-LO-1 overexpressing cells suggesting that the CE produced in the 15-LO-1 expressing cells was readily mobilized. To measure RCT, RAW macrophages overexpressing 15-LO-1 or mock-transfected cells were cholesterol enriched by exposure to acetylated low-density lipoprotein and [(3)H]-cholesterol. These macrophages were injected into wild-type animals and RCT was measured as a percent of injected dose of (3)H appearing in the feces at 48 hours. We found 7% of the injected (3)H in the feces of mice that received macrophages overexpressing 15-LO-1 and 4% in the feces of mice that received mock-transfected cells. CONCLUSIONS These data are consistent with a model in which overexpression of human 15-LO-1 in RAW macrophages promotes RCT through increased CE hydrolysis and ABCA1-mediated cholesterol efflux.
Collapse
Affiliation(s)
- Ginny L Weibel
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd, ARC1102, Philadelphia, PA 19104-4399, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Bibliography. Current world literature. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2008; 19:525-35. [PMID: 18769235 DOI: 10.1097/mol.0b013e328312bffc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Abstract
PURPOSE OF REVIEW The lipid efflux pathway is important for both HDL formation and the reverse cholesterol transport pathway. This review is focused on recent findings on the mechanism of lipid efflux and its regulation, particularly in macrophages. RECENT FINDINGS Significant progress has been made on understanding the sequence of events that accompany the interaction of apolipoproteins A-I with cell surface ATP-binding cassette transporter A1 and its subsequent lipidation. Continued research on the regulation of ATP-binding cassette transporter A1 and ATP-binding cassette transporter G1 expression and traffic has also generated new paradigms for the control of lipid efflux from macrophages and its contribution to reverse cholesterol transport. In addition, the mobilization of cholesteryl esters from lipid droplets represents a new step in the control of cholesterol efflux. SUMMARY The synergy between lipid transporters is a work in progress, but its importance in reverse cholesterol transport is clear. The regulation of efflux implies both the regulation of relevant transporters and the cellular trafficking of cholesterol.
Collapse
Affiliation(s)
- Yves L Marcel
- Lipoprotein and Atherosclerosis Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | | | | |
Collapse
|
19
|
Abstract
Oxysterols are naturally occurring oxidized derivatives of cholesterol, or by-products of cholesterol biosynthesis, with multiple biologic functions. These compounds display cytotoxic, pro-apoptotic, and pro-inflammatory activities and may play a role in the pathology of atherosclerosis. Their functions as intermediates in the synthesis of bile acids and steroid hormones, and as readily transportable forms of sterol are well established. During the past decade, however, novel physiologic activities of oxysterols have emerged. They are now thought to act as endogenous regulators of gene expression in lipid metabolism. Recently, new intracellular oxysterol receptors have been identified and novel functions of oxysterols in cell signaling discovered, evoking novel interest in these compounds in several branches of biomedical research.
Collapse
Affiliation(s)
- Vesa M. Olkkonen
- National Public Health Institute and FIMM, Institute for Molecular Medicine Finland, Biomedicum, Helsinki, Finland
| |
Collapse
|