1
|
Qiu Y, Yu W, Zhang X, Zhang M, Ni Y, Lai S, Wu Q. Upregulation of OGT-mediated EZH2 O-GlcNAcylation Promotes Human Umbilical Vein Endothelial Cell Proliferation, Invasion, Migration, and Tube Formation in Gestational Diabetes Mellitus. Cell Biochem Biophys 2025; 83:2461-2470. [PMID: 39751742 DOI: 10.1007/s12013-024-01655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/04/2025]
Abstract
O-linked N-acetylglucosamine transferase (OGT)-catalyzed O-linked N-acetylglucosamine glycosylation (O-GlcNAcylation) is closely associated with diabetes progression. This study aims to investigate the mechanism of OGT in regulating endothelial dysfunction in gestational diabetes mellitus (GDM). Expressions of OGT, O-linked N-acetylglucosamine (O-GlcNAc), enhancer of zeste homolog 2 (EZH2), and HEK27me3 in human umbilical vein endothelial cells (HUVECs) and GDM-derived HUVECs (GDM-HUVECs) were assessed by western blot. RT-qPCR and western blot assays were used to test the OGT overexpression and EZH2 silencing levels. CCK-8, EdU, wound healing, and transwell invasion assays were used to analyze the cell proliferative, migratory, and invasive abilities. Tube formation assay was performed to evaluate angiogenesis ability of cells. Western blot assay was performed to estimate vascular endothelial growth factor (VEGF) and p-VEGFR2 levels in cells. The binding of O-GlcNAc and EZH2 after OGT overexpression was measured by Co-IP assay. The results showed that OGT, O-GlcNAc, EZH2, and HEK27me3 expressions were declined in GDM-HUVECs. OGT overexpression induced the proliferation, migration, and invasion of GDM-HUVECs, and also elevated angiogenesis and the expressions of VEGF and p-VEGFR2 in cells. O-GlcNAc, EZH2, and HEK27me3 expressions were upregulated after OGT overexpression. OGT upregulation induced the binding between O-GlcNAc and EZH2. EZH2 silencing attenuated the promotion of OGT overexpression on the proliferative, invasive, migratory, and angiogenic capacities of GDM-HUVECs. To be concluded, OGT overexpression stabilized EZH2 expression by promoting O-GlcNAcylation modification of EZH2, and further enhanced proliferation, migration, and invasion as well as angiogenesis of GDM-HUVECs. While these effects were decayed after EZH2 absenting. Overall, the modulation of OGT on endothelial dysfunction in GDM provides a novel perspective for the clinical treatment of GDM.
Collapse
Affiliation(s)
- Yu Qiu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China.
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China.
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China.
| | - Weiwei Yu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Mingjing Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Yan Ni
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Shaoyang Lai
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
- Xiamen Key Laboratory of Basic and Clinical Research on Major Obstetrical Diseases, Xiamen, 361003, China
- Xiamen Clinical Research Center for Perinatal Medicine, Xiamen, 361003, China
| |
Collapse
|
2
|
Tatekoshi Y, Mahmoodzadeh A, Shapiro JS, Liu M, Bianco GM, Tatekoshi A, Camp SD, De Jesus A, Koleini N, De La Torre S, Wasserstrom JA, Dillmann WH, Thomson BR, Bedi KC, Margulies KB, Weinberg SE, Ardehali H. Protein O-GlcNAcylation and hexokinase mitochondrial dissociation drive heart failure with preserved ejection fraction. Cell Metab 2025:S1550-4131(25)00211-6. [PMID: 40267914 DOI: 10.1016/j.cmet.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 03/03/2025] [Accepted: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a common cause of morbidity and mortality worldwide, but its pathophysiology remains unclear. Here, we report a mouse model of HFpEF and show that hexokinase (HK)-1 mitochondrial binding in endothelial cells (ECs) is critical for protein O-GlcNAcylation and the development of HFpEF. We demonstrate increased mitochondrial dislocation of HK1 within ECs in HFpEF mice. Mice with deletion of the mitochondrial-binding domain of HK1 spontaneously develop HFpEF and display impaired angiogenesis. Spatial proximity of dislocated HK1 and O-linked N-acetylglucosamine transferase (OGT) causes increased OGT activity, shifting the balance of the hexosamine biosynthetic pathway intermediates into the O-GlcNAcylation machinery. EC-specific overexpression of O-GlcNAcase and an OGT inhibitor reverse angiogenic defects and the HFpEF phenotype, highlighting the importance of protein O-GlcNAcylation in the development of HFpEF. Our study demonstrates a new mechanism for HFpEF through HK1 cellular localization and resultant protein O-GlcNAcylation, and provides a potential therapy for HFpEF.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Amir Mahmoodzadeh
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Mingyang Liu
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - George M Bianco
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Ayumi Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Spencer Duncan Camp
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Navid Koleini
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Santiago De La Torre
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute and Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
3
|
Bolanle IO, Palmer TM. O-GlcNAcylation and Phosphorylation Crosstalk in Vascular Smooth Muscle Cells: Cellular and Therapeutic Significance in Cardiac and Vascular Pathologies. Int J Mol Sci 2025; 26:3303. [PMID: 40244145 PMCID: PMC11989994 DOI: 10.3390/ijms26073303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
More than 400 different types of post-translational modifications (PTMs), including O-GlcNAcylation and phosphorylation, combine to co-ordinate almost all aspects of protein function. Often, these PTMs overlap and the specific relationship between O-GlcNAcylation and phosphorylation has drawn much attention. In the last decade, the significance of this dynamic crosstalk has been linked to several chronic pathologies of cardiovascular origin. However, very little is known about the pathophysiological significance of this crosstalk for vascular smooth muscle cell dysfunction in cardiovascular disease. O-GlcNAcylation occurs on serine and threonine residues which are also targets for phosphorylation. A growing body of research has now emerged linking altered vascular integrity and homeostasis with highly regulated crosstalk between these PTMs. Additionally, a significant body of evidence indicates that O-GlcNAcylation is an important contributor to the pathogenesis of neointimal hyperplasia and vascular restenosis responsible for long-term vein graft failure. In this review, we evaluate the significance of this dynamic crosstalk and its role in cardiovascular pathologies, and the prospects of identifying possible targets for more effective therapeutic interventions.
Collapse
Affiliation(s)
| | - Timothy M. Palmer
- Biomedical Institute for Multimorbidity, Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK;
| |
Collapse
|
4
|
Liu Y, Wu Z, Li Y, Chen Y, Zhao X, Wu M, Xia Y. Metabolic reprogramming and interventions in angiogenesis. J Adv Res 2025; 70:323-338. [PMID: 38704087 PMCID: PMC11976431 DOI: 10.1016/j.jare.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Endothelial cell (EC) metabolism plays a crucial role in the process of angiogenesis. Intrinsic metabolic events such as glycolysis, fatty acid oxidation, and glutamine metabolism, support secure vascular migration and proliferation, energy and biomass production, as well as redox homeostasis maintenance during vessel formation. Nevertheless, perturbation of EC metabolism instigates vascular dysregulation-associated diseases, especially cancer. AIM OF REVIEW In this review, we aim to discuss the metabolic regulation of angiogenesis by EC metabolites and metabolic enzymes, as well as prospect the possible therapeutic opportunities and strategies targeting EC metabolism. KEY SCIENTIFIC CONCEPTS OF REVIEW In this work, we discuss various aspects of EC metabolism considering normal and diseased vasculature. Of relevance, we highlight that the implications of EC metabolism-targeted intervention (chiefly by metabolic enzymes or metabolites) could be harnessed in orchestrating a spectrum of pathological angiogenesis-associated diseases.
Collapse
Affiliation(s)
- Yun Liu
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yikun Li
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yating Chen
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Xuan Zhao
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| | - Miaomiao Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Yaoyao Xia
- College of Animal Science and Technology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Citrin KM, Chaube B, Fernández-Hernando C, Suárez Y. Intracellular endothelial cell metabolism in vascular function and dysfunction. Trends Endocrinol Metab 2024:S1043-2760(24)00296-0. [PMID: 39672762 DOI: 10.1016/j.tem.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/15/2024]
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels that is crucial for vascular function and homeostasis. They regulate vascular tone, oxidative stress, and permeability. Dysfunction leads to increased permeability, leukocyte adhesion, and thrombosis. ECs undergo metabolic changes in conditions such as wound healing, cancer, atherosclerosis, and diabetes, and can influence disease progression. We discuss recent research that has revealed diverse intracellular metabolic pathways in ECs that are tailored to their functional needs, including lipid handling, glycolysis, and fatty acid oxidation (FAO). Understanding EC metabolic signatures in health and disease will be crucial not only for basic biology but can also be exploited when designing new therapies to target EC-related functions in different vascular diseases.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Indian Institute of Technology Dharwad, Karnataka, India
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
6
|
Alhusban S, Nofal M, Kovacs-Kasa A, Kress TC, Koseoglu MM, Zaied AA, Belin de Chantemele EJ, Annex BH. Glucosamine-Mediated Hexosamine Biosynthesis Pathway Activation Uses ATF4 to Promote "Exercise-Like" Angiogenesis and Perfusion Recovery in PAD. Circulation 2024; 150:1702-1719. [PMID: 39253813 PMCID: PMC11955094 DOI: 10.1161/circulationaha.124.069580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Endothelial cells (ECs) use glycolysis to produce energy. In preclinical models of peripheral arterial disease, further activation of EC glycolysis was ineffective or deleterious in promoting hypoxia-dependent angiogenesis, whereas pentose phosphate pathway activation was effective. Hexosamine biosynthesis pathway, pentose phosphate pathway, and glycolysis are closely linked. Glucosamine directly activates hexosamine biosynthesis pathway. METHODS Hind-limb ischemia in endothelial nitric oxide synthase knockout (eNOS-/-) and BALB/c mice was used. Glucosamine (600 μg/g per day) was injected intraperitoneally. Blood flow recovery was assessed using laser Doppler perfusion imaging and angiogenesis was studied by CD31 immunostaining. In vitro, human umbilical vein ECs and mouse microvascular ECs with glucosamine, L-glucose, or vascular endothelial growth factor (VEGF165a) were tested under hypoxia and serum starvation. Cell Counting Kit-8, tube formation, intracellular reactive oxygen species, electric cell-substrate impedance sensing, and fluorescein isothiocyanate dextran permeability were assessed. Glycolysis and oxidative phosphorylation were assessed by seahorse assay. Gene expression was assessed using RNA sequencing, real-time quantitative polymerase chain reaction, and Western blot. Human muscle biopsies from patients with peripheral arterial disease were assessed for EC O-GlcNAcylation before and after supervised exercise versus standard medical care. RESULTS On day 3 after hind-limb ischemia, glucosamine-treated versus control eNOS-/- mice had less necrosis (n=4 or 5 per group). Beginning on day 7 after hind-limb ischemia, glucosamine-treated versus control BALB/c mice had higher blood flow, which persisted to day 21, when ischemic muscles showed greater CD31 staining per muscle fiber (n=8 per group). In vitro, glucosamine versus L-glucose ECs showed improved survival (n=6 per group) and tube formation (n=6 per group). RNA sequencing of glucosamine versus L-glucose ECs showed increased amino acid metabolism (n=3 per group). That resulted in increased oxidative phosphorylation (n=8-12 per group) and serine biosynthesis pathway without an increase in glycolysis or pentose phosphate pathway genes (n=6 per group). This was associated with better barrier function (n=6-8 per group) and less reactive oxygen species (n=7 or 8 per group) compared with activating glycolysis by VEGF165a. These effects were mediated by activating transcription factor 4, a driver of exercise-induced angiogenesis. In muscle biopsies from humans with peripheral arterial disease, EC/O-GlcNAcylation was increased by 12 weeks of supervised exercise versus standard medical care (n=6 per group). CONCLUSIONS In cells, mice, and humans, activation of hexosamine biosynthesis pathway by glucosamine in peripheral arterial disease induces an "exercise-like" angiogenesis and offers a promising novel therapeutic pathway to treat this challenging disorder.
Collapse
Affiliation(s)
- Suhib Alhusban
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Mohamed Nofal
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Anita Kovacs-Kasa
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Taylor C Kress
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - M Murat Koseoglu
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Abdelrahman A Zaied
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
- Department of Medicine (A.A.Z., B.H.A.), Medical College of Georgia at Augusta University
| | - Eric J Belin de Chantemele
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
| | - Brian H Annex
- Vascular Biology Center (S.A., M.N., A.K.-K., T.C.K., M.M.K., A.A.Z., E.J.B.d.C., B.H.A.), Medical College of Georgia at Augusta University
- Department of Medicine (A.A.Z., B.H.A.), Medical College of Georgia at Augusta University
| |
Collapse
|
7
|
Persello A, Dupas T, Vergnaud A, Blangy-Letheule A, Aillerie V, Erraud A, Guilloux Y, Denis M, Lauzier B. Changes in transcriptomic landscape with macronutrients intake switch are independent from O-GlcNAcylation levels in heart throughout postnatal development in rats. Heliyon 2024; 10:e30526. [PMID: 38737268 PMCID: PMC11087977 DOI: 10.1016/j.heliyon.2024.e30526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
Background Dietary intake and metabolism variations are associated with molecular changes and more particularly in the transcriptome. O-GlcNAcylation is a post-translational modification added and removed respectively by OGT and OGA. The UDP-GlcNAc, the substrate of OGT, is produced by UAP1 and UAP1L1. O-GlcNAcylation is qualified as a metabolic sensor and is involved in the modulation of gene expression. We wanted to unveil if O-GlcNAcylation is linking metabolic transition to transcriptomic changes and to highlight modifications of O-GlcNAcylation during the postnatal cardiac development. Methods Hearts were harvested from rats at birth (D0), before (D12) and after suckling to weaning transition with normal (D28) or delayed weaning diet from D12 to D28 (D28F). O-GlcNAcylation levels and proteins expression were evaluated by Western blot. Cardiac transcriptomes were evaluated via 3'SRP analysis. Results Cardiac O-GlcNAcylation levels and nucleocytoplasmic OGT (ncOGT) were decreased at D28 while full length OGA (OGA) was increased. O-GlcNAcylation levels did not changed with delayed weaning diet while ncOGT and OGA were respectively increased and decreased. Uapl1 was the only O-GlcNAcylation-related gene identified as differentially expressed throughout postnatal development. Conclusion Macronutrients switch promotes changes in the transcriptome landscape that are independent from O-GlcNAcylation levels. UAP1 and UAP1L1 are not the main regulator element of O-GlcNAcylation throughout postnatal development.
Collapse
Affiliation(s)
- Antoine Persello
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Thomas Dupas
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Amandine Vergnaud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | | | - Virginie Aillerie
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Angélique Erraud
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d’Angers, CRCI2NA, F-44000, Nantes, France
| | - Manon Denis
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CNRS, INSERM, l'institut du thorax, F-44000, Nantes, France
| |
Collapse
|
8
|
Xu CM, Karbasiafshar C, Brinck‐Teixeira R, Broadwin M, Sellke FW, Abid MR. Diabetic state of human coronary artery endothelial cells results in altered effects of bone mesenchymal stem cell-derived extracellular vesicles. Physiol Rep 2023; 11:e15866. [PMID: 38114067 PMCID: PMC10730301 DOI: 10.14814/phy2.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/21/2023] Open
Abstract
Human bone mesenchymal stem cell-derived extracellular vesicles (HBMSC-EV) have been used successfully in animal models of myocardial ischemia, yet have dampened effects in metabolic syndrome through unknown mechanisms. This study demonstrates the basal differences between non-diabetic human coronary artery endothelial cells (HCAEC) and diabetic HCAEC (DM-HCAEC), and how these cells respond to the treatment of HBMSC-EV. HCAEC and DM-HCAEC were treated with HBMSC-EV for 6 h. Proteomics, western blot analysis, and tube formation assays were performed. Key metabolic, growth, and stress/starvation cellular responses were significantly altered in DM-HCAEC in comparison to that of HCAEC at baseline. Proteomics demonstrated increased phosphorus metabolic process and immune pathways and decreased RNA processing and biosynthetic pathways in DM-HCAEC. Similar to previous in vivo findings, HCAEC responded to the HBMSC-EV with regenerative and anti-inflammatory effects through the upregulation of multiple RNA pathways and downregulation of immune cell activation pathways. In contrast, DM-HCAEC had a significantly diminished response to HBMSC-EV, likely due to the baseline abnormalities in DM-HCAEC. To achieve the full benefits of HBMSC-EV and for a successful transition of this potential therapeutic agent to clinical studies, the abnormalities found in DM-HCAEC will need to be further studied.
Collapse
Affiliation(s)
- Cynthia M. Xu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | | | - Rayane Brinck‐Teixeira
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | - Mark Broadwin
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | - Frank W. Sellke
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | - M. Ruhul Abid
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| |
Collapse
|
9
|
Costa TJ, Wilson EW, Fontes MT, Pernomian L, Tostes RC, Wenceslau CF, McCarthy CG. The O-GlcNAc dichotomy: when does adaptation become pathological? Clin Sci (Lond) 2023; 137:1683-1697. [PMID: 37986614 PMCID: PMC12083504 DOI: 10.1042/cs20220309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023]
Abstract
O-Linked attachment of β-N-acetylglucosamine (O-GlcNAc) on serine and threonine residues of nuclear, cytoplasmic, and mitochondrial proteins is a highly dynamic and ubiquitous post-translational modification that impacts the function, activity, subcellular localization, and stability of target proteins. Physiologically, acute O-GlcNAcylation serves primarily to modulate cellular signaling and transcription regulatory pathways in response to nutrients and stress. To date, thousands of proteins have been revealed to be O-GlcNAcylated and this number continues to grow as the technology for the detection of O-GlcNAc improves. The attachment of a single O-GlcNAc is catalyzed by the enzyme O-GlcNAc transferase (OGT), and their removal is catalyzed by O-GlcNAcase (OGA). O-GlcNAcylation is regulated by the metabolism of glucose via the hexosamine biosynthesis pathway, and the metabolic abnormalities associated with pathophysiological conditions are all associated with increased flux through this pathway and elevate O-GlcNAc levels. While chronic O-GlcNAcylation is well associated with cardiovascular dysfunction, only until recently, and with genetically modified animals, has O-GlcNAcylation as a contributing mechanism of cardiovascular disease emerged. This review will address and critically evaluate the current literature on the role of O-GlcNAcylation in vascular physiology, with a view that this pathway can offer novel targets for the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Tiago J. Costa
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Emily W. Wilson
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
| | - Milene T. Fontes
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Laena Pernomian
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Rita C. Tostes
- Department of Pharmacology, Ribeirao Preto Medical School,
University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Camilla F. Wenceslau
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| | - Cameron G. McCarthy
- Cardiovascular Translational Research Center, University of
South Carolina School of Medicine-Columbia, SC, U.S.A
- Department of Cell Biology and Anatomy, University of South
Carolina School of Medicine-Columbia, SC, U.S.A
- Biomedical Engineering Program, College of Engineering and
Computing, University of South Carolina, Columbia, SC, U.S.A
| |
Collapse
|
10
|
Conning-Rowland M, Cubbon RM. Molecular mechanisms of diabetic heart disease: Insights from transcriptomic technologies. Diab Vasc Dis Res 2023; 20:14791641231205428. [PMID: 38116627 PMCID: PMC10734343 DOI: 10.1177/14791641231205428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Over half a billion adults across the world have diabetes mellitus (DM). This has a wide-ranging impact on their health, including more than doubling their risk of major cardiovascular events, in comparison to age-sex matched individuals without DM. Notably, the risk of heart failure is particularly increased, even when coronary artery disease and hypertension are not present. Macro- and micro-vascular complications related to endothelial cell (EC) dysfunction are a systemic feature of DM and can affect the heart. However, it remains unclear to what extent these and other factors underpin myocardial dysfunction and heart failure linked with DM. Use of unbiased 'omics approaches to profile the molecular environment of the heart offers an opportunity to identify novel drivers of cardiac dysfunction in DM. Multiple transcriptomics studies have characterised the whole myocardium or isolated cardiac ECs. We present a systematic summary of relevant studies, which identifies common themes including alterations in both myocardial fatty acid metabolism and inflammation. These findings prompt further research focussed on these processes to validate potentially causal factors for prioritisation into therapeutic development pipelines.
Collapse
Affiliation(s)
| | - Richard M Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
11
|
An Y, Xu BT, Wan SR, Ma XM, Long Y, Xu Y, Jiang ZZ. The role of oxidative stress in diabetes mellitus-induced vascular endothelial dysfunction. Cardiovasc Diabetol 2023; 22:237. [PMID: 37660030 PMCID: PMC10475205 DOI: 10.1186/s12933-023-01965-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Diabetes mellitus is a metabolic disease characterized by long-term hyperglycaemia, which leads to microangiopathy and macroangiopathy and ultimately increases the mortality of diabetic patients. Endothelial dysfunction, which has been recognized as a key factor in the pathogenesis of diabetic microangiopathy and macroangiopathy, is characterized by a reduction in NO bioavailability. Oxidative stress, which is the main pathogenic factor in diabetes, is one of the major triggers of endothelial dysfunction through the reduction in NO. In this review, we summarize the four sources of ROS in the diabetic vasculature and the underlying molecular mechanisms by which the pathogenic factors hyperglycaemia, hyperlipidaemia, adipokines and insulin resistance induce oxidative stress in endothelial cells in the context of diabetes. In addition, we discuss oxidative stress-targeted interventions, including hypoglycaemic drugs, antioxidants and lifestyle interventions, and their effects on diabetes-induced endothelial dysfunction. In summary, our review provides comprehensive insight into the roles of oxidative stress in diabetes-induced endothelial dysfunction.
Collapse
Affiliation(s)
- Ying An
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Bu-Tuo Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Sheng-Rong Wan
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Xiu-Mei Ma
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
12
|
Cabrera JT, Si R, Tsuji-Hosokawa A, Cai H, Yuan JXJ, Dillmann WH, Makino A. Restoration of coronary microvascular function by OGA overexpression in a high-fat diet with low-dose streptozotocin-induced type 2 diabetic mice. Diab Vasc Dis Res 2023; 20:14791641231173630. [PMID: 37186669 PMCID: PMC10196148 DOI: 10.1177/14791641231173630] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Sustained hyperglycemia results in excess protein O-GlcNAcylation, leading to vascular complications in diabetes. This study aims to investigate the role of O-GlcNAcylation in the progression of coronary microvascular disease (CMD) in inducible type 2 diabetic (T2D) mice generated by a high-fat diet with a single injection of low-dose streptozotocin. Inducible T2D mice exhibited an increase in protein O-GlcNAcylation in cardiac endothelial cells (CECs) and decreases in coronary flow velocity reserve (CFVR, an indicator of coronary microvascular function) and capillary density accompanied by increased endothelial apoptosis in the heart. Endothelial-specific O-GlcNAcase (OGA) overexpression significantly lowered protein O-GlcNAcylation in CECs, increased CFVR and capillary density, and decreased endothelial apoptosis in T2D mice. OGA overexpression also improved cardiac contractility in T2D mice. OGA gene transduction augmented angiogenic capacity in high-glucose treated CECs. PCR array analysis revealed that seven out of 92 genes show significant differences among control, T2D, and T2D + OGA mice, and Sp1 might be a great target for future study, the level of which was significantly increased by OGA in T2D mice. Our data suggest that reducing protein O-GlcNAcylation in CECs has a beneficial effect on coronary microvascular function, and OGA is a promising therapeutic target for CMD in diabetic patients.
Collapse
Affiliation(s)
- Jody Tori Cabrera
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Rui Si
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
- Department of Cardiology, Xijing
Hospital, Fourth Military Medical
University, Shaanxi, China
| | | | - Hua Cai
- Department of Anesthesiology, University of California, Los
Angeles, Los Angeles, CA, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
| | - Ayako Makino
- Department of Medicine, University of California, San
Diego, La Jolla, CA, USA
- Department of Physiology, The University of
Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Tatekoshi Y, Shapiro JS, Liu M, Bianco GM, Tatekoshi A, De Jesus A, Koleini N, Wasserstrom JA, Dillmann WH, Weinberg SE, Ardehali H. [WITHDRAWN] Hexokinase-1 mitochondrial dissociation and protein O-GlcNAcylation drive heart failure with preserved ejection fraction. RESEARCH SQUARE 2023:rs.3.rs-2448086. [PMID: 36747777 PMCID: PMC9901020 DOI: 10.21203/rs.3.rs-2448086/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The authors have requested that this preprint be removed from Research Square.
Collapse
Affiliation(s)
- Yuki Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - Jason S Shapiro
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - Mingyang Liu
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - George M Bianco
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - Ayumi Tatekoshi
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - Navid Koleini
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - J Andrew Wasserstrom
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Samuel E Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute and Department of Medicine (Cardiology), Northwestern University, Chicago, IL, USA
| |
Collapse
|
14
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
15
|
Kuhn AR, van Bilsen M. Oncometabolism: A Paradigm for the Metabolic Remodeling of the Failing Heart. Int J Mol Sci 2022; 23:ijms232213902. [PMID: 36430377 PMCID: PMC9699042 DOI: 10.3390/ijms232213902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Heart failure is associated with profound alterations in cardiac intermediary metabolism. One of the prevailing hypotheses is that metabolic remodeling leads to a mismatch between cardiac energy (ATP) production and demand, thereby impairing cardiac function. However, even after decades of research, the relevance of metabolic remodeling in the pathogenesis of heart failure has remained elusive. Here we propose that cardiac metabolic remodeling should be looked upon from more perspectives than the mere production of ATP needed for cardiac contraction and relaxation. Recently, advances in cancer research have revealed that the metabolic rewiring of cancer cells, often coined as oncometabolism, directly impacts cellular phenotype and function. Accordingly, it is well feasible that the rewiring of cardiac cellular metabolism during the development of heart failure serves similar functions. In this review, we reflect on the influence of principal metabolic pathways on cellular phenotype as originally described in cancer cells and discuss their potential relevance for cardiac pathogenesis. We discuss current knowledge of metabolism-driven phenotypical alterations in the different cell types of the heart and evaluate their impact on cardiac pathogenesis and therapy.
Collapse
|
16
|
Coronary Microvascular Dysfunction in Diabetes Mellitus: Pathogenetic Mechanisms and Potential Therapeutic Options. Biomedicines 2022; 10:biomedicines10092274. [PMID: 36140374 PMCID: PMC9496134 DOI: 10.3390/biomedicines10092274] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic patients are frequently affected by coronary microvascular dysfunction (CMD), a condition consisting of a combination of altered vasomotion and long-term structural change to coronary arterioles leading to impaired regulation of blood flow in response to changing cardiomyocyte oxygen requirements. The pathogenesis of this microvascular complication is complex and not completely known, involving several alterations among which hyperglycemia and insulin resistance play particularly central roles leading to oxidative stress, inflammatory activation and altered barrier function of endothelium. CMD significantly contributes to cardiac events such as angina or infarction without obstructive coronary artery disease, as well as heart failure, especially the phenotype associated with preserved ejection fraction, which greatly impact cardiovascular (CV) prognosis. To date, no treatments specifically target this vascular damage, but recent experimental studies and some clinical investigations have produced data in favor of potential beneficial effects on coronary micro vessels caused by two classes of glucose-lowering drugs: glucagon-like peptide 1 (GLP-1)-based therapy and inhibitors of sodium-glucose cotransporter-2 (SGLT2). The purpose of this review is to describe pathophysiological mechanisms, clinical manifestations of CMD with particular reference to diabetes, and to summarize the protective effects of antidiabetic drugs on the myocardial microvascular compartment.
Collapse
|
17
|
Lockridge A, Hanover JA. A nexus of lipid and O-Glcnac metabolism in physiology and disease. Front Endocrinol (Lausanne) 2022; 13:943576. [PMID: 36111295 PMCID: PMC9468787 DOI: 10.3389/fendo.2022.943576] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Although traditionally considered a glucose metabolism-associated modification, the O-linked β-N-Acetylglucosamine (O-GlcNAc) regulatory system interacts extensively with lipids and is required to maintain lipid homeostasis. The enzymes of O-GlcNAc cycling have molecular properties consistent with those expected of broad-spectrum environmental sensors. By direct protein-protein interactions and catalytic modification, O-GlcNAc cycling enzymes may provide both acute and long-term adaptation to stress and other environmental stimuli such as nutrient availability. Depending on the cell type, hyperlipidemia potentiates or depresses O-GlcNAc levels, sometimes biphasically, through a diversity of unique mechanisms that target UDP-GlcNAc synthesis and the availability, activity and substrate selectivity of the glycosylation enzymes, O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA). At the same time, OGT activity in multiple tissues has been implicated in the homeostatic regulation of systemic lipid uptake, storage and release. Hyperlipidemic patterns of O-GlcNAcylation in these cells are consistent with both transient physiological adaptation and feedback uninhibited obesogenic and metabolic dysregulation. In this review, we summarize the numerous interconnections between lipid and O-GlcNAc metabolism. These links provide insights into how the O-GlcNAc regulatory system may contribute to lipid-associated diseases including obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Amber Lockridge
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute for Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Dhawan P, Vasishta S, Balakrishnan A, Joshi MB. Mechanistic insights into glucose induced vascular epigenetic reprogramming in type 2 diabetes. Life Sci 2022; 298:120490. [DOI: 10.1016/j.lfs.2022.120490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/22/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
|
19
|
Eshwaran R, Kolibabka M, Poschet G, Jainta G, Zhao D, Teuma L, Murillo K, Hammes HP, Schmidt M, Wieland T, Feng Y. Glucosamine protects against neuronal but not vascular damage in experimental diabetic retinopathy. Mol Metab 2021; 54:101333. [PMID: 34506973 PMCID: PMC8479835 DOI: 10.1016/j.molmet.2021.101333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 01/02/2023] Open
Abstract
Objective Glucosamine, an intermetabolite of the hexosamine biosynthesis pathway (HBP), is a widely used nutritional supplement in osteoarthritis patients, a subset of whom also suffer from diabetes. HBP is activated in diabetic retinopathy (DR). The aim of this study is to investigate the yet unclear effects of glucosamine on DR. Methods In this study, we tested the effect of glucosamine on vascular and neuronal pathology in a mouse model of streptozotocin-induced DR in vivo and on cultured endothelial and Müller cells to elucidate the underlying mechanisms of action in vitro. Results Glucosamine did not alter the blood glucose or HbA1c levels in the animals, but induced body weight gain in the non-diabetic animals. Interestingly, the impaired neuronal function in diabetic animals could be prevented by glucosamine treatment. Correspondingly, the activation of Müller cells was prevented in the retina as well as in cell culture. Conversely, glucosamine administration in the normal retina damaged the retinal vasculature by increasing pericyte loss and acellular capillary formation, likely by interfering with endothelial survival signals as seen in vitro in cultured endothelial cells. Nevertheless, under diabetic conditions, no further increase in the detrimental effects were observed. Conclusions In conclusion, the effects of glucosamine supplementation in the retina appear to be a double-edged sword: neuronal protection in the diabetic retina and vascular damage in the normal retina. Thus, glucosamine supplementation in osteoarthritis patients with or without diabetes should be taken with care. The hexosamine biosynthesis pathway (HBP) is activated in diabetic retinopathy (DR), which manifests as vascular and neuronal damage in the retina. Glucosamine, metabolized in the HBP, is a widely used oral supplement for osteoarthritis treatment. Glucosamine supplementation improved neuronal function in retinas of mice with experimental DR, but induced vascular damage in normal retinas. Müller cell activation and endothelial survival signals in the retina were affected by glucosamine. Patients with or without diabetes should take caution with glucosamine supplementation.
Collapse
Affiliation(s)
- Rachana Eshwaran
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Matthias Kolibabka
- 5th Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Gernot Poschet
- Center for Organismal Studies (COS), Heidelberg, Germany.
| | - Gregor Jainta
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Di Zhao
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Loic Teuma
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Katharina Murillo
- 5th Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Hans-Peter Hammes
- 5th Medical Clinic, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Martina Schmidt
- University of Groningen, Department of Molecular Pharmacology, 9713AV, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Thomas Wieland
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZHK (German Center for Cardiovascular Research), Partner site Heidelberg/Mannheim, Germany.
| | - Yuxi Feng
- Experimental Pharmacology Mannheim, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
20
|
Bahramsoltani R, Farzaei MH, Ram M, Nikfar S, Rahimi R. Bioactive Foods and Medicinal Plants for Cardiovascular Complications of Type II Diabetes: Current Clinical Evidence and Future Perspectives. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6681540. [PMID: 34567218 PMCID: PMC8460387 DOI: 10.1155/2021/6681540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/01/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVDs) are the main cause of mortality in type 2 diabetes mellitus (T2DM); however, not all patients are fully satisfied with the current available treatments. Medicinal plants have been globally investigated regarding their effect in CVD, yet the field is far from getting exhausted. The current paper aims to provide an evidence-based review on the clinically evaluated medicinal plants and their main therapeutic targets for the management of CVD in T2DM. Electronic databases including PubMed, Cochrane, Embase, Scopus, and Web of Science were searched from 2000 until November 2019, and related clinical studies were included. Lipid metabolism, glycemic status, systemic inflammation, blood pressure, endothelial function, oxidative stress, and anthropometric parameters are the key points regulated by medicinal plants in T2DM. Anti-inflammatory and antioxidant properties are the two most important mechanisms since inflammation and oxidative stress are the first steps triggering a domino of molecular pathological pathways leading to T2DM and, subsequently, CVD. Polyphenols with potent antioxidant and anti-inflammatory effects, essential oil-derived compounds with vasorelaxant properties, and fibers with demonstrated effects on obesity are the main categories of phytochemicals beneficial for CVD of T2DM. Some medicinal plants such as garlic (Allium sativum) and milk thistle (Silybum marianum) have strong evidences regarding their beneficial effects; however, others have low level of evidence which reveals the need for further clinical studies with larger sample sizes and longer follow-up periods to confirm the safety and efficacy of medicinal plants for the management of CVD in T2DM.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahboobe Ram
- Student Research Committee, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shekoufeh Nikfar
- Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Evidence-Based Medicine Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Veitch CR, Power AS, Erickson JR. CaMKII Inhibition is a Novel Therapeutic Strategy to Prevent Diabetic Cardiomyopathy. Front Pharmacol 2021; 12:695401. [PMID: 34381362 PMCID: PMC8350113 DOI: 10.3389/fphar.2021.695401] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing prevalence of diabetes mellitus worldwide has pushed the complex disease state to the foreground of biomedical research, especially concerning its multifaceted impacts on the cardiovascular system. Current therapies for diabetic cardiomyopathy have had a positive impact, but with diabetic patients still suffering from a significantly greater burden of cardiac pathology compared to the general population, the need for novel therapeutic approaches is great. A new therapeutic target, calcium/calmodulin-dependent kinase II (CaMKII), has emerged as a potential treatment option for preventing cardiac dysfunction in the setting of diabetes. Within the last 10 years, new evidence has emerged describing the pathophysiological consequences of CaMKII activation in the diabetic heart, the mechanisms that underlie persistent CaMKII activation, and the protective effects of CaMKII inhibition to prevent diabetic cardiomyopathy. This review will examine recent evidence tying cardiac dysfunction in diabetes to CaMKII activation. It will then discuss the current understanding of the mechanisms by which CaMKII activity is enhanced during diabetes. Finally, it will examine the benefits of CaMKII inhibition to treat diabetic cardiomyopathy, including contractile dysfunction, heart failure with preserved ejection fraction, and arrhythmogenesis. We intend this review to serve as a critical examination of CaMKII inhibition as a therapeutic strategy, including potential drawbacks of this approach.
Collapse
Affiliation(s)
- Christopher R Veitch
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Amelia S Power
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology and HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Zhou ZY, Wang L, Wang YS, Dou GR. PFKFB3: A Potential Key to Ocular Angiogenesis. Front Cell Dev Biol 2021; 9:628317. [PMID: 33777937 PMCID: PMC7991106 DOI: 10.3389/fcell.2021.628317] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/22/2021] [Indexed: 12/26/2022] Open
Abstract
The current treatment for ocular pathological angiogenesis mainly focuses on anti-VEGF signals. This treatment has been confirmed as effective despite the unfavorable side effects and unsatisfactory efficiency. Recently, endothelial cell metabolism, especially glycolysis, has been attracting attention as a potential treatment by an increasing number of researchers. Emerging evidence has shown that regulation of endothelial glycolysis can influence vessel sprouting. This new evidence has raised the potential for novel treatment targets that have been overlooked for a long time. In this review, we discuss the process of endothelial glycolysis as a promising target and consider regulation of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase as treatment for ocular pathological angiogenesis.
Collapse
Affiliation(s)
- Zi-Yi Zhou
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yu-Sheng Wang
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xijing Hospital, Eye Institute of Chinese PLA, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
23
|
Peng H, Wang X, Du J, Cui Q, Huang Y, Jin H. Metabolic Reprogramming of Vascular Endothelial Cells: Basic Research and Clinical Applications. Front Cell Dev Biol 2021; 9:626047. [PMID: 33681205 PMCID: PMC7930387 DOI: 10.3389/fcell.2021.626047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular endothelial cells (VECs) build a barrier separating the blood from the vascular wall. The vascular endothelium is the largest endocrine organ, and is well-known for its crucial role in the regulation of vascular function. The initial response to endothelial cell injury can lead to the activation of VECs. However, excessive activation leads to metabolic pathway disruption, VEC dysfunction, and angiogenesis. The pathways related to VEC metabolic reprogramming recently have been considered as key modulators of VEC function in processes such as angiogenesis, inflammation, and barrier maintenance. In this review, we focus on the changes of VEC metabolism under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.,Department of Biomedical Informatics, Centre for Non-coding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
24
|
Si R, Zhang Q, Tsuji-Hosokawa A, Watanabe M, Willson C, Lai N, Wang J, Dai A, Scott BT, Dillmann WH, Yuan JXJ, Makino A. Overexpression of p53 due to excess protein O-GlcNAcylation is associated with coronary microvascular disease in type 2 diabetes. Cardiovasc Res 2021; 116:1186-1198. [PMID: 31504245 DOI: 10.1093/cvr/cvz216] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/27/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS We previously reported that increased protein O-GlcNAcylation in diabetic mice led to vascular rarefaction in the heart. In this study, we aimed to investigate whether and how coronary endothelial cell (EC) apoptosis is enhanced by protein O-GlcNAcylation and thus induces coronary microvascular disease (CMD) and subsequent cardiac dysfunction in diabetes. We hypothesize that excessive protein O-GlcNAcylation increases p53 that leads to CMD and reduced cardiac contractility. METHODS AND RESULTS We conducted in vivo functional experiments in control mice, TALLYHO/Jng (TH) mice, a polygenic type 2 diabetic (T2D) model, and EC-specific O-GlcNAcase (OGA, an enzyme that catalyzes the removal of O-GlcNAc from proteins)-overexpressing TH mice, as well as in vitro experiments in isolated ECs from these mice. TH mice exhibited a significant increase in coronary EC apoptosis and reduction of coronary flow velocity reserve (CFVR), an assessment of coronary microvascular function, in comparison to wild-type mice. The decreased CFVR, due at least partially to EC apoptosis, was associated with decreased cardiac contractility in TH mice. Western blot experiments showed that p53 protein level was significantly higher in coronary ECs from TH mice and T2D patients than in control ECs. High glucose treatment also increased p53 protein level in control ECs. Furthermore, overexpression of OGA decreased protein O-GlcNAcylation and down-regulated p53 in coronary ECs, and conferred a protective effect on cardiac function in TH mice. Inhibition of p53 with pifithrin-α attenuated coronary EC apoptosis and restored CFVR and cardiac contractility in TH mice. CONCLUSIONS The data from this study indicate that inhibition of p53 or down-regulation of p53 by OGA overexpression attenuates coronary EC apoptosis and improves CFVR and cardiac function in diabetes. Lowering coronary endothelial p53 levels via OGA overexpression could be a potential therapeutic approach for CMD in diabetes.
Collapse
Affiliation(s)
- Rui Si
- Department of Physiology, The University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.,Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Rd., Shaanxi 710032, China
| | - Qian Zhang
- Department of Physiology, The University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 195 W Dongfeng Rd., Guangzhou 510182, China
| | - Atsumi Tsuji-Hosokawa
- Department of Physiology, The University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Makiko Watanabe
- Department of Physiology, The University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Conor Willson
- Department of Physiology, The University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Ning Lai
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 195 W Dongfeng Rd., Guangzhou 510182, China
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, 195 W Dongfeng Rd., Guangzhou 510182, China.,Department of Medicine, The University of Arizona, 1501 N. Campbell Ave. Tucson, AZ 85724, USA
| | - Anzhi Dai
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Brian T Scott
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Wolfgang H Dillmann
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Jason X-J Yuan
- Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,Department of Medicine, The University of Arizona, 1501 N. Campbell Ave. Tucson, AZ 85724, USA
| | - Ayako Makino
- Department of Physiology, The University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.,Department of Medicine, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.,Department of Medicine, The University of Arizona, 1501 N. Campbell Ave. Tucson, AZ 85724, USA
| |
Collapse
|
25
|
Endothelial response to glucose: dysfunction, metabolism, and transport. Biochem Soc Trans 2021; 49:313-325. [PMID: 33522573 DOI: 10.1042/bst20200611] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 02/07/2023]
Abstract
The endothelial cell response to glucose plays an important role in both health and disease. Endothelial glucose-induced dysfunction was first studied in diabetic animal models and in cells cultured in hyperglycemia. Four classical dysfunction pathways were identified, which were later shown to result from the common mechanism of mitochondrial superoxide overproduction. More recently, non-coding RNA, extracellular vesicles, and sodium-glucose cotransporter-2 inhibitors were shown to affect glucose-induced endothelial dysfunction. Endothelial cells also metabolize glucose for their own energetic needs. Research over the past decade highlighted how manipulation of endothelial glycolysis can be used to control angiogenesis and microvascular permeability in diseases such as cancer. Finally, endothelial cells transport glucose to the cells of the blood vessel wall and to the parenchymal tissue. Increasing evidence from the blood-brain barrier and peripheral vasculature suggests that endothelial cells regulate glucose transport through glucose transporters that move glucose from the apical to the basolateral side of the cell. Future studies of endothelial glucose response should begin to integrate dysfunction, metabolism and transport into experimental and computational approaches that also consider endothelial heterogeneity, metabolic diversity, and parenchymal tissue interactions.
Collapse
|
26
|
Bolanle IO, Riches-Suman K, Williamson R, Palmer TM. Emerging roles of protein O-GlcNAcylation in cardiovascular diseases: Insights and novel therapeutic targets. Pharmacol Res 2021; 165:105467. [PMID: 33515704 DOI: 10.1016/j.phrs.2021.105467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/15/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death globally. While the major focus of pharmacological and non-pharmacological interventions has been on targeting disease pathophysiology and limiting predisposing factors, our understanding of the cellular and molecular mechanisms underlying the pathogenesis of CVDs remains incomplete. One mechanism that has recently emerged is protein O-GlcNAcylation. This is a dynamic, site-specific reversible post-translational modification of serine and threonine residues on target proteins and is controlled by two enzymes: O-linked β-N-acetylglucosamine transferase (OGT) and O-linked β-N-acetylglucosaminidase (OGA). Protein O-GlcNAcylation alters the cellular functions of these target proteins which play vital roles in pathways that modulate vascular homeostasis and cardiac function. Through this review, we aim to give insights on the role of protein O-GlcNAcylation in cardiovascular diseases and identify potential therapeutic targets in this pathway for development of more effective medicines to improve patient outcomes.
Collapse
Key Words
- (R)-N-(Furan-2-ylmethyl)-2-(2-methoxyphenyl)-2-(2-oxo-1,2-dihydroquinoline-6-sulfonamido)-N-(thiophen-2-ylmethyl)acetamide [OSMI-1] (PubChem CID: 118634407)
- 2-(2-Amino-3-methoxyphenyl)-4H-chromen-4-one [PD98059] (PubChem CID: 4713)
- 5H-Pyrano[3,2-d]thiazole-6,7-diol, 2-(ethylamino)-3a,6,7,7a-tetrahydro-5-(hydroxymethyl)-(3aR,5R,6S,7R,7aR) [Thiamet-G] (PubChem CID: 1355663540)
- 6-Diazo-5-oxo-l-norleucine [DON] (PubChem CID: 9087)
- Alloxan (PubChem CID: 5781)
- Azaserine (PubChem CID: 460129)
- BADGP, Benzyl-2-acetamido-2-deoxy-α-d-galactopyranoside [BADGP] (PubChem CID: 561184)
- Cardiovascular disease
- Methoxybenzene-sulfonamide [KN-93] (PubChem CID: 5312122)
- N-[(5S,6R,7R,8R)-6,7-Dihydroxy-5-(hydroxymethyl)-2-(2-phenylethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyridin-8-yl]-2-methylpropanamide [GlcNAcstatin] (PubChem CID: 122173013)
- O-(2-Acetamido-2-deoxy-d-glucopyranosyliden)amino-N-phenylcarbamate [PUGNAc] (PubChem CID: 9576811)
- O-GlcNAc transferase
- O-GlcNAcase
- Protein O-GlcNAcylation
- Streptozotocin (PubCHem CID: 7067772)
Collapse
Affiliation(s)
- Israel Olapeju Bolanle
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
| | - Kirsten Riches-Suman
- School of Chemistry and Bioscience, University of Bradford, Bradford BD7 1DP, UK
| | - Ritchie Williamson
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Timothy M Palmer
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull HU6 7RX, UK.
| |
Collapse
|
27
|
Ednie AR, Bennett ES. Intracellular O-linked glycosylation directly regulates cardiomyocyte L-type Ca 2+ channel activity and excitation-contraction coupling. Basic Res Cardiol 2020; 115:59. [PMID: 32910282 DOI: 10.1007/s00395-020-00820-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte L-type Ca2+ channels (Cavs) are targets of signaling pathways that modulate channel activity in response to physiologic stimuli. Cav regulation is typically transient and beneficial but chronic stimulation can become pathologic; therefore, gaining a more complete understanding of Cav regulation is of critical importance. Intracellular O-linked glycosylation (O-GlcNAcylation), which is the result of two enzymes that dynamically add and remove single N-acetylglucosamines to and from intracellular serine/threonine residues (OGT and OGA respectively), has proven to be an increasingly important post-translational modification that contributes to the regulation of many physiologic processes. However, there is currently no known role for O-GlcNAcylation in the direct regulation of Cav activity nor is its contribution to cardiac electrical signaling and EC coupling well understood. Here we aimed to delineate the role of O-GlcNAcylation in regulating cardiomyocyte L-type Cav activity and its subsequent effect on EC coupling by utilizing a mouse strain possessing an inducible cardiomyocyte-specific OGT-null-transgene. Ablation of the OGT-gene in adult cardiomyocytes (OGTKO) reduced OGT expression and O-GlcNAcylation by > 90%. Voltage clamp recordings indicated an ~ 40% reduction in OGTKO Cav current (ICa), but with increased efficacy of adrenergic stimulation, and Cav steady-state gating and window current were significantly depolarized. Consistently, OGTKO cardiomyocyte intracellular Ca2+ release and contractility were diminished and demonstrated greater beat-to-beat variability. Additionally, we show that the Cav α1 and β2 subunits are O-GlcNAcylated while α2δ1 is not. Echocardiographic analyses indicated that the reductions in OGTKO cardiomyocyte Ca2+ handling and contractility were conserved at the whole-heart level as evidenced by significantly reduced left-ventricular contractility in the absence of hypertrophy. The data indicate, for the first time, that O-GlcNAc signaling is a critical and direct regulator of cardiomyocyte ICa achieved through altered Cav expression, gating, and response to adrenergic stimulation; these mechanisms have significant implications for understanding how EC coupling is regulated in health and disease.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA.
| | - Eric S Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, 143 Biological Sciences II, 3640 Colonel Glenn Hwy, Dayton, OH, 45435, USA
| |
Collapse
|
28
|
Abstract
The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle-targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785-809, 2020.
Collapse
Affiliation(s)
- Karla E. Merz
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
- The Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California, USA
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, City of Hope Beckman Research Institute, Duarte, California, USA
| |
Collapse
|
29
|
Abstract
Endothelial cell (EC) metabolism is important for health and disease. Metabolic pathways, such as glycolysis, fatty acid oxidation, and amino acid metabolism, determine vasculature formation. These metabolic pathways have different roles in securing the production of energy and biomass and the maintenance of redox homeostasis in vascular migratory tip cells, proliferating stalk cells, and quiescent phalanx cells, respectively. Emerging evidence demonstrates that perturbation of EC metabolism results in EC dysfunction and vascular pathologies. Here, we summarize recent insights into EC metabolic pathways and their deregulation in vascular diseases. We further discuss the therapeutic implications of targeting EC metabolism in various pathologies.
Collapse
Affiliation(s)
- Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; ,
| | - Peter Carmeliet
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China; , .,Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven B-3000, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven B-3000, Belgium
| |
Collapse
|
30
|
Primer KR, Psaltis PJ, Tan JT, Bursill CA. The Role of High-Density Lipoproteins in Endothelial Cell Metabolism and Diabetes-Impaired Angiogenesis. Int J Mol Sci 2020; 21:E3633. [PMID: 32455604 PMCID: PMC7279383 DOI: 10.3390/ijms21103633] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus affects millions of people worldwide and is associated with devastating vascular complications. A number of these complications, such as impaired wound healing and poor coronary collateral circulation, are characterised by impaired ischaemia-driven angiogenesis. There is increasing evidence that high-density lipoproteins (HDL) can rescue diabetes-impaired angiogenesis through a number of mechanisms, including the modulation of endothelial cell metabolic reprogramming. Endothelial cell metabolic reprogramming in response to tissue ischaemia is a driver of angiogenesis and is dysregulated by diabetes. Specifically, diabetes impairs pathways that allow endothelial cells to upregulate glycolysis in response to hypoxia adequately and impairs suppression of mitochondrial respiration. HDL rescues the impairment of the central hypoxia signalling pathway, which regulates these metabolic changes, and this may underpin several of its known pro-angiogenic effects. This review discusses the current understanding of endothelial cell metabolism and how diabetes leads to its dysregulation whilst examining the various positive effects of HDL on endothelial cell function.
Collapse
Affiliation(s)
- Khalia R. Primer
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
- Centre for Nanoscale Biophotonics, Adelaide, South Australia 5000, Australia
| | - Peter J. Psaltis
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
| | - Joanne T.M. Tan
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
| | - Christina A. Bursill
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia 5000, Australia; (K.R.P.); (P.J.P.); (J.T.M.T.)
- Vascular Research Centre, South Australian Health and Medical Research Centre, Adelaide, South Australia 5000, Australia
- Centre for Nanoscale Biophotonics, Adelaide, South Australia 5000, Australia
| |
Collapse
|
31
|
Green HLH, Brewer AC. Dysregulation of 2-oxoglutarate-dependent dioxygenases by hyperglycaemia: does this link diabetes and vascular disease? Clin Epigenetics 2020; 12:59. [PMID: 32345373 PMCID: PMC7189706 DOI: 10.1186/s13148-020-00848-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clinical, social and economic burden of cardiovascular disease (CVD) associated with diabetes underscores an urgency for understanding the disease aetiology. Evidence suggests that the hyperglycaemia associated with diabetes is, of itself, causal in the development of endothelial dysfunction (ED) which is recognised to be the critical determinant in the development of CVD. It is further recognised that epigenetic modifications associated with changes in gene expression are causal in both the initiation of ED and the progression to CVD. Understanding whether and how hyperglycaemia induces epigenetic modifications therefore seems crucial in the development of preventative treatments. A mechanistic link between energy metabolism and epigenetic regulation is increasingly becoming explored as key energy metabolites typically serve as substrates or co-factors for epigenetic modifying enzymes. Intriguing examples are the ten-eleven translocation and Jumonji C proteins which facilitate the demethylation of DNA and histones respectively. These are members of the 2-oxoglutarate-dependent dioxygenase superfamily which require the tricarboxylic acid metabolite, α-ketoglutarate and molecular oxygen (O2) as substrates and Fe (II) as a co-factor. An understanding of precisely how the biochemical effects of high glucose exposure impact upon cellular metabolism, O2 availability and cellular redox in endothelial cells (ECs) may therefore elucidate (in part) the mechanistic link between hyperglycaemia and epigenetic modifications causal in ED and CVD. It would also provide significant proof of concept that dysregulation of the epigenetic landscape may be causal rather than consequential in the development of pathology.
Collapse
Affiliation(s)
- Hannah L H Green
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK
| | - Alison C Brewer
- School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre of Research Excellence, London, UK.
| |
Collapse
|
32
|
Barnes JW, Tian L, Krick S, Helton ES, Denson RS, Comhair SAA, Dweik RA. O-GlcNAc Transferase Regulates Angiogenesis in Idiopathic Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 20:E6299. [PMID: 31847126 PMCID: PMC6941156 DOI: 10.3390/ijms20246299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is considered a vasculopathy characterized by elevated pulmonary vascular resistance due to vasoconstriction and/or lung remodeling such as plexiform lesions, the hallmark of the PAH, as well as cell proliferation and vascular and angiogenic dysfunction. The serine/threonine hydroxyl-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) has been shown to drive pulmonary arterial smooth muscle cell (PASMC) proliferation in IPAH. OGT is a cellular nutrient sensor that is essential in maintaining proper cell function through the regulation of cell signaling, proliferation, and metabolism. The aim of this study was to determine the role of OGT and O-GlcNAc in vascular and angiogenic dysfunction in IPAH. Primary isolated human control and IPAH patient PASMCs and pulmonary arterial endothelial cells (PAECs) were grown in the presence or absence of OGT inhibitors and subjected to biochemical assessments in monolayer cultures and tube formation assays, in vitro vascular sprouting 3D spheroid co-culture models, and de novo vascularization models in NODSCID mice. We showed that knockdown of OGT resulted in reduced vascular endothelial growth factor (VEGF) expression in IPAH primary isolated vascular cells. In addition, specificity protein 1 (SP1), a known stimulator of VEGF expression, was shown to have higher O-GlcNAc levels in IPAH compared to control at physiological (5 mM) and high (25 mM) glucose concentrations, and knockdown resulted in decreased VEGF protein levels. Furthermore, human IPAH PAECs demonstrated a significantly higher degree of capillary tube-like structures and increased length compared to control PAECs. Addition of an OGT inhibitor, OSMI-1, significantly reduced the number of tube-like structures and tube length similar to control levels. Assessment of vascular sprouting from an in vitro 3D spheroid co-culture model using IPAH and control PAEC/PASMCs and an in vivo vascularization model using control and PAEC-embedded collagen implants demonstrated higher vascularization in IPAH compared to control. Blocking OGT activity in these experiments, however, altered the vascular sprouting and de novo vascularization in IPAH similar to control levels when compared to controls. Our findings in this report are the first to describe a role for the OGT/O-GlcNAc axis in modulating VEGF expression and vascularization in IPAH. These findings provide greater insight into the potential role that altered glucose uptake and metabolism may have on the angiogenic process and the development of plexiform lesions. Therefore, we believe that the OGT/O-GlcNAc axis may be a potential therapeutic target for treating the angiogenic dysregulation that is present in IPAH.
Collapse
Affiliation(s)
- Jarrod W. Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Liping Tian
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
| | - Stefanie Krick
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - E. Scott Helton
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Rebecca S. Denson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, The University of Alabama at Birmingham, THT 422, 1720 2nd Ave S, Birmingham, AL 35294-0006, USA; (S.K.); (E.S.H.)
| | - Suzy A. A. Comhair
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
| | - Raed A. Dweik
- Department of Inflammation & Immunity, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA; (L.T.); (S.A.A.C.); (R.A.D.)
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
33
|
Falkenberg KD, Rohlenova K, Luo Y, Carmeliet P. The metabolic engine of endothelial cells. Nat Metab 2019; 1:937-946. [PMID: 32694836 DOI: 10.1038/s42255-019-0117-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Endothelial cells (ECs) line the quiescent vasculature but can form new blood vessels (a process termed angiogenesis) in disease. Strategies targeting angiogenic growth factors have been clinically developed for the treatment of malignant and ocular diseases. Studies over the past decade have documented that several pathways of central carbon metabolism are necessary for EC homeostasis and growth, and that strategies that stimulate or block EC metabolism can be used to promote or inhibit vessel growth, respectively. In this Review, we provide an updated overview of the growing understanding of central carbon metabolic pathways in ECs and the therapeutic opportunities for targeting EC metabolism.
Collapse
Affiliation(s)
- Kim D Falkenberg
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katerina Rohlenova
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Yonglun Luo
- Lars Bolund Institute of Regenerative Medicine, BGI-Qindao, Qindao, China
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- BGI-Shenzhen, Shenzhen, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, China
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
| |
Collapse
|
34
|
Nagy T, Fisi V, Frank D, Kátai E, Nagy Z, Miseta A. Hyperglycemia-Induced Aberrant Cell Proliferation; A Metabolic Challenge Mediated by Protein O-GlcNAc Modification. Cells 2019; 8:E999. [PMID: 31466420 PMCID: PMC6769692 DOI: 10.3390/cells8090999] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 08/26/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic hyperglycemia has been associated with an increased prevalence of pathological conditions including cardiovascular disease, cancer, or various disorders of the immune system. In some cases, these associations may be traced back to a common underlying cause, but more often, hyperglycemia and the disturbance in metabolic balance directly facilitate pathological changes in the regular cellular functions. One such cellular function crucial for every living organism is cell cycle regulation/mitotic activity. Although metabolic challenges have long been recognized to influence cell proliferation, the direct impact of diabetes on cell cycle regulatory elements is a relatively uncharted territory. Among other "nutrient sensing" mechanisms, protein O-linked β-N-acetylglucosamine (O-GlcNAc) modification emerged in recent years as a major contributor to the deleterious effects of hyperglycemia. An increasing amount of evidence suggest that O-GlcNAc may significantly influence the cell cycle and cellular proliferation. In our present review, we summarize the current data available on the direct impact of metabolic changes caused by hyperglycemia in pathological conditions associated with cell cycle disorders. We also review published experimental evidence supporting the hypothesis that O-GlcNAc modification may be one of the missing links between metabolic regulation and cellular proliferation.
Collapse
Affiliation(s)
- Tamás Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary.
| | - Viktória Fisi
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Dorottya Frank
- Department of Dentistry, Oral and Maxillofacial Surgery, Medical School, University of Pécs, H-7621 Pécs, Hungary
| | - Emese Kátai
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zsófia Nagy
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
35
|
Chandler KB, Costello CE, Rahimi N. Glycosylation in the Tumor Microenvironment: Implications for Tumor Angiogenesis and Metastasis. Cells 2019; 8:E544. [PMID: 31195728 PMCID: PMC6627046 DOI: 10.3390/cells8060544] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Just as oncogene activation and tumor suppressor loss are hallmarks of tumor development, emerging evidence indicates that tumor microenvironment-mediated changes in glycosylation play a crucial functional role in tumor progression and metastasis. Hypoxia and inflammatory events regulate protein glycosylation in tumor cells and associated stromal cells in the tumor microenvironment, which facilitates tumor progression and also modulates a patient's response to anti-cancer therapeutics. In this review, we highlight the impact of altered glycosylation on angiogenic signaling and endothelial cell adhesion, and the critical consequences of these changes in tumor behavior.
Collapse
Affiliation(s)
- Kevin Brown Chandler
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Catherine E Costello
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Nader Rahimi
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Xing X, Wang H, Zhang Y, Niu T, Jiang Y, Shi X, Wang C, Liu K. O- glycosylation can regulate the proliferation and migration of human retinal microvascular endothelial cells through ZFR in high glucose condition. Biochem Biophys Res Commun 2019; 512:552-557. [DOI: 10.1016/j.bbrc.2019.03.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/15/2023]
|
37
|
Masclef L, Dehennaut V, Mortuaire M, Schulz C, Leturcq M, Lefebvre T, Vercoutter-Edouart AS. Cyclin D1 Stability Is Partly Controlled by O-GlcNAcylation. Front Endocrinol (Lausanne) 2019; 10:106. [PMID: 30853938 PMCID: PMC6395391 DOI: 10.3389/fendo.2019.00106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/05/2019] [Indexed: 01/27/2023] Open
Abstract
Cyclin D1 is the regulatory partner of the cyclin-dependent kinases (CDKs) CDK4 or CDK6. Once associated and activated, the cyclin D1/CDK complexes drive the cell cycle entry and G1 phase progression in response to extracellular signals. To ensure their timely and accurate activation during cell cycle progression, cyclin D1 turnover is finely controlled by phosphorylation and ubiquitination. Here we show that the dynamic and reversible O-linked β-N-Acetyl-glucosaminylation (O-GlcNAcylation) regulates also cyclin D1 half-life. High O-GlcNAc levels increase the stability of cyclin D1, while reduction of O-GlcNAcylation strongly decreases it. Moreover, elevation of O-GlcNAc levels through O-GlcNAcase (OGA) inhibition significantly slows down the ubiquitination of cyclin D1. Finally, biochemical and cell imaging experiments in human cancer cells reveal that the O-GlcNAc transferase (OGT) binds to and glycosylates cyclin D1. We conclude that O-GlcNAcylation promotes the stability of cyclin D1 through modulating its ubiquitination.
Collapse
Affiliation(s)
- Louis Masclef
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Institut Pasteur de Lille, Université de Lille, CNRS, UMR 8161, M3T: Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marlène Mortuaire
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Céline Schulz
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Maïté Leturcq
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Anne-Sophie Vercoutter-Edouart
- Université de Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- *Correspondence: Anne-Sophie Vercoutter-Edouart
| |
Collapse
|
38
|
Knapp M, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin 2019; 40:1-8. [PMID: 29867137 PMCID: PMC6318313 DOI: 10.1038/s41401-018-0042-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/06/2018] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus is currently a major public health problem. A common complication of diabetes is cardiac dysfunction, which is recognized as a microvascular disease that leads to morbidity and mortality in diabetic patients. While ischemic events are commonly observed in diabetic patients, the risk for developing heart failure is also increased, independent of the severity of coronary artery disease and hypertension. This diabetes-associated clinical entity is considered a distinct disease process referred to as "diabetic cardiomyopathy". However, it is not clear how diabetes promotes cardiac dysfunction. Vascular endothelial dysfunction is thought to be one of the key risk factors. The impact of diabetes on the endothelium involves several alterations, including hyperglycemia, fatty acid oxidation, reduced nitric oxide (NO), oxidative stress, inflammatory activation, and altered barrier function. The current review provides an update on mechanisms that specifically target endothelial dysfunction, which may lead to diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Maura Knapp
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Xin Tu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA
| | - Rongxue Wu
- Department of Medicine, Section of Cardiology, University of Chicago, Chicago, USA.
| |
Collapse
|
39
|
Yao D, Xu L, Xu O, Li R, Chen M, Shen H, Zhu H, Zhang F, Yao D, Chen YF, Oparil S, Zhang Z, Gong K. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury. Arterioscler Thromb Vasc Biol 2018; 38:1309-1320. [PMID: 29622561 DOI: 10.1161/atvbaha.117.310468] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recently, we have demonstrated that acute glucosamine-induced augmentation of protein O-linked β-N-acetylglucosamine (O-GlcNAc) levels inhibits inflammation in isolated vascular smooth muscle cells and neointimal formation in a rat model of carotid injury by interfering with NF-κB (nuclear factor-κB) signaling. However, the specific molecular target for O-GlcNAcylation that is responsible for glucosamine-induced vascular protection remains unclear. In this study, we test the hypothesis that increased A20 (also known as TNFAIP3 [tumor necrosis factor α-induced protein 3]) O-GlcNAcylation is required for glucosamine-mediated inhibition of inflammation and vascular protection. APPROACH AND RESULTS In cultured rat vascular smooth muscle cells, both glucosamine and the selective O-linked N-acetylglucosaminidase inhibitor thiamet G significantly increased A20 O-GlcNAcylation. Thiamet G treatment did not increase A20 protein expression but did significantly enhance binding to TAX1BP1 (Tax1-binding protein 1), a key regulatory protein for A20 activity. Adenovirus-mediated A20 overexpression further enhanced the effects of thiamet G on prevention of TNF-α (tumor necrosis factor-α)-induced IκB (inhibitor of κB) degradation, p65 phosphorylation, and increases in DNA-binding activity. A20 overexpression enhanced the inhibitory effects of thiamet G on TNF-α-induced proinflammatory cytokine expression and vascular smooth muscle cell migration and proliferation, whereas silencing endogenous A20 by transfection of specific A20 shRNA significantly attenuated these inhibitory effects. In balloon-injured rat carotid arteries, glucosamine treatment markedly inhibited neointimal formation and p65 activation compared with vehicle treatment. Adenoviral delivery of A20 shRNA to the injured arteries dramatically reduced balloon injury-induced A20 expression and inflammatory response compared with scramble shRNA and completely abolished the vascular protection of glucosamine. CONCLUSIONS These results suggest that O-GlcNAcylation of A20 plays a key role in the negative regulation of NF-κB signaling cascades in TNF-α-treated vascular smooth muscle cells in culture and in acutely injured arteries, thus protecting against inflammation-induced vascular injury.
Collapse
Affiliation(s)
- Dan Yao
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Lijuan Xu
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Oufan Xu
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Rujun Li
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Mingxing Chen
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Hui Shen
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Huajiang Zhu
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Fengyi Zhang
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Deshang Yao
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Yiu-Fai Chen
- Hypertension and Vascular Biology Program, Division of Cardiovascular Diseases, University of Alabama at Birmingham (Y.-F.C., S.O.)
| | - Suzanne Oparil
- Hypertension and Vascular Biology Program, Division of Cardiovascular Diseases, University of Alabama at Birmingham (Y.-F.C., S.O.)
| | - Zhengang Zhang
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.)
| | - Kaizheng Gong
- From the Department of Cardiology, the Affiliated Hospital of Yangzhou University (D.Y., L.X., O.X., R.L., M.C., H.S., H.Z., F.Z., D.Y., Z.Z., K.G.) .,Jiangsu Key Laboratory of Integrative Medicine for the Control of Geriatrics and Institute of Cardiovascular Disease (K.G.), Yangzhou University, China
| |
Collapse
|
40
|
Very N, Vercoutter-Edouart AS, Lefebvre T, Hardivillé S, El Yazidi-Belkoura I. Cross-Dysregulation of O-GlcNAcylation and PI3K/AKT/mTOR Axis in Human Chronic Diseases. Front Endocrinol (Lausanne) 2018; 9:602. [PMID: 30356686 PMCID: PMC6189293 DOI: 10.3389/fendo.2018.00602] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/21/2018] [Indexed: 02/06/2023] Open
Abstract
The hexosamine biosynthetic pathway (HBP) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway are considered as nutrient sensors that regulate several essential biological processes. The hexosamine biosynthetic pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the substrate for O-GlcNAc transferase (OGT), the enzyme that O-GlcNAcylates proteins on serine (Ser) and threonine (Thr) residues. O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) and phosphorylation are highly dynamic post-translational modifications occurring at the same or adjacent sites that regulate folding, stability, subcellular localization, partner interaction, or activity of target proteins. Here we review recent evidence of a cross-regulation of PI3K/AKT/mTOR signaling pathway and protein O-GlcNAcylation. Furthermore, we discuss their co-dysregulation in pathological conditions, e.g., cancer, type-2 diabetes (T2D), and cardiovascular, and neurodegenerative diseases.
Collapse
|
41
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
42
|
Gélinas R, Dontaine J, Horman S, Beauloye C, Bultot L, Bertrand L. AMP-Activated Protein Kinase and O-GlcNAcylation, Two Partners Tightly Connected to Regulate Key Cellular Processes. Front Endocrinol (Lausanne) 2018; 9:519. [PMID: 30271380 PMCID: PMC6146136 DOI: 10.3389/fendo.2018.00519] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 11/26/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is an important cellular energy sensor. Its activation under energetic stress is known to activate energy-producing pathways and to inactivate energy-consuming pathways, promoting ATP preservation and cell survival. AMPK has been shown to play protective role in many pathophysiological processes including cardiovascular diseases, diabetes, and cancer. Its action is multi-faceted and comprises short-term regulation of enzymes by direct phosphorylation as well as long-term adaptation via control of transcription factors and cellular events such as autophagy. During the last decade, several studies underline the particular importance of the interaction between AMPK and the post-translational modification called O-GlcNAcylation. O-GlcNAcylation means the O-linked attachment of a single N-acetylglucosamine moiety on serine or threonine residues. O-GlcNAcylation plays a role in multiple physiological cellular processes but is also associated with the development of various diseases. The first goal of the present review is to present the tight molecular relationship between AMPK and enzymes regulating O-GlcNAcylation. We then draw the attention of the reader on the putative importance of this interaction in different pathophysiological events.
Collapse
Affiliation(s)
- Roselle Gélinas
- Montreal Heart Institute, Université de Montreal, Montreal, QC, Canada
| | - Justine Dontaine
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
| | - Sandrine Horman
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Laurent Bultot
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Luc Bertrand
| |
Collapse
|
43
|
Placental O-GlcNAc-transferase expression and interactions with the glucocorticoid receptor are sex specific and regulated by maternal corticosterone exposure in mice. Sci Rep 2017; 7:2017. [PMID: 28515473 PMCID: PMC5435684 DOI: 10.1038/s41598-017-01666-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Maternal stress programs offspring disease in a sexually dimorphic manner with males often more adversely affected. Previous studies of maternal glucocorticoid exposure suggest male vulnerability may derive from placental alterations. The hexosamine signalling pathway and O-linked glycosylation (O-GlcNAcylation) are part of an essential adaptive survival response in healthy cells. The key enzyme involved is O-linked-N-acetylglucosamine transferase (OGT), a gene recently identified as a sex-specific placental biomarker of maternal stress. Using a mouse model of maternal corticosterone (Cort) exposure, we examined components of hexosamine biosynthesis/signalling and O-GlcNAcylation in whole placentae at E14.5. Our results demonstrate sex-specific differences in OGT levels and O-GlcNAcylation during Cort exposure which impacts on key mediators of cell survival, in particular AKT as well as the stress responsive OGT/GR transrepression complex. In male placentae only, Cort exposure increased Akt O-GlcNacylation which correlated with decreased phosphorylation. Female placentae had higher basal OGT and OGT/GR complex compared with male placentae. Cort exposure did not alter these levels in female placentae but increased global O-GlcNacylation. In male placentae Cort increased OGT and OGT/GR complex with no change in global O-GlcNacylation. These findings suggest that sex-specific differences in placental OGT play a key role in the sexually dimorphic responses to stress.
Collapse
|
44
|
The sweet side of AMPK signaling: regulation of GFAT1. Biochem J 2017; 474:1289-1292. [PMID: 28336748 DOI: 10.1042/bcj20170006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 11/17/2022]
Abstract
Maintaining a steady balance between nutrient supply and energy demand is essential for all living organisms and is achieved through the dynamic control of metabolic processes that produce and consume adenosine-5'-triphosphate (ATP), the universal currency of energy in all cells. A key sensor of cellular energy is the adenosine-5'-monophosphate (AMP)-activated protein kinase (AMPK), which is the core component of a signaling network that regulates energy and nutrient metabolism. AMPK is activated by metabolic stresses that decrease cellular ATP, and functions to restore energy balance by orchestrating a switch in metabolism away from anabolic pathways toward energy-generating catabolic processes. A new study published in a recent issue of Biochemical Journal by Zibrova et al. shows that glutamine:fructose-6-phosphate amidotransferase-1 (GFAT1), the rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), is a physiological substrate of AMPK. The HBP is an offshoot of the glycolytic pathway that drives the synthesis of uridine-5'-diphospho-N-acetylglucosamine, the requisite donor metabolite needed for dynamic β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) of cellular proteins. O-GlcNAcylation is a nutrient-sensitive post-translational modification that, like phosphorylation, regulates numerous intracellular processes. Zibrova et al. show that inhibitory phosphorylation of the GFAT1 residue Ser243 by AMPK in response to physiological or small-molecule activators leads to a reduction in cellular protein O-GlcNAcylation. Further work revealed that AMPK-dependent phosphorylation of GFAT1 promotes angiogenesis in endothelial cells. This elegant study demonstrates that the AMPK-GFAT1 signaling axis serves as an important communication point between two nutrient-sensitive signaling pathways and is likely to play a significant role in controlling physiological processes in many other tissues.
Collapse
|
45
|
GFAT1 phosphorylation by AMPK promotes VEGF-induced angiogenesis. Biochem J 2017; 474:983-1001. [PMID: 28008135 DOI: 10.1042/bcj20160980] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023]
Abstract
Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked β-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.
Collapse
|
46
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
47
|
Targeting endothelial metabolism for anti-angiogenesis therapy: A pharmacological perspective. Vascul Pharmacol 2017; 90:8-18. [DOI: 10.1016/j.vph.2017.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 01/02/2017] [Indexed: 12/19/2022]
|
48
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers-A New Perspective? Pharmacol Rev 2016; 68:872-87. [PMID: 27363442 DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Excessive angiogenesis (i.e., the formation of new blood vessels) contributes to different pathologies, among them cancer and ocular disorders. Conversely, dysfunction of endothelial cells (ECs) contributes to cardiovascular complications, as is the case in diabetes. Inhibition of pathologic angiogenesis in blinding eye disease and cancer by targeting growth factors such as vascular endothelial growth factor has become an accepted therapeutic strategy. However, recent studies also unveiled the emerging importance of EC metabolism in controlling angiogenesis. In this overview, we will discuss recent insights in the metabolic regulation of angiogenesis, focusing on the best-characterized metabolic pathways, and highlight deregulation of EC metabolism in cancer and diabetes. We will give an outlook on how targeting EC metabolism can be used for blocking pathologic angiogenesis and for normalizing EC dysfunction.
Collapse
Affiliation(s)
- Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| |
Collapse
|
49
|
Vandekeere S, Dewerchin M, Carmeliet P. Angiogenesis Revisited: An Overlooked Role of Endothelial Cell Metabolism in Vessel Sprouting. Microcirculation 2016; 22:509-17. [PMID: 26250801 DOI: 10.1111/micc.12229] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/29/2015] [Indexed: 02/06/2023]
Abstract
During vessel sprouting, endothelial "tip" cells migrate at the forefront, while the endothelial "stalk" cells elongate the sprout; endothelial "phalanx" cells line quiescent vessels. Tip and stalk cells can dynamically switch phenotypes under the control of VEGF and Notch signaling. Novel findings now show that in addition to signaling cascades, metabolism coregulates the formation of the new vasculature. Recent studies demonstrated that ECs rely primarily on glycolysis for ATP production, that glycolysis is further enhanced in angiogenic ECs, and that the key glycolytic regulator PFKFB3 codetermines angiogenesis by controlling the balance of tip versus stalk cells and promoting a migratory tip cell phenotype. On the other hand, FAO regulates endothelial stalk cell proliferation by providing carbon sources for biosynthetic processes, more particularly for de novo nucleotide synthesis for DNA replication. Here, we overview the current understanding of the various metabolic pathways in ECs and their impact on vessel formation in health and disease.
Collapse
Affiliation(s)
- Saar Vandekeere
- Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis & Neurovascular link, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis & Neurovascular link, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis & Neurovascular link, Vesalius Research Center, VIB, Leuven, Belgium.,Laboratory of Angiogenesis & Neurovascular link, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|