1
|
Nakano A, Morita A, Arima S, Nagamitsu T, Nakahara T. Role of mammalian target of rapamycin in the formation and progression of retinopathy of prematurity-like vascular abnormalities in neonatal rats. Microvasc Res 2024; 152:104626. [PMID: 37963514 DOI: 10.1016/j.mvr.2023.104626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023]
Abstract
Retinopathy of prematurity (ROP), a retinal disease that can occur in premature infants, can lead to severe visual impairment. In this study, we examined the preventive and therapeutic effects of mammalian target of rapamycin complex 1 (mTORC1) inhibition on abnormal retinal blood vessels in a rat model of ROP. To induce ROP-like vascular abnormalities, rats were subcutaneously treated with KRN633, an inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinase, on postnatal day 7 (P7) and P8. KRN633-treated (ROP) rats were treated subcutaneously with the mTORC1 inhibitor rapamycin according to preventive and therapeutic protocols, i.e., from P11 to P13 (P11-P13) and from P14 to P20 (P14-P20), respectively. To compare with the effects of VEGF inhibition, KRN633 was administered according to similar protocols. Changes in retinal vasculature, phosphorylated ribosomal protein S6 (pS6), a downstream indicator of mTORC1 activity, and the proliferative status of vascular cells were evaluated at P14 and P21 using immunohistochemistry. Rapamycin treatment from P11 to P13 prevented increases in arteriolar tortuosity, capillary density, and the number of proliferating vascular cells, and eliminated pS6 immunoreactivity in ROP rats. KRN633 treatment at P11 and P12 (P11/P12) also prevented the appearance of ROP-like retinal blood vessels. Rapamycin treatment from P14 to P20 failed to attenuate arteriolar tortuosity but prevented increases in capillary density and proliferating vascular cell number at the vascular front, but not at the central zone. KRN633 treatment from P14 to P20 significantly reduced abnormalities in the retinal vasculature; however, the effects were inferior to those of KRN633 treatment on P11/P12. These results suggest that activation of the mTORC1 pathway in proliferating endothelial cells contributes to the appearance and progression of ROP-like retinal blood vessels. Therefore, inhibition of mTORC1 may be a promising approach for selectively targeting abnormal retinal blood vessels in ROP.
Collapse
Affiliation(s)
- Ayuki Nakano
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shiho Arima
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tohru Nagamitsu
- Department of Organic Synthesis, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
2
|
Maiese K. Cognitive Impairment in Multiple Sclerosis. Bioengineering (Basel) 2023; 10:871. [PMID: 37508898 PMCID: PMC10376413 DOI: 10.3390/bioengineering10070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Almost three million individuals suffer from multiple sclerosis (MS) throughout the world, a demyelinating disease in the nervous system with increased prevalence over the last five decades, and is now being recognized as one significant etiology of cognitive loss and dementia. Presently, disease modifying therapies can limit the rate of relapse and potentially reduce brain volume loss in patients with MS, but unfortunately cannot prevent disease progression or the onset of cognitive disability. Innovative strategies are therefore required to address areas of inflammation, immune cell activation, and cell survival that involve novel pathways of programmed cell death, mammalian forkhead transcription factors (FoxOs), the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and associated pathways with the apolipoprotein E (APOE-ε4) gene and severe acute respiratory syndrome coronavirus (SARS-CoV-2). These pathways are intertwined at multiple levels and can involve metabolic oversight with cellular metabolism dependent upon nicotinamide adenine dinucleotide (NAD+). Insight into the mechanisms of these pathways can provide new avenues of discovery for the therapeutic treatment of dementia and loss in cognition that occurs during MS.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
3
|
Li X, Chen K, Wang Z, Li J, Wang X, Xie C, Tong J, Shen Y. The mTOR signalling in corneal diseases: A recent update. Biochem Pharmacol 2023; 213:115620. [PMID: 37217140 DOI: 10.1016/j.bcp.2023.115620] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023]
Abstract
Corneal diseases affect 4.2 million people worldwide and are a leading cause of vision impairment and blindness. Current treatments for corneal diseases, such as antibiotics, steroids, and surgical interventions, have numerous disadvantages and challenges. Thus, there is an urgent need for more effective therapies. Although the pathogenesis of corneal diseases is not fully understood, it is known that injury caused by various stresses and postinjury healing, such as epithelial renewal, inflammation, stromal fibrosis, and neovascularization, are highly involved. Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, metabolism, and the immune response. Recent studies have revealed that activation of mTOR signalling extensively contributes to the pathogenesis of various corneal diseases, and inhibition of mTOR with rapamycin achieves promising outcomes, supporting the potential of mTOR as a therapeutic target. In this review, we detail the function of mTOR in corneal diseases and how these characteristics contribute to disease treatment using mTOR-targeted drugs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Kuangqi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zixi Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiayuan Li
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiawei Wang
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Chen Xie
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Jianping Tong
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| | - Ye Shen
- Department of Ophthalmology, the First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Biagioni A, Peri S, Versienti G, Fiorillo C, Becatti M, Magnelli L, Papucci L. Gastric Cancer Vascularization and the Contribution of Reactive Oxygen Species. Biomolecules 2023; 13:886. [PMID: 37371466 DOI: 10.3390/biom13060886] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Blood vessels are the most important way for cancer cells to survive and diffuse in the body, metastasizing distant organs. During the process of tumor expansion, the neoplastic mass progressively induces modifications in the microenvironment due to its uncontrolled growth, generating a hypoxic and low pH milieu with high fluid pressure and low nutrients concentration. In such a particular condition, reactive oxygen species play a fundamental role, enhancing tumor proliferation and migration, inducing a glycolytic phenotype and promoting angiogenesis. Indeed, to reach new sources of oxygen and metabolites, highly aggressive cancer cells might produce a new abnormal network of vessels independently from endothelial cells, a process called vasculogenic mimicry. Even though many molecular markers and mechanisms, especially in gastric cancer, are still unclear, the formation of such intricate, leaky and abnormal vessel networks is closely associated with patients' poor prognosis, and therefore finding new pharmaceutical solutions to be applied along with canonical chemotherapies in order to control and normalize the formation of such networks is urgent.
Collapse
Affiliation(s)
- Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Sara Peri
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Florence, Italy
| |
Collapse
|
5
|
Zhang Y, Popel AS, Bazzazi H. Combining Multikinase Tyrosine Kinase Inhibitors Targeting the Vascular Endothelial Growth Factor and Cluster of Differentiation 47 Signaling Pathways Is Predicted to Increase the Efficacy of Antiangiogenic Combination Therapies. ACS Pharmacol Transl Sci 2023; 6:710-726. [PMID: 37200806 PMCID: PMC10186363 DOI: 10.1021/acsptsci.3c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Indexed: 05/20/2023]
Abstract
Angiogenesis is a critical step in tumor growth, development, and invasion. Nascent tumor cells secrete vascular endothelial growth factor (VEGF) that significantly remodels the tumor microenvironment through interaction with multiple receptors on vascular endothelial cells, including type 2 VEGF receptor (VEGFR2). The complex pathways initiated by VEGF binding to VEGFR2 lead to enhanced proliferation, survival, and motility of vascular endothelial cells and formation of a new vascular network, enabling tumor growth. Antiangiogenic therapies that inhibit VEGF signaling pathways were among the first drugs that targeted stroma rather than tumor cells. Despite improvements in progression-free survival and higher response rates relative to chemotherapy in some types of solid tumors, the impact on overall survival (OS) has been limited, with the majority of tumors eventually relapsing due to resistance or activation of alternate angiogenic pathways. Here, we developed a molecularly detailed computational model of endothelial cell signaling and angiogenesis-driven tumor growth to investigate combination therapies targeting different nodes of the endothelial VEGF/VEGFR2 signaling pathway. Simulations predicted a strong threshold-like behavior in extracellular signal-regulated kinases 1/2 (ERK1/2) activation relative to phosphorylated VEGFR2 levels, as continuous inhibition of at least 95% of receptors was necessary to abrogate phosphorylated ERK1/2 (pERK1/2). Combinations with mitogen-activated protein kinase/ERK kinase (MEK) and spingosine-1-phosphate inhibitors were found to be effective in overcoming the ERK1/2 activation threshold and abolishing activation of the pathway. Modeling results also identified a mechanism of resistance whereby tumor cells could reduce pERK1/2 sensitivity to inhibitors of VEGFR2 by upregulation of Raf, MEK, and sphingosine kinase 1 (SphK1), thus highlighting the need for deeper investigation of the dynamics of the crosstalk between VEGFR2 and SphK1 pathways. Inhibition of VEGFR2 phosphorylation was found to be more effective at blocking protein kinase B, also known as AKT, activation; however, to effectively abolish AKT activation, simulations identified Axl autophosphorylation or the Src kinase domain as potent targets. Simulations also supported activating cluster of differentiation 47 (CD47) on endothelial cells as an effective combination partner with tyrosine kinase inhibitors to inhibit angiogenesis signaling and tumor growth. Virtual patient simulations supported the effectiveness of CD47 agonism in combination with inhibitors of VEGFR2 and SphK1 pathways. Overall, the rule-based system model developed here provides new insights, generates novel hypothesis, and makes predictions regarding combinations that may enhance the OS with currently approved antiangiogenic therapies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Hojjat Bazzazi
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
6
|
Maiese K. Cellular Metabolism: A Fundamental Component of Degeneration in the Nervous System. Biomolecules 2023; 13:816. [PMID: 37238686 PMCID: PMC10216724 DOI: 10.3390/biom13050816] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of β-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY 10022, USA
| |
Collapse
|
7
|
Solanki A, Savla SR, Borkar MR, Bhatt LK. Sulfamethizole attenuates poloxamer 407-induced atherosclerotic neointima formation via inhibition of mTOR in C57BL/6 mice. J Biochem Mol Toxicol 2023; 37:e23322. [PMID: 36799065 DOI: 10.1002/jbt.23322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/04/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Mammalian target of Rapamycin C1 (mTORC1) inhibition limits plaque progression in atherosclerosis. The present study evaluated the protective effect of sulfamethizole on poloxamer 407-induced atherosclerotic neointima formation in C57BL/6 mice via mTOR inhibition. Poloxamer 407 (P-407) (0.5 g/kg body weight) was administered intraperitoneally to male C57BL/6 mice every third day for 148 days to induce chronic hyperlipidemia. From Day 121 to 148, animals were additionally administered Sulfamethizole (5, 10, and 50 mg/kg, p.o.), Rapamycin (0.5 mg/kg, positive control), or vehicle (1 ml/kg). Plasma lipid levels were measured on Days 120 and 148. Upon sacrifice, histological studies were performed, and aortic tissue interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and mTOR levels were evaluated. A molecular docking study was carried out to mimic the interaction of sulfamethizole with mTOR protein. Chronic P-407 administration significantly (p < 0.001) elevated plasma lipid levels, compared with those of the normal control group. Chronic hyperlipidemia resulted in increased tunica intima thickness, collagen deposition, and IL-6, TNF-α, and mTOR levels. Treatment with Sulfamethizole attenuated these parameters significantly in a dose-dependent manner. Molecular docking studies showed a significant interaction of Sulfamethizole with mTOR. In conclusion, this study suggests that sulfamethizole significantly limits poloxamer 407-induced atherosclerotic neointima formation in C57BL/6 mice via mTOR inhibition.
Collapse
Affiliation(s)
- Ankita Solanki
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Shreya R Savla
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Maheshkumar R Borkar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
8
|
Fang J, Liu H, Qiao W, Xu T, Yang Y, Xie H, Lam CH, Yeung KWK, Zhao X. Biomimicking Leaf-Vein Engraved Soft and Elastic Membrane Promotes Vascular Reconstruction. Adv Healthc Mater 2023; 12:e2201220. [PMID: 36330558 DOI: 10.1002/adhm.202201220] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Hierarchical vasculature reconstruction is fundamental for tissue regeneration. The regeneration of functional vascular network requires a proper directional guidance, especially in case of large-size defects. To provide the "running track" for vasculature, a leaf-vein mimetic membrane using soft and elastic poly(lactide-co-propylene glycol-co-lactide) dimethacrylate is developed. Engraved with an interconnected and perfusable leaf-vein micropattern, the membrane can guide human umbilical vein endothelial cells (HUVECs) to form vasculature in vitro. In particular, the "running track" upregulates the angiogenesis-related gene expression and promotes the HUVECs to differentiate into tip cells and stalk cells via tuning vascular endothelial growth factor receptor 2 signaling transduction. As a proof of concept, its revascularization capability using a rat calvarial defect model in vivo is evaluated. The in vivo results demonstrate that the leaf-vein engraved membrane accelerates the formation and maturation of vasculature, leading to a hierarchical blood vessel network. With the superior pro-vasculature property, it is believed that the leaf-vein engraved membrane is not only an ideal candidate for the reconstruction of calvarial vasculature but also a promising solution for more complicated vasculature reconstruction, such as muscle, skin, and heart.
Collapse
Affiliation(s)
- Jinghan Fang
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Huaqian Liu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Tianpeng Xu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Yuhe Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Huizhi Xie
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chun-Hei Lam
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, China
| |
Collapse
|
9
|
Maiese K. The Metabolic Basis for Nervous System Dysfunction in Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Curr Neurovasc Res 2023; 20:314-333. [PMID: 37488757 PMCID: PMC10528135 DOI: 10.2174/1567202620666230721122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023]
Abstract
Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
10
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
11
|
Protrudin regulates FAK activation, endothelial cell migration and angiogenesis. Cell Mol Life Sci 2022; 79:220. [PMID: 35368213 PMCID: PMC8977271 DOI: 10.1007/s00018-022-04251-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022]
Abstract
During angiogenesis, endothelial cells form protrusive sprouts and migrate towards the angiogenic stimulus. In this study, we investigate the role of the endoplasmic reticulum (ER)-anchored protein, Protrudin, in endothelial cell protrusion, migration and angiogenesis. Our results demonstrate that Protrudin regulates angiogenic tube formation in primary endothelial cells, Human umbilical vein endothelial cells (HUVECs). Analysis of RNA sequencing data and its experimental validation revealed cell migration as a prominent cellular function affected in HUVECs subjected to Protrudin knockdown. Further, our results demonstrate that knockdown of Protrudin inhibits focal adhesion kinase (FAK) activation in HUVECs and human aortic endothelial cells (HAECs). This is associated with a loss of polarized phospho-FAK distribution upon Protrudin knockdown as compared to Protrudin expressing HUVECs. Reduction of Protrudin also results in a perinuclear accumulation of mTOR and a decrease in VEGF-mediated S6K activation. However, further experiments suggest that the observed inhibition of angiogenesis in Protrudin knockdown cells is not affected by mTOR disturbance. Therefore, our findings suggest that defects in FAK activation and its abnormal subcellular distribution upon Protrudin knockdown are associated with a detrimental effect on endothelial cell migration and angiogenesis. Furthermore, mice with global Protrudin deletion demonstrate reduced retinal vascular progression. To conclude, our results provide evidence for a novel key role of Protrudin in endothelial cell migration and angiogenesis.
Collapse
|
12
|
Asani B, Siedlecki J, Wertheimer C, Liegl R, Wolf A, Ohlmann A, Priglinger S, Priglinger C. Anti-angiogenic properties of rapamycin on human retinal pericytes in an in vitro model of neovascular AMD via inhibition of the mTOR pathway. BMC Ophthalmol 2022; 22:138. [PMID: 35337287 PMCID: PMC8957126 DOI: 10.1186/s12886-022-02334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/25/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Choroidal neovascularizations (CNV) are partially stabilized through a coverage of pericytes leading to a partial anti-VEGF resistence. Drugs licensed for neovascular AMD (nAMD) do not take this mechanical and growth factor-driven CNV stability into account. The purpose of this work was to see if inhibiting the mammalian target of rapamycin (mTOR) may successfully block angiogenic cellular pathways in primary human retinal pericytes in an in vitro model of nAMD. METHODS The mTOR inhibitor rapamycin was used to treat human retinal pericytes (HRP) at doses ranging from 0.005 to 15 g/ml. A modified metabolism-based XTT-Assay was used to assess toxicity and anti-proliferative effects. A scratch wound experiment showed the effects on migration. On Cultrex basement membrane gels, the influence of rapamycin on the development of endothelial cell capillary-like structures by human umbilical vein vascular endothelial cells (HUVEC) in the absence and presence of pericytes was investigated. RESULTS Rapamycin showed no signs of toxicity within its range of solubility. The drug showed dose dependent anti-proliferative activity and inhibited migration into the scratch wound. Endothelial cell tube formation in a HUVEC monoculture was effectively inhibited at 45%. A co-culture of HUVEC with pericytes on Cultrex induced endothelial tube stabilization but was disrupted by the addition of rapamycin leading to degradation of 94% of the tubes. CONCLUSIONS Rapamycin allows for an efficient modulation of aspects of angiogenesis in pericytes via mTOR-modulation in vitro. Further studies are needed to elucidate whether rapamycin may have an impact on CNV in nAMD in vivo.
Collapse
Affiliation(s)
- Ben Asani
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany.
| | - Jakob Siedlecki
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | | | - Raffael Liegl
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Armin Wolf
- Department of Ophthalmology, University Clinic Ulm, Ulm, Germany
| | - Andreas Ohlmann
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Siegfried Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| | - Claudia Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, 80336, Munich, Germany
| |
Collapse
|
13
|
Ragab IA, Abdel-Kader SM, AbouZeid AA, Mohammad SA, Abdel Raheem HG, Aly NH. A successful tale of sirolimus treatment in refractory vascular tumors. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2022. [DOI: 10.1016/j.epsc.2022.102180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
14
|
Substrate stiffening promotes VEGF-A functions via the PI3K/Akt/mTOR pathway. Biochem Biophys Res Commun 2022; 586:27-33. [PMID: 34823219 PMCID: PMC8785232 DOI: 10.1016/j.bbrc.2021.11.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023]
Abstract
While it is now well-established that substrate stiffness regulates vascular endothelial growth factor-A (VEGF-A) mediated signaling and functions, causal mechanisms remain poorly understood. Here, we report an underlying role for the PI3K/Akt/mTOR signaling pathway. This pathway is activated on stiffer substrates, is amplified by VEGF-A stimulation, and correlates with enhanced endothelial cell (EC) proliferation, contraction, pro-angiogenic secretion, and capillary-like tube formation. In the settings of advanced age-related macular degeneration, characterized by EC and retinal pigment epithelial (RPE)-mediated angiogenesis, these data implicate substrate stiffness as a novel causative mechanism and Akt/mTOR inhibition as a novel therapeutic pathway.
Collapse
|
15
|
Maruani A, Tavernier E, Boccara O, Mazereeuw-Hautier J, Leducq S, Bessis D, Guibaud L, Vabres P, Carmignac V, Mallet S, Barbarot S, Chiaverini C, Droitcourt C, Bursztejn AC, Lengellé C, Woillard JB, Herbreteau D, Le Touze A, Joly A, Léauté-Labrèze C, Powell J, Bourgoin H, Gissot V, Giraudeau B, Morel B. Sirolimus (Rapamycin) for Slow-Flow Malformations in Children: The Observational-Phase Randomized Clinical PERFORMUS Trial. JAMA Dermatol 2021; 157:1289-1298. [PMID: 34524406 DOI: 10.1001/jamadermatol.2021.3459] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Sirolimus is increasingly being used to treat various vascular anomalies, although evidence of its efficacy is lacking. Objective To assess the efficacy and safety of sirolimus for children with slow-flow vascular malformations to better delineate the indications for treatment. Design, Setting and Participants This multicenter, open-label, observational-phase randomized clinical trial included 59 children aged 6 to 18 years with a slow-flow vascular malformation who were recruited between September 28, 2015, and March 22, 2018, in 11 French tertiary hospital centers. Statistical analysis was performed on an intent-to-treat basis from December 4, 2019, to November 10, 2020. Interventions Patients underwent an observational period, then switched to an interventional period when they received oral sirolimus (target serum levels, 4-12 ng/mL). The switch time was randomized from month 4 to month 8, and the whole study period lasted 12 months for each patient. Main Outcomes and Measures The primary outcome was change in the volume of vascular malformations detected on magnetic resonance imaging scan (with centralized interpretation) per unit of time (ie, between the interventional period and the observational period). Secondary outcomes included subjective end points: pain, bleeding, oozing, quality of life, and safety. Results Among the participants (35 girls [59.3%]; mean [SD] age, 11.6 [3.8] years), 22 (37.3%) had a pure venous malformation, 18 (30.5%) had a cystic lymphatic malformation, and 19 (32.2%) had a combined malformation, including syndromic forms. Variations in the volume of vascular malformations detected on magnetic resonance imaging scans associated with the duration period were not overall significantly different between the interventional period and the observational period (all vascular malformations: mean [SD] difference, -0.001 [0.007]; venous malformations: mean [SD] difference, 0.001 [0.004]; combined malformations: mean [SD] difference, 0.001 [0.009]). However, a significant decrease in volume was observed for children with pure lymphatic malformations (mean [SD] difference, -0.005 [0.005]). Overall, sirolimus had positive effects on pain, especially for combined malformations, and on bleeding, oozing, self-assessed efficacy, and quality of life. During sirolimus treatment, 56 patients experienced 231 adverse events (5 serious adverse events, none life-threatening). The most frequent adverse event was an oral ulcer (29 patients [49.2%]). Conclusions and Relevance This observational-phase randomized clinical trial allows for clarifying the goals of patients and families when starting sirolimus therapy for children older than 6 years. Pure lymphatic malformations seem to be the best indication for sirolimus therapy because evidence of decreasing lymphatic malformation volume per unit of time, oozing, and bleeding and increasing quality of life was found. In combined malformations, sirolimus significantly reduced pain, oozing, and bleeding. Benefits seemed lower for pure venous malformations than for the 2 other subgroups, also based on symptoms. Trial Registration ClinicalTrials.gov Identifier: NCT02509468; clinicaltrialsregister.eu Identifier: 2015-001096-43.
Collapse
Affiliation(s)
- Annabel Maruani
- University of Tours, University of Nantes, Institut National de la Santé et de la Recherche Médicale, SPHERE U1246, Tours, France.,Centre Hospitalier Régional Universitaire Tours, Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (Maladies Génétiques rares à Expression Cutanée-Tours), Tours, France.,Centre Hospitalier Régional Universitaire Tours, Institut National de la Santé et de la Recherche Médicale Clinical Investigation Center 1415, Tours, France
| | - Elsa Tavernier
- University of Tours, University of Nantes, Institut National de la Santé et de la Recherche Médicale, SPHERE U1246, Tours, France.,Centre Hospitalier Régional Universitaire Tours, Institut National de la Santé et de la Recherche Médicale Clinical Investigation Center 1415, Tours, France
| | - Olivia Boccara
- Department of Dermatology and Reference Center for Genodermatoses and Rare Skin Diseases (Maladies Génétiques rares à Expression Cutanée-Necker), University Hospital Necker-Enfants Malades, Paris, France
| | | | - Sophie Leducq
- University of Tours, University of Nantes, Institut National de la Santé et de la Recherche Médicale, SPHERE U1246, Tours, France.,Centre Hospitalier Régional Universitaire Tours, Department of Dermatology, Reference Center for Genodermatoses and Rare Skin Diseases (Maladies Génétiques rares à Expression Cutanée-Tours), Tours, France
| | - Didier Bessis
- Department of Dermatology, University Hospital Center of Montpellier, Montpellier, France
| | - Laurent Guibaud
- University Hospital Center of Lyon, Consultation Multidisciplinaire Lyonnaise des Angiomes, Lyon, France
| | - Pierre Vabres
- Department of Dermatology, University Hospital Center of Dijon, Dijon, France
| | - Virginie Carmignac
- Department of Dermatology, University Hospital Center of Dijon, Dijon, France
| | - Stéphanie Mallet
- Department of Dermatology, University Hospital Center of Marseille, Marseille, France
| | - Sébastien Barbarot
- Department of Dermatology, University Hospital Center of Nantes, Nantes, France
| | | | | | | | - Céline Lengellé
- Centre Hospitalier Régional Universitaire Tours, Department of Clinical Pharmacology, Regional Pharmacovigilance Center, Tours, France
| | - Jean-Baptiste Woillard
- Centre Hospitalier Universitaire Limoges, Department of Pharmacology and Toxicology, University of Limoges, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 850, Limoges, France
| | - Denis Herbreteau
- University of Tours, Centre Hospitalier Régional Universitaire Tours, Department of Neuroradiology, Reference Center for Genodermatoses and Rare Skin Diseases (Maladies Génétiques rares à Expression Cutanée-Tours), Tours, France
| | - Anne Le Touze
- Centre Hospitalier Régional Universitaire Tours, Department of Pediatric Surgery, Reference Center for Genodermatoses and Rare Skin Diseases (Maladies Génétiques rares à Expression Cutanée-Tours), Tours, France
| | - Aline Joly
- Centre Hospitalier Régional Universitaire Tours, Department of Pediatric Maxillofacial Surgery, Reference Center for Genodermatoses and Rare Skin Diseases (Maladies Génétiques rares à Expression Cutanée-Tours), Tours, France
| | | | - Julie Powell
- Department of Pediatric Dermatology, Hospital Sainte-Justine, Montréal, Québec, Canada
| | - Hélène Bourgoin
- Centre Hospitalier Régional Universitaire Tours, Department of Pharmacy, Tours, France
| | - Valérie Gissot
- Centre Hospitalier Régional Universitaire Tours, Institut National de la Santé et de la Recherche Médicale Clinical Investigation Center 1415, Tours, France
| | - Bruno Giraudeau
- University of Tours, University of Nantes, Institut National de la Santé et de la Recherche Médicale, SPHERE U1246, Tours, France.,Centre Hospitalier Régional Universitaire Tours, Institut National de la Santé et de la Recherche Médicale Clinical Investigation Center 1415, Tours, France
| | - Baptiste Morel
- University of Tours, Centre Hospitalier Régional Universitaire Tours, Department of Pediatric Radiology, Tours, France
| |
Collapse
|
16
|
Park M, Kim J, Kim T, Kim S, Park W, Ha KS, Cho SH, Won MH, Lee JH, Kwon YG, Kim YM. REDD1 is a determinant of low-dose metronomic doxorubicin-elicited endothelial cell dysfunction through downregulation of VEGFR-2/3 expression. Exp Mol Med 2021; 53:1612-1622. [PMID: 34697389 PMCID: PMC8568908 DOI: 10.1038/s12276-021-00690-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/21/2021] [Accepted: 06/29/2021] [Indexed: 01/10/2023] Open
Abstract
Low-dose metronomic chemotherapy (LDMC) inhibits tumor angiogenesis and growth by targeting tumor-associated endothelial cells, but the molecular mechanism has not been fully elucidated. Here, we examined the functional role of regulated in development and DNA damage responses 1 (REDD1), an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), in LDMC-mediated endothelial cell dysfunction. Low-dose doxorubicin (DOX) treatment induced REDD1 expression in cultured vascular and lymphatic endothelial cells and subsequently repressed the mRNA expression of mTORC1-dependent translation of vascular endothelial growth factor receptor (Vegfr)-2/3, resulting in the inhibition of VEGF-mediated angiogenesis and lymphangiogenesis. These regulatory effects of DOX-induced REDD1 expression were additionally confirmed by loss- and gain-of-function studies. Furthermore, LDMC with DOX significantly suppressed tumor angiogenesis, lymphangiogenesis, vascular permeability, growth, and metastasis in B16 melanoma-bearing wild-type but not Redd1-deficient mice. Altogether, our findings indicate that REDD1 is a crucial determinant of LDMC-mediated functional dysregulation of tumor vascular and lymphatic endothelial cells by translational repression of Vegfr-2/3 transcripts, supporting the potential therapeutic properties of REDD1 in highly progressive or metastatic tumors.
Collapse
Affiliation(s)
- Minsik Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Joohwan Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Taesam Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Suji Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Wonjin Park
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Kwon-Soo Ha
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Sung Hwan Cho
- grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Moo-Ho Won
- grid.412010.60000 0001 0707 9039Department of Neurobiology, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea
| | - Jeong-Hyung Lee
- grid.412010.60000 0001 0707 9039Department of Biochemistry, Kangwon National University, Chuncheon, Gangwon-Do 24341 Republic of Korea
| | - Young-Guen Kwon
- grid.15444.300000 0004 0470 5454Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722 Republic of Korea
| | - Young-Myeong Kim
- grid.412010.60000 0001 0707 9039Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Gangwon-do 24341 Republic of Korea ,grid.412010.60000 0001 0707 9039Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, Gangwon-do 24341 Republic of Korea
| |
Collapse
|
17
|
Peri S, Biagioni A, Versienti G, Andreucci E, Staderini F, Barbato G, Giovannelli L, Coratti F, Schiavone N, Cianchi F, Papucci L, Magnelli L. Enhanced Vasculogenic Capacity Induced by 5-Fluorouracil Chemoresistance in a Gastric Cancer Cell Line. Int J Mol Sci 2021; 22:ijms22147698. [PMID: 34299320 PMCID: PMC8303918 DOI: 10.3390/ijms22147698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapy is still widely used as a coadjutant in gastric cancer when surgery is not possible or in presence of metastasis. During tumor evolution, gatekeeper mutations provide a selective growth advantage to a subpopulation of cancer cells that become resistant to chemotherapy. When this phenomenon happens, patients experience tumor recurrence and treatment failure. Even if many chemoresistance mechanisms are known, such as expression of ATP-binding cassette (ABC) transporters, aldehyde dehydrogenase (ALDH1) activity and activation of peculiar intracellular signaling pathways, a common and universal marker for chemoresistant cancer cells has not been identified yet. In this study we subjected the gastric cancer cell line AGS to chronic exposure of 5-fluorouracil, cisplatin or paclitaxel, thus selecting cell subpopulations showing resistance to the different drugs. Such cells showed biological changes; among them, we observed that the acquired chemoresistance to 5-fluorouracil induced an endothelial-like phenotype and increased the capacity to form vessel-like structures. We identified the upregulation of thymidine phosphorylase (TYMP), which is one of the most commonly reported mutated genes leading to 5-fluorouracil resistance, as the cause of such enhanced vasculogenic ability.
Collapse
Affiliation(s)
- Sara Peri
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Alessio Biagioni
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Giampaolo Versienti
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Fabio Staderini
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Giuseppe Barbato
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Lisa Giovannelli
- Department of Neuroscience, Psychology, Drug Research and Children’s Health, University of Florence, Viale Pieraccini, 6-50139 Firenze, Italy;
| | - Francesco Coratti
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
| | - Nicola Schiavone
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
- Correspondence: (N.S.); (F.C.); Tel.: +39-055-275-1309 (N.S.); +39-055-412-029 (F.C.)
| | - Fabio Cianchi
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla, 3-50134 Firenze, Italy; (S.P.); (F.S.); (G.B.); (F.C.)
- Correspondence: (N.S.); (F.C.); Tel.: +39-055-275-1309 (N.S.); +39-055-412-029 (F.C.)
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni, 50-50134 Firenze, Italy; (A.B.); (G.V.); (E.A.); (L.P.); (L.M.)
| |
Collapse
|
18
|
Meng N, Mu X, Gong Y, Wang YH, Zhang J, Wang MH, Yang FY, Jiang CS, Zhang H. Autophagy Induced by a Novel Triazol Derivative Promotes Angiogenesis Through Decreasing Interferon-Inducible Protein 10 Level in Vascular Endothelial Cells. J Cardiovasc Pharmacol 2021; 78:e136-e146. [PMID: 34009854 DOI: 10.1097/fjc.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/02/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Autophagy plays an important role in angiogenesis, whereas the mechanisms of vascular endothelial cell (VEC) autophagy associated with angiogenesis remain unclear. In this study, we identified a novel triazol derivative (JL025) that significantly promoted angiogenesis both in vitro and in vivo. Moreover, JL025 had no effects on cell proliferation but dramatically increased the autophagy level of VEC. The suppression of autophagy inhibited JL025-induced angiogenesis in vitro and in vivo, suggesting that JL025-induced angiogenesis was dependent on the enhanced autophagy. Mechanistic studies indicated that JL025-induced VEC autophagy was related to the Protein Kinase B/mTOR signaling pathway. Meanwhile, JL025 decreased the antiangiogenic chemokine interferon-inducible protein 10 (IP10) protein level in human VECs. Importantly, the suppression of autophagy inhibited JL025-induced decrease of IP10 protein level, indicating that autophagy mediated the degradation of IP10. Taken together, our findings provide new insights into the relationship of VEC autophagy with angiogenesis, and JL025 may have a therapeutic potential in related diseases.
Collapse
Affiliation(s)
- Ning Meng
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Xin Mu
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Yan Gong
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Yan Hong Wang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Juan Zhang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Mao Hua Wang
- Department of Vascular Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Feng Ying Yang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Cheng Shi Jiang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| | - Hua Zhang
- Department of Vascuar Surgery, School of Biological Science and Technology, University of Jinan, Jinan, China; and
| |
Collapse
|
19
|
Coccolini F, Improta M, Cicuttin E, Catena F, Sartelli M, Bova R, de’ Angelis N, Gitto S, Tartaglia D, Cremonini C, Ordonez C, Baiocchi GL, Chiarugi M. Surgical site infection prevention and management in immunocompromised patients: a systematic review of the literature. World J Emerg Surg 2021; 16:33. [PMID: 34112231 PMCID: PMC8194010 DOI: 10.1186/s13017-021-00375-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/26/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Immunocompromised patients are at higher risk of surgical site infection and wound complications. However, optimal management in the perioperative period is not well established. Present systematic review aims to analyse existing strategies and interventions to prevent and manage surgical site infections and other wound complications in immunocompromised patients. METHODS A systematic review of the literature was conducted. RESULTS Literature review shows that partial skin closure is effective to reduce SSI in this population. There is not sufficient evidence to definitively suggest in favour of prophylactic negative pressure wound therapy. The use of mammalian target of rapamycin (mTOR) and calcineurin inhibitors (CNI) in transplanted patient needing ad emergent or undeferrable abdominal surgical procedure must be carefully and multidisciplinary evaluated. The role of antibiotic prophylaxis in transplanted patients needs to be assessed. CONCLUSION Strict adherence to SSI infection preventing bundles must be implemented worldwide especially in immunocompromised patients. Lastly, it is necessary to elaborate a more widely approved definition of immunocompromised state. Without such shared definition, it will be hard to elaborate the needed methodologically correct studies for this fragile population.
Collapse
Affiliation(s)
- Federico Coccolini
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, Via Paradisa 1, 56100 Pisa, Italy
| | - Mario Improta
- General Surgery Department, Bologna University Hospital, Bologna, Italy
| | - Enrico Cicuttin
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, Via Paradisa 1, 56100 Pisa, Italy
| | - Fausto Catena
- Emergency Surgery Department, Parma University Hospital, Parma, Italy
| | | | - Raffaele Bova
- General Surgery Department, Bologna University Hospital, Bologna, Italy
| | - Nicola de’ Angelis
- Unit of Digestive and Hepato-biliary-pancreatic Surgery, Henri Mondor Hospital, Créteil, France
- UPEC, University Paris Est, Créteil, France
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, Firenze University, Firenze, Italy
| | - Dario Tartaglia
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, Via Paradisa 1, 56100 Pisa, Italy
| | - Camilla Cremonini
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, Via Paradisa 1, 56100 Pisa, Italy
| | - Carlos Ordonez
- Department of Surgery, Fundación Valle del Lili, Cali, Colombia
| | - Gian Luca Baiocchi
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Massimo Chiarugi
- General, Emergency and Trauma Surgery Department, Pisa University Hospital, Via Paradisa 1, 56100 Pisa, Italy
| |
Collapse
|
20
|
Zhang J, Zhu M, Ruan L, Jiang C, Yang Q, Chang Q, Huang X. Protective effects of rapamycin on the retinal vascular bed during the vaso-obliteration phase in mouse oxygen-induced retinopathy model. FASEB J 2020; 34:15822-15836. [PMID: 33103304 DOI: 10.1096/fj.202001295r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/24/2020] [Accepted: 09/08/2020] [Indexed: 11/11/2022]
Abstract
Retinopathy of prematurity (ROP) is a vision-threatening disorder characterized with retinal vaso-obliteration in phase 1 and pathological neovascularization (NV) in phase 2. However, there has been no effective and safe treatment for ROP. Current management is mainly focused on the reduction of abnormal NV in phase 2, and anti-vascular endothelial growth factor (VEGF) therapy is the first-line treatment, yet, with great risks of late recurrence and systemic side effects. It has been reported that the severity of vaso-obliteration in phase 1 largely influences subsequent NV, suggesting that it may be a promising target to develop novel treatments for ROP. Here, we investigated the therapeutic potential and safety of early rapamycin intervention in treating phase 1 ROP and possible underlying mechanisms using the mouse model of oxygen-induced retinopathy (OIR). We found that intravitreal injection of rapamycin at postnatal day 7 (P7) significantly reduced retinal avascular area, increased vascular density, and reversed the suppression of deep capillaries development in phase 1 of OIR mice. Rapamycin treatment not only reduced vascular apoptosis, but also promoted proliferation and tip cell functions. Additionally, rapamycin did not interfere with normal retinal vascular development. Further investigation showed that Ang1/Tie2 pathway might be involved in rapamycin's vascular protection in phase 1 OIR retinas. Moreover, early rapamycin treatment at P7 had long-term protective effects of reducing retinal NV and avascular area, as well as enhancing vascular maturity in phase 2 of OIR mice. Together, our data suggest that rapamycin may be a safe and promising strategy for early intervention of ROP.
Collapse
Affiliation(s)
- Juan Zhang
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Min Zhu
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lu Ruan
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chen Jiang
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qian Yang
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Qing Chang
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Xin Huang
- Eye and Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
21
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
22
|
Wang S, Raybuck A, Shiuan E, Cho SH, Wang Q, Brantley-Sieders DM, Edwards D, Allaman MM, Nathan J, Wilson KT, DeNardo D, Zhang S, Cook R, Boothby M, Chen J. Selective inhibition of mTORC1 in tumor vessels increases antitumor immunity. JCI Insight 2020; 5:139237. [PMID: 32759497 PMCID: PMC7455083 DOI: 10.1172/jci.insight.139237] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
A tumor blood vessel is a key regulator of tissue perfusion, immune cell trafficking, cancer metastasis, and therapeutic responsiveness. mTORC1 is a signaling node downstream of multiple angiogenic factors in the endothelium. However, mTORC1 inhibitors have limited efficacy in most solid tumors, in part due to inhibition of immune function at high doses used in oncology patients and compensatory PI3K signaling triggered by mTORC1 inhibition in tumor cells. Here we show that low-dose RAD001/everolimus, an mTORC1 inhibitor, selectively targets mTORC1 signaling in endothelial cells (ECs) without affecting tumor cells or immune cells, resulting in tumor vessel normalization and increased antitumor immunity. Notably, this phenotype was recapitulated upon targeted inducible gene ablation of the mTORC1 component Raptor in tumor ECs (RaptorECKO). Tumors grown in RaptorECKO mice displayed a robust increase in tumor-infiltrating lymphocytes due to GM-CSF-mediated activation of CD103+ dendritic cells and displayed decreased tumor growth and metastasis. GM-CSF neutralization restored tumor growth and metastasis, as did T cell depletion. Importantly, analyses of human tumor data sets support our animal studies. Collectively, these findings demonstrate that endothelial mTORC1 is an actionable target for tumor vessel normalization, which could be leveraged to enhance antitumor immune therapies.
Collapse
Affiliation(s)
- Shan Wang
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Division of Rheumatology and Immunology and
| | - Ariel Raybuck
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eileen Shiuan
- Program in Cancer Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Sung Hoon Cho
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qingfei Wang
- Department of Biological Sciences, Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana, USA
| | | | | | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - James Nathan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Keith T Wilson
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Program in Cancer Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center and.,Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David DeNardo
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Siyuan Zhang
- Department of Biological Sciences, Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana, USA
| | - Rebecca Cook
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark Boothby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Program in Cancer Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center and
| | - Jin Chen
- Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA.,Division of Rheumatology and Immunology and.,Program in Cancer Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center and.,Department of Cell and Developmental Biology, School of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Sabarwal A, Chakraborty S, Mahanta S, Banerjee S, Balan M, Pal S. A Novel Combination Treatment with Honokiol and Rapamycin Effectively Restricts c-Met-Induced Growth of Renal Cancer Cells, and also Inhibits the Expression of Tumor Cell PD-L1 Involved in Immune Escape. Cancers (Basel) 2020; 12:cancers12071782. [PMID: 32635337 PMCID: PMC7408055 DOI: 10.3390/cancers12071782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The mTOR inhibitor Rapamycin has tumor inhibitory properties; and it is also used as an immunosuppressive agent after organ transplantation. However, prolonged Rapamycin treatment re-activates Akt and can promote cancer growth. Honokiol is a natural compound with both anti-tumorigenic and anti-inflammatory properties. Here, we assessed the anti-tumor effects of Rapamycin and Honokiol combination in renal cell carcinoma (RCC). Receptor tyrosine kinase c-Met-mediated signaling plays a major role in RCC growth. We observed that compared with Rapamycin alone, Rapamycin + Honokiol combination can effectively down-regulate c-Met-induced Akt phosphorylation in renal cancer cells; and it markedly inhibited Ras activation and cell proliferation and promoted G1 phase cell cycle arrest. The combination treatment significantly induced ROS generation and cancer cell apoptosis even when c-Met is activated. Importantly, Honokiol, but not Rapamycin, decreased c-Met-induced expression of the co-inhibitory molecule PD-L1, implied in the immune escape of renal cancer cells. In mouse renal cancer cells and Balb/c splenocytes co-culture assay, Rapamycin + Honokiol markedly potentiated immune-cell-mediated killing of cancer cells, possibly through the down-regulation of PD-L1. Together, Honokiol can effectively overcome the limitation of Rapamycin treatment alone; and the combination treatment can markedly restrict the growth of RCC, with particular importance to post-transplantation renal cancer.
Collapse
Affiliation(s)
- Akash Sabarwal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Samik Chakraborty
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Simran Mahanta
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Selina Banerjee
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Murugabaskar Balan
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
| | - Soumitro Pal
- Division of Nephrology, Boston Children’s Hospital, Boston, MA 02115, USA; (A.S.); (S.C.); (S.M.); (S.B.); (M.B.)
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-919-2989
| |
Collapse
|
24
|
IL-6 trans-Signaling Impairs Sprouting Angiogenesis by Inhibiting Migration, Proliferation and Tube Formation of Human Endothelial Cells. Cells 2020; 9:cells9061414. [PMID: 32517159 PMCID: PMC7349366 DOI: 10.3390/cells9061414] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/27/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023] Open
Abstract
Sprouting angiogenesis is the formation of new capillaries from existing vessels in response to tissue hypoxia due to growth/development, repair/healing, and also chronic inflammation. In this study, we aimed to elucidate the effect of IL-6, a pleiotropic cytokine with both pro-inflammatory and anti-inflammatory functions, in regulating the sprouting angiogenic response of endothelial cells (ECs). We found that activation of IL-6 trans-signaling inhibited the migration, proliferation, and tube formation ability of ECs. In addition, inhibition of the autocrine IL-6 classic-signaling by depleting endogenous IL-6 from ECs impaired their tube formation ability. At the molecular level, we found that IL-6 trans-signaling in ECs upregulated established endogenous anti-angiogenic factors such as CXCL10 and SERPINF1 while at the same time downregulated known endogenous pro-angiogenic factors such as cKIT and CXCL8. Furthermore, prior activation of ECs by IL-6 trans-signaling alters their response to vascular endothelial growth factor-A (VEGF-A), causing an increased p38, but decreased Erk1/2 phosphorylation. Collectively, our data demonstrated the dual facets of IL-6 in regulating the sprouting angiogenic function of ECs. In addition, we shed light on molecular mechanisms behind the IL-6 trans-signaling mediated impairment of endothelial sprouting angiogenic response.
Collapse
|
25
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
26
|
VEGF Triggers Transient Induction of Autophagy in Endothelial Cells via AMPKα1. Cells 2020; 9:cells9030687. [PMID: 32168879 PMCID: PMC7140637 DOI: 10.3390/cells9030687] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is activated by vascular endothelial growth factor (VEGF) in endothelial cells and it is significantly involved in VEGF-induced angiogenesis. This study investigates whether the VEGF/AMPK pathway regulates autophagy in endothelial cells and whether this is linked to its pro-angiogenic role. We show that VEGF leads to AMPKα1-dependent phosphorylation of Unc-51-like kinase 1 (ULK1) at its serine residue 556 and to the subsequent phosphorylation of the ULK1 substrate ATG14. This triggers initiation of autophagy as shown by phosphorylation of ATG16L1 and conjugation of the microtubule-associated protein light chain 3B, which indicates autophagosome formation; this is followed by increased autophagic flux measured in the presence of bafilomycin A1 and by reduced expression of the autophagy substrate p62. VEGF-induced autophagy is transient and probably terminated by mechanistic target of rapamycin (mTOR), which is activated by VEGF in a delayed manner. We show that functional autophagy is required for VEGF-induced angiogenesis and may have specific functions in addition to maintaining homeostasis. In line with this, inhibition of autophagy impaired VEGF-mediated formation of the Notch intracellular domain, a critical regulator of angiogenesis. Our study characterizes autophagy induction as a pro-angiogenic function of the VEGF/AMPK pathway and suggests that timely activation of autophagy-initiating pathways may help to initiate angiogenesis.
Collapse
|
27
|
Mirza-Aghazadeh-Attari M, Ekrami EM, Aghdas SAM, Mihanfar A, Hallaj S, Yousefi B, Safa A, Majidinia M. Targeting PI3K/Akt/mTOR signaling pathway by polyphenols: Implication for cancer therapy. Life Sci 2020; 255:117481. [PMID: 32135183 DOI: 10.1016/j.lfs.2020.117481] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the biggest challenges facing medicine and its cure is regarded to be the Holy Grail of medicine. Therapy in cancer is consisted as various artificial cytotoxic agents and radiotherapy, and recently immunotherapy. Recently much attention has been directed to the use of natural occurring agents in cancer therapy. One of the main group of agents utilized in this regard is polyphenols which are found abundantly in berries, fruits and vegetables. Polyphenols show to exert direct and indirect effects in progression of cancer, angiogenesis, proliferation and enhancing resistance to treatment. One of the cellular pathways commonly affected by polyphenols is PI3K/Akt/mTOR pathway, which has far ranging effects on multiple key aspects of cellular growth, metabolism and death. In this review article, evidence regarding the biology of polyphenols in cancer via PI3K/Akt/mTOR pathway is discussed and their application on cancer pathophysiology in various types of human malignancies is shown.
Collapse
Affiliation(s)
- Mohammad Mirza-Aghazadeh-Attari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elyad Mohammadi Ekrami
- Department of Anesthesiology & Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Ali Mousavi Aghdas
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ainaz Mihanfar
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shahin Hallaj
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Safa
- Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam; Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University, Madrid, Spain
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
28
|
Hori Y, Ozeki M, Hirose K, Matsuoka K, Matsui T, Kohara M, Tahara S, Toyosawa S, Fukao T, Morii E. Analysis of mTOR pathway expression in lymphatic malformation and related diseases. Pathol Int 2020; 70:323-329. [PMID: 32067331 DOI: 10.1111/pin.12913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 02/04/2020] [Indexed: 01/21/2023]
Abstract
The mammalian target of rapamycin (mTOR) inhibitor sirolimus is an effective treatment for difficult-to-treat lymphatic anomalies. However, little is known about the expression of mTOR pathway components in lymphatic anomalies. Here we investigated the expression pattern of mTOR pathway components and their phosphorylated forms (mTOR, p-mTOR, 4EBP1, p-4EBP1, S6K1 and p-S6K1) in normal lymphatic vessels and lymphatic anomalies using immunohistochemistry. We studied 18 patients of lymphatic anomalies, including lymphatic malformation (LM, n = 14), Kaposiform lymphangiomatosis (KLA, n = 2) and Kaposiform hemangioendothelioma (KHE, n = 2). Normal lymphatic vessels expressed 4EBP1, S6K1 and p-S6K1, but not p-4EBP1, mTOR or p-mTOR. The mTOR was detected in all lymphatic anomalies, whereas its activation form p-mTOR was detected in half cases of KLA and KHE but not in LM. All lymphatic anomalies expressed S6K1 and its activated form p-S6K1. The expression of 4EBP1 was also found in all lymphatic anomalies, but its activation was detected in approximately half of them. The activation of mTOR was seen in tumor (KLA and KHE) but not in malformation (LM), whereas the activation of S6K1 and 4EBP1 was seen in all and half of lymphatic anomalies, respectively.
Collapse
Affiliation(s)
- Yumiko Hori
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Michio Ozeki
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Katsutoshi Hirose
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Kentaro Matsuoka
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Takahiro Matsui
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinichiro Tahara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoru Toyosawa
- Department of Oral Pathology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshiyuki Fukao
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
29
|
Efficacy and safety of sirolimus in the treatment of vascular anomalies: A systematic review. J Vasc Surg 2020; 71:318-327. [DOI: 10.1016/j.jvs.2019.06.217] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/04/2019] [Indexed: 01/10/2023]
|
30
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
31
|
Leducq S, Caille A, Barbarot S, Bénéton N, Bessis D, Boccara O, Bursztejn AC, Chiaverini C, Dompmartin A, Droitcourt C, Gissot V, Goga D, Guibaud L, Herbreteau D, Le Touze A, Léauté-Labrèze C, Lorette G, Mallet S, Martin L, Mazereeuw-Hautier J, Phan A, Plantin P, Quéré I, Vabres P, Bourgoin H, Giraudeau B, Maruani A. Topical sirolimus 0.1% for treating cutaneous microcystic lymphatic malformations in children and adults (TOPICAL): protocol for a multicenter phase 2, within-person, randomized, double-blind, vehicle-controlled clinical trial. Trials 2019; 20:739. [PMID: 31847908 PMCID: PMC6918625 DOI: 10.1186/s13063-019-3767-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background Cutaneous microcystic lymphatic malformations (CMLMs) are rare conditions in children and adults. They present as clusters of vesicles full of lymph and blood to various extents, inducing maceration, esthetic impairment, pain, and impaired quality of life. The treatment is challenging. Sirolimus is an inhibitor of mammalian target of rapamycin (mTOR) involved in angio-lymphangiogenesis. Topical sirolimus has recently been reported as effective in a few reports of patients with CMLMs. The objective is to compare the efficacy and safety of a 12-week application of 0.1% topical sirolimus versus topical vehicle in CMLMs in children and adults. Methods This French blinded multicenter within-person randomized controlled phase 2 trial aims to include 55 patients aged ≥ 6 years who have a primary CMLM. The CMLM will be divided into two equal areas that will be randomly allocated to 0.1% topical sirolimus or topical vehicle applied for 12 weeks. At the end of the 12-week period, the patient/parent will treat the whole area of CMLM with 0.1% topical sirolimus on remaining lesions, for eight more weeks. Patients will be seen at week 20 (treatment will be stopped) and at month 12 to evaluate long-term efficacy. The primary outcome will be improvement of the CMLM in the area treated with topical sirolimus compared to the area treated with topical vehicle by the investigator physician (blinded to the treatment) with the Physician Global Assessment score at week 12. Secondary outcomes will include: assessment of efficacy by independent experts on the basis of standardized photographs; impact on quality of life; efficacy for oozing, bleeding, erythema, and thickness evaluated by the investigators; and global efficacy as well as efficacy for functional and aesthetic impairment evaluated by the patient. Systemic passage of sirolimus will be measured at weeks 6, 12, and 20, and at week 16 for CMLMs ≥ 900 cm2. Discussion For patients with CMLMs, topical sirolimus could be a non-invasive and well-tolerated therapeutic option. If the trial demonstrates efficacy and safety of this treatment, this result will lead to a real change in the management of this condition, and 0.1% sirolimus cream would become the first-line treatment. Trial registration ClinicalTrials.gov, NCT03972592. Registered on 3 June 2019. EU Clinical Trials Register EudraCT, 2018–001359-11.
Collapse
Affiliation(s)
- Sophie Leducq
- INSERM U1246 -SPHERE « MethodS in Patients-centered outcomes and HEalth REsearch », University of Nantes, University of Tours, 37000, Tours, France. .,Department of Dermatology and Reference Center for Rare Diseases and Vascular Malformations (MAGEC), CHRU Tours, Avenue de la République, 37044, Tours, Cedex 9, France. .,Clinical Investigation Center, INSERM 1415, CHRU Tours, 37000, Tours, France.
| | - Agnès Caille
- INSERM U1246 -SPHERE « MethodS in Patients-centered outcomes and HEalth REsearch », University of Nantes, University of Tours, 37000, Tours, France.,Clinical Investigation Center, INSERM 1415, CHRU Tours, 37000, Tours, France
| | - Sébastien Barbarot
- Department of Dermatology, University Hospital Center of Nantes, 44000, Nantes, France
| | - Nathalie Bénéton
- Department of Dermatology, Hospital Center of le Mans, 72037, le Mans, France
| | - Didier Bessis
- Department of Dermatology, University Hospital Center of Montpellier, 34000, Montpellier, France
| | - Olivia Boccara
- Department of Dermatology and Reference center for genodermatoses and rare skin diseases (MAGEC), University Hospital Necker-Enfants Malades, 75015, Paris, France
| | - Anne-Claire Bursztejn
- Department of Dermatology, University Hospital Center of Nancy, 54000, Nancy, France
| | - Christine Chiaverini
- Department of Dermatology, University Hospital Center of Nice, 06000, Nice, France
| | - Anne Dompmartin
- Department of Dermatology, University Hospital Center of Caen, 54000, Caen, France
| | - Catherine Droitcourt
- Department of Dermatology, University Hospital Center of Rennes, 35000, Rennes, France
| | - Valérie Gissot
- Clinical Investigation Center, INSERM 1415, CHRU Tours, 37000, Tours, France
| | - Dominique Goga
- Department of Maxillo-Facial surgery, CHRU Tours, 37044, Tours, Cedex 9, France
| | - Laurent Guibaud
- University Hospital Center of Lyon, Consultation Multidisciplinaire Lyonnaise des Angiomes, 69229, Lyon, Cedex 2, France
| | | | - Anne Le Touze
- Department of Pediatric Surgery, CHRU Tours, 37000, Tours, France
| | | | - Gérard Lorette
- Department of Dermatology and Reference Center for Rare Diseases and Vascular Malformations (MAGEC), CHRU Tours, Avenue de la République, 37044, Tours, Cedex 9, France
| | - Stéphanie Mallet
- Department of Dermatology, University Hospital Center of Marseille, 13885, Marseille, Cedex 5, France
| | - Ludovic Martin
- Department of Dermatology, University Hospital Center of Angers, 49000, Angers, France
| | - Juliette Mazereeuw-Hautier
- Reference center for rare skin diseases, Department of Dermatology, University Hospital Center of Toulouse, Paul Sabatier University, 31059, Toulouse, France
| | - Alice Phan
- Department of Dermatology, University Hospital Center of Lyon, 69229, Lyon, Cedex 2, France
| | - Patrice Plantin
- Department of Dermatology, Hospital Center of Quimper, 29107, Quimper, France
| | - Isabelle Quéré
- Departement of Vascular Medicine, National Reference Centre for Rare Vascular Diseases, EA 2992 Research Team, University of Montpellier, University Hospital Center of Montpellier, 34000, Montpellier, France
| | - Pierre Vabres
- Department of Dermatology, University Hospital Center of Dijon, 21000, Dijon, France
| | - Hélène Bourgoin
- Department of Pharmacy, University Hospital Center of Tours, 37000, Tours, France
| | - Bruno Giraudeau
- INSERM U1246 -SPHERE « MethodS in Patients-centered outcomes and HEalth REsearch », University of Nantes, University of Tours, 37000, Tours, France.,Clinical Investigation Center, INSERM 1415, CHRU Tours, 37000, Tours, France
| | - Annabel Maruani
- INSERM U1246 -SPHERE « MethodS in Patients-centered outcomes and HEalth REsearch », University of Nantes, University of Tours, 37000, Tours, France. .,Department of Dermatology and Reference Center for Rare Diseases and Vascular Malformations (MAGEC), CHRU Tours, Avenue de la République, 37044, Tours, Cedex 9, France. .,Clinical Investigation Center, INSERM 1415, CHRU Tours, 37000, Tours, France.
| | | |
Collapse
|
32
|
Mathews Samuel S, Satheesh NJ, Ghosh S, Büsselberg D, Majeed Y, Ding H, Triggle CR. Treatment with a Combination of Metformin and 2-Deoxyglucose Upregulates Thrombospondin-1 in Microvascular Endothelial Cells: Implications in Anti-Angiogenic Cancer Therapy. Cancers (Basel) 2019; 11:E1737. [PMID: 31698699 PMCID: PMC6895998 DOI: 10.3390/cancers11111737] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin, the most widely used anti-diabetic drug, also exhibits anti-cancer properties; however, the true potential of metformin as an anticancer drug remains largely unknown. In this study using mouse microvascular endothelial cells (MMECs), we investigated the effects of metformin alone or in combination with the glycolytic inhibitor, 2-deoxyglucose (2DG), on angiogenesis-a process known to be an integral part of tumor growth, cancer cell survival and metastasis. MMECs were exposed to 2DG (1-10 mM) for 48 h in the absence or presence of metformin (2 mM). The status of angiogenic and anti-angiogenic marker proteins, proteins of the mTOR pathway and cell-cycle-related proteins were quantified by Western blot analysis. Assays for cell proliferation, migration and tubulogenesis were also performed. We observed robust up-regulation of anti-angiogenic thrombospondin-1 (TSP1) and increased TSP1-CD36 co-localization with a marked decrease in the levels of phosphorylated vascular endothelial growth factor receptor-2 (pVEGFR2; Y1175) in 2DG (5 mM) exposed cells treated with metformin (2 mM). Additionally, treatment with metformin and 2DG (5 mM) inhibited the Akt/mTOR pathway and down-regulated the cell-cycle-related proteins such as p-cyclin B1 (S147) and cyclins D1 and D2 when compared to cells that were treated with either 2DG or metformin alone. Treatment with a combination of 2DG (5 mM) and metformin (2 mM) also significantly decreased cell proliferation, migration and tubulogenic capacity when compared to cells that were treated with either 2DG or metformin alone. The up-regulation of TSP1, inhibition of cell proliferation, migration and tubulogenesis provides support to the argument that the combination of metformin and 2DG may prove to be an appropriate anti-proliferative and anti-angiogenic therapeutic strategy for the treatment of some cancers.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Noothan Jyothi Satheesh
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Suparna Ghosh
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Yasser Majeed
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
33
|
Khor ES, Noor SM, Wong PF. Understanding the Role of ztor in Aging-related Diseases Using the Zebrafish Model. In Vivo 2019; 33:1713-1720. [PMID: 31662495 DOI: 10.21873/invivo.11661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The mammalian target of rapamycin (mTOR), a 289 kDa serine/threonine protein kinase of the phosphoinositide 3-kinase (PI3K)-related family is known for its role in regulating lifespan and the aging process in humans and rodents. Aging in zebrafish very much resembles aging in humans. Aged zebrafish often manifest with spinal curvature, cataracts and cognitive frailty, akin to human age-related phenotypical effects such as osteoarthritis, dwindling vision and cognitive dysfunction. However, the role of the zebrafish orthologue of mTOR, ztor, is less defined in these areas. This review paper discusses the tale of growing old in the zebrafish, the physiological roles of ztor in normal developmental processes and its involvement in the pathogenesis of aging-related diseases such as metabolic disorders and cancers.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
34
|
Kawakami Y, Hambright WS, Takayama K, Mu X, Lu A, Cummins JH, Matsumoto T, Yurube T, Kuroda R, Kurosaka M, Fu FH, Robbins PD, Niedernhofer LJ, Huard J. Rapamycin Rescues Age-Related Changes in Muscle-Derived Stem/Progenitor Cells from Progeroid Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:64-76. [PMID: 31312666 PMCID: PMC6610712 DOI: 10.1016/j.omtm.2019.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/13/2022]
Abstract
Aging-related loss of adult stem cell function contributes to impaired tissue regeneration. Mice deficient in zinc metalloproteinase STE24 (Zmpste24−/−) exhibit premature age-related musculoskeletal pathologies similar to those observed in children with Hutchinson-Gilford progeria syndrome (HGPS). We have reported that muscle-derived stem/progenitor cells (MDSPCs) isolated from Zmpste24−/− mice are defective in their proliferation and differentiation capabilities in culture and during tissue regeneration. The mechanistic target of rapamycin complex 1 (mTORC1) regulates cell growth, and inhibition of the mTORC1 pathway extends the lifespan of several animal species. We therefore hypothesized that inhibition of mTORC1 signaling would rescue the differentiation defects observed in progeroid MDSPCs. MDSPCs were isolated from Zmpste24−/− mice, and the effects of mTORC1 on MDSPC differentiation and function were examined. We found that mTORC1 signaling was increased in senescent Zmpste24−/− MDSPCs, along with impaired chondrogenic, osteogenic, and myogenic differentiation capacity versus wild-type MDSPCs. Interestingly, we observed that mTORC1 inhibition with rapamycin improved myogenic and chondrogenic differentiation and reduced levels of apoptosis and senescence in Zmpste24−/− MDSPCs. Our results demonstrate that age-related adult stem/progenitor cell dysfunction contributes to impaired regenerative capacities and that mTORC1 inhibition may represent a potential therapeutic strategy for improving differentiation capacities of senescent stem and muscle progenitor cells.
Collapse
Affiliation(s)
- Yohei Kawakami
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - William S Hambright
- Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Koji Takayama
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Xiaodong Mu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - Aiping Lu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Department of Orthopaedic Surgery, University of Texas Health Science Center at Houston, Houston, TX 77054, USA.,Steadman Philippon Research Institute, Vail, CO 81657, USA
| | - James H Cummins
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takashi Yurube
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Freddie H Fu
- Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Paul D Robbins
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laura J Niedernhofer
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN 55455, USA
| | - Johnny Huard
- Steadman Philippon Research Institute, Vail, CO 81657, USA
| |
Collapse
|
35
|
Ozmen A, Kipmen-Korgun D, Korgun ET. Rapamycin administration during normal and diabetic pregnancy effects the mTOR and angiogenesis signaling in the rat placenta. J Gynecol Obstet Hum Reprod 2019; 48:193-199. [DOI: 10.1016/j.jogoh.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/21/2022]
|
36
|
Nakahara T, Morita A, Yagasaki R, Mori A, Sakamoto K. Mammalian Target of Rapamycin (mTOR) as a Potential Therapeutic Target in Pathological Ocular Angiogenesis. Biol Pharm Bull 2018; 40:2045-2049. [PMID: 29199229 DOI: 10.1248/bpb.b17-00475] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathological ocular angiogenesis is a causative factor of retinopathy of prematurity, proliferative diabetic retinopathy, and wet age-related macular degeneration. Vascular endothelial growth factor (VEGF) plays an important role in pathological angiogenesis, and anti-VEGF agents have been used to treat the ocular diseases that are driven by pathological angiogenesis. However, adverse effects associated with the blockade of VEGF signaling, including impairments of normal retinal vascular growth and retinal function, were suggested. Therefore, the development of a safe, effective strategy to prevent pathological ocular angiogenesis is needed. Recent studies have demonstrated that inhibitors of the mammalian target of rapamycin (mTOR) target proliferating endothelial cells within the retinal vasculature. Here, we review the potential of targeting the mTOR pathway to treat pathological ocular angiogenesis.
Collapse
Affiliation(s)
- Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Rina Yagasaki
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| |
Collapse
|
37
|
Sabra SA, Elzoghby AO, Sheweita SA, Haroun M, Helmy MW, Eldemellawy MA, Xia Y, Goodale D, Allan AL, Rohani S. Self-assembled amphiphilic zein-lactoferrin micelles for tumor targeted co-delivery of rapamycin and wogonin to breast cancer. Eur J Pharm Biopharm 2018; 128:156-169. [PMID: 29689288 DOI: 10.1016/j.ejpb.2018.04.023] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/15/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
Abstract
Protein-based micelles have shown significant potential for tumor-targeted delivery of anti-cancer drugs. In this light, self-assembled nanocarriers based on GRAS (Generally recognized as safe) amphiphilic protein co-polymers were synthesized via carbodiimide coupling reaction. The new nano-platform is composed of the following key components: (i) hydrophobic zein core to encapsulate the hydrophobic drugs rapamycin (RAP) and wogonin (WOG) with high encapsulation efficiency, (ii) hydrophilic lactoferrin (Lf) corona to enhance the tumor targeting, and prolong systemic circulation of the nanocarriers, and (iii) glutaraldehyde (GLA)-crosslinking to reduce the particle size and improve micellar stability. Zein-Lf micelles showed relatively rapid release of WOG followed by slower diffusion of RAP from zein core. This sequential release may aid in efflux pump inhibition by WOG thus sensitizing tumor cells to RAP action. Interestingly, these micelles showed good hemocompatibility as well as enhanced serum stability owing to the brush-like architecture of Lf shell. Moreover, this combined nano-delivery system maximized synergistic cytotoxicity of RAP and WOG in terms of tumor inhibition in MCF-7 breast cancer cells and Ehrlich ascites tumor animal model as a result of enhanced active targeting. Collectively, GLA-crosslinked zein-Lf micelles hold great promise for combined RAP/WOG delivery to breast cancer with reduced drug dose, minimized side effects and maximized anti-tumor efficacy.
Collapse
Affiliation(s)
- Sally A Sabra
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada; Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| | - Salah A Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Medhat Haroun
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Maha A Eldemellawy
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City for Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, 21934 Alexandria, Egypt
| | - Ying Xia
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - David Goodale
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada
| | - Alison L Allan
- London Regional Cancer Program, London Health Sciences Centre, London, Ontario, Canada; Department of Anatomy & Cell Biology, Schulich School of Medicine & Dentistry, The University of Western University, London, Ontario, Canada
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
38
|
Maruani A, Boccara O, Bessis D, Guibaud L, Vabres P, Mazereeuw-Hautier J, Barbarot S, Chiaverini C, Blaise S, Droitcourt C, Mallet S, Martin L, Lorette G, Woillard JB, Jonville-Bera AP, Rollin J, Gruel Y, Herbreteau D, Goga D, le Touze A, Leducq S, Gissot V, Morel B, Tavernier E, Giraudeau B. Treatment of voluminous and complicated superficial slow-flow vascular malformations with sirolimus (PERFORMUS): protocol for a multicenter phase 2 trial with a randomized observational-phase design. Trials 2018; 19:340. [PMID: 29945674 PMCID: PMC6020321 DOI: 10.1186/s13063-018-2725-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/06/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Slow-flow superficial vascular malformations (VMs) are rare congenital anomalies that can be responsible for pain and functional impairment. Currently, we have no guidelines for their management, which can involve physical bandages, sclerotherapy, surgery, anti-inflammatory or anti-coagulation drugs or no treatment. The natural history is progressive and worsening. Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that acts as a master switch in cell proliferation, apoptosis, metabolism and angio/lymphangiogenesis. Sirolimus directly inhibits the mTOR pathway, thereby inhibiting cell proliferation and angio/lymphangiogenesis. Case reports and series have reported successful use of sirolimus in children with different types of vascular anomalies, with heterogeneous outcomes. OBJECTIVE The objective of this trial is to evaluate the efficacy and safety of sirolimus in children with complicated superficial slow-flow VMs. METHODS/DESIGN This French multicenter randomized observational-phase, phase 2 trial aims to include 50 pediatric patients 6 to 18 years old who have slow-flow (lymphatic, venous or lymphatico-venous) voluminous complicated superficial VM. Patients will be followed up for 12 months. All patients will start with an observational period (no treatment). Then at a time randomly selected between month 4 and month 8, they will switch to the experimental period (switch time), when they will receive sirolimus until month 12. Each child will undergo MRI 3 times: at baseline, at the switch time, and at month 12. For both periods (observational and treatment), we will calculate the relative change in volume of the VM divided by the study period duration. This relative change weighted by the study period duration will constitute the primary endpoint. VM will be measured by MRI images, which will be centralized and interpreted by the same radiologist who will be blinded to the study period. Hence, each patient will be his/her own control. Secondary outcomes will include assessment of safety and efficacy by viewing standardized digital photographs and according to the physician, the patient or proxy; impact on quality of life; and evolution of biological makers (coagulation factors, vascular endothelial growth factor, tissue factor). DISCUSSION The main benefit of the study will be to resolve uncertainty concerning the efficacy of sirolimus in reducing the volume of VMs and limiting related complications and the safety of the drug in children with slow-flow VMs. This trial design is interesting in these rare conditions because all included patients will have the opportunity to receive the drug and the physician can maintain it after the end of the protocol if is found efficient (which would not be the case in a classical cross-over study). TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02509468 , first received: 28 July 2015. EU Clinical Trials Register EudraCT Number: 2015-001096-43.
Collapse
Affiliation(s)
- Annabel Maruani
- University of Tours, University of Nantes, INSERM, SPHERE U1246, Tours, France. .,Department of Dermatology, Unit of Pédiatric Dermatology, CHRU Tours, 37044, Tours Cedex 9, France. .,CHRU Tours, Clinical Investigation Center, INSERM 1415, 37000, Tours, France.
| | - Olivia Boccara
- Department of Dermatology and Reference center for genodermatoses and rare skin diseases (MAGEC), University Hospital Necker-Enfants Malades, 75015, Paris, France
| | - Didier Bessis
- Department of Dermatology, University Hospital Center of Montpellier, 34000, Montpellier, France
| | - Laurent Guibaud
- University Hospital Center of Lyon, Consultation Multidisciplinaire Lyonnaise des Angiomes, 69229, Lyon Cedex 2, France
| | - Pierre Vabres
- Department of Dermatology, University Hospital Center of Dijon, 21000, Dijon, France
| | | | - Sébastien Barbarot
- Department of Dermatology, University Hospital Center of Nantes, 44000, Nantes, France
| | - Christine Chiaverini
- Department of Dermatology, University Hospital Center of Nice, 06000, Nice, France
| | - Sophie Blaise
- Department of Vascular Medicine, University Hospital Center of Grenoble, 38043, Grenoble Cedex 9, France
| | - Catherine Droitcourt
- Department of Dermatology, University Hospital Center of Rennes, 35000, Rennes, France
| | - Stéphanie Mallet
- Department of Dermatology, University Hospital Center of Marseille, 13885, Marseille Cedex 5, France
| | - Ludovic Martin
- Department of Dermatology, University Hospital Center of Angers, 49000, Angers, France
| | - Gérard Lorette
- Department of Dermatology, Unit of Pédiatric Dermatology, CHRU Tours, 37044, Tours Cedex 9, France
| | - Jean-Baptiste Woillard
- Department of Pharmacology and Toxicology, University of Limoges, INSERM UMR 850, CHU Limoges, 87000, Limoges, France
| | - Annie-Pierre Jonville-Bera
- University of Tours, University of Nantes, INSERM, SPHERE U1246, Tours, France.,Department of Clinical Pharmacology, Regional Pharmacovigilance Center, CHRU Tours, 37044, Tours Cedex 9, France
| | - Jérome Rollin
- Department of Hematology-Hemostasis, University of Tours, UMR-CNRS 7292, CHRU Tours, 37044, Tours Cedex 9, France
| | - Yves Gruel
- Department of Hematology-Hemostasis, University of Tours, UMR-CNRS 7292, CHRU Tours, 37044, Tours Cedex 9, France
| | - Denis Herbreteau
- Department of Neuroradiology, University of Tours, CHRU Tours, 37000, Tours, France
| | - Dominique Goga
- Department of Maxillo-Facial surgery, University of Tours, CHRU Tours, 37044, Tours Cedex 9, France
| | - Anne le Touze
- Department of Pediatric Surgery, CHRU Tours, 37000, Tours, France
| | - Sophie Leducq
- Department of Dermatology, Unit of Pédiatric Dermatology, CHRU Tours, 37044, Tours Cedex 9, France
| | - Valérie Gissot
- CHRU Tours, Clinical Investigation Center, INSERM 1415, 37000, Tours, France
| | - Baptiste Morel
- Department of Pediatric Radiology, University of Tours, CHRU Tours, 37000, Tours, France
| | - Elsa Tavernier
- University of Tours, University of Nantes, INSERM, SPHERE U1246, Tours, France.,CHRU Tours, Clinical Investigation Center, INSERM 1415, 37000, Tours, France
| | - Bruno Giraudeau
- University of Tours, University of Nantes, INSERM, SPHERE U1246, Tours, France.,CHRU Tours, Clinical Investigation Center, INSERM 1415, 37000, Tours, France
| | | |
Collapse
|
39
|
MacFarland SP, Sullivan LM, States LJ, Bailey LC, Balamuth NJ, Womer RB, Olson TS. Management of Refractory Pediatric Kaposiform Hemangioendothelioma With Sirolimus and Aspirin. J Pediatr Hematol Oncol 2018; 40:e239-e242. [PMID: 29240034 DOI: 10.1097/mph.0000000000001046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Kaposiform hemangioendothelioma (KHE) is a rare vascular tumor characterized by aggressive local invasion and a syndrome of platelet trapping known as Kasabach-Merritt phenomenon that, through deposition of platelet derived growth factors, may perpetuate the growth of the tumor. Although many cases of KHE are successfully treated with local control or low-intensity chemotherapy, some cases are often refractory even to aggressive treatment. Herein, we describe a patient with a refractory, recurrent KHE despite multiple attempts at local control and intensive chemotherapy, that ultimately was successfully treated with rationally designed and low-intensity combination therapy of sirolimus and aspirin.
Collapse
Affiliation(s)
| | - Lisa M Sullivan
- Department of Pathology, University of Missisippi Medical Center, Jackson, MS
| | | | - L Charles Bailey
- Division of Oncology, The Children's Hospital of Philadelphia.,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Naomi J Balamuth
- Division of Oncology, The Children's Hospital of Philadelphia.,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Richard B Womer
- Division of Oncology, The Children's Hospital of Philadelphia.,Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Timothy S Olson
- Division of Hematology.,Division of Oncology, The Children's Hospital of Philadelphia
| |
Collapse
|
40
|
Wang Z, Valera JC, Zhao X, Chen Q, Gutkind JS. mTOR co-targeting strategies for head and neck cancer therapy. Cancer Metastasis Rev 2018; 36:491-502. [PMID: 28822012 PMCID: PMC5613059 DOI: 10.1007/s10555-017-9688-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide. There is an urgent need to develop effective therapeutic approaches to prevent and treat HNSCC. Recent deep sequencing of the HNSCC genomic landscape revealed a multiplicity and diversity of genetic alterations in this malignancy. Although a large variety of specific molecules were found altered in each individual tumor, they all participate in only a handful of driver signaling pathways. Among them, the PI3K/mTOR pathway is the most frequently activated, which plays a central role in cancer initiation and progression. In turn, targeting of mTOR may represent a precision therapeutic approach for HNSCC. Indeed, mTOR inhibition exerts potent anti-tumor activity in HNSCC experimental systems, and mTOR targeting clinical trials show encouraging results. However, advanced HNSCC patients may exhibit unpredictable drug resistance, and the analysis of its molecular basis suggests that co-targeting strategies may provide a more effective option. In addition, although counterintuitive, emerging evidence suggests that mTOR inhibition may enhance the anti-tumor immune response. These new findings raise the possibility that the combination of mTOR inhibitors and immune oncology agents may provide novel precision therapeutic options for HNSCC.
Collapse
Affiliation(s)
- Zhiyong Wang
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | | | - Xuefeng Zhao
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases,West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
41
|
Lilis I, Giopanou I, Papadaki H, Gyftopoulos K. The expression of p-mTOR and COUP-TFII correlates with increased lymphangiogenesis and lymph node metastasis in prostate adenocarcinoma. Urol Oncol 2018; 36:311.e27-311.e35. [PMID: 29544697 DOI: 10.1016/j.urolonc.2018.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/23/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mammalian target of rapamycin (mTOR) is a central regulator of major cellular processes such as growth and proliferation. Deregulated mTOR signaling is implicated in a wide spectrum of human malignancies including prostate cancer. The aim of this study is to address the role of phosphorylated mTOR (p-mTOR) in prostate adenocarcinoma-induced lymphangiogenesis and lymph node metastasis as well as to investigate its relationship with chicken ovalbumin upstream promoter transcriptional factor 2 (COUP-TFII) and the vascular endothelial growth factors A/C (VEGF A/C). METHODS We analyzed 92 paraffin embedded specimens from patients with prostate cancer who underwent radical prostatectomy with pelvic lymph node (LN) dissection. Twenty-four of these men were pathologically assessed to have regional LN metastasis (pN1 group) and 68 with negative lymph nodes (pN0 group). Lymph vessel density was measured using anti-D2-40 and anti-LYVE-1 antibodies. The expression of p-mTOR, COUP-TFII, and VEGF A/C was also evaluated by immunohistochemistry. RESULTS Specimens from pN1 group exhibited higher cytoplasmic p-mTOR expression compared to pN0 specimens. Mean vessel densities assessed by COUP-TFII and D2-40 were increased in pN1 tumors and positively associated with higher p-mTOR expression. Interestingly, increased expression of p-mTOR was positively associated with COUP-TFII expression in cancer cells and elevated immunoreactivity for both VEGF A and C, which in turn exhibited higher expression in pN1 group. CONCLUSIONS Our findings suggest that increased p-mTOR and COUP-TFII expression are implicated in human prostate adenocarcinoma-induced lymphangiogenesis and LN metastasis.
Collapse
Affiliation(s)
- Ioannis Lilis
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.
| | - Ioanna Giopanou
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.
| | - Helen Papadaki
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Kostis Gyftopoulos
- Department of Anatomy, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| |
Collapse
|
42
|
Tsuji-Tamura K, Ogawa M. Dual inhibition of mTORC1 and mTORC2 perturbs cytoskeletal organization and impairs endothelial cell elongation. Biochem Biophys Res Commun 2018; 497:326-331. [DOI: 10.1016/j.bbrc.2018.02.080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 02/03/2023]
|
43
|
R-Ras-Akt axis induces endothelial lumenogenesis and regulates the patency of regenerating vasculature. Nat Commun 2017; 8:1720. [PMID: 29170374 PMCID: PMC5700916 DOI: 10.1038/s41467-017-01865-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 10/20/2017] [Indexed: 01/29/2023] Open
Abstract
The formation of endothelial lumen is fundamental to angiogenesis and essential to the oxygenation of hypoxic tissues. The molecular mechanism underlying this important process remains obscure. Here, we show that Akt activation by a Ras homolog, R-Ras, stabilizes the microtubule cytoskeleton in endothelial cells leading to endothelial lumenogenesis. The activation of Akt by the potent angiogenic factor VEGF-A does not strongly stabilize microtubules or sufficiently promote lumen formation, hence demonstrating a distinct role for the R-Ras-Akt axis. We show in mice that this pathway is important for the lumenization of new capillaries and microvessels developing in ischemic muscles to allow sufficient tissue reperfusion after ischemic injury. Our work identifies a role for Akt in lumenogenesis and the significance of the R-Ras-Akt signaling for the patency of regenerating blood vessels. Formation of the vascular lumen initiates the blood flow and it is crucial for tissue homeostasis. Here, Li et. al show that the R-Ras-Akt signaling axis is crucial for reparative angiogenesis in mice because it stabilizes the microtubule cytoskeleton in endothelial cells to promote endothelial lumen formation.
Collapse
|
44
|
Meng J, Liu Y, Han J, Tan Q, Chen S, Qiao K, Zhou H, Sun T, Yang C. Hsp90β promoted endothelial cell-dependent tumor angiogenesis in hepatocellular carcinoma. Mol Cancer 2017; 16:72. [PMID: 28359326 PMCID: PMC5374580 DOI: 10.1186/s12943-017-0640-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background Vascular endothelial growth factor receptors (VEGFRs) are the major receptors involved in endothelial cell-dependent tumor angiogenesis. There are studies account for the effects of Hsp90 on angiogenesis, but the role and mechanism of Hsp90β isoforms and NVP-BEP800, a specific inhibitor of Hsp90β, in tumor angiogenesis is rarely mentioned. Methods Immunohistochemistry and statistical analysis was used to evaluate the correlation between Hsp90β expression, CD31 endothelial cell-dependent vessel density, and VEGFRs expression in tissue samples of 96 HCCs. Kaplan-Meier survival analysis and COX proportional hazards analysis the relation of Hsp90β and prognosis. HUVEC cells were transfected with Hsp90β or treated with NVP-BEP800, and then cell proliferation, migration, invasion and tube formation were investigated. The VEGFR1 and VEGFR2 expression was determined by Western blot and immunofluorescence. The VEGFR1 and VEGFR2 promoter activities were detected by dual luciferase report system. In vivo, the angiogenesis promotion of Hsp90β and anti-angiogenesis efficacy of NVP-BEP800 was tested in HCC xenograft models. Histological analysis was performed on tumor samples to evaluate Hsp90β, VEGFRs expression and MVD. Results This study investigated the correlation between Hsp90β expression and CD31+ endothelial cell-dependent vessel density. Hsp90β promoted VEGFRs expression by increasing their promoter activities. The proliferation, migration, invasion, and tube formation activities of human endothelial cells significantly increased when Hsp90β was overexpressed. NVP-BEP800 down-regulated VEGFRs expression to significantly reduce tubular differentiation, as well as endothelial cell proliferation, migration, and invasion. Furthermore, NVP-BEP800 decreased VEGFR1 and VEGFR2 promoter activities. In vivo, Hsp90β promoted VEGFRs and CD31 expression in human hepatocellular carcinoma tumor xenografts and was associated with increased tumor microvessel density. After 18 days of treatment with 30 mg/kg/day NVP-BEP800, VEGFRs and CD31 expression significantly decreased. Conclusion Hsp90β induced endothelial cell-dependent tumor angiogenesis by activating VEGFRs transcription. NVP-BEP800 has potential as a therapeutic strategy for inhibiting tumor angiogenesis by decreasing endothelial cell progression and metastasis. It can help develop a therapeutic strategy for tumor treatment through the inhibition of endothelial cell progression and metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0640-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Meng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Qiang Tan
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kailiang Qiao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China.,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300350, China. .,Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China.
| |
Collapse
|
45
|
Rapamycin inhibits the proliferation of endothelial cells in hemangioma by blocking the mTOR-FABP4 pathway. Biomed Pharmacother 2016; 85:272-279. [PMID: 27914823 DOI: 10.1016/j.biopha.2016.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/23/2022] Open
Abstract
FABP4 is widely expressed in both normal and pathologic tissues. It promotes cell proliferation, survival and migration of endothelial cells, and therefore, angiogenesis. However, the role of FABP4 in hemangioma or hemangioma endothelial cells (HemECs) has not been explored. In this study, we investigated whether FABP4 directly regulates the proliferation of HemECs. The expression of cell cycle checkpoint genes was analyzed with the microarray data of human dermal microvascular endothelial cells (HDVECs) and infantile hemangioma endothelial cells. Real-time RT-PCR and western blotting were used to examine the expression of FABP4 in HemECs. Next, the FABP4 expression was inhibited in HemECs using siRNA or rapamycin and upregulated using retroviral transduction of HemECs to assess its influence on proliferation of HemECs. The microarray data showed that cell cycle checkpoint genes were upregulated in HemECs. Moreover, HemECs showed significantly higher proliferation rates than HDVECs. The expression of FABP4 and mTOR was increased in the HemECs. While FABP4 knockdown reduced the BrdU incorporation and cell number of HemECs as expected, cell proliferation was accelerated by FABP4 over-expression. Moreover, rapamycin (10nM) inhibited mTOR-FABP4 signaling and HemEC proliferation. Taken together, these results indicated that mTOR signaling pathway-activated FABP4 directly regulates the proliferation of endothelial cells in hemangioma. Rapamycin and inhibitors of FABP4 have therapeutic potential for treating infantile hemangiomas.
Collapse
|
46
|
Abstract
Solid tumors generally require a vascularized connective tissue stroma if they are to grow beyond minimal size. They generate that stroma in part by secreting vascular endothelial growth factor (VEGF), a potent vascular permeability and angiogenic factor. Increased vascular permeability leads to deposition of a provisional fibrin stroma, which supports tumor, connective tissue, and inflammatory cell migration and plays an active role in the formation of mature vascularized stroma. Vascular endothelial growth factor-induced tumor blood vessels are heterogeneous, of at least 6 distinct types, and develop linearly over time. They include both angiogenic (mother vessels, glomeruloid microvascular proliferations, vascular malformations, capillaries) and arteriovenogenic (feeding arteries, draining veins) blood vessels. Attacking the tumor vasculature with drugs that target VEGF or its receptors (VEGFR) has come into vogue but has been less effective than had been hope for. One reason for this is that anti-VEGF/VEGFR therapy attacks only a subset of tumor blood vessels, the earliest to form. New targets on late-forming blood vessels such as feeding arteries would be useful in helping antivascular cancer therapy fulfill its promise.
Collapse
|
47
|
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11:372-85. [PMID: 27127460 PMCID: PMC4828986 DOI: 10.4103/1673-5374.179032] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Throughout the globe, diabetes mellitus (DM) is increasing in incidence with limited therapies presently available to prevent or resolve the significant complications of this disorder. DM impacts multiple organs and affects all components of the central and peripheral nervous systems that can range from dementia to diabetic neuropathy. The mechanistic target of rapamycin (mTOR) is a promising agent for the development of novel regenerative strategies for the treatment of DM. mTOR and its related signaling pathways impact multiple metabolic parameters that include cellular metabolic homeostasis, insulin resistance, insulin secretion, stem cell proliferation and differentiation, pancreatic β-cell function, and programmed cell death with apoptosis and autophagy. mTOR is central element for the protein complexes mTOR Complex 1 (mTORC1) and mTOR Complex 2 (mTORC2) and is a critical component for a number of signaling pathways that involve phosphoinositide 3-kinase (PI 3-K), protein kinase B (Akt), AMP activated protein kinase (AMPK), silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), Wnt1 inducible signaling pathway protein 1 (WISP1), and growth factors. As a result, mTOR represents an exciting target to offer new clinical avenues for the treatment of DM and the complications of this disease. Future studies directed to elucidate the delicate balance mTOR holds over cellular metabolism and the impact of its broad signaling pathways should foster the translation of these targets into effective clinical regimens for DM.
Collapse
|
48
|
Ozmen A, Unek G, Kipmen-Korgun D, Mendilcioglu I, Sanhal C, Sakıncı M, Korgun ET. Glucocorticoid effects on angiogenesis are associated with mTOR pathway activity. Biotech Histochem 2016; 91:296-306. [PMID: 27007885 DOI: 10.3109/10520295.2016.1161234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glucocorticoids (GC) often are administered during pregnancy, but despite their widespread use in clinical practice, it remains uncertain how GC exposure affects pro-angiogenic factors and their receptors. We investigated the effects of GC on vascular endothelial growth factor (VEGF), placental growth factor (PIGF), vascular endothelial growth factor receptor 1 (VEGFR1) and vascular endothelial growth factor receptor 2 (VEGFR2) protein and mRNA expressions and investigated the possible association of GC with the Akt/mTOR pathway. We incubated human umbilical vein endothelial cells (HUVECs) with a synthetic GC, triamcinolone acetonide (TA). TA administration caused decreased cellular and soluble VEGF and VEGFR1 protein expressions and increased soluble VEGFR2 expression. VEGF, VEGFR1 and VEGFR2 mRNA expressions were altered in a time and dose dependent manner. PIGF protein expression was unaffected by TA treatment, but PIGF mRNA expression decreased in a dose dependent manner after incubation for 48 and 72 h. Phospho-mTOR and phospho-Akt expressions were unaffected. Phospho-p70S6K and phospho-4EBP1 protein expressions and the vascular network forming capacity of HUVECs decreased in a dose dependent manner. We found that GC exert detrimental effects on angiogenesis by altering cellular and soluble angiogenic protein and mRNA levels, and vascular network forming capacities by the Akt/mTOR pathway.
Collapse
Affiliation(s)
- A Ozmen
- a Department of Histology , Embryology, Akdeniz University , Antalya , Turkey
| | - G Unek
- a Department of Histology , Embryology, Akdeniz University , Antalya , Turkey
| | - D Kipmen-Korgun
- b Department of Biochemistry , Akdeniz University , Antalya , Turkey
| | - I Mendilcioglu
- c Department of Obstetrics , Gynecology, Medical Faculty, Akdeniz University , Antalya , Turkey
| | - C Sanhal
- c Department of Obstetrics , Gynecology, Medical Faculty, Akdeniz University , Antalya , Turkey
| | - M Sakıncı
- c Department of Obstetrics , Gynecology, Medical Faculty, Akdeniz University , Antalya , Turkey
| | - E T Korgun
- a Department of Histology , Embryology, Akdeniz University , Antalya , Turkey
| |
Collapse
|
49
|
Trinh HM, Joseph M, Cholkar K, Pal D, Mitra AK. Novel strategies for the treatment of diabetic macular edema. World J Pharmacol 2016; 5:1-14. [DOI: 10.5497/wjp.v5.i1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Macular edema such as diabetic macular edema (DME) and diabetic retinopathy are devastating back-of-the-eye retinal diseases leading to loss of vision. This area is receiving considerable medical attention. Posterior ocular diseases are challenging to treat due to complex ocular physiology and barrier properties. Major ocular barriers are static (corneal epithelium, corneal stroma, and blood-aqueous barrier) and dynamic barriers (blood-retinal barrier, conjunctival blood flow, lymph flow, and tear drainage). Moreover, metabolic barriers impede posterior ocular drug delivery and treatment. To overcome such barriers and treat back-of-the-eye diseases, several strategies have been recently developed which include vitreal drainage, laser photocoagulation and treatment with biologics and/or small molecule drugs. In this article, we have provided an overview of several emerging novel strategies including nanotechnology based drug delivery approach for posterior ocular drug delivery and treatment with an emphasis on DME.
Collapse
|
50
|
Khor ES, Noor SM, Wong PF. Expression of zTOR-associated microRNAs in zebrafish embryo treated with rapamycin. Life Sci 2016; 150:67-75. [PMID: 26916825 DOI: 10.1016/j.lfs.2016.02.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 01/24/2023]
Abstract
AIMS MicroRNAs (miRNAs) are vital in modulating lifespan and various biological processes including vascular function. The pivotal roles of mammalian target of rapamycin (mTOR) in regulating senescence and angiogenesis have been extensively described. However, the roles of its orthologue, zebrafish target of rapamycin (zTOR) in senescence and angiogenesis remain to be unravelled. In the present study, we aimed to investigate the role of zTOR and identify miRNAs associated with senescence and angiogenesis. MAIN METHODS Zebrafish embryos were treated with rapamycin and the inhibition of zTOR and its downstream proteins were validated by immunoblotting. Following the treatment, melanocyte density was quantitated, and senescence and angiogenic responses were determined by senescence-associated beta-galactosidase (SA-β-gal) and endogenous alkaline phosphatase (ALP) staining, respectively. Relative expression of microRNAs were determined by quantitative RT-PCR. KEY FINDINGS Rapamycin (400 nM) suppressed zTOR pathway by down-regulating the phosphorylation of zTOR-associated proteins such as P70S6K and S6K at both 4h post-fertilisation (hpf) and 8hpf while 4E-BP1 was only down-regulated at 8hpf when compared to their respective vehicle controls. Treatment with rapamycin also resulted in significant suppression of melanocyte development and senescence-associated beta-galactosidase (SA-β-gal) activity, and perturbed the development of intersegmental vessels (ISVs) of zebrafish embryos. In addition, the expressions of dre-miR-9-5p and -3p, dre-miR-25-3p and dre-miR-124-3p were significantly up-regulated in embryos treated with rapamycin from 4hpf. SIGNIFICANCE Our findings suggest the involvement of zTOR in embryonic senescence and angiogenesis which could be potentially mediated by selected miRNAs.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|