1
|
Bridge SH, Pagano S, Lodge JK, Shawa IT, Marin-Crespo P, Cramp ME, Sheridan DA, Taylor-Robinson SD, Vuilleumier N, Neely RDG, Bassendine MF. Autoantibodies to apolipoprotein A-I in hepatitis C virus infection: a role in disease progression? Front Immunol 2025; 16:1461041. [PMID: 40181970 PMCID: PMC11965114 DOI: 10.3389/fimmu.2025.1461041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
Background Chronic HCV (CHC) infection is associated with autoimmunity. IgG autoantibodies to apolipoprotein A-I (AAA-I) predict all-cause mortality. We evaluated AAA-I in CHC patients and in those who were not viraemic, either because of spontaneous resolution (SR) of infection or HCV clearance following sustained virological response (SVR) after interferon therapy. We limited the study to HCV genotypes 1 and 3, the dominant HCV genotypes circulating in the UK. Methods Serum samples from 126 CHC patients and 114 nonviraemic individuals (25 SR and 89 SVR) were assayed for AAA-I and lipoproteins. AUC was calculated for AAA-I and HDL-related parameters and used to predict cirrhosis. Fibronectin (FN) and FN-mRNA were measured in human hepatic stellate cells (LX-2) in the presence or absence of AAA-I. Results AAA-I was found in 47% of patients with CHC, 37% of SVR patients, and 16% of SR individuals (CHC vs. SR, p = 0.004). AAA-I levels in CHC patients were higher in those with cirrhosis (p = 0.0003). The AUC for AAA-I, apoA-I, and HDL-C in predicting cirrhosis was 0.72 (p < 0.001), 0.65 (p = 0.01), and 0.64 (p = 0.02). After 48 h in the presence of AAA-I, LX-2 cells showed an 80% increase in FN-mRNA compared to the LX-2/IgG control (p = 0.028) and higher levels of FN (p = 0.0016). Conclusions CHC is often associated with AAA-I, and these can persist after SVR. AAA-I is a robust predictor of cirrhosis in CHC infection. LX-2 cells exposed to AAA-I showed increased FN. Further studies are warranted to define the role of AAA-I in promoting not only viral persistence but also fibrosis.
Collapse
Affiliation(s)
- Simon H. Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Isaac T. Shawa
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
- Department of Biomedical and Forensic Science, University of Derby, Derby, United Kingdom
| | - Paula Marin-Crespo
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Matthew E. Cramp
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
| | - David A. Sheridan
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
| | - Simon D. Taylor-Robinson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - R. Dermot G. Neely
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundations Trust, Newcastle upon Tyne, United Kingdom
| | - Margaret F. Bassendine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Liu K, Cooper ME, Chai Z, Liu F. High-Density Lipoprotein in Patients with Diabetic Kidney Disease: Friend or Foe? Int J Mol Sci 2025; 26:1683. [PMID: 40004147 PMCID: PMC11855193 DOI: 10.3390/ijms26041683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
High-density lipoprotein (HDL) exhibits multiple metabolic protective functions, such as facilitating cellular cholesterol efflux, antioxidant, anti-inflammatory, anti-apoptotic and anti-thrombotic properties, showing antidiabetic and renoprotective potential. Diabetic kidney disease (DKD) is considered to be associated with high-density lipoprotein cholesterol (HDL-C). The hyperglycemic environment, non-enzymatic glycosylation, carbamylation, oxidative stress and systemic inflammation can cause changes in the quantity and quality of HDL, resulting in reduced HDL levels and abnormal function. Dysfunctional HDL can also have a negative impact on pancreatic β cells and kidney cells, leading to the progression of DKD. Based on these findings, new HDL-related DKD risk predictors have gradually been proposed. Interventions aiming to improve HDL levels and function, such as infusion of recombinant HDL (rHDL) or lipid-poor apolipoprotein A-I (apoA-I), can significantly improve glycemic control and also show renal protective effects. However, recent studies have revealed a U-shaped relationship between HDL-C levels and DKD, and the loss of protective properties of high levels of HDL may be related to changes in composition and the deposition of dysfunctional particles that exacerbate damage. Further research is needed to fully elucidate the complex role of HDL in DKD. Given the important role of HDL in metabolic health, developing HDL-based therapies that augment HDL function, rather than simply increasing its level, is a critical step in managing the development and progression of DKD.
Collapse
Affiliation(s)
- Ke Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mark E. Cooper
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Zhonglin Chai
- Department of Diabetes, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Fang Liu
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China;
- Laboratory of Diabetic Kidney Disease, Kidney Research Institute, Department of Nephrology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Al Zein M, Khazzeka A, El Khoury A, Al Zein J, Zoghaib D, Eid AH. Revisiting high-density lipoprotein cholesterol in cardiovascular disease: Is too much of a good thing always a good thing? Prog Cardiovasc Dis 2024; 87:50-59. [PMID: 39442601 DOI: 10.1016/j.pcad.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Cardiovascular disease (CVD) continues to be a leading cause of global mortality and morbidity. Various established risk factors are linked to CVD, and modifying these risk factors is fundamental in CVD management. Clinical studies underscore the association between dyslipidemia and CVD, and therapeutic interventions that target low-density lipoprotein cholesterol elicit clear benefits. Despite the correlation between low high-density lipoprotein cholesterol (HDLC) and heightened CVD risk, HDL-raising therapies have yet to showcase significant clinical benefits. Furthermore, evidence from epidemiological and genetic studies reveals that not only low HDL-C levels, but also very high levels of HDL-C are linked to increased risk of CVD. In this review, we focus on HDL metabolism and delve into the relationship between HDL and CVD, exploring HDL functions and the observed alterations in its roles in disease. Altogether, the results discussed herein support the conventional wisdom that "too much of a good thing is not always a good thing". Thus, our recommendation is that a careful reconsideration of the impact of high HDL-C levels is warranted, and shall be revisited in future research.
Collapse
Affiliation(s)
- Mohammad Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Alicia Khazzeka
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | | | - Jana Al Zein
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Dima Zoghaib
- Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
4
|
Žeravica R, Ilinčić B, Burić D, Jakovljević A, Crnobrnja V, Ilić D, Papuga MV. Relationship Between Serum Uromodulin as a Marker of Kidney Damage and Metabolic Status in Patients with Chronic Kidney Disease of Non-Diabetic Etiology. Int J Mol Sci 2024; 25:11159. [PMID: 39456940 PMCID: PMC11509006 DOI: 10.3390/ijms252011159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic kidney disease (CKD) is often associated with dyslipidemia, marked by lipid abnormalities that can worsen kidney function and increase cardiovascular risk. A promising biomarker for evaluating kidney function and metabolic status in chronic kidney disease (CKD) is serum uromodulin (sUmod). This study sought to further investigate the relationship between sUmod levels and metabolic status in non-diabetic CKD patients. A sensitive ELISA method was used to determine sUmod levels in 90 adults with obstructive nephropathy and 30 healthy controls. Kidney function was assessed using the measured glomerular filtration rate (mGFR) through renal clearance of 99mTc-diethylenetriamine penta-acetic acid, along with cystatin C levels. Additionally, glycemic and lipid statuses were evaluated. sUmod concentrations showed a significant association with High-density lipoprotein (HDL) levels. Furthermore, CKD patients with lower sUmod levels had significantly lower Apolipoprotein A-I (Apo A-I) values compared to the control group. Significant predictors of lower sUmod concentrations identified in this study were higher glycemia (B = -15.939; p = 0.003) and lower HDL cholesterol levels (B = 20.588; p = 0.019). We conclude that, in addition to being significantly reduced in CKD patients, sUmod is a potential predictor of metabolic syndrome (MS) in this population. Lower sUmod concentrations, independent of mGFR, predict lower HDL cholesterol levels and higher glycemia values.
Collapse
Affiliation(s)
- Radmila Žeravica
- Department of Pathophysiology and Laboratory Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (R.Ž.); (B.I.); (D.B.); (A.J.); (V.C.)
- Center of Laboratory Diagnostic, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Branislava Ilinčić
- Department of Pathophysiology and Laboratory Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (R.Ž.); (B.I.); (D.B.); (A.J.); (V.C.)
- Center of Laboratory Diagnostic, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Dragan Burić
- Department of Pathophysiology and Laboratory Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (R.Ž.); (B.I.); (D.B.); (A.J.); (V.C.)
- Center of Laboratory Diagnostic, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Ana Jakovljević
- Department of Pathophysiology and Laboratory Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (R.Ž.); (B.I.); (D.B.); (A.J.); (V.C.)
- Center of Laboratory Diagnostic, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Veljko Crnobrnja
- Department of Pathophysiology and Laboratory Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (R.Ž.); (B.I.); (D.B.); (A.J.); (V.C.)
- Center of Laboratory Diagnostic, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Dalibor Ilić
- Center for Radiology, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia;
| | - Marija Vukmirović Papuga
- Center of Laboratory Diagnostic, University Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
- Department of Nuclear Medicine, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
5
|
Wang L, Han Y, Cao C, Hu H, Li H. The non-linear link between non-high-density lipoprotein to high-density lipoprotein ratio and the risk of stroke in middle-aged and older adults in Chinese: a prospective cohort study from the China health and retirement longitudinal study. Front Endocrinol (Lausanne) 2024; 14:1303336. [PMID: 38288470 PMCID: PMC10823364 DOI: 10.3389/fendo.2023.1303336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/20/2023] [Indexed: 02/01/2024] Open
Abstract
OBJECTIVE This study aims to assess the association between the non-HDL-c/HDL-c ratio and stroke risk among middle-aged and older adults participating in the China Health and Retirement Longitudinal Study (CHARLS). METHODS This study conducted a prospective cohort analysis, enrolling a total of 10,183 participants who met the designated criteria from CHARLS between 2011 and 2012. We then used the Cox proportional-hazards regression model to explore the relationship between baseline non-HDL-c/HDL-c ratio and stroke risk. Using a Cox proportional hazards regression with cubic spline function, we were able to identify the non-linear relationship between the non-HDL-c/HDL-c ratio and stroke occurrence. A series of sensitivity analyses were also carried out. RESULTS The average age of the participants included in this study was 59.16 ± 9.35 years, and 4,735 individuals (46.68%) were male. Over a median follow-up period of 7.0 years, a total of 1,191 people (11.70%) experienced a stroke. Using a Cox proportional hazards regression model that was fully adjusted, we found no statistically significant correlation between the non-HDL-c/HDL-c ratio and the risk of stroke (HR=1.022; 95% CI 0.964, 1.083). Nevertheless, we did observe a non-linear relationship and saturation effect between the non-HDL-c/HDL-c ratio and stroke. Employing a two-piece Cox proportional hazards regression model and a recursive algorithm, we determined an inflection point of 2.685 for the non-HDL-c/HDL-c ratio. In instances where the non-HDL-c/HDL-c ratio fell below 2.685, for every 1-unit decrease in the non-HDL-c/HDL-c ratio, the likelihood of stroke decreased by 21.4% (HR=1.214, 95% CI: 1.039-1.418). In contrast, when the non-HDL-c/HDL-c ratio exceeded 2.685, there was no statistically significant change in the risk of stroke for each unit decrease in the non-HDL-c/HDL-c ratio (HR: 0.967, 95% CI: 0.897-1.042). The consistency of these findings across multiple sensitivity analyses suggests their robustness. CONCLUSION This study unveils a non-linear relationship between the non-HDL-c/HDL-c ratio and stroke risk in middle-aged and older adults in China. Specifically, when the non-HDL-c/HDL-c ratio was below 2.685, a significant and clearly positive association with stroke risk was observed. Additionally, maintaining the non-HDL-c/HDL-c ratio below 2.685 could potentially lead to a substantial reduction in the risk of stroke.
Collapse
Affiliation(s)
- Lanbo Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yong Han
- Department of Emergency, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Emergency, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Changchun Cao
- Department of Rehabilitation, Shenzhen Dapeng New District Nan’ao People’s Hospital, Shenzhen, Guangdong, China
| | - Haofei Hu
- Department of Nephrology, Shenzhen Second People’s Hospital, Shenzhen, Guangdong, China
- Department of Nephrology, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Han Li
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
6
|
Dynamic Resistance Exercise Alters Blood ApoA-I Levels, Inflammatory Markers, and Metabolic Syndrome Markers in Elderly Women. Healthcare (Basel) 2022; 10:healthcare10101982. [PMID: 36292427 PMCID: PMC9601716 DOI: 10.3390/healthcare10101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/04/2022] Open
Abstract
Combined endurance and dynamic-resistance exercise has important anti-inflammatory effects, altering vascular endothelial function, and helping to prevent and treat aging-related metabolic syndrome (MS). We studied changes in 40 elderly women aged ≥ 65 years (control group (no MS), n = 20, mean age: 68.23 ± 2.56 years; MS group, n = 19, mean age: 71.42 ± 5.87 years; one left). The exercise program comprised dynamic-resistance training using elastic bands, three times weekly, for six months. We analyzed body composition, blood pressure, physical fitness, and MS-related blood variables including ApoA-I, antioxidant factors, and inflammatory markers. After the program, the MS group showed significant reductions in waist-hip ratio, waist circumference, diastolic blood pressure, blood insulin, and HOMA-IR, and a significant increase in HSP70 (p < 0.05). Both groups showed significant increases in ApoA-I levels, ApoA-I/HDL-C ratio, SOD2, IL-4, and IL-5 levels (p < 0.05). Active-resistance training-induced changes in ApoA-I were significantly positively correlated with changes in HDL-C and HSP70, and significantly negatively correlated with changes in triglycerides, C-reactive protein, and TNF-α (p < 0.05). Active-resistance training qualitatively altered HDL, mostly by altering ApoA-I levels, relieving vascular inflammation, and improving antioxidant function. This provides evidence that dynamic-resistance exercise can improve physical fitness and MS risk factors in elderly women.
Collapse
|
7
|
Anti-Inflammatory Activity of CIGB-258 against Acute Toxicity of Carboxymethyllysine in Paralyzed Zebrafish via Enhancement of High-Density Lipoproteins Stability and Functionality. Int J Mol Sci 2022; 23:ijms231710130. [PMID: 36077532 PMCID: PMC9456132 DOI: 10.3390/ijms231710130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/28/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Hyperinflammation is frequently associated with the chronic pain of autoimmune disease and the acute death of coronavirus disease (COVID-19) via a severe cytokine cascade. CIGB-258 (Jusvinza®), an altered peptide ligand with 3 kDa from heat shock protein 60 (HSP60), inhibits the systemic inflammation and cytokine storm, but the precise mechanism is still unknown. Objective: The protective effect of CIGB-258 against inflammatory stress of N-ε-carboxymethyllysine (CML) was tested to provide mechanistic insight. Methods: CIGB-258 was treated to high-density lipoproteins (HDL) and injected into zebrafish and its embryo to test a putative anti-inflammatory activity under presence of CML. Results: Treatment of CML (final 200 μM) caused remarkable glycation of HDL with severe aggregation of HDL particles to produce dysfunctional HDL, which is associated with a decrease in apolipoprotein A-I stability and lowered paraoxonase activity. Degradation of HDL3 by ferrous ions was attenuated by a co-treatment with CIGB-258 with a red-shift of the Trp fluorescence in HDL. A microinjection of CML (500 ng) into zebrafish embryos resulted in the highest embryo death rate, only 18% of survivability with developmental defects. However, co-injection of CIGB-258 (final 1 ng) caused the remarkable elevation of survivability around 58%, as well as normal developmental speed. An intraperitoneal injection of CML (final 250 μg) into adult zebrafish resulted acute paralysis, sudden death, and laying down on the bottom of the cage with no swimming ability via neurotoxicity and inflammation. However, a co-injection of CIGB-258 (1 μg) resulted in faster recovery of the swimming ability and higher survivability than CML alone injection. The CML alone group showed 49% survivability, while the CIGB-258 group showed 97% survivability (p < 0.001) with a remarkable decrease in hepatic inflammation up to 50%. A comparison of efficacy with CIGB-258, Infliximab (Remsima®), and Tocilizumab (Actemra®) showed that the CIGB-258 group exhibited faster recovery and swimming ability with higher survivability than those of the Infliximab group. The CIGB-258 group and Tocilizumab group showed the highest survivability, the lowest plasma total cholesterol and triglyceride level, and the infiltration of inflammatory cells, such as neutrophils in hepatic tissue. Conclusion: CIGB-258 ameliorated the acute neurotoxicity, paralysis, hyperinflammation, and death induced by CML, resulting in higher survivability in zebrafish and its embryos by enhancing the HDL structure and functionality.
Collapse
|
8
|
Diab A, Valenzuela Ripoll C, Guo Z, Javaheri A. HDL Composition, Heart Failure, and Its Comorbidities. Front Cardiovasc Med 2022; 9:846990. [PMID: 35350538 PMCID: PMC8958020 DOI: 10.3389/fcvm.2022.846990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022] Open
Abstract
Although research on high-density lipoprotein (HDL) has historically focused on atherosclerotic coronary disease, there exists untapped potential of HDL biology for the treatment of heart failure. Anti-oxidant, anti-inflammatory, and endothelial protective properties of HDL could impact heart failure pathogenesis. HDL-associated proteins such as apolipoprotein A-I and M may have significant therapeutic effects on the myocardium, in part by modulating signal transduction pathways and sphingosine-1-phosphate biology. Furthermore, because heart failure is a complex syndrome characterized by multiple comorbidities, there are complex interactions between heart failure, its comorbidities, and lipoprotein homeostatic mechanisms. In this review, we will discuss the effects of heart failure and associated comorbidities on HDL, explore potential cardioprotective properties of HDL, and review novel HDL therapeutic targets in heart failure.
Collapse
|
9
|
Li Y, Chen X, Li S, Ma Y, Li J, Lin M, Wan J. Non-high-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio serve as a predictor for coronary collateral circulation in chronic total occlusive patients. BMC Cardiovasc Disord 2021; 21:311. [PMID: 34162320 PMCID: PMC8223315 DOI: 10.1186/s12872-021-02129-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/11/2022] Open
Abstract
Objective The present study investigated the potential correlation between non-high-density lipoprotein cholesterol/high-density lipoprotein cholesterol ratio (non-HDL-C/HDL) and the formation of coronary collateral circulation (CCC) in coronary artery disease cases with chronic total occlusive (CTO) lesions. Methods Two experienced cardiologists identified and selected patients with CTO lesions for retrospective analysis. The 353 patients were divided into a CCC poor formation group (Rentrop 0–1 grade, n = 209) and a CCC good formation group (Rentrop 2–3 grade, n = 144) based on the Cohen-Rentrop standard. A comparison of non-HDL-C/HDL ratios between the two groups was performed. The Spearman test was used to obtain the correlation between the cholesterol ratio and Rentrop grade. Independent predictors of CCC were analyzed using logistic regression. Receiver operating characteristic (ROC) curve analysis was also performed to quantify the predictive value of research indicator. Results The non-HDL-C/HDL ratio in the CCC poor formation group was elevated markedly compared to the CCC good formation group [( 3.86 ± 1.40) vs ( 3.31 ± 1.22), P = 0.000]. The Spearman test results indicated that non-HDL-C/HDL negatively correlated with Rentrop grade (r = − 0.115, P = 0.030). Multivariate logistic regression analysis showed that non-HDL-C/HDL ratio was an independent predictor of CCC formation (OR = 1.195, 95%CI = 1.020–1.400, P = 0.027). The area under the curve of ROC for detecting CCC poor formation was 0.611 (95% CI: 0.551–0.671, P = 0.000) with an optimal cut-off value of 2.77. Conclusion Non-HDL-C/HDL negatively correlated with the formation of CCC and served as an independent predictor of CCC formation, which may be used as a biomarker for the evaluation of CCC.
Collapse
Affiliation(s)
- Ya Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Xin Chen
- Department of Cardiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, 445000, China
| | - Shu Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Yulin Ma
- Department of Cardiology, Hubei Jianghan Oilfield General Hospital, Qianjiang, 433100, China
| | - Jialing Li
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Mingying Lin
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China
| | - Jing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, No 169 Donghu Road, Wuchang District, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
10
|
Cho KH, Kim JR, Lee IC, Kwon HJ. Native High-Density Lipoproteins (HDL) with Higher Paraoxonase Exerts a Potent Antiviral Effect against SARS-CoV-2 (COVID-19), While Glycated HDL Lost the Antiviral Activity. Antioxidants (Basel) 2021; 10:209. [PMID: 33535459 PMCID: PMC7912765 DOI: 10.3390/antiox10020209] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Human high-density lipoproteins (HDL) show a broad spectrum of antiviral activity in terms of anti-infection. Although many reports have pointed out a correlation between a lower serum HDL-C and a higher risk of COVID-19 infection and progression, the in vitro antiviral activity of HDL against SARS-CoV-2 has not been reported. HDL functionality, such as antioxidant and anti-infection, can be impaired by oxidation and glycation and a change to pro-inflammatory properties. This study compared the antiviral activity of native HDL with glycated HDL via fructosylation and native low-density lipoproteins (LDL). After 72 h of fructosylation, glycated HDL showed a typical multimerized protein pattern with an elevation of yellowish fluorescence. Glycated HDL showed a smaller particle size with an ambiguous shape and a loss of paraoxonase activity up to 51% compared to native HDL. The phagocytosis of acetylated LDL was accelerated 1.3-fold by glycated HDL than native HDL. Native HDL showed 1.7 times higher cell viability and 3.6 times higher cytopathic effect (CPE) inhibition activity against SARS-CoV-2 than that of glycated HDL under 60 μg/mL (approximately final 2.2 μM) in a Vero E6 cell. Native HDL showed EC50 = 52.1 ± 1.1 μg/mL (approximately final 1.8 μM) for the CPE and CC50 = 79.4 ± 1.5 μg/mL (around 2.8 μM). The selective index (SI) of native HDL was calculated to be 1.52. In conclusion, native HDL shows potent antiviral activity against SARS-CoV-2 without cytotoxicity, while the glycation of HDL impairs its antiviral activity. These results may explain why patients with diabetes mellitus or hypertension are more sensitive to a COVID-19 infection and have a higher risk of mortality.
Collapse
Affiliation(s)
- Kyung-Hyun Cho
- Medical Innovation Complex, Korea Research Institute of Lipoproteins, Daegu 41061, Korea
- LipoLab, Yeungnam University, Gyeongsan 712-749, Korea
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea;
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, Smart-Aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu 705-717, Korea;
| | - In-Chul Lee
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (I.-C.L.); (H.-J.K.)
| | - Hyung-Jun Kwon
- Functional Biomaterials Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Korea; (I.-C.L.); (H.-J.K.)
| |
Collapse
|
11
|
Relationship between non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio and coronary heart disease. Coron Artery Dis 2020; 31:623-627. [PMID: 32168053 PMCID: PMC7531502 DOI: 10.1097/mca.0000000000000881] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the association between non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio and degree of coronary artery stenosis proven by coronary angiography. METHODS A total of 1867 patients were enrolled into this study and analyzed retrospectively. Three hundred eighty-five non-coronary artery disease hospitalized patients were selected as control group, 1482 patients diagnosed as coronary artery disease were classified into three subgroups according to the tertiles of their SYNTAX score. We compared the level of non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio among the three subgroups. The Spearman correlation was used to analyze the correlation between non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio and SYNTAX, logistic regression was used for analyzing independent predictors of coronary artery disease. RESULTS The level of non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio was higher in coronary artery disease group compared with non-coronary artery disease group (P < 0.01). The Spearman correlation analysis showed that non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio were significantly correlated with SYNTAX score (r = 0.081, P < 0.001; r = 0.216, P < 0.001). In multivariate logistic regression analysis showed that non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio were independent predictors of coronary artery disease (odds ratio = 3.645, 95% confidence interval, 1.267-10.486; OR = 2.096, 95% confidence interval, 1.438-3.054). CONCLUSION Non-high-density lipoprotein cholesterol/apolipoprotein A-I and monocyte/high-density lipoprotein cholesterol ratio were associated with the severity of coronary artery lesions, which can be used as a biomarker for the evaluation of severity of coronary artery disease.
Collapse
|
12
|
High-Density Lipoprotein (HDL) Inhibits Serum Amyloid A (SAA)-Induced Vascular and Renal Dysfunctions in Apolipoprotein E-Deficient Mice. Int J Mol Sci 2020; 21:ijms21041316. [PMID: 32075280 PMCID: PMC7072968 DOI: 10.3390/ijms21041316] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023] Open
Abstract
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE-/-) mice in the absence of a high-fat diet. Male ApoE-/- mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman's space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE-/- mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman's space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model.
Collapse
|
13
|
Yan Y, Song D, Wu J, Wang J. Long Non-Coding RNAs Link Oxidized Low-Density Lipoprotein With the Inflammatory Response of Macrophages in Atherogenesis. Front Immunol 2020; 11:24. [PMID: 32082313 PMCID: PMC7003668 DOI: 10.3389/fimmu.2020.00024] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is characterized as a chronic inflammatory response to cholesterol deposition in arteries. Low-density lipoprotein (LDL), especially the oxidized form (ox-LDL), plays a crucial role in the occurrence and development of atherosclerosis by inducing endothelial cell (EC) dysfunction, attracting monocyte-derived macrophages, and promoting chronic inflammation. However, the mechanisms linking cholesterol accumulation with inflammation in macrophage foam cells are poorly understood. Long non-coding RNAs (lncRNAs) are a group of non-protein-coding RNAs longer than 200 nucleotides and are found to regulate the progress of atherosclerosis. Recently, many lncRNAs interfering with cholesterol deposition or inflammation were identified, which might help elucidate their underlying molecular mechanism or be used as novel therapeutic targets. In this review, we summarize and highlight the role of lncRNAs linking cholesterol (mainly ox-LDL) accumulation with inflammation in macrophages during the process of atherosclerosis.
Collapse
Affiliation(s)
- Youyou Yan
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, China
| | - Dandan Song
- Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Junduo Wu
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| | - Junnan Wang
- Department of Cardiology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
The Role and Function of HDL in Patients with Chronic Kidney Disease and the Risk of Cardiovascular Disease. Int J Mol Sci 2020; 21:ijms21020601. [PMID: 31963445 PMCID: PMC7014265 DOI: 10.3390/ijms21020601] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide health problem with steadily increasing occurrence. Significantly elevated cardiovascular morbidity and mortality have been observed in CKD. Cardiovascular diseases are the most important and frequent cause of death of CKD patients globally. The presence of CKD is related to disturbances in lipoprotein metabolism whose consequences are dyslipidemia and the accumulation of atherogenic particles. CKD not only fuels the reduction of high-density lipoprotein (HDL) cholesterol concentration, but also it modifies the composition of this lipoprotein. The key role of HDL is the participation in reverse cholesterol transport from peripheral tissues to the liver. Moreover, HDL prevents the oxidation of low-density lipoprotein (LDL) cholesterol by reactive oxygen species (ROS) and protects against the adverse effects of oxidized LDL (ox-LDL) on the endothelium. Numerous studies have demonstrated the ability of HDL to promote the production of nitric oxide (NO) by endothelial cells (ECs) and to exert antiapoptotic and anti-inflammatory effects. Increasing evidence suggests that in patients with chronic inflammatory disorders, HDLs may lose important antiatherosclerotic properties and become dysfunctional. So far, no therapeutic strategy to raise HDL, or alter the ratio of HDL subfractions, has been successful in slowing the progression of CKD or reducing cardiovascular disease in patients either with or without CKD.
Collapse
|
15
|
Méndez-Lara KA, Farré N, Santos D, Rivas-Urbina A, Metso J, Sánchez-Quesada JL, Llorente-Cortes V, Errico TL, Lerma E, Jauhiainen M, Martín-Campos JM, Alonso N, Escolà-Gil JC, Blanco-Vaca F, Julve J. Human ApoA-I Overexpression Enhances Macrophage-Specific Reverse Cholesterol Transport but Fails to Prevent Inherited Diabesity in Mice. Int J Mol Sci 2019; 20:E655. [PMID: 30717414 PMCID: PMC6387412 DOI: 10.3390/ijms20030655] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/26/2019] [Accepted: 01/29/2019] [Indexed: 12/18/2022] Open
Abstract
Human apolipoprotein A-I (hApoA-I) overexpression improves high-density lipoprotein (HDL) function and the metabolic complications of obesity. We used a mouse model of diabesity, the db/db mouse, to examine the effects of hApoA-I on the two main functional properties of HDL, i.e., macrophage-specific reverse cholesterol transport (m-RCT) in vivo and the antioxidant potential, as well as the phenotypic features of obesity. HApoA-I transgenic (hA-I) mice were bred with nonobese control (db/+) mice to generate hApoA-I-overexpressing db/+ offspring, which were subsequently bred to obtain hA-I-db/db mice. Overexpression of hApoA-I significantly increased weight gain and the incidence of fatty liver in db/db mice. Weight gain was mainly explained by the increased caloric intake of hA-I-db/db mice (>1.2-fold). Overexpression of hApoA-I also produced a mixed type of dyslipidemia in db/db mice. Despite these deleterious effects, the overexpression of hApoA-I partially restored m-RCT in db/db mice to levels similar to nonobese control mice. Moreover, HDL from hA-I-db/db mice also enhanced the protection against low-density lipoprotein (LDL) oxidation compared with HDL from db/db mice. In conclusion, overexpression of hApoA-I in db/db mice enhanced two main anti-atherogenic HDL properties while exacerbating weight gain and the fatty liver phenotype. These adverse metabolic side-effects were also observed in obese mice subjected to long-term HDL-based therapies in independent studies and might raise concerns regarding the use of hApoA-I-mediated therapy in obese humans.
Collapse
Affiliation(s)
- Karen Alejandra Méndez-Lara
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Núria Farré
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
| | - David Santos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Andrea Rivas-Urbina
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Biomedicum 2U and National Institute for Health and Welfare, Genomics and Biomarkers Unit, FIN-00290 Helsinki, Finland.
| | - José Luis Sánchez-Quesada
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Vicenta Llorente-Cortes
- CSIC-ICCC-IIB-Sant Pau i CSIC-Institut d'Investigacions Biomèdiques de Barcelona (IIBB), 08025 Barcelona, Spain.
- CIBER de Enfermedades Cardiovasculares, CIBERCV, 28029 Madrid, Spain.
| | - Teresa L Errico
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Enrique Lerma
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain.
- Departament de Patologia, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U and National Institute for Health and Welfare, Genomics and Biomarkers Unit, FIN-00290 Helsinki, Finland.
| | - Jesús M Martín-Campos
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Núria Alonso
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
- Servei d'Endocrinologia, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| | - Francisco Blanco-Vaca
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica de l'Hospital de la Santa Creu i Sant Pau, IIB-Sant Pau, 08041 Barcelona, Spain.
| | - Josep Julve
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau i Institut d'Investigació Biomèdica Sant Pau, IIB-Sant Pau, 08025 Barcelona, Spain.
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain.
| |
Collapse
|
16
|
van der Krieken SE, Popeijus HE, Bendik I, Böhlendorf B, Konings MCJM, Tayyeb J, Mensink RP, Plat J. Large-Scale Screening of Natural Products Transactivating Peroxisome Proliferator-Activated Receptor α Identifies 9S-Hydroxy-10E,12Z,15Z-Octadecatrienoic Acid and Cymarin as Potential Compounds Capable of Increasing Apolipoprotein A-I Transcription in Hum. Lipids 2019; 53:1021-1030. [DOI: 10.1002/lipd.12116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 10/18/2018] [Accepted: 11/27/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Sophie E. van der Krieken
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences; Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Herman E. Popeijus
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences; Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Igor Bendik
- DSM Nutritional Products Ltd, Research and Development, Human Nutrition and Health; PO Box 2676, Basel Switzerland
| | - Bettina Böhlendorf
- DSM Nutritional Products Ltd, Research and Development, Human Nutrition and Health; PO Box 2676, Basel Switzerland
| | - Maurice C. J. M. Konings
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences; Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Jehad Tayyeb
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences; Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Ronald P. Mensink
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences; Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Jogchum Plat
- NUTRIM School of Nutrition and Translational Research in Metabolism, Department of Nutrition and Movement Sciences; Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| |
Collapse
|
17
|
The Ability of Different Ketohexoses to Alter Apo-A-I Structure and Function In Vitro and to Induce Hepatosteatosis, Oxidative Stress, and Impaired Plasma Lipid Profile in Hyperlipidemic Zebrafish. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3124364. [PMID: 29951163 PMCID: PMC5987316 DOI: 10.1155/2018/3124364] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
In the current study, we have tested the nonenzymatic glycation activities of ketohexoses, such as tagatose and psicose. Although tagatose-treated apoA-I (t-A-I) and psicose-treated apoA-I (p-A-I) exerted more inhibitory activity you cupric ion-mediated low-density lipoprotein (LDL) oxidation and oxidized LDL (oxLDL) phagocytosis into macrophage than fructose-treated apoA-I (f-A-I). In the lipid-free state, t-A-I and f-A-I showed more multimerized band without crosslinking. Since t-A-I lost its phospholipid binding ability, the rHDL formation was not as successful as f-A-I. However, injecting t-A-I showed more antioxidant activities in zebrafish embryo under the presence of oxLDL. Three weeks of consumption of fructose (50% of wt in Tetrabit/4% cholesterol) showed a 14% elevation of serum triacylglycerol (TG), while tagatose-administered group showed 30% reduction in serum TG compared to high cholesterol control. Fructose-fed group showed the biggest area of Oil Red O staining with the intensity as strong as the HCD control. However, tagatose-consumed group showed much lesser Oil Red O-stained area with the reduction of lipid accumulation. In conclusion, although tagatose treatment caused modification of apoA-I, the functional loss was not as much severe as the fructose treatment in macrophage cell model, zebrafish embryo, and hypercholesterolemic zebrafish model.
Collapse
|
18
|
Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA. Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 2018; 38:206-217. [PMID: 29122817 PMCID: PMC5746433 DOI: 10.1161/atvbaha.117.309565] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene therapy that expresses apo A-I (apolipoprotein A-I) from vascular wall cells has promise for preventing and reversing atherosclerosis. Previously, we reported that transduction of carotid artery endothelial cells with a helper-dependent adenoviral (HDAd) vector expressing apo A-I reduced early (4 weeks) fatty streak development in fat-fed rabbits. Here, we tested whether the same HDAd could provide long-term protection against development of more complex lesions. APPROACH AND RESULTS Fat-fed rabbits (n=25) underwent bilateral carotid artery gene transfer, with their left and right common carotids randomized to receive either a control vector (HDAdNull) or an apo A-I-expressing vector (HDAdApoAI). Twenty-four additional weeks of high-fat diet yielded complex intimal lesions containing lipid-rich macrophages as well as smooth muscle cells, often in a lesion cap. Twenty-four weeks after gene transfer, high levels of apo A-I mRNA (median ≥250-fold above background) were present in all HDAdApoAI-treated arteries. Compared with paired control HDAdNull-treated arteries in the same rabbit, HDAdApoAI-treated arteries had 30% less median intimal lesion volume (P=0.03), with concomitant reductions (23%-32%) in intimal lipid, macrophage, and smooth muscle cell content (P≤0.05 for all). HDAdApoAI-treated arteries also had decreased intimal inflammatory markers. VCAM-1 (vascular cell adhesion molecule-1)-stained area was reduced by 36% (P=0.03), with trends toward lower expression of ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein 1), and TNF-α (tumor necrosis factor-α; 13%-39% less; P=0.06-0.1). CONCLUSIONS In rabbits with severe hyperlipidemia, transduction of vascular endothelial cells with an apo A-I-expressing HDAd yields at least 24 weeks of local apo A-I expression that durably reduces atherosclerotic lesion growth and intimal inflammation.
Collapse
Affiliation(s)
- Bradley K Wacker
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Nagadhara Dronadula
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lianxiang Bi
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Alexis Stamatikos
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - David A Dichek
- From the Department of Medicine, University of Washington School of Medicine, Seattle.
| |
Collapse
|
19
|
Sera from Visceral Leishmaniasis Patients Display Oxidative Activity and Affect the TNF- α Production by Macrophages In Vitro. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5861453. [PMID: 29230410 PMCID: PMC5694613 DOI: 10.1155/2017/5861453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/08/2017] [Indexed: 02/04/2023]
Abstract
Mammalian protection against leishmanial infection depends on the development of an effective immune response. Zoonotic visceral leishmaniasis (ZVL) patients are usually unable to mount an effective immune response against the parasite and indeed appear to be severely immunosuppressed. This suppression has strong nonspecific and specific components mediated by serum factors and leishmanicidal activity of infected macrophages, respectively. The lipid profile has been shown to be altered in ZVL patients' sera. This work aimed at (i) determining the HDL, Apo A1, LDL, and VLDL concentrations in ZVL patients' sera; (ii) investigating the oxidative effect of ZVL patients' sera on the β-carotene matrix; (iii) measuring IL-10, IL-6, IL-12p40, and tumour necrosis factor-α (TNF-α) concentrations in the macrophage cultures, to which 10% of ZVL patients' serum had been added. Levels of HDL, LDL fraction, and apolipoprotein A1 in ZVL patients' sera were lower than those of healthy individuals' sera, except for the mean level of VLDL. The matrix of β-carotene and linoleic acid system was oxidized in the presence of ZLV patients' sera. The presence of ZVL patients' sera did not modify the cytokine production of IL-6, IL-12p40, and IL-10 by human macrophages in vitro but TNF-α production was altered, probably due to lack of macrophage stimulation by lipoprotein.
Collapse
|
20
|
A Rabbit Model for Testing Helper-Dependent Adenovirus-Mediated Gene Therapy for Vein Graft Atherosclerosis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 7:96-111. [PMID: 29296626 PMCID: PMC5744068 DOI: 10.1016/j.omtm.2017.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023]
Abstract
Coronary artery bypass vein grafts are a mainstay of therapy for human atherosclerosis. Unfortunately, the long-term patency of vein grafts is limited by accelerated atherosclerosis. Gene therapy, directed at the vein graft wall, is a promising approach for preventing vein graft atherosclerosis. Because helper-dependent adenovirus (HDAd) efficiently transduces grafted veins and confers long-term transgene expression, HDAd is an excellent candidate for delivery of vein graft-targeted gene therapy. We developed a model of vein graft atherosclerosis in fat-fed rabbits and demonstrated long-term (≥20 weeks) persistence of HDAd genomes after graft transduction. This model enables quantitation of vein graft hemodynamics, wall structure, lipid accumulation, cellularity, vector persistence, and inflammatory markers on a single graft. Time-course experiments identified 12 weeks after transduction as an optimal time to measure efficacy of gene therapy on the critical variables of lipid and macrophage accumulation. We also used chow-fed rabbits to test whether HDAd infusion in vein grafts promotes intimal growth and inflammation. HDAd did not increase intimal growth, but had moderate-yet significant-pro-inflammatory effects. The vein graft atherosclerosis model will be useful for testing HDAd-mediated gene therapy; however, pro-inflammatory effects of HdAd remain a concern in developing HDAd as a therapy for vein graft disease.
Collapse
|
21
|
SayuriYamagata A, Brietzke E, Rosenblat JD, Kakar R, McIntyre RS. Medical comorbidity in bipolar disorder: The link with metabolic-inflammatory systems. J Affect Disord 2017; 211:99-106. [PMID: 28107669 DOI: 10.1016/j.jad.2016.12.059] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 12/23/2016] [Accepted: 12/31/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is associated with chronic low-grade inflammation, several medical comorbidities and a decreased life expectancy. Metabolic-inflammatory changes have been postulated as one of the main links between BD and medical comorbidity, although there are few studies exploring possible mechanisms underlying this relationship. Therefore, the aims of the current narrative review were 1) synthesize the evidence for metabolic-inflammatory changes that may facilitate the link between medical comorbidity and BD and 2) discuss therapeutic and preventive implications of these pathways. METHODS The PubMed and Google Scholar databases were searched for relevant studies. RESULTS Identified studies suggested that there is an increased risk of medical comorbidities, such as autoimmune disorders, obesity, diabetes and cardiovascular disease in patients with BD. The association between BD and general medical comorbidities seems to be bidirectional and potentially mediated by immune dysfunction. Targeting the metabolic-inflammatory-mood pathway may potential yield improved outcomes in BD; however, further study is needed to determine which specific interventions may be beneficial. LIMITATIONS The majority of identified studies had cross-sectional designs, small sample sizes and limited measurements of inflammation. CONCLUSIONS Treatment and prevention of general medical comorbidities in mood disorders should include preferential prescribing of metabolically neutral agents and adjunctive lifestyle modifications including increased physical activity, improved diet and decreased substance abuse. In addition, the use of anti-inflammatory agents could be a relevant therapeutic target in future research.
Collapse
Affiliation(s)
- Ana SayuriYamagata
- University of São Paulo (USP), São Paulo, Brazil; Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Elisa Brietzke
- Research Group in Molecular and Behavioral Neuroscience of Bipolar Disorder, Federal University of São Paulo (Unifesp), São Paulo, Brazil
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Ron Kakar
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada
| | - Roger S McIntyre
- Mood Disorders Psychopharmacology Unit (MDPU), University Health Network (UHN), University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Tsatralis T, Ridiandries A, Robertson S, Vanags LZ, Lam YT, Tan JTM, Ng MKC, Bursill CA. Reconstituted high-density lipoproteins promote wound repair and blood flow recovery in response to ischemia in aged mice. Lipids Health Dis 2016; 15:150. [PMID: 27600523 PMCID: PMC5012086 DOI: 10.1186/s12944-016-0322-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The average population age is increasing and the incidence of age-related vascular complications is rising in parallel. Impaired wound healing and disordered ischemia-mediated angiogenesis are key contributors to age-impaired vascular complications that can lead to amputation. High-density lipoproteins (HDL) have vasculo-protective properties and augment ischemia-driven angiogenesis in young animals. We aimed to determine the effect of reconstituted HDL (rHDL) on aged mice in a murine wound healing model and the hindlimb ischemia (HLI) model. METHODS Murine wound healing model-24-month-old aged mice received topical application of rHDL (50 μg/wound/day) or PBS (vehicle control) for 10 days following wounding. Murine HLI model-Femoral artery ligation was performed on 24-month-old mice. Mice received rHDL (40 mg/kg) or PBS, intravenously, on alternate days, 1 week pre-surgery and up to 21 days post ligation. For both models, blood flow perfusion was determined using laser Doppler perfusion imaging. Mice were sacrificed at 10 (wound healing) or 21 (HLI) days post-surgery and tissues were collected for histological and gene analyses. RESULTS Daily topical application of rHDL increased the rate of wound closure by Day 7 post-wounding (25 %, p < 0.05). Wound blood perfusion, a marker of angiogenesis, was elevated in rHDL treated wounds (Days 4-10 by 22-25 %, p < 0.05). In addition, rHDL increased wound capillary density by 52.6 %. In the HLI model, rHDL infusions augmented blood flow recovery in ischemic limbs (Day 18 by 50 % and Day 21 by 88 %, p < 0.05) and prevented tissue necrosis and toe loss. Assessment of capillary density in ischemic hindlimb sections found a 90 % increase in rHDL infused animals. In vitro studies in fibroblasts isolated from aged mice found that incubation with rHDL was able to significantly increase the key pro-angiogenic mediator vascular endothelial growth factor (VEGF) protein (25 %, p < 0.05). CONCLUSION rHDL can promote wound healing and wound angiogenesis, and blood flow recovery in response to ischemia in aged mice. Mechanistically, this is likely to be via an increase in VEGF. This highlights a potential role for HDL in the therapeutic modulation of age-impaired vascular complications.
Collapse
Affiliation(s)
- Tania Tsatralis
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
| | - Anisyah Ridiandries
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
| | - Stacy Robertson
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
| | - Laura Z. Vanags
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
| | - Yuen Ting Lam
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
| | - Joanne T. M. Tan
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
| | - Martin K. C. Ng
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Camperdown, 2050 Sydney Australia
| | - Christina A. Bursill
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, 2042 Australia
- Sydney Medical School, University of Sydney, Camperdown, 2050 Sydney Australia
| |
Collapse
|
23
|
Ahn N, Kim K. High-density lipoprotein cholesterol (HDL-C) in cardiovascular disease: effect of exercise training. Integr Med Res 2016; 5:212-215. [PMID: 28462120 PMCID: PMC5390423 DOI: 10.1016/j.imr.2016.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Decreases in high-density lipoprotein cholesterol (HDL-C) levels are associated with an increased risk of coronary artery disease (CAD), whereas increased HDL-C levels are related to a decreased risk of CAD and myocardial infarction. Although HDL prevents the oxidation of low-density lipoprotein under normal conditions, it triggers a structural change, inhibiting antiarteriosclerotic and anti-inflammatory functions, under pathological conditions such as oxidative stress, inflammation, and diabetes. HDL can transform into various structures based on the quantitative reduction and deformation of apolipoprotein A1 and is the primary cause of increased levels of dysfunctional HDL, which can lead to an increased risk of CAD. Therefore, analyzing the structure and components of HDL rather than HDL-C after the application of an exercise training program may be useful for understanding the effects of HDL.
Collapse
Affiliation(s)
- Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Korea
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, Daegu, Korea
| |
Collapse
|
24
|
Laks R, Araújo LMQ, Almada Filho CDM, Cendoroglo MS. The importance of HDL-C and CRP in cardiovascular risk evaluation in longevous elderly individuals. EINSTEIN-SAO PAULO 2016; 9:397-403. [PMID: 26761114 DOI: 10.1590/s1679-45082011rw1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 09/02/2011] [Indexed: 11/21/2022] Open
Abstract
The association between total mortality, lipoproteinS, and inflammatory markers, and their implications with aging and longevity are often controversial. Among the most often studied markers are low HDL cholesterol and high C-reactive protein. Particularly in octogenarians, it is expected that the impact of the inclusion of HDL cholesterol and C-reactive protein will improve the stratification of absolute cardiovascular risk. In the present study, we performed a literature review in PubMed about the relation between HDL cholesterol, inflammation and longevity. Applying the inclusion and exclusion criteria adopted, we selected 30 studies, among which one systematic review on the relation between HDL cholesterol and stroke, one meta-analysis on the relation between total cholesterol and HDL cholesterol with mortality, 22 longitudinal studies, and six cross-sectional studies. The results show an inverse association between HDL cholesterol and total mortality, and between cardiovascular mortality and C-reactive protein, as well as a positive association between C-reactive protein and mortality in longevous individuals. C-reactive protein and HDL cholesterol displayed promising characteristics as predictors of cardiovascular mortality in longevous elderly persons.
Collapse
Affiliation(s)
- Renato Laks
- Department of Geriatrics and Gerontology, Escola Paulista de Medicina, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, SP, BR
| | - Lara Miguel Quirino Araújo
- Department of Geriatrics and Gerontology, Escola Paulista de Medicina, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, SP, BR
| | - Clineu de Mello Almada Filho
- Department of Geriatrics and Gerontology, Escola Paulista de Medicina, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, SP, BR
| | - Maysa Seabra Cendoroglo
- Department of Geriatrics and Gerontology, Escola Paulista de Medicina, Universidade Federal de São Paulo - UNIFESP, Sao Paulo, SP, BR
| |
Collapse
|
25
|
Lee MKS, Moore XL, Fu Y, Al-Sharea A, Dragoljevic D, Fernandez-Rojo MA, Parton R, Sviridov D, Murphy AJ, Chin-Dusting JPF. High-density lipoprotein inhibits human M1 macrophage polarization through redistribution of caveolin-1. Br J Pharmacol 2015; 173:741-51. [PMID: 26332942 DOI: 10.1111/bph.13319] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Monocyte-derived macrophages are critical in the development of atherosclerosis and can adopt a wide range of functional phenotypes depending on their surrounding milieu. High-density lipoproteins (HDLs) have many cardio-protective properties including potent anti-inflammatory effects. We investigated the effects of HDL on human macrophage phenotype and the mechanisms by which these occur. EXPERIMENTAL APPROACH Human blood monocytes were differentiated into macrophages in the presence or absence of HDL and were then induced to either an inflammatory macrophage (M1) or anti-inflammatory macrophage (M2) phenotype using LPS and IFN-γ or IL-4, respectively. KEY RESULTS HDL inhibited the induction of macrophages to an M1-phenotype, as evidenced by a decrease in the expression of M1-specific cell surface markers CD192 and CD64, as well as M1-associated inflammatory genes TNF-α, IL-6 and MCP-1 (CCL2). HDL also inhibited M1 function by reducing the production of ROS. In contrast, HDL had no effect on macrophage induction to the M2-phenotype. Similarly, methyl-β-cyclodextrin, a non-specific cholesterol acceptor also suppressed the induction of M1 suggesting that cholesterol efflux is important in this process. Furthermore, HDL decreased membrane caveolin-1 in M1 macrophages. We confirmed that caveolin-1 is required for HDL to inhibit M1 induction as bone marrow-derived macrophages from caveolin-1 knockout mice continued to polarize into M1-phenotype despite the presence of HDL. Moreover, HDL decreased ERK1/2 and STAT3 phosphorylation in M1 macrophages. CONCLUSIONS AND IMPLICATIONS We concluded that HDL reduces the induction of macrophages to the inflammatory M1-phenotype via redistribution of caveolin-1, preventing the activation of ERK1/2 and STAT3.
Collapse
Affiliation(s)
- Man K S Lee
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| | - Xiao-Lei Moore
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Yi Fu
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Annas Al-Sharea
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| | - Dragana Dragoljevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| | - Manuel A Fernandez-Rojo
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Robert Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Australia
| | - Dmitri Sviridov
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Andrew J Murphy
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Jaye P F Chin-Dusting
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine (Alfred), Monash University, Melbourne, Australia
| |
Collapse
|
26
|
Ghorban K, Shanaki M, Mobarra N, Azad M, Asadi J, Pakzad R, Ehteram H. Apolipoproteins A1, B, and other prognostic biochemical cardiovascular risk factors in patients with beta-thalassemia major. ACTA ACUST UNITED AC 2015; 21:113-20. [PMID: 25913481 DOI: 10.1179/1607845415y.0000000016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES The occurrence of cardiac iron deposition is one of the late effect of iron over load which causes cardiovascular disease (CVD) in patients who are affected by beta-thalassemia major. Evaluation of some cardiovascular risk factors plays a crucial role in prediction and prevention of CVD. SUBJECTS AND METHODS This study consisted of 70 young adult subjects with beta-thalassemia major (beta-TM) (aged <30 years) and 71 age- and sex-matched healthy subjects as control group in the range of 20-30 years. Hematological and biochemical laboratory parameters including apolipoprotein (Apo)A1 and ApoB, oxidative stress biomarker pro-oxidant-antioxidant balance (PAB), homocysteine, serum high-sensitivity C-reactive protein (hs-CRP), and lipid profile were evaluated. RESULTS ApoA1, ApoB, lipid profiles, and homocysteine were significantly decreased in patients group (P < 0.001); however, very low-density lipoprotein and also mean corpuscular hemoglobin concentration (P > 0.05) were different. Some elements included ferritin (P < 0.001), PAB (P < 0.001), and ApoB/apoA1 ratio (P < 0.05) statistically increased in patients, whereas hs-CRP (P > 0.05) was not significantly different in study groups. Exception of high-density lipoprotein (P > 0.05), other lipid profiles, and apoB had a negative meaningful correlation with PAB (P < 0.05). Likewise, apoA1, apoB, apoB/A1 ratio with apoB and homocysteine showed a strong correlation (P < 0.05). We did not find a slight correlation between apoB/A1 ratio in the company of oxidative stress marker PAB (r = -0.366; P = 0.086). We found a statistical correlation between apoB/A1 and homocysteine (P < 0.05). DISCUSSION Higher level of some risk factors like PAB values, apoB/A1 ratio concentration, and lipid profiles is able to involve in the prognostic pathological consequences in patients with beta-thalassemia major. Even so, they contribute toward the gradual development of CVD.
Collapse
Affiliation(s)
- Khodayar Ghorban
- a Department of Immunology, School of Medicine , AJA University of Medical Sciences , Tehran , Iran
| | - Mehrnoosh Shanaki
- b Department of Laboratory Medicine, School of Allied Medical Sciences , Shahid Beheshti University of Medical Sciences , Tehran , Iran
| | - Naser Mobarra
- a Department of Immunology, School of Medicine , AJA University of Medical Sciences , Tehran , Iran.,c Department of Biochemistry, Metabolic Disorders Research Center , School of Medicine, Golestan University of Medical Sciences , Gorgan , Iran.,g Students' Scientific Research Center, Tehran University of Medical Sciences , Iran
| | - Mehdi Azad
- d Department of Medical Laboratory Sciences, Faculty of Allied Medicine , Qazvin University of Medical Sciences , Iran
| | - Jahanbakhsh Asadi
- c Department of Biochemistry, Metabolic Disorders Research Center , School of Medicine, Golestan University of Medical Sciences , Gorgan , Iran
| | - Reza Pakzad
- e Departments of Epidemiology and Biostatistics , School of Public Health, Tehran University of Medical Sciences , Iran
| | - Hassan Ehteram
- f Department of Pathology, School of Medicine , Kashan University of Medical Sciences , Iran
| |
Collapse
|
27
|
Riwanto M, Rohrer L, von Eckardstein A, Landmesser U. Dysfunctional HDL: from structure-function-relationships to biomarkers. Handb Exp Pharmacol 2015; 224:337-366. [PMID: 25522994 DOI: 10.1007/978-3-319-09665-0_10] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reduced plasma levels of HDL-C are associated with an increased risk of CAD and myocardial infarction, as shown in various prospective population studies. However, recent clinical trials on lipid-modifying drugs that increase plasma levels of HDL-C have not shown significant clinical benefit. Notably, in some recent clinical studies, there is no clear association of higher HDL-C levels with a reduced risk of cardiovascular events observed in patients with existing CAD. These observations have prompted researchers to shift from a cholesterol-centric view of HDL towards assessing the function and composition of HDL particles. Of importance, experimental and translational studies have further demonstrated various potential antiatherogenic effects of HDL. HDL has been proposed to promote macrophage reverse cholesterol transport and to protect endothelial cell functions by prevention of oxidation of LDL and its adverse endothelial effects. Furthermore, HDL from healthy subjects can directly stimulate endothelial cell production of nitric oxide and exert anti-inflammatory and antiapoptotic effects. Of note, increasing evidence suggests that the vascular effects of HDL can be highly heterogeneous and HDL may lose important anti-atherosclerotic properties and turn dysfunctional in patients with chronic inflammatory disorders. A greater understanding of mechanisms of action of HDL and its altered vascular effects is therefore critical within the context of HDL-targeted therapies.
Collapse
Affiliation(s)
- Meliana Riwanto
- Cardiology, University Heart Center, University Hospital Zurich and Center of Molecular Cardiology, University of Zurich, Rämistrasse 100, CH 8091, Zurich, Switzerland
| | | | | | | |
Collapse
|
28
|
Kim JY, Park KH, Kim J, Choi I, Cho KH. Modified High-Density Lipoproteins by Artificial Sweetener, Aspartame, and Saccharin, Showed Loss of Anti-atherosclerotic Activity and Toxicity in Zebrafish. Cardiovasc Toxicol 2014; 15:79-89. [DOI: 10.1007/s12012-014-9273-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Klisic AN, Vasiljevic ND, Simic TP, Djukic TI, Maksimovic MZ, Matic MG. Association between C-reactive protein, anthropometric and lipid parameters among healthy normal weight and overweight postmenopausal women in Montenegro. Lab Med 2014; 45:12-6. [PMID: 24719979 DOI: 10.1309/lmi6i2rn7ampeuul] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE Although C-reactive protein (CRP) is among the best cardiovascular disease risk predictors, data regarding the association of CRP and menopause are controversial. In this study, we measured CRP by a high-sensitivity method (hsCRP), cholesterol, lipoproteins, and triglycerides in normal and overweight postmenopausal women. METHODS Body weight, height, waist circumference (WC), hsCRP, total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides, and lipoprotein (a) were measured in 30 normal weight and 60 overweight healthy postmenopausal women. RESULTS Significantly higher triglyceride and hsCRP levels (P = 0.005 and P < 0.001 respectively), together with lower HDL-c levels (P = 0.001) were found in overweight compared to normal weight women. In the overweight group, positive correlations of hsCRP were observed with age, body mass index and WC (P = 0.016, P = 0.001, and P < 0.001, respectively) and a negative correlation was observed with HDL-c (P = 0.007). In the normal weight group, positive correlations were found for hsCRP with age and WC (P = 0.023 and P = 0.014, respectively). WC was the best predictor of hsCRP level in both groups (P < 0.001). CONCLUSION Elevated hsCRP levels in conjunction with abnormal lipid profiles may be strongly associated with weight gain in postmenopausal women. Efforts to reduce obesity and inflammation in this group may help correct abnormal levels of hsCRP and lipids.
Collapse
|
30
|
Campbell S, Genest J. HDL-C: clinical equipoise and vascular endothelial function. Expert Rev Cardiovasc Ther 2013; 11:343-53. [PMID: 23469914 DOI: 10.1586/erc.13.17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Serum levels of HDL cholesterol represent a strong, and coherent cardiovascular risk marker seen across all populations, with higher levels of HDL cholesterol being associated with decreased incidence of coronary artery disease. The cardiovascular protective effects of HDL particles are attributed, in great part, to the ability of HDL particles to promote cellular cholesterol efflux from lipid-laden macrophages within the atherosclerotic plaque. HDL also has pleiotropic effects that protect the vascular wall, at least in vitro. These effects include potent anti-inflammatory and antioxidant properties and the modulation of vascular endothelial function. The mechanisms by which HDL exert their function on the vascular endothelium is dependent on HDL particle size, protein (proteome) and lipid (lipidome). The cooperative binding of HDL via SR-BI and G-coupled S1PR1-5 receptors mediates phosphorylation of endothelial nitric oxide synthase at residue 1177 through AKT signaling, preventing uncoupling of NADPH oxidation and nitric oxide synthesis and increasing endothelial nitric oxide synthase abundance. Furthermore, HDL can modulate the activation of NF-κB and the expression of cell adhesion molecules, an early step in endothelial dysfunction. In the present review the authors will focus on the controversies surrounding HDL, clinical treatments and vascular endothelial functions of HDL.
Collapse
Affiliation(s)
- Steven Campbell
- McGill University Health Center, McGill University, Royal Victoria Hospital, 687 Pine avenue West, Montreal, QC, H3A 1A1, Canada
| | | |
Collapse
|
31
|
Kim SM, Park GY, Choi I, Cho KH. Bovine apolipoprotein (apo)A-I displays more enhanced antioxidant and anti-atherosclerotic activity in lipid-free and lipid-bound states than human and porcine apoA-I. Int J Mol Med 2013; 32:843-50. [PMID: 23969702 DOI: 10.3892/ijmm.2013.1473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/26/2013] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is a major component of high-density lipoprotein (HDL), which displays anti-atherosclerotic activity in plasma. In the current study, we compared the functional and structural characteristics of human, bovine and porcine apoA-I as regards their antioxidant ability and protein stability. In the lipid-free state, the immunoreactivity of bovine and porcine apoA-I differed from that of human apoA-I and bovine and porcine apoA-I exhibited greater resistance to denaturation induced by urea treatment. Bovine apoA-I showed the weakest binding ability of dimyristoyl phosphatidylcholine; however, bovine apoA-I formed slightly larger reconstituted HDL (rHDL) particles with palmitoyl oleoyl phosphatidylcholine, with a higher number of apoA-I-containing particles. Bovine and porcine apoA-I comprised of pentameric structures, whereas human apoA-I in the rHDL state consisted of trimeric structures. Although apoA-I from all three species showed a similar content of α-helicity in the lipid-free state (approximately 53%), bovine apoA-I showed a lower α-helicity content (approximately 66%) compared with human apoA-I (approximately 74%) in the rHDL state. Bovine apoA-I was more resistant to denaturation and glycation upon treatment with urea and fructose, respectively. Furthermore, bovine apoA-I showed a greater inhibition of cupric ion-mediated low-density lipoprotein (LDL) oxidation and uptake of acetylated LDL by macrophages compared with human or porcine apoA-I in the lipid-free and lipid-bound states. In conclusion, bovine apoA-I has unique functional properties in the lipid-free and lipid-bound states, and displays significantly enhanced anti-atherosclerotic activity.
Collapse
Affiliation(s)
- Seong-Min Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | | | | | | |
Collapse
|
32
|
Varol E, Bas HA, Aksoy F, Ari H, Ozaydin M. Relationship between neutrophil-lymphocyte ratio and isolated low high-density lipoprotein cholesterol. Angiology 2013; 65:630-3. [PMID: 23921506 DOI: 10.1177/0003319713497992] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Several studies showed that high-density lipoprotein cholesterol (HDL-C) has anti-inflammatory effect. The neutrophil-lymphocyte ratio (NLR) is a new biomarker of systemic inflammation. The aim of this study was to assess the NLR in healthy participants with low HDL-C. We studied 69 patients with low HDL-C (≤ 35 mg/dL) and 59 control participants (HDL-C >35 mg/dL) with similar cardiovascular risk factors. Hematological indices were measured in all patients with low HDL-C and control participants. The HDL-C was significantly lower among the patients with low HDL-C than that of the control group (31.7 ± 2.7 vs 50.7 ± 5.0 mg/dL, respectively; P < .001). The NLR was significantly higher among the patients with low HDL-C than that of the control group (2.6 ± 0.8 vs 1.6 ± 0.4, respectively; P < .001). The NLR was negatively correlated with HDL-C (P < .001, r = -.53). The NLR is significantly elevated in patients with low HDL-C when compared with control participants.
Collapse
Affiliation(s)
- Ercan Varol
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Hasan Aydin Bas
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Hatem Ari
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| | - Mehmet Ozaydin
- Department of Cardiology, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
33
|
Riwanto M, Landmesser U. High density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J Lipid Res 2013; 54:3227-43. [PMID: 23873269 DOI: 10.1194/jlr.r037762] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Prospective population studies in the primary prevention setting have shown that reduced plasma levels of HDL cholesterol are associated with an increased risk of coronary disease and myocardial infarction. Experimental and translational studies have further revealed several potential anti-atherogenic effects of HDL, including protective effects on endothelial cell functions. HDL has been suggested to protect endothelial cell functions by prevention of oxidation of LDL and its adverse endothelial effects. Moreover, HDL from healthy subjects can directly stimulate endothelial cell production of nitric oxide and anti-inflammatory, anti-apoptotic, and anti-thrombotic effects as well as endothelial repair processes. However, several recent clinical trials using HDL cholesterol-raising agents, such as torcetrapib, dalcetrapib, and niacin, did not demonstrate a significant reduction of cardiovascular events in patients with coronary disease. Of note, growing evidence suggests that the vascular effects of HDL can be highly heterogeneous and vasoprotective properties of HDL are altered in patients with coronary disease. Characterization of underlying mechanisms and understanding of the clinical relevance of this "HDL dysfunction" is currently an active field of cardiovascular research. Notably, in some recent studies no clear association of higher HDL cholesterol levels with a reduced risk of cardiovascular events was observed in patients with already established coronary disease. A greater understanding of mechanisms of action of HDL and its altered vascular effects is therefore critical within the context of HDL-targeted therapies. In this review, we will address different effects of HDL on endothelial cell functions potentially relevant to atherosclerotic vascular disease and explore molecular mechanisms leading to "dysfunctional HDL".
Collapse
Affiliation(s)
- Meliana Riwanto
- Cardiology, University Heart Center, University Hospital Zurich and Cardiovascular Research, Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
34
|
Hua S, Song C, Geczy CL, Freedman SB, Witting PK. A role for acute-phase serum amyloid A and high-density lipoprotein in oxidative stress, endothelial dysfunction and atherosclerosis. Redox Rep 2013; 14:187-96. [DOI: 10.1179/135100009x12525712409490] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
35
|
Riwanto M, Rohrer L, Roschitzki B, Besler C, Mocharla P, Mueller M, Perisa D, Heinrich K, Altwegg L, von Eckardstein A, Lüscher TF, Landmesser U. Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling. Circulation 2013; 127:891-904. [PMID: 23349247 DOI: 10.1161/circulationaha.112.108753] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Endothelial dysfunction and injury are thought to play an important role in the progression of coronary artery disease (CAD). High-density lipoprotein from healthy subjects (HDL(Healthy)) has been proposed to exert endothelial antiapoptotic effects that may represent an important antiatherogenic property of the lipoprotein. The present study therefore aimed to compare effects of HDL(CAD) and HDL(Healthy) on the activation of endothelial anti- and proapoptotic pathways and to determine which changes of the lipoprotein are relevant for these processes. METHODS AND RESULTS HDL was isolated from patients with stable CAD (HDL(sCAD)), an acute coronary syndrome (HDL(ACS)), and healthy subjects. HDL(Healthy) induced expression of the endothelial antiapoptotic Bcl-2 protein Bcl-xL and reduced endothelial cell apoptosis in vitro and in apolipoprotein E-deficient mice in vivo. In contrast, HDL(sCAD) and HDL(ACS) did not inhibit endothelial apoptosis, failed to activate endothelial Bcl-xL, and stimulated endothelial proapoptotic pathways, in particular, p38-mitogen-activated protein kinase-mediated activation of the proapoptotic Bcl-2 protein tBid. Endothelial antiapoptotic effects of HDL(Healthy) were observed after inhibition of endothelial nitric oxide synthase and after delipidation, but not completely mimicked by apolipoprotein A-I or reconstituted HDL, suggesting an important role of the HDL proteome. HDL proteomics analyses and subsequent validations and functional characterizations suggested a reduced clusterin and increased apolipoprotein C-III content of HDL(sCAD) and HDL(ACS) as mechanisms leading to altered effects on endothelial apoptosis. CONCLUSIONS The present study demonstrates for the first time that HDL(CAD) does not activate endothelial antiapoptotic pathways, but rather stimulates potential endothelial proapoptotic pathways. HDL-proteome remodeling plays an important role for these altered functional properties of HDL. These findings provide novel insights into mechanisms leading to altered vascular effects of HDL in coronary disease.
Collapse
Affiliation(s)
- Meliana Riwanto
- Cardiology, Cardiovascular Center, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yiallouros PK, Savva SC, Kolokotroni O, Behbod B, Zeniou M, Economou M, Chadjigeorgiou C, Kourides YA, Tornaritis MJ, Lamnisos D, Middleton N, Milton DK. Low serum high-density lipoprotein cholesterol in childhood is associated with adolescent asthma. Clin Exp Allergy 2012; 42:423-32. [PMID: 22356143 DOI: 10.1111/j.1365-2222.2011.03940.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Whilst emerging evidence from animal and cell experiments has shown high-density lipoprotein cholesterol to have anti-inflammatory effects consistent with a protective role in asthma, human studies investigating the relationship of high-density lipoprotein cholesterol with asthma have produced conflicting results. OBJECTIVE To examine the association between serum lipids among Cypriot children aged 11-12 years and prevalence of asthma at age 15-17 years. METHODS In 3982 children, we assessed serum lipids, body mass index and maximal oxygen consumption at baseline (2001-2003) and explored associations with respiratory health at follow-up (2007) using multiple logistic regression models. RESULTS Lower levels of high-density lipoprotein cholesterol at age 11-12 years were found in subjects who reported ever asthma (58.2 vs. 60.0 mg/dL, P = 0.005) and active asthma (57.5 vs. 59.9 mg/dL, P = 0.010) in adolescence, in comparison with their respective reference groups. Total cholesterol, low-density lipoprotein and triglycerides had no association with any of the asthma outcomes. In contrast, with estimated odds ratios of 1.89 (95% CI 1.19-3.00) and 1.89 (95% CI 1.02-3.53), ever asthma and active asthma respectively appeared particularly pronounced among those who at baseline had high-density lipoprotein cholesterol <40 mg/dL, even after adjusting for potential confounders including body mass index and maximal oxygen consumption. CONCLUSIONS & CLINICAL RELEVANCE Low-serum high-density lipoprotein cholesterol in childhood is associated with an increased risk for asthma in adolescence, suggesting a potential role of this lipoprotein in the pathogenesis of paediatric asthma.
Collapse
Affiliation(s)
- P K Yiallouros
- Cyprus International Institute for Environmental & Public Health in Association with Harvard School of Public Health, Cyprus University of Technology, Limassol, Cyprus.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mogilenko DA, Orlov SV, Trulioff AS, Ivanov AV, Nagumanov VK, Kudriavtsev IV, Shavva VS, Tanyanskiy DA, Perevozchikov AP. Endogenous apolipoprotein A-I stabilizes ATP-binding cassette transporter A1 and modulates Toll-like receptor 4 signaling in human macrophages. FASEB J 2012; 26:2019-30. [PMID: 22271762 DOI: 10.1096/fj.11-193946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apolipoprotein A-I (ApoA-I) is the main functional protein component of human high-density lipoproteins. ApoA-I shows various anti-inflammatory and atheroprotective properties toward macrophages; however, endogenous apoA-I expression has not been investigated in macrophages. We have shown that endogenous apoA-I gene is expressed in human macrophages at both mRNA and protein levels. Endogenous ApoA-I is localized in intracellular vesicles and at the external side of the plasma membrane in association with ATP-binding cassette transporter A1 (ABCA1) and lipid rafts in macrophages. We have shown that endogenous ApoA-I stabilizes ABCA1, moreover, down-regulation of ApoA-I by siRNA results in an increase of Toll-like receptor 4 (TLR4) mRNA and membrane surface protein expression, as well as an enhancement of bacterial lipopolysaccharide (LPS)-induced expression of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), and inducible nitric oxide synthase (NOS2) genes in human macrophages. TNF-α stimulates ApoA-I expression and secretion (1.2±0.2 vs. 4.3±0.9 ng/mg total protein) in macrophages. Obtained results suggest that endogenous ApoA-I has anti-inflammatory properties, presumably due to ABCA1 stabilization in macrophages; these results elucidate the cell type-specific mechanism of the TNF-α-mediated regulation of apoA-I gene expression in monocytes and macrophages.
Collapse
Affiliation(s)
- Denis A Mogilenko
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, Department of Biochemistry, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Park KH, Cho KH. A zebrafish model for the rapid evaluation of pro-oxidative and inflammatory death by lipopolysaccharide, oxidized low-density lipoproteins, and glycated high-density lipoproteins. FISH & SHELLFISH IMMUNOLOGY 2011; 31:904-910. [PMID: 21906681 DOI: 10.1016/j.fsi.2011.08.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 06/04/2011] [Accepted: 08/11/2011] [Indexed: 05/31/2023]
Abstract
Oxidation and inflammation are leading causes of nearly all chronic metabolic disorders, and play major roles in cardiovascular disease, cancer, and chronic age-dependent disease. High-density lipoprotein (HDL) and apolipoprotein (apo) A-I have strong antioxidant and anti-inflammatory properties in the plasma. Fructose-induced non-enzymatic glycation of apoA-I can lead to the production of dysfunctional apoA-I and HDL. To compare the physiologic effects of dysfunctional apoA-I and HDL, reconstituted HDL containing native apoA-I (nA-I) or glycated apoA-I (gA-I) was injected into zebrafish embryos in the presence of inflammatory molecules. Co-injection of reconstituted HDL containing VLDL and LDL gA-I (gA-I-rHDL) and lipopolysaccaride (LPS) resulted in acute embryo deaths, while rHDL containing nA-I (nA-I-rHDL) and LPS resulted in significantly enhanced survival. Co-injection of oxidized LDL (oxLDL) and nA-I-rHDL improved embryo survival, while co-injection of oxLDL and gA-I-rHDL aggravated inflammatory deaths. Furthermore, co-injection of oxLDL and HDL(2) (5 ng of protein) or HDL(3) (15 ng of protein) from the young group (22 ± 2 years old) showed significantly increased embryo survival compared with the same co-injection of HDL from the elderly group (71 ± 4 years old). In conclusion, our assay system provides a rapid and economic method to screen antioxidant and anti-inflammatory agents using zebrafish embryos.
Collapse
Affiliation(s)
- Ki-Hoon Park
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | | |
Collapse
|
39
|
Expression of apolipoprotein A-I in rabbit carotid endothelium protects against atherosclerosis. Mol Ther 2011; 19:1833-41. [PMID: 21772254 DOI: 10.1038/mt.2011.133] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Expression of atheroprotective genes in the blood vessel wall is potentially an effective means of preventing or reversing atherosclerosis. Development of this approach has been hampered by lack of a suitable gene-transfer vector. We used a helper-dependent adenoviral (HDAd) vector to test whether expression of apolipoprotein A-I (apoA-I) in the artery wall could retard the development of atherosclerosis in hyperlipidemic rabbits. Carotid arteries were infused with an HDAd expressing rabbit apoA-I or a "null" HDAd and harvested 2 and 4 weeks later. ApoA-I mRNA and protein were detected only in HDAdApoAI arteries. Lesion size, lipid and macrophage content, and adhesion molecule expression were similar in both groups at 2 weeks. Between 2 and 4 weeks, most of these measures of atherosclerosis increased in HDAdNull arteries, but were stable or decreased in HDAdApoAI arteries (P ≤ 0.04 for all end points in 4-week HDAdApoAI versus HDAdNull arteries). A longer-term study in chow-fed rabbits revealed persistence of HDAd vector DNA and apoA-I expression for ≥48 weeks, with stable vector DNA content and apoA-I expression from 4 to 48 weeks. Expression of apoA-I in arterial endothelium significantly retards atherosclerosis. HDAd provides prolonged, stable expression of a therapeutic transgene in the artery wall.
Collapse
|
40
|
Jang W, Jeoung NH, Cho KH. Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state. Mol Cells 2011; 31:461-70. [PMID: 21533907 PMCID: PMC3887604 DOI: 10.1007/s10059-011-1009-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/28/2023] Open
Abstract
Long-term consumption of artificial sweeteners (AS) has been the recent focus of safety concerns. However, the potential risk of the AS in cardiovascular disease and lipoprotein metabolism has not been investigated sufficiently. We compared the influence of AS (aspartame, acesulfame K, and saccharin) and fructose in terms of functional and structural correlations of apolipoprotein (apo) A-I and high-density lipoproteins (HDL), which have atheroprotective effects. Long-term treatment of apoA-I with the sweetener at physiological concentration (3 mM for 168 h) resulted in loss of antioxidant and phospholipid binding activities with modification of secondary structure. The AS treated apoA-I exhibited proteolytic cleavage to produce 26 kDa-fragment. They showed pro-atherogenic properties in acetylated LDL phagocytosis of macrophages. Each sweetener alone or sweetener-treated apoA-I caused accelerated senescence in human dermal fibroblasts. These results suggest that long-term consumption of AS might accelerate atherosclerosis and senescence via impairment of function and structure of apoA-I and HDL.
Collapse
Affiliation(s)
- Wookju Jang
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- These authors contributed equally to this work
| | - Nam Ho Jeoung
- Department of Fundamental Medical and Pharmaceutical Sciences, CULeaders College, Catholic University of Daegu, Gyeongsan 712-702, Korea
- These authors contributed equally to this work
| | - Kyung-Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Korea
| |
Collapse
|
41
|
Park KH, Cho KH. High-density lipoprotein (HDL) from elderly and reconstituted HDL containing glycated apolipoproteins A-I share proatherosclerotic and prosenescent properties with increased cholesterol influx. J Gerontol A Biol Sci Med Sci 2011; 66:511-20. [PMID: 21415260 DOI: 10.1093/gerona/glr016] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High-density lipoprotein (HDL) is a strong antioxidant, anti-inflammatory, and antisenescence molecule. However, in the current study, HDL from the elderly group (E-HDL) exhibited increased glycation with apolipoprotein (apo) A-I multimerization and decreased phospholipid content. Similarly, glycated apoA-I (gA-I) by fructosylation has a covalently multimerized band without a crosslinker and impaired phospholipid-binding ability. Treatment of human dermal fibroblasts and macrophages with E-HDL and gA-I caused more severe cellular senescence and foam cell formation, respectively; however, treatment with HDL from a young group (Y-HDL) and native apoA-I (nA-I) suppressed senescence and atherosclerosis. E-HDL(3) and reconstituted HDL (rHDL) containing gA-I showed enhanced cholesterol influx into macrophages compared with Y-HDL(3) and nA-I-rHDL. In conclusion, E-HDL and gA-I-rHDL share similar physiologic properties in macrophages and human dermal fibroblasts. E-HDL and gA-I-rHDL exacerbated cellular senescence and atherosclerosis with increased cellular cholesterol influx.
Collapse
Affiliation(s)
- Ki-Hoon Park
- School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | | |
Collapse
|
42
|
Yin K, Deng X, Mo ZC, Zhao GJ, Jiang J, Cui LB, Tan CZ, Wen GB, Fu Y, Tang CK. Tristetraprolin-dependent post-transcriptional regulation of inflammatory cytokine mRNA expression by apolipoprotein A-I: role of ATP-binding membrane cassette transporter A1 and signal transducer and activator of transcription 3. J Biol Chem 2011; 286:13834-45. [PMID: 21339300 DOI: 10.1074/jbc.m110.202275] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Atherosclerosis is an inflammatory disease characterized by the accumulation of macrophages in the arterial intima. The activated macrophages secreted more pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, which promote the development of the disease. Apolipoprotein A-I (apoA-I), the major component of high density lipoprotein, is involved in reverse cholesterol transport of lipid metabolism. Recently, it has been found that apoA-I suppresses inflammation via repression of inflammatory cytokine expression; the mechanisms of the apoA-I-suppressive action, however, are not yet well characterized. In this study, we have for the first time found that apoA-I suppresses the expression of some inflammatory cytokines induced by lipopolysaccharide via a specific post-transcriptional regulation process, namely mRNA destabilization, in macrophages. Our further studies have also shown that AU-rich elements in the 3'-untranslated region of TNF-α mRNA are responsive to the apoA-I-mediated mRNA destabilization. The apoA-I-induced inflammatory cytokine mRNA destabilization was associated with increased expression of mRNA-destabilizing protein tristetraprolin through a JAK2/STAT3 signaling pathway-dependent manner. When blocking interaction of apoA-I with ATP-binding membrane cassette transporter A1 (ABCA1), a major receptor for apoA-I in macrophages, it would almost totally abolish the effect of apoA-I on tristetraprolin expression. These results present not only a novel mechanism for the apoA-I-mediated inflammation suppression in macrophages but also provide new insights for developing strategies for modulating vascular inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Kai Yin
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, 421001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Skajaa T, Zhao Y, van den Heuvel DJ, Gerritsen HC, Cormode DP, Koole R, van Schooneveld MM, Post JA, Fisher EA, Fayad ZA, de Mello Donega C, Meijerink A, Mulder WJM. Quantum dot and Cy5.5 labeled nanoparticles to investigate lipoprotein biointeractions via Förster resonance energy transfer. NANO LETTERS 2010; 10:5131-8. [PMID: 21087054 PMCID: PMC3256273 DOI: 10.1021/nl1037903] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The study of lipoproteins, natural nanoparticles comprised of lipids and apolipoproteins that transport fats throughout the body, is of key importance to better understand, treat, and prevent cardiovascular disease. In the current study, we have developed a lipoprotein-based nanoparticle that consists of a quantum dot (QD) core and Cy5.5 labeled lipidic coating. The methodology allows judicious tuning of the QD/Cy5.5 ratio, which enabled us to optimize Förster resonance energy transfer (FRET) between the QD core and the Cy5.5-labeled coating. This phenomenon allowed us to study lipoprotein-lipoprotein interactions, lipid exchange dynamics, and the influence of apolipoproteins on these processes. Moreover, we were able to study HDL-cell interactions and exploit FRET to visualize HDL association with live macrophage cells.
Collapse
Affiliation(s)
- Torjus Skajaa
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
- Clinical Institute and Department of Cardiology, Aarhus University Hospital (Skejby), Brendstrupgårdsvej 100, 8200 Århus N, Denmark
| | - Yiming Zhao
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Dave J. van den Heuvel
- Molecular Biophysics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Hans C. Gerritsen
- Molecular Biophysics, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - David P. Cormode
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Rolf Koole
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Matti M. van Schooneveld
- Inorganic Chemistry and Catalysis, Debye Institute, Utrecht University, Sorbonnelaan 16, 3584 CA, The Netherlands
| | - Jan Andries Post
- Biomolecular Imaging, Department of Biology, Science Faculty, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Edward A. Fisher
- Departments of Medicine (Cardiology) and Cell Biology, NYU School of Medicine, 522 First Avenue, Smilow 8, New York, New York 10016, United States
| | - Zahi A. Fayad
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
| | - Celso de Mello Donega
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute, Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands
| | - Willem J. M. Mulder
- Translational and Molecular Imaging Institute, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, New York 10029, United States
| |
Collapse
|
44
|
Bancells C, Sánchez-Quesada JL, Birkelund R, Ordóñez-Llanos J, Benítez S. HDL and electronegative LDL exchange anti- and pro-inflammatory properties. J Lipid Res 2010; 51:2947-56. [PMID: 20647593 DOI: 10.1194/jlr.m005777] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Electronegative LDL [LDL(-)] is a minor modified LDL subfraction present in blood with inflammatory effects. One of the antiatherogenic properties of HDL is the inhibition of the deleterious effects of in vitro modified LDL. However, the effect of HDL on the inflammatory activity of LDL(-) isolated from plasma is unknown. We aimed to assess the putative protective role of HDL against the cytokine released induced in monocytes by LDL(-). Our results showed that LDL(-) cytokine release was inhibited when LDL(-) was coincubated with HDL and human monocytes and also when LDL(-) was preincubated with HDL and reisolated prior to cell incubation. The addition of apoliprotein (apo)AI instead of HDL reproduced the protective behavior of HDL. HDL preincubated with LDL(-) promoted greater cytokine release than native HDL. Incubation of LDL(-) with HDL decreased the electronegative charge, phospholipase C-like activity, susceptibility to aggregation and nonesterified fatty acid (NEFA) content of LDL(-), whereas these properties increased in HDL. NEFA content in LDL appeared to be related to cytokine production because NEFA-enriched LDL induced cytokine release. HDL, at least in part through apoAI, inhibits phospholipase-C activity and cytokine release in monocytes, thereby counteracting the inflammatory effect of LDL(-). In turn, HDL acquires these properties and becomes inflammatory.
Collapse
Affiliation(s)
- Cristina Bancells
- Institut de Recerca, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | |
Collapse
|
45
|
Courtney HS, Pownall HJ. The structure and function of serum opacity factor: a unique streptococcal virulence determinant that targets high-density lipoproteins. J Biomed Biotechnol 2010; 2010:956071. [PMID: 20671930 PMCID: PMC2910554 DOI: 10.1155/2010/956071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/26/2010] [Indexed: 12/04/2022] Open
Abstract
Serum opacity factor (SOF) is a virulence determinant expressed by a variety of streptococcal and staphylococcal species including both human and animal pathogens. SOF derives its name from its ability to opacify serum where it targets and disrupts the structure of high-density lipoproteins resulting in formation of large lipid vesicles that cause the serum to become cloudy. SOF is a multifunctional protein and in addition to its opacification activity, it binds to a number of host proteins that mediate adhesion of streptococci to host cells, and it plays a role in resistance to phagocytosis in human blood. This article will provide an overview of the structure and function of SOF, its role in the pathogenesis of streptococcal infections, its vaccine potential, its prevalence and distribution in bacteria, and the molecular mechanism whereby SOF opacifies serum and how an understanding of this mechanism may lead to therapies for reducing high-cholesterol concentrations in blood, a major risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Harry S Courtney
- Veterans Affairs Medical Center and Department of Medicine, University of Tennessee Health Science Center, 1030 Jefferson Avenue, Memphis, TN 38104, USA.
| | | |
Collapse
|
46
|
Duwensee K, Breitling LP, Tancevski I, Rothenbacher D, Demetz E, Patsch JR, Ritsch A, Eller P, Brenner H. Cholesteryl ester transfer protein in patients with coronary heart disease. Eur J Clin Invest 2010; 40:616-22. [PMID: 20497463 DOI: 10.1111/j.1365-2362.2010.02313.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The impact of cholesteryl ester transfer protein (CETP) in the development of atherosclerosis is a matter for ongoing debate. In this study, we analyse associations of CETP with cardiovascular endpoints in a cohort of patients with stable coronary artery disease (CAD). DESIGN KAROLA is a prospective observational study of patients with CAD and a median follow-up of 8 years (n = 1132). CETP levels were measured using an enzyme-linked immunosorbent assay. RESULTS Cholesteryl ester transfer protein levels were lower in men (P = 0.0016), positively correlated to low-density lipoprotein cholesterol, and inversely correlated to triglyceride levels (P < 0.0001 and P = 0.011 respectively). There was no significant difference in mortality between patients in different CETP quartiles; the hazard ratio of lowest vs. highest quartile was 1.33 (95% confidence interval (CI): 0.77-2.30) for mortality and 1.24 (95% CI: 0.75-2.03) for secondary events. In post hoc analyses, comparing nondiabetic subjects with CETP below vs. above median, the adjusted hazard ratio for death in patients with low CETP levels was 1.84 (95% CI: 1.10-3.09). CONCLUSION Although statistically significant associations were found only in post hoc analyses, the effect sizes in this study were in line with previous findings in the Framingham and LURIC population. In combination, the emerging evidence challenges the concept of pharmacological CETP inhibition.
Collapse
Affiliation(s)
- Kristina Duwensee
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Modified natural nanoparticles as contrast agents for medical imaging. Adv Drug Deliv Rev 2010; 62:329-38. [PMID: 19900496 DOI: 10.1016/j.addr.2009.11.005] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 10/17/2009] [Indexed: 11/23/2022]
Abstract
The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have advantages as delivery platforms such as biodegradability. In addition, our understanding of natural nanoparticles is quite advanced, allowing their adaptation as contrast agents. They can be labeled with small molecules or ions such as Gd(3+) to act as contrast agents for magnetic resonance imaging, (18)F to act as positron emission tomography contrast agents or fluorophores to act as contrast agents for fluorescence techniques. Additionally, inorganic nanoparticles such as iron oxide, gold nanoparticles or quantum dots can be incorporated to add further contrast functionality. Furthermore, these natural nanoparticle contrast agents can be re-routed from their natural targets via the attachment of targeting molecules. In this review, we discuss the various modified natural nanoparticles that have been exploited as contrast agents.
Collapse
|
48
|
Mathieu P, Lemieux I, Després JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther 2010; 87:407-16. [PMID: 20200516 DOI: 10.1038/clpt.2009.311] [Citation(s) in RCA: 297] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Obesity, a highly prevalent condition, is heterogeneous with regard to its impact on cardiovascular disease (CVD) risk. Epidemiological observations and metabolic investigations have consistently demonstrated that the accumulation of excess visceral fat is related to an increased risk of CVD as well as several metabolic and inflammatory perturbations. In the past decade, data from several studies have served to emphasize that atherosclerosis has an inflammatory component that may contribute to several key pathophysiological processes. Study data have also highlighted the finding that the expanded visceral fat is infiltrated by macrophages that conduct "cross-talk" with adipose tissue through several significant mechanisms. In this review, we provide, in the context of CVD risk, an up-to-date account of the complex interactions that occur between a dysfunctional adipose tissue phenotype and inflammation.
Collapse
Affiliation(s)
- P Mathieu
- Quebec Heart and Lung Institute/Research Center, Québec, Québec, Canada.
| | | | | |
Collapse
|
49
|
Ritsch A, Scharnagl H, Eller P, Tancevski I, Duwensee K, Demetz E, Sandhofer A, Boehm BO, Winkelmann BR, Patsch JR, März W. Cholesteryl ester transfer protein and mortality in patients undergoing coronary angiography: the Ludwigshafen Risk and Cardiovascular Health study. Circulation 2010; 121:366-74. [PMID: 20065167 DOI: 10.1161/circulationaha.109.875013] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND The role of cholesteryl ester transfer protein (CETP) in the development of atherosclerosis is still open to debate. In the Investigation of Lipid Level Management to Understand its Impact in Atherosclerotic Events (ILLUMINATE) trial, inhibition of CETP in patients with high cardiovascular risk was associated with increased high-density lipoprotein levels but increased risk of cardiovascular morbidity and mortality. In this report, we present a prospective observational study of patients referred to coronary angiography in which CETP was examined in relation to morbidity and mortality. METHODS AND RESULTS CETP concentration was determined in 3256 participants of the Ludwigshafen Risk and Cardiovascular Health (LURIC) study who were referred to coronary angiography at baseline between 1997 and 2000. Median follow-up time was 7.75 years. Primary and secondary end points were cardiovascular and all-cause mortality, respectively. CETP levels were higher in women and lower in smokers, in diabetic patients, and in patients with unstable coronary artery disease, respectively. In addition, CETP levels were correlated negatively with high-sensitivity C-reactive protein and interleukin-6. After adjustment for age, sex, medication, coronary artery disease status, cardiovascular risk factors, and diabetes mellitus, the hazard ratio for death in the lowest CETP quartile was 1.33 (1.07 to 1.65; P=0.011) compared with patients in the highest CETP quartile. Corresponding hazard ratios for death in the second and third CETP quartiles were 1.17 (0.92 to 1.48; P=0.19) and 1.10 (0.86 to 1.39; P=0.46), respectively. CONCLUSIONS We interpret our data to suggest that low endogenous CETP plasma levels per se are associated with increased cardiovascular and all-cause mortality, challenging the rationale of pharmacological CETP inhibition.
Collapse
Affiliation(s)
- Andreas Ritsch
- Department of Internal Medicine I, Innsbruck Medical University, Anichstrasse 35, A-6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
He M, Cornelis MC, Franks PW, Zhang C, Hu FB, Qi L. Obesity genotype score and cardiovascular risk in women with type 2 diabetes mellitus. Arterioscler Thromb Vasc Biol 2009; 30:327-32. [PMID: 19910641 DOI: 10.1161/atvbaha.109.196196] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the associations between obesity-predisposing genetic variants, cardiovascular biomarkers, and cardiovascular disease (CVD) risk in women with preexisting type 2 diabetes mellitus. METHODS AND RESULTS We genotyped polymorphisms at nine established obesity loci in 1,395 women with diabetes from the Nurses' Health Study: 449 women developed CVD, and 946 women did not develop CVD. A genetic risk score (GRS) was derived by summing risk alleles for each individual. Four polymorphisms (rs9939609 [FTO], rs11084753 [KCTD15], rs10838738 [MTCH2], and rs10938397 [GNPDA2]) showed nominally significant associations with CVD. The GRS combining all obesity loci was linearly related to CVD risk (P = 0.013 for trend). The odds ratio was 1.08 per risk allele (95% confidence interval, 1.02-1.15; P = 0.01) after adjustment for body mass index and other conventional risk factors. Women with the highest quartile of GRS had 53% (95% confidence interval, 6%-122%) increased CVD risk, compared with those in the lowest quartile of GRS (P = 0.024). In addition, a higher GRS was associated with lower adiponectin levels (P = 0.02). Further adjustment for body mass index and other covariates did not change the association (P = 0.006). A higher GRS was also correlated with lower levels of high-density lipoprotein (P = 0.01). CONCLUSIONS Obesity-predisposing variants may jointly affect CVD risk among women with diabetes.
Collapse
Affiliation(s)
- Meian He
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|