1
|
Nagesh PT, Nishi H, Rawal S, Zahr T, Miano JM, Sorci-Thomas M, Xu H, Akbar N, Choudhury RP, Misra A, Fisher EA. HDL regulates TGFß-receptor lipid raft partitioning, restoring contractile features of cholesterol-loaded vascular smooth muscle cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.19.562786. [PMID: 37905061 PMCID: PMC10614922 DOI: 10.1101/2023.10.19.562786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Cholesterol-loading of mouse aortic vascular smooth muscle cells (mVSMCs) downregulates miR-143/145, a master regulator of the contractile state downstream of TGFβ signaling. In vitro, this results in transitioning from a contractile mVSMC to a macrophage-like state. This process likely occurs in vivo based on studies in mouse and human atherosclerotic plaques. Objectives To test whether cholesterol-loading reduces VSMC TGFβ signaling and if cholesterol efflux will restore signaling and the contractile state in vitro and in vivo. Methods Human coronary artery (h)VSMCs were cholesterol-loaded, then treated with HDL (to promote cholesterol efflux). For in vivo studies, partial conditional deletion of Tgfβr2 in lineage-traced VSMC mice was induced. Mice wild-type for VSMC Tgfβr2 or partially deficient (Tgfβr2+/-) were made hypercholesterolemic to establish atherosclerosis. Mice were then treated with apoA1 (which forms HDL). Results Cholesterol-loading of hVSMCs downregulated TGFβ signaling and contractile gene expression; macrophage markers were induced. TGFβ signaling positively regulated miR-143/145 expression, increasing Acta2 expression and suppressing KLF4. Cholesterol-loading localized TGFβ receptors into lipid rafts, with consequent TGFβ signaling downregulation. Notably, in cholesterol-loaded hVSMCs HDL particles displaced receptors from lipid rafts and increased TGFβ signaling, resulting in enhanced miR-145 expression and decreased KLF4-dependent macrophage features. ApoA1 infusion into Tgfβr2+/- mice restored Acta2 expression and decreased macrophage-marker expression in plaque VSMCs, with evidence of increased TGFβ signaling. Conclusions Cholesterol suppresses TGFβ signaling and the contractile state in hVSMC through partitioning of TGFβ receptors into lipid rafts. These changes can be reversed by promotion of cholesterol efflux, consistent with evidence in vivo.
Collapse
Affiliation(s)
- Prashanth Thevkar Nagesh
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Hitoo Nishi
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Shruti Rawal
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Tarik Zahr
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| | - Joseph M Miano
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia 30912
| | - Mary Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Robin P Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom; Oxford University Hospitals, NHS Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, NSW, Australia
| | - Edward A Fisher
- Department of Medicine, Division of Cardiology, and Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
2
|
Zanotti I, Potì F, Cuchel M. HDL and reverse cholesterol transport in humans and animals: Lessons from pre-clinical models and clinical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1867:159065. [PMID: 34637925 DOI: 10.1016/j.bbalip.2021.159065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
The ability to accept cholesterol from cells and to promote reverse cholesterol transport (RCT) represents the best characterized antiatherogenic function of HDL. Studies carried out in animal models have unraveled the multiple mechanisms by which these lipoproteins drive cholesterol efflux from macrophages and cholesterol uptake to the liver. Moreover, the influence of HDL composition and the role of lipid transporters have been clarified by using suitable transgenic models or through experimental design employing pharmacological or nutritional interventions. Cholesterol efflux capacity (CEC), an in vitro assay developed to offer a measure of the first step of RCT, has been shown to associate with cardiovascular risk in several human cohorts, supporting the atheroprotective role of RCT in humans as well. However, negative data in other cohorts have raised concerns on the validity of this biomarker. In this review we will present the most relevant data documenting the role of HDL in RCT, as assessed in classical or innovative methodological approaches.
Collapse
Affiliation(s)
- Ilaria Zanotti
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy.
| | - Francesco Potì
- Dipartimento di Medicina e Chirurgia, Unità di Neuroscienze, Università di Parma, Via Volturno 39/F, 43125 Parma, Italy
| | - Marina Cuchel
- Division of Translational Medicine & Human Genetics, Perelman School of Medicine at the University of Pennsylvania, 3600 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
3
|
Zhang K, Li H, Xin Z, Li Y, Wang X, Hu Y, Liu H, Cai D. Time-restricted feeding downregulates cholesterol biosynthesis program via RORγ-mediated chromatin modification in porcine liver organoids. J Anim Sci Biotechnol 2020; 11:106. [PMID: 33292665 PMCID: PMC7604961 DOI: 10.1186/s40104-020-00511-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Time-restricted feeding (TRF) is a dieting strategy based on nutrients availability and diurnal rhythm, shown to improve lipid metabolism efficiency. We have demonstrated previously that retinoic acid-related (RAR) orphan receptor (ROR) γ is the primary transcription factor controlling cholesterol (CHO) biosynthesis program of animals. However, the functional role of RORγ in liver physiology of pigs in response to TRF has not been determined, largely due to the lack of functional models and molecular tools. In the present study, we established porcine liver organoids and subjected them to restricted nutrients supply for 10-h during the light portion of the day. RESULTS Our results showed that TRF regimen did not alter hepatocyte physiology, including unchanged cell viability, caspase 3/7 enzyme activity and the gene signature of cell proliferation in porcine liver organoids, compared to the control group (P > 0.05). Furthermore, we found that TRF downregulated the hepatic CHO biosynthesis program at both mRNA and protein levels, along with the reduced cellular CHO content in porcine liver organoids (P < 0.05). Using unbiased bioinformatic analysis of a previous ChIP-seq data and ChIP-qPCR validation, we revealed RORγ as the predominant transcription factor that responded to TRF, amongst the 12 targeted nuclear receptors (NRs) (P < 0.05). This was likely through RORγ direct binding to the MVK gene (encoding mevalonate kinase). Finally, we showed that RORγ agonists and overexpression enhanced the enrichment of co-factor p300, histone marks H3K27ac and H3K4me1/2, as well as RNA polymerase II (Pol-II) at the locus of MVK, in TRF-porcine liver organoids, compared to TRF-vector control (P < 0.05). CONCLUSIONS Our findings demonstrate that TRF triggers the RORγ-mediated chromatin remodeling at the locus of CHO biosynthesis genes in porcine liver organoids and further improves lipid metabolism.
Collapse
Affiliation(s)
- Kexin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Hao Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Zimeng Xin
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Yanwei Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Xiaolong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Yun Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China
| | - Haoyu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China.
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, PR China. .,Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
4
|
Current Understanding of the Relationship of HDL Composition, Structure and Function to Their Cardioprotective Properties in Chronic Kidney Disease. Biomolecules 2020; 10:biom10091348. [PMID: 32967334 PMCID: PMC7564231 DOI: 10.3390/biom10091348] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/27/2022] Open
Abstract
In the general population, the ability of high-density lipoproteins (HDLs) to promote cholesterol efflux is a predictor of cardiovascular events, independently of HDL cholesterol levels. Although patients with chronic kidney disease (CKD) have a high burden of cardiovascular morbidity and mortality, neither serum levels of HDL cholesterol, nor cholesterol efflux capacity associate with cardiovascular events. Important for the following discussion on the role of HDL in CKD is the notion that traditional atherosclerotic cardiovascular risk factors only partially account for this increased incidence of cardiovascular disease in CKD. As a potential explanation, across the spectrum of cardiovascular disease, the relative contribution of atherosclerotic cardiovascular disease becomes less important with advanced CKD. Impaired renal function directly affects the metabolism, composition and functionality of HDL particles. HDLs themselves are a heterogeneous population of particles with distinct sizes and protein composition, all of them affecting the functionality of HDL. Therefore, a more specific approach investigating the functional and compositional features of HDL subclasses might be a valuable strategy to decipher the potential link between HDL, cardiovascular disease and CKD. This review summarizes the current understanding of the relationship of HDL composition, metabolism and function to their cardio-protective properties in CKD, with a focus on CKD-induced changes in the HDL proteome and reverse cholesterol transport capacity. We also will highlight the gaps in the current knowledge regarding important aspects of HDL biology.
Collapse
|
5
|
Estrada-Luna D, Ortiz-Rodriguez MA, Medina-Briseño L, Carreón-Torres E, Izquierdo-Vega JA, Sharma A, Cancino-Díaz JC, Pérez-Méndez O, Belefant-Miller H, Betanzos-Cabrera G. Current Therapies Focused on High-Density Lipoproteins Associated with Cardiovascular Disease. Molecules 2018; 23:molecules23112730. [PMID: 30360466 PMCID: PMC6278283 DOI: 10.3390/molecules23112730] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins (HDL) comprise a heterogeneous family of lipoprotein particles divided into subclasses that are determined by density, size and surface charge as well as protein composition. Epidemiological studies have suggested an inverse correlation between High-density lipoprotein-cholesterol (HDL-C) levels and the risk of cardiovascular diseases and atherosclerosis. HDLs promote reverse cholesterol transport (RCT) and have several atheroprotective functions such as anti-inflammation, anti-thrombosis, and anti-oxidation. HDLs are considered to be atheroprotective because they are associated in serum with paraoxonases (PONs) which protect HDL from oxidation. Polyphenol consumption reduces the risk of chronic diseases in humans. Polyphenols increase the binding of HDL to PON1, increasing the catalytic activity of PON1. This review summarizes the evidence currently available regarding pharmacological and alternative treatments aimed at improving the functionality of HDL-C. Information on the effectiveness of the treatments has contributed to the understanding of the molecular mechanisms that regulate plasma levels of HDL-C, thereby promoting the development of more effective treatment of cardiovascular diseases. For that purpose, Scopus and Medline databases were searched to identify the publications investigating the impact of current therapies focused on high-density lipoproteins.
Collapse
Affiliation(s)
- Diego Estrada-Luna
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - María Araceli Ortiz-Rodriguez
- Facultad de Nutrición, Universidad Autónoma del Estado de Morelos, UAEM, Calle Río Iztaccihuatl S/N, Vista Hermosa, 62350 Cuernavaca, Morelos, Mexico.
| | - Lizett Medina-Briseño
- Universidad de la Sierra Sur, UNSIS, Miahuatlán de Porfirio Díaz, 70800 Oaxaca, Mexico.
| | - Elizabeth Carreón-Torres
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | - Jeannett Alejandra Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Epigmenio Gonzalez 500, 76130 Queretaro, Mexico.
| | - Juan Carlos Cancino-Díaz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, 11340 Ciudad de México, Mexico.
| | - Oscar Pérez-Méndez
- Instituto Nacional de Cardiología "Ignacio Chávez" Juan Badiano No. 1, Belisario Domínguez Sección 16, 14080 Tlalpan, Mexico City, Mexico.
| | | | - Gabriel Betanzos-Cabrera
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Actopan-Tilcuautla, Ex-Hacienda La Concepción S/N, San Agustín Tlaxiaca, 42160 Hidalgo, Mexico.
| |
Collapse
|
6
|
Westerterp M, Gautier EL, Ganda A, Molusky MM, Wang W, Fotakis P, Wang N, Randolph GJ, D'Agati VD, Yvan-Charvet L, Tall AR. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity. Cell Metab 2017; 25:1294-1304.e6. [PMID: 28479366 PMCID: PMC5514787 DOI: 10.1016/j.cmet.2017.04.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 11/04/2016] [Accepted: 04/06/2017] [Indexed: 11/18/2022]
Abstract
Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b+ DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and Th1 and Th17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced Th1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance.
Collapse
Affiliation(s)
- Marit Westerterp
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA; Department of Pediatrics, Section Molecular Genetics, University Medical Center Groningen, University of Groningen, 9713 AV Groningen, the Netherlands.
| | - Emmanuel L Gautier
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Anjali Ganda
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA; Division of Nephrology, Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Matthew M Molusky
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA
| | - Wei Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA
| | - Panagiotis Fotakis
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA
| | - Nan Wang
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, USA
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, NY 10032, USA
| | - Laurent Yvan-Charvet
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA
| | - Alan R Tall
- Division of Molecular Medicine, Department of Medicine, Columbia University, 630 West 168 Street, P&S 8-401, New York, NY 10032, USA
| |
Collapse
|
7
|
Cuchel M, Raper AC, Conlon DM, Pryma DA, Freifelder RH, Poria R, Cromley D, Li X, Dunbar RL, French B, Qu L, Farver W, Su CC, Lund-Katz S, Baer A, Ruotolo G, Akerblad P, Ryan CS, Xiao L, Kirchgessner TG, Millar JS, Billheimer JT, Rader DJ. A novel approach to measuring macrophage-specific reverse cholesterol transport in vivo in humans. J Lipid Res 2017; 58:752-762. [PMID: 28167703 DOI: 10.1194/jlr.m075226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Indexed: 11/20/2022] Open
Abstract
Reverse cholesterol transport (RCT) is thought to be an atheroprotective function of HDL, and macrophage-specific RCT in mice is inversely associated with atherosclerosis. We developed a novel method using 3H-cholesterol nanoparticles to selectively trace macrophage-specific RCT in vivo in humans. Use of 3H-cholesterol nanoparticles was initially tested in mice to assess the distribution of tracer and response to interventions known to increase RCT. Thirty healthy subjects received 3H-cholesterol nanoparticles intravenously, followed by blood and stool sample collection. Tracer counts were assessed in plasma, nonHDL, HDL, and fecal fractions. Data were analyzed by using multicompartmental modeling. Administration of 3H-cholesterol nanoparticles preferentially labeled macrophages of the reticuloendothelial system in mice, and counts were increased in mice treated with a liver X receptor agonist or reconstituted HDL, as compared with controls. In humans, tracer disappeared from plasma rapidly after injection of nanoparticles, followed by reappearance in HDL and nonHDL fractions. Counts present as free cholesterol increased rapidly and linearly in the first 240 min after nadir; counts in cholesteryl ester increased steadily over time. Estimates of fractional transfer rates of key RCT steps were obtained. These results support the use of 3H-cholesterol nanoparticles as a feasible approach for the measurement of macrophage RCT in vivo in humans.
Collapse
Affiliation(s)
- Marina Cuchel
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA.
| | - Anna C Raper
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Donna M Conlon
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | | | - Rahul Poria
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Debra Cromley
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Xiaoyu Li
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Richard L Dunbar
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Benjamin French
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Liming Qu
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - William Farver
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Sissel Lund-Katz
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amanda Baer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | - Lan Xiao
- Bristol-Myers Squibb R&D, Princeton, NJ
| | | | - John S Millar
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey T Billheimer
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel J Rader
- Division of Translational Medicine and Human Genetics, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
8
|
Tang J, Li D, Drake L, Yuan W, Deschaine S, Morin EE, Ackermann R, Olsen K, Smith DE, Schwendeman A. Influence of route of administration and lipidation of apolipoprotein A-I peptide on pharmacokinetics and cholesterol mobilization. J Lipid Res 2017; 58:124-136. [PMID: 27881716 PMCID: PMC5234715 DOI: 10.1194/jlr.m071043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/20/2016] [Indexed: 12/26/2022] Open
Abstract
apoA-I, apoA-I mimetic peptides, and their lipid complexes or reconstituted high-density lipoprotein (HDL) have been studied as treatments for various pathologies. However, consensus is lacking about the best method for administration, by intravenous (IV) or intraperitoneal (IP) routes, and formulation, as an HDL particle or in a lipid-free form. The objective of this study was to systematically examine peptide plasma levels, cholesterol mobilization, and lipoprotein remodeling in vivo following administration of lipid-free apoA-I peptide (22A) or phospholipid reconstituted 22A-sHDL by IV and IP routes. The mean circulation half-life was longer for 22A-sHDL (T1/2 = 6.27 h) than for free 22A (T1/2 = 3.81 h). The percentage of 22A absorbed by the vascular compartment after the IP dosing was ∼50% for both 22A and 22A-sHDL. The strongest pharmacologic response came from IV injection of 22A-sHDL, specifically a 5.3-fold transient increase in plasma-free cholesterol (FC) level compared with 1.3- and 1.8-fold FC increases for 22A-IV and 22A-sHDL-IP groups. Addition of either 22A or 22A-sHDL to rat plasma caused lipoprotein remodeling and appearance of a lipid-poor apoA-I. Hence, both the route of administration and the formulation of apoA-I peptide significantly affect its pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Dan Li
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Lindsey Drake
- Department of Medicinal Chemistry, North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Wenmin Yuan
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Sara Deschaine
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Emily E Morin
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Rose Ackermann
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Karl Olsen
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - David E Smith
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences North Campus Research Complex, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, North Campus Research Complex, University of Michigan, Ann Arbor, MI
| |
Collapse
|
9
|
Herzog E, Pragst I, Waelchli M, Gille A, Schenk S, Mueller-Cohrs J, Diditchenko S, Zanoni P, Cuchel M, Seubert A, Rader DJ, Wright SD. Reconstituted high-density lipoprotein can elevate plasma alanine aminotransferase by transient depletion of hepatic cholesterol: role of the phospholipid component. J Appl Toxicol 2015; 36:1038-47. [PMID: 26651060 DOI: 10.1002/jat.3264] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022]
Abstract
Human apolipoprotein A-I preparations reconstituted with phospholipids (reconstituted high-density lipoprotein [HDL]) have been used in a large number of animal and human studies to investigate the physiological role of apolipoprotein A-I. Several of these studies observed that intravenous infusion of reconstituted HDL might cause transient elevations in plasma levels of hepatic enzymes. Here we describe the mechanism of this enzyme release. Observations from several animal models and in vitro studies suggest that the extent of hepatic transaminase release (alanine aminotransferase [ALT]) correlates with the movement of hepatic cholesterol into the blood after infusion. Both the amount of ALT release and cholesterol movement were dependent on the amount and type of phospholipid present in the reconstituted HDL. As cholesterol is known to dissolve readily in phospholipid, an HDL preparation was loaded with cholesterol before infusion into rats to assess the role of diffusion of cholesterol out of the liver and into the reconstituted HDL. Cholesterol-loaded HDL failed to withdraw cholesterol from tissues and subsequently failed to cause ALT release. To investigate further the role of cholesterol diffusion, we employed mice deficient in SR-BI, a transporter that facilitates spontaneous movement of cholesterol between cell membranes and HDL. These mice showed substantially lower movement of cholesterol into the blood and markedly lower ALT release. We conclude that initial depletion of hepatic cholesterol initiates transient ALT release in response to infusion of reconstituted HDL. This effect may be controlled by appropriate choice of the type and amount of phospholipid in reconstituted HDL. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eva Herzog
- CSL Behring GmbH, Preclinical Research and Development, 35041, Marburg, Germany
| | - Ingo Pragst
- CSL Behring GmbH, Preclinical Research and Development, 35041, Marburg, Germany
| | | | - Andreas Gille
- CSL Ltd, Clinical and Translational Sciences, Melbourne, Victoria, 3052, Australia
| | - Sabrina Schenk
- CSL Behring GmbH, Preclinical Research and Development, 35041, Marburg, Germany
| | | | | | - Paolo Zanoni
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marina Cuchel
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andreas Seubert
- Philipps Universitaet, Faculty of Chemistry, 35032, Marburg, Germany
| | - Daniel J Rader
- Department of Medicine, Division of Translational Medicine and Human Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | |
Collapse
|
10
|
Pollard RD, Blesso CN, Zabalawi M, Fulp B, Gerelus M, Zhu X, Lyons EW, Nuradin N, Francone OL, Li XA, Sahoo D, Thomas MJ, Sorci-Thomas MG. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake. J Biol Chem 2015; 290:15496-15511. [PMID: 25947382 DOI: 10.1074/jbc.m115.646240] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/28/2023] Open
Abstract
Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.
Collapse
Affiliation(s)
- Ricquita D Pollard
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Christopher N Blesso
- Department of Nutritional Sciences, University of Connecticut, Storrs, Connecticut 06268
| | - Manal Zabalawi
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Brian Fulp
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Mark Gerelus
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Xuewei Zhu
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Erica W Lyons
- Section of Molecular Medicine, Department of Internal Medicine and the Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27101
| | - Nebil Nuradin
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Omar L Francone
- Shire Human Genetic Therapies, Lexington, Massachusetts 02421
| | - Xiang-An Li
- Department of Pediatrics, University of Kentucky, Lexington, Kentucky 40506
| | - Daisy Sahoo
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Michael J Thomas
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mary G Sorci-Thomas
- Department of Medicine and the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226.
| |
Collapse
|
11
|
Riwanto M, Rohrer L, von Eckardstein A, Landmesser U. Dysfunctional HDL: from structure-function-relationships to biomarkers. Handb Exp Pharmacol 2015; 224:337-366. [PMID: 25522994 DOI: 10.1007/978-3-319-09665-0_10] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Reduced plasma levels of HDL-C are associated with an increased risk of CAD and myocardial infarction, as shown in various prospective population studies. However, recent clinical trials on lipid-modifying drugs that increase plasma levels of HDL-C have not shown significant clinical benefit. Notably, in some recent clinical studies, there is no clear association of higher HDL-C levels with a reduced risk of cardiovascular events observed in patients with existing CAD. These observations have prompted researchers to shift from a cholesterol-centric view of HDL towards assessing the function and composition of HDL particles. Of importance, experimental and translational studies have further demonstrated various potential antiatherogenic effects of HDL. HDL has been proposed to promote macrophage reverse cholesterol transport and to protect endothelial cell functions by prevention of oxidation of LDL and its adverse endothelial effects. Furthermore, HDL from healthy subjects can directly stimulate endothelial cell production of nitric oxide and exert anti-inflammatory and antiapoptotic effects. Of note, increasing evidence suggests that the vascular effects of HDL can be highly heterogeneous and HDL may lose important anti-atherosclerotic properties and turn dysfunctional in patients with chronic inflammatory disorders. A greater understanding of mechanisms of action of HDL and its altered vascular effects is therefore critical within the context of HDL-targeted therapies.
Collapse
Affiliation(s)
- Meliana Riwanto
- Cardiology, University Heart Center, University Hospital Zurich and Center of Molecular Cardiology, University of Zurich, Rämistrasse 100, CH 8091, Zurich, Switzerland
| | | | | | | |
Collapse
|
12
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
MicroRNAs (miRNAs) regulate a wide variety of biological processes and contribute to metabolic homeostasis. Here, we demonstrate that microRNA-223 (miR-223), an miRNA previously associated with inflammation, also controls multiple mechanisms associated with cholesterol metabolism. miR-223 promoter activity and mature levels were found to be linked to cellular cholesterol states in hepatoma cells. Moreover, hypercholesterolemia was associated with increased hepatic miR-223 levels in athero-prone mice. miR-223 was found to regulate high-density lipoprotein-cholesterol (HDL-C) uptake, through direct targeting and repression of scavenger receptor BI, and to inhibit cholesterol biosynthesis through the direct repression of sterol enzymes 3-hydroxy-3-methylglutaryl-CoA synthase 1 and methylsterol monooxygenase 1 in humans. Additionally, miR-223 was found to indirectly promote ATP-binding cassette transporter A1 expression (mRNA and protein) through Sp3, thereby enhancing cellular cholesterol efflux. Finally, genetic ablation of miR-223 in mice resulted in increased HDL-C levels and particle size, as well as increased hepatic and plasma total cholesterol levels. In summary, we identified a critical role for miR-223 in systemic cholesterol regulation by coordinated posttranscriptional control of multiple genes in lipoprotein and cholesterol metabolism.
Collapse
|
14
|
Abstract
Atherosclerosis is one of the most common causes of death and disability in the United States today despite the availability of statins, which reduce hyperlipidemia, a risk factor that predisposes individuals to this disease. Epidemiology of human populations has overwhelmingly demonstrated an inverse correlation between the concentration of plasma high-density lipoprotein (HDL) cholesterol (HDL-C) and the likelihood of developing cardiovascular disease (CVD). Decades of observations and mechanistic studies suggest that one protective function of HDL is its central role in reverse cholesterol transport. In this pathway, the ATP-binding cassette transporter A1 releases intracellular cholesterol, which is packaged with apolipoprotein A-I (apoA-I) into nascent HDL particles and released from the plasma membrane. Further lipidation and maturation of HDL occur in plasma with the eventual uptake by the liver where cholesterol is removed. It is generally accepted that CVD risk can be reduced if plasma HDL-C levels are elevated. Several different pharmacological approaches have been tried; the most popular approach targets the movement of cholesteryl ester from HDL to triglyceride-rich particles by cholesteryl ester transfer protein. Inhibition of cholesteryl ester transfer protein increases plasma HDL-C concentration; however, beneficial effects have yet to be demonstrated, likely the result of off-target effects. These revelations have led to a reevaluation of how elevating HDL concentration could decrease risk. A recent, landmark study showed that the inherent cholesterol efflux capacity of an individual's plasma was a better predictor of CVD status than overall HDL-C concentration. Even more provocative are recent studies showing that apoA-I, the principle protein component of HDL modulates cellular inflammation and oxidation. The following will review all these potential routes explaining how HDL apoA-I can reduce the risk of CVD.
Collapse
|
15
|
Urine 6-sulfatoxymelatonin levels are inversely associated with arterial stiffness in post-menopausal women. Maturitas 2014; 78:117-22. [PMID: 24780409 DOI: 10.1016/j.maturitas.2014.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/23/2014] [Accepted: 03/26/2014] [Indexed: 11/21/2022]
Abstract
OBJECT The secretion of melatonin, a pleiotropic hormone mainly synthesized by the pineal gland, typically decreases with age and may be associated with the development of aging-related pathologic conditions such as cardiovascular disease. Atherosclerosis is an aging-related disease, the pathogenesis of which involves chronic inflammation and increased oxidative stress. Since melatonin has both anti-oxidant and anti-inflammatory properties, it may be associated with atherosclerosis. Therefore, we investigated the relationship between urine concentrations of 6-sulfatoxymelatonin (aMT6s) and arterial stiffness in post-menopausal women. METHODS A total of 66 post-menopausal women participated in the study. Melatonin secretion was estimated by measuring aMT6s levels in first morning urine samples. The cardio-ankle vascular index (CAVI) was used as an indicator of arterial stiffness. RESULTS Estimated mean CAVI decreased gradually with increasing aMT6s quartiles. The multivariate logistic regression analysis showed that the fourth aMT6s quartile was associated with a high CAVI with an adjusted odds ratio of 0.03 (95% confidence interval, 0.01-0.47). CONCLUSION Our study revealed an inverse relationship between urine aMT6s and arterial stiffness as determined by CAVI. Although it is impossible to determine causality, our results suggest that melatonin may have a beneficial role in the pathogenesis of atherosclerosis. Further prospective studies are required to establish the clinical significance of our study.
Collapse
|
16
|
Ledford KJ, Murphy N, Zeigler F, Bartel RL. Potential beneficial effects of ixmyelocel-T in the treatment of atherosclerotic diseases. Stem Cell Res Ther 2013; 4:135. [PMID: 24405662 PMCID: PMC4029553 DOI: 10.1186/scrt346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/23/2013] [Indexed: 11/11/2022] Open
Abstract
Introduction Advanced atherosclerotic lesions are characterized by lipid accumulation, inflammation, and defective efferocytosis. An ideal therapy should address all aspects of this multifactorial disease. Ixmyelocel-T therapy, an expanded autologous multicellular therapy showing clinical promise in the treatment of diseases associated with advanced atherosclerosis, includes a novel population of M2-like macrophages. Here, we examine the macrophages of ixmyelocel-T and determine their ability to influx modified cholesterol in an atheroprotective manner, maintaining cholesterol homeostasis and preventing cellular dysfunction and death, ultimately promoting reverse cholesterol efflux. Methods Approximately 50 ml of whole bone marrow was obtained from healthy donors and shipped overnight. Bone marrow mononuclear cells (BMMNCs) were produced by using density gradient separation and cultured for approximately 12 days to generate ixmyelocel-T. CD14+ cells were isolated from ixmyelocel-T via positive selection for analysis. Ixmyelocel-T and human leukemia monocyte (THP-1) cells were loaded with acetylated low-density lipoprotein (Ac-LDL) for analysis. Flow cytometry and immunofluorescence were used to examine Ac-LDL uptake, expression of cytokines was analyzed by enzyme-linked immunofluorescence assay (ELISA), and quantitative real-time PCR was used to analyze expression of cholesterol-transport genes. Both the in vitro cholesterol efflux assay and in vivo reverse cholesterol transport assay were used to examine cholesterol transport. Results Ixmyelocel-T macrophages take up acetylated low-density lipoprotein and express the scavenger receptors CD36 and scavenger receptor-B1 (SR-B1). Ixmyelocel-T did not become apoptotic or proinflammatory after lipid loading. The cholesterol transporter genes ABAC1 and ABCG1 were both statistically significantly upregulated when ixmyelocel-T macrophages were loaded with cholesterol. Ixmyelocel-T also exhibited enhanced apolipoprotein A-I (ApoAI)-mediated cholesterol efflux. In addition, in vivo reverse cholesterol-transport assay demonstrated that ixmyelocel-T was able to efflux cholesterol in this model. Conclusions Ixmyelocel-T macrophages influx modified cholesterol, remained anti-inflammatory in the face of lipid loading and inflammatory challenge, and displayed enhanced cholesterol efflux capabilities. These combined features suggest that this autologous multicellular therapy may exert beneficial effects in atherosclerotic diseases.
Collapse
|
17
|
Beaufrère H. Atherosclerosis: Comparative Pathogenesis, Lipoprotein Metabolism, and Avian and Exotic Companion Mammal Models. J Exot Pet Med 2013. [DOI: 10.1053/j.jepm.2013.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Kempen HJ, Gomaraschi M, Bellibas SE, Plassmann S, Zerler B, Collins HL, Adelman SJ, Calabresi L, Wijngaard PLJ. Effect of repeated apoA-IMilano/POPC infusion on lipids, (apo)lipoproteins, and serum cholesterol efflux capacity in cynomolgus monkeys. J Lipid Res 2013; 54:2341-53. [PMID: 23828780 DOI: 10.1194/jlr.m033779] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MDCO-216, a complex of dimeric recombinant apoA-IMilano (apoA-IM) and palmitoyl-oleoyl-phosphatidylcholine (POPC), was administered to cynomolgus monkeys at 30, 100, and 300 mg/kg every other day for a total of 21 infusions, and effects on lipids, (apo)lipoproteins, and ex-vivo cholesterol efflux capacity were monitored. After 7 or 20 infusions, free cholesterol (FC) and phospholipids (PL) were strongly increased, and HDL-cholesterol (HDL-C), apoA-I, and apoA-II were strongly decreased. We then measured short-term effects on apoA-IM, lipids, and (apo)lipoproteins after the first or the last infusion. After the first infusion, PL and FC went up in the HDL region and also in the LDL and VLDL regions. ApoE shifted from HDL to LDL and VLDL regions, while ApoA-IM remained located in the HDL region. On day 41, ApoE levels were 8-fold higher than on day 1, and FC, PL, and apoE resided mostly in LDL and VLDL regions. Drug infusion quickly decreased the endogenous cholesterol esterification rate. ABCA1-mediated cholesterol efflux on day 41 was markedly increased, whereas scavenger receptor type B1 (SRB1) and ABCG1-mediated effluxes were only weakly increased. Strong increase of FC is due to sustained stimulation of ABCA1-mediated efflux, and drop in HDL and formation of large apoE-rich particles are due to lack of LCAT activation.
Collapse
|
19
|
Ishibashi M, Filomenko R, Rébé C, Chevriaux A, Varin A, Derangère V, Bessède G, Gambert P, Lagrost L, Masson D. Knock-down of the oxysterol receptor LXRα impairs cholesterol efflux in human primary macrophages: Lack of compensation by LXRβ activation. Biochem Pharmacol 2013; 86:122-9. [DOI: 10.1016/j.bcp.2012.12.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022]
|
20
|
Tarling EJ, de Aguiar Vallim TQ, Edwards PA. Role of ABC transporters in lipid transport and human disease. Trends Endocrinol Metab 2013; 24:342-50. [PMID: 23415156 PMCID: PMC3659191 DOI: 10.1016/j.tem.2013.01.006] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 12/28/2022]
Abstract
Almost half of the 48 human ATP-binding cassette (ABC) transporter proteins are thought to facilitate the ATP-dependent translocation of lipids or lipid-related compounds. Such substrates include cholesterol, plant sterols, bile acids, phospholipids, and sphingolipids. Mutations in a substantial number of the 48 human ABC transporters have been linked to human disease. Indeed the finding that 12 diseases have been associated with abnormal lipid transport and/or homeostasis demonstrates the importance of this family of transporters in cell physiology. This review highlights the role of ABC transporters in lipid transport and movement, in addition to discussing their roles in cellular homeostasis and inherited disorders.
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
21
|
Daniil G, Zannis VI, Chroni A. Effect of apoA-I Mutations in the Capacity of Reconstituted HDL to Promote ABCG1-Mediated Cholesterol Efflux. PLoS One 2013; 8:e67993. [PMID: 23826352 PMCID: PMC3694867 DOI: 10.1371/journal.pone.0067993] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/23/2013] [Indexed: 12/29/2022] Open
Abstract
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.
Collapse
Affiliation(s)
- Georgios Daniil
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
| | - Vassilis I. Zannis
- Molecular Genetics, Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Angeliki Chroni
- Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Agia Paraskevi, Athens, Greece
- * E-mail:
| |
Collapse
|
22
|
Abstract
Multiple human population studies have established the concentration of high density lipoprotein (HDL) cholesterol as an independent, inverse predictor of the risk of having a cardiovascular event. Furthermore, HDLs have several well-documented functions with the potential to protect against cardiovascular disease. These include an ability to promote the efflux of cholesterol from macrophages in the artery wall, inhibit the oxidative modification of low density lipoproteins (LDLs), inhibit vascular inflammation, inhibit thrombosis, promote endothelial repair, promote angiogenesis, enhance endothelial function, improve diabetic control, and inhibit hematopoietic stem cell proliferation. There are undoubtedly other beneficial functions of HDLs yet to be identified. The HDL fraction in human plasma is heterogeneous, consisting of several subpopulations of particles of varying size, density, and composition. The functions of the different HDL subpopulations remain largely unknown. Given that therapies that increase the concentration of HDL cholesterol have varying effects on the levels of specific HDL subpopulations, it is of great importance to understand how distribution of different HDL subpopulations contribute to the potentially cardioprotective functions of this lipoprotein fraction. This review summarizes current understanding of the relationship of HDL subpopulations to their cardioprotective properties and highlights the gaps in current knowledge regarding this important aspect of HDL biology.
Collapse
Affiliation(s)
- Kerry-Anne Rye
- Lipid Research Group, Centre for Vascular Research, University of New South Wales, Sydney, New South Wales, Australia 2052
| | | |
Collapse
|
23
|
Fisher EA, Feig JE, Hewing B, Hazen SL, Smith JD. High-density lipoprotein function, dysfunction, and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 2013; 32:2813-20. [PMID: 23152494 DOI: 10.1161/atvbaha.112.300133] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although high high-density lipoprotein (HDL)-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or overexpression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase-mediated oxidation, can impair HDL production and HDL function, with regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels.
Collapse
Affiliation(s)
- Edward A Fisher
- Department of Cardiovascular Medicine, New York University School of Medicine, New York, NY 444195, USA
| | | | | | | | | |
Collapse
|
24
|
Abu Khalaf R, Abu Sheikha G, Al-Sha’er M, Albadawi G, Taha M. Design, synthesis, and biological evaluation of sulfonic acid ester and benzenesulfonamide derivatives as potential CETP inhibitors. Med Chem Res 2012; 21:3669-3680. [DOI: 10.1007/s00044-011-9917-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
25
|
Rhainds D, Arsenault BJ, Brodeur MR, Tardif JC. An update on the clinical development of dalcetrapib (RO4607381), a cholesteryl ester transfer protein modulator that increases HDL cholesterol levels. Future Cardiol 2012; 8:513-31. [DOI: 10.2217/fca.12.25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CETP is the target of CETP inhibitors such as anacetrapib and the modulator dalcetrapib. Both molecules have entered Phase III clinical trials, with the ultimate goal of reducing cardiovascular events by raising HDL cholesterol. At the 600-mg dose selected for the dal-OUTCOMES study, dalcetrapib is expected to inhibit CETP activity by approximately 30% and raise HDL-C by approximately 30% with limited effects on LDL cholesterol. Importantly, dalcetrapib does not raise blood pressure or aldosterone levels, two effects previously associated with the CETP inhibitor torcetrapib. Dalcetrapib has been well tolerated at the 600-mg dose. In the dal-PLAQUE atherosclerosis imaging study, dalcetrapib reduced the enlargement of total vessel area over time. In May 2012, following the results of the second interim analysis of dal-OUTCOMES, the Data and Safety Monitoring Board recommended stopping the study owing to a lack of clinically significant benefit, which was followed by Roche’s (Basel, Switzerland) decision to terminate the study and the dalcetrapib program (dal-HEART). Contrary to anacetrapib, a potent CETP inhibitor that markedly increases HDL cholesterol and significantly reduces LDL cholesterol, dalcetrapib has allowed us to test the hypothesis that an isolated, moderate elevation in HDL cholesterol prevents cardiovascular events.
Collapse
Affiliation(s)
- David Rhainds
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
| | - Benoit J Arsenault
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
| | - Mathieu R Brodeur
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
| | - Jean-Claude Tardif
- Atherosclerosis Research Group, Montreal Heart Institute, 5000 Belanger St., Montreal, Quebec, H1T 1C8, Canada
- Faculty of Medicine, Université de Montréal, 2900, Boulevard Édouard-Montpetit Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
26
|
Kerr ID, Haider AJ, Gelissen IC. The ABCG family of membrane-associated transporters: you don't have to be big to be mighty. Br J Pharmacol 2012; 164:1767-79. [PMID: 21175590 DOI: 10.1111/j.1476-5381.2010.01177.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Along with many other mammalian ATP-binding cassette (ABC) transporters, members of the ABCG group are involved in the regulated transport of hydrophobic compounds across cellular membranes. In humans, five ABCG family members have been identified, encoding proteins ranging from 638 to 678 amino acids in length. All five have been the subject of intensive investigation to better understand their physiological roles, expression patterns, interactions with substrates and inhibitors, and regulation at both the transcript and protein level. The principal substrates for at least four of the ABCG proteins are endogenous and dietary lipids, with ABCG1 implicated in particular in the export of cholesterol, and ABCG5 and G8 forming a functional heterodimer responsible for plant sterol elimination from the body. ABCG2 has a much broader substrate specificity and its ability to transport numerous diverse pharmaceuticals has implications for the absorption, distribution, metabolism, excretion and toxicity (ADMETOx) profile of these compounds. ABCG2 is one of at least three so-called multidrug resistant ABC transporters expressed in humans, and its activity is associated with decreased efficacy of anti-cancer agents in several carcinomas. In addition to its role in cancer, ABCG2 also plays a role in the normal physiological transport of urate and haem, the implications of which are described. We summarize here data on all five human ABCG transporters and provide a current perspective on their roles in human health and disease.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham.
| | | | | |
Collapse
|
27
|
Allahverdian S, Pannu PS, Francis GA. Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation. Cardiovasc Res 2012; 95:165-72. [PMID: 22345306 DOI: 10.1093/cvr/cvs094] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Smooth muscle cells (SMCs) are the main cell type in intimal thickenings and some stages of human atherosclerosis. Like monocyte-derived macrophages, SMCs accumulate excess lipids and contribute to the total intimal foam cell population. In contrast, apolipoprotein (Apo)E-deficient and LDL receptor-deficient mice develop atherosclerotic lesions that are macrophage- as opposed to SMC-rich. The lesser contribution of SMCs to lesion development in these mouse models has distracted attention away from the importance of SMC cholesterol homeostasis in the artery wall. Intimal SMCs accumulate excess amounts of cholesteryl esters when compared with medial layer SMCs, possibly explained by reduced ATP-binding cassette transporter A1 expression and ApoA-I binding to intimal-type SMCs. The aim of this review is to compare the relative contribution of monocyte-derived macrophages and SMCs to human vs. mouse atherosclerosis, and describe what is known about lipid uptake and removal mechanisms contributing to arterial macrophage and SMC foam cell formation. An increased understanding of the contribution of these cell types to lesion development will help to delineate their relative importance in atherogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
- Sima Allahverdian
- Department of Medicine, UBC James Hogg Research Centre, Providence Heart + Lung Institute at St Paul's Hospital, Room 166, Burrard Building, 1081 Burrard Street, Vancouver, BC, Canada V6Z 1Y6
| | | | | |
Collapse
|
28
|
Liu X, Xiong SL, Yi GH. ABCA1, ABCG1, and SR-BI: Transit of HDL-associated sphingosine-1-phosphate. Clin Chim Acta 2012; 413:384-90. [DOI: 10.1016/j.cca.2011.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 01/07/2023]
|
29
|
Emerging therapeutic strategies to enhance HDL function. Lipids Health Dis 2011; 10:175. [PMID: 21985435 PMCID: PMC3200157 DOI: 10.1186/1476-511x-10-175] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/10/2011] [Indexed: 02/02/2023] Open
Abstract
Epidemiologic studies indicate a strong inverse correlation between plasma levels of high-density lipoproteins (HDL) and cardiovascular disease (CVD). The most relevant cardioprotective mechanism mediated by HDL is thought to be reverse cholesterol transport (RCT). New insights in HDL biology and RCT have allowed the development of promising agents aimed to increase HDL function and promote atherosclerosis regression. In this regard, apo-AI analogs and CETP inhibitors dalcetrapib and anacetrapib have aroused a great interest and opened new expectations in the treatment of CVD.
Collapse
|
30
|
Kellner-Weibel G, de la Llera-Moya M. Update on HDL receptors and cellular cholesterol transport. Curr Atheroscler Rep 2011; 13:233-41. [PMID: 21302003 DOI: 10.1007/s11883-011-0169-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Efflux is central to maintenance of tissue and whole body cholesterol homeostasis. The discovery of cell surface receptors that bind high-density lipoprotein (HDL) with high specificity and affinity to promote cholesterol release has significantly advanced our understanding of cholesterol efflux. We now know that 1) cells have several mechanisms to promote cholesterol release, including a passive mechanism that depends on the physico-chemical properties of cholesterol molecules and their interactions with phospholipids; 2) a variety of HDL particles can interact with receptors to promote cholesterol transport from tissues to the liver for excretion; and 3) interactions between HDL and receptors show functional synergy. Therefore, efflux efficiency depends both on the arrays of receptors on tissue cells and HDL particles in serum.
Collapse
Affiliation(s)
- Ginny Kellner-Weibel
- Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, 3615 Civic Center Blvd., ARC1102G, Philadelphia, PA 19104-4318, USA.
| | | |
Collapse
|
31
|
Tarling EJ, Edwards PA. Dancing with the sterols: critical roles for ABCG1, ABCA1, miRNAs, and nuclear and cell surface receptors in controlling cellular sterol homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:386-95. [PMID: 21824529 DOI: 10.1016/j.bbalip.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/13/2011] [Accepted: 07/15/2011] [Indexed: 12/29/2022]
Abstract
ATP binding cassette (ABC) transporters represent a large and diverse family of proteins that transport specific substrates across a membrane. The importance of these transporters is illustrated by the finding that inactivating mutations within 17 different family members are known to lead to specific human diseases. Clinical data from humans and/or studies with mice lacking functional transporters indicate that ABCA1, ABCG1, ABCG4, ABCG5 and ABCG8 are involved in cholesterol and/or phospholipid transport. This review discusses the multiple mechanisms that control cellular sterol homeostasis, including the roles of microRNAs, nuclear and cell surface receptors and ABC transporters, with particular emphasis on recent findings that have provided insights into the role(s) of ABCG1. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- Elizabeth J Tarling
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | |
Collapse
|
32
|
Wong BXW, Kyle RA, Myhill PC, Croft KD, Quinn CM, Jessup W, Yeap BB. Dyslipidemic diabetic serum increases lipid accumulation and expression of stearoyl-CoA desaturase in human macrophages. Lipids 2011; 46:931-41. [PMID: 21674150 DOI: 10.1007/s11745-011-3578-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 05/25/2011] [Indexed: 10/18/2022]
Abstract
Type 2 diabetes and dyslipidemia are risk factors for cardiovascular disease. However, mechanisms by which hypertriglyceridemia influences atherogenesis remain unclear. We examined effects of dyslipidemic diabetic serum on macrophage lipid accumulation as a model of foam cell formation. Normal human macrophages were cultured in media supplemented with 10% serum from non-diabetic normolipidemic or non-diabetic hypercholesterolemic adults versus adults with Type 2 diabetes; diabetes and hypertriglyceridemia; or diabetes and hypercholesterolemia. Exposure to diabetic sera resulted in increased macrophage fatty acids (2-3 fold higher, both saturated and unsaturated). Macrophage expression of CD36, scavenger receptor A (SR-A) and stearoyl-CoA desaturase (SCD) was increased, most prominently in macrophages exposed to hypertriglyceridemic diabetic serum (twofold increase in CD36 and fourfold increase in SCD, p < 0.05). In these conditions, RNA inhibition of CD36 reduced macrophage free cholesterol (163.9 ± 10.5 vs. 221.9 ± 26.2 mmol free cholesterol/g protein, p = 0.04). RNA inhibition of SCD decreased macrophage fatty acid content, increased ABCA1 level and enhanced cholesterol efflux (18.0 ± 3.9 vs. 8.0 ± 0.8% at 48 h, p = 0.03). Diabetic dyslipidemia may contribute to accelerated atherosclerosis via alterations in macrophage lipid metabolism favoring foam cell formation. Increased expression of CD36 and SR-A would facilitate macrophage lipid uptake, while increased expression of SCD could block compensatory upregulation of ABCA1 and cholesterol efflux. Further studies are needed to clarify whether modulation of macrophage lipid metabolism might reduce progression of diabetic atherosclerosis.
Collapse
Affiliation(s)
- Bruce X W Wong
- School of Medicine and Pharmacology, Fremantle and Royal Perth Hospitals, University of Western Australia, Perth, WA, Australia
| | | | | | | | | | | | | |
Collapse
|
33
|
Brufau G, Groen AK, Kuipers F. Reverse cholesterol transport revisited: contribution of biliary versus intestinal cholesterol excretion. Arterioscler Thromb Vasc Biol 2011; 31:1726-33. [PMID: 21571685 DOI: 10.1161/atvbaha.108.181206] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reverse cholesterol transport (RCT) is usually defined as high-density lipoprotein-mediated transport of excess cholesterol from peripheral tissues, including cholesterol-laden macrophages in vessel walls, to the liver. From the liver, cholesterol can then be removed from the body via secretion into the bile for eventual disposal via the feces. According to this paradigm, high plasma high-density lipoprotein levels accelerate RCT and hence are atheroprotective. New insights in individual steps of the RCT pathway, in part derived from innovative mouse models, indicate that the classical concept of RCT may require modification.
Collapse
Affiliation(s)
- Gemma Brufau
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | |
Collapse
|
34
|
Cerda Á, Genvigir FDV, Rodrigues AC, Willrich MAV, Dorea EL, Bernik MMS, Arazi SS, Oliveira RD, Hirata MH, Hirata RDC. Influence of polymorphisms and cholesterol-lowering treatment on SCARB1 mRNA expression. J Atheroscler Thromb 2011; 18:640-51. [PMID: 21512283 DOI: 10.5551/jat.6544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM This study evaluated the influence of polymorphisms and cholesterol-lowering treatments on SCARB1 mRNA expression in peripheral blood mononuclear cells and in HepG2 and Caco-2 cells. METHODS Blood samples were drawn from normolipidemic (NL, n = 166) and hypercholesterolemic (HC, n = 123) individuals to extract DNA and total RNA and to analyze the lipid profile. After a 4-week washout period, 98 HC individuals were treated with atorvastatin (10 mg/day/4 weeks) whereas 25 were treated with ezetimibe (10 mg/day/4 weeks), followed by simvastatin (10 mg/day/8 weeks) and simvastatin plus ezetimibe (10 mg each/day/4 weeks). HepG2 and Caco-2 cells were treated with atorvastatin, simvastatin and ezetimibe at various concentrations for 12 and 24 h and collected for RNA extraction. SCARB1 mRNA expression was measured by TaqMan® assay and SCARB1 c.4G> A, c.726 + 54C> T and c.1080C> T polymorphisms were detected by PCR-RFLP. RESULTS High LDL cholesterol (> 160 mg/dL) values were associated with low baseline SCARB1 mRNA expression in PBMC. Allele T carriers for SCARB1 c.726+54C> T had lower basal SCARB1 transcription in PBMC (p < 0.05). Simvastatin, atorvastatin and ezetimibe treatments did not modify the SCARB1 mRNA level in PBMC from HC patients. Similarly, these cholesterol-lowering drugs did not modulate the SCARB1 expression in HepG2 and Caco-2 cells in spite of the concentration and time of exposure (p > 0.05). CONCLUSION LDL cholesterol levels and SCARB1 c.726 + 54C> T are associated with low mRNA expression in mononuclear cells. Cholesterol-lowering drugs do not modulate SCARB1 expression in PBMC from HC subjects or in HepG2 and Caco-2 cells.
Collapse
Affiliation(s)
- Álvaro Cerda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hoang A, Drew BG, Low H, Remaley AT, Nestel P, Kingwell BA, Sviridov D. Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein. Eur Heart J 2011; 33:657-65. [PMID: 21498847 DOI: 10.1093/eurheartj/ehr103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Infusion of reconstituted HDL (rHDL) leads to changes in HDL metabolism as well as to an increased capacity of plasma to support cholesterol efflux providing an opportunity to investigate mechanisms linking cholesterol efflux to changes in plasma HDL. METHODS AND RESULTS Patient plasmas after infusion of rHDL were tested ex vivo for their capacity to stimulate cholesterol efflux. Reconstituted HDL enhanced mobilization of cholesterol from tissues in vivo as shown by rising HDL cholesterol concentrations over the infusion period. Infusion of rHDL in vivo led to increased cholesterol efflux ex vivo; surprisingly, removing apoB-containing lipoproteins while preserving all HDL subfractions eliminated this increase. Infusion of rHDL led to the remodelling of plasma HDL; however, the capacity of plasma to support cholesterol efflux did not correlate with changes in the concentrations of any of HDL subfractions. Unmodified rHDL accounted for only a proportion of the increment in cholesterol efflux capacity. Furthermore, studies using HeLa and BHK cells overexpressing ABCA1, ABCG1, and SR-B1 showed that the contribution of these cellular mediators of cholesterol efflux to the enhanced capacity of plasma for the efflux was minimal. CONCLUSION Enhanced cholesterol efflux from tissues requires the presence of apoB-containing lipoproteins and may involve enhanced flow of cholesterol through multiple components of the reverse cholesterol transport pathway rather than being determined by a specific HDL subfraction.
Collapse
Affiliation(s)
- Anh Hoang
- Baker Heart and Diabetes Institute, PO Box 6492, St. Kilda Rd Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | |
Collapse
|
36
|
Pereira IVA, Stefano JT, Oliveira CPMS. Microsomal triglyceride transfer protein and nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2011; 5:245-251. [PMID: 21476919 DOI: 10.1586/egh.11.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease is currently one of the most common forms of liver disease, covering cases from simple steatosis without inflammation, to cases of steatohepatitis and fibrosis, and may lead to liver cirrhosis and hepatocellular carcinoma. The pathophysiology of nonalcoholic fatty liver disease is based on multiple events; changes in the secretion of lipoproteins can lead to steatosis. Liver lipid secretion is mediated by apoB100 and microsomal triglyceride transfer protein (MTP). The pharmacological suppression of MTP is suggested as a possible treatment for hyperlipidemia, although the upregulation of this protein can be a treatment for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Isabel V A Pereira
- Department of Gastroenterology, University of Sao Paulo School of Medicine, Av. Dr. Enéas de Carvalho Aguiar n° 255, Instituto Central, # 9159, 05403-000 Sao Paulo, Brazil
| | | | | |
Collapse
|
37
|
Zhao Y, Pennings M, Hildebrand RB, Ye D, Calpe-Berdiel L, Out R, Kjerrulf M, Hurt-Camejo E, Groen AK, Hoekstra M, Jessup W, Chimini G, Van Berkel TJC, Van Eck M. Enhanced foam cell formation, atherosclerotic lesion development, and inflammation by combined deletion of ABCA1 and SR-BI in Bone marrow-derived cells in LDL receptor knockout mice on western-type diet. Circ Res 2010; 107:e20-31. [PMID: 21071707 DOI: 10.1161/circresaha.110.226282] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
RATIONALE macrophages cannot limit the uptake of lipids and rely on cholesterol efflux mechanisms for maintaining cellular cholesterol homeostasis. Important mediators of macrophage cholesterol efflux are ATP-binding cassette transporter 1 (ABCA1), which mediates the efflux of cholesterol to lipid-poor apolipoprotein AI, and scavenger receptor class B type I (SR-BI), which promotes efflux to mature high-density lipoprotein. OBJECTIVE the aim of the present study was to increase the insight into the putative synergistic roles of ABCA1 and SR-BI in foam cell formation and atherosclerosis. METHODS AND RESULTS low-density lipoprotein receptor knockout (LDLr KO) mice were transplanted with bone marrow from ABCA1/SR-BI double knockout mice, the respective single knockouts, or wild-type littermates. Serum cholesterol levels were lower in ABCA1/SR-BI double knockout transplanted animals, as compared to the single knockout and wild-type transplanted animals on Western-type diet. Despite the lower serum cholesterol levels, massive foam cell formation was found in macrophages from spleen and the peritoneal cavity. Interestingly, ABCA1/SR-BI double knockout transplanted animals also showed a major increase in proinflammatory KC (murine interleukin-8) and interleukin-12p40 levels in the circulation. Furthermore, after 10 weeks of Western-type diet feeding, atherosclerotic lesion development in the aortic root was more extensive in the LDLr KO mice reconstituted with ABCA1/SR-BI double knockout bone marrow. CONCLUSIONS deletion of ABCA1 and SR-BI in bone marrow-derived cells enhances in vivo macrophage foam cell formation and atherosclerotic lesion development in LDLr KO mice on Western diet, indicating that under high dietary lipid conditions, both macrophage ABCA1 and SR-BI contribute significantly to cholesterol homeostasis in the macrophage in vivo and are essential for reducing the risk for atherosclerosis.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, University Medical Center Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhao Y, Van Berkel TJ, Van Eck M. Relative roles of various efflux pathways in net cholesterol efflux from macrophage foam cells in atherosclerotic lesions. Curr Opin Lipidol 2010; 21:441-53. [PMID: 20683325 DOI: 10.1097/mol.0b013e32833dedaa] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Cholesterol efflux mechanisms are essential for macrophage cholesterol homeostasis. HDL, an important cholesterol efflux acceptor, comprises a class of heterogeneous particles that induce cholesterol efflux via distinct pathways. This review focuses on the understanding of the different cholesterol efflux pathways and physiological acceptors involved, and their regulation in atherosclerotic lesions. RECENT FINDINGS The synergistic interactions of ATP-binding cassette transporters A1 and G1 as well as ATP-binding cassette transporter A1 and scavenger receptor class B type I are essential for cellular cholesterol efflux and the prevention of macrophage foam cell formation. However, the importance of aqueous diffusion should also not be underestimated. Significant progress has been made in understanding the mechanisms underlying ATP-binding cassette A1-mediated cholesterol efflux and regulation of its expression and trafficking. Conditions locally in the atherosclerotic lesion, for example, lipids, cytokines, oxidative stress, and hypoxia, as well as systemic factors, including inflammation and diabetes, critically influence the expression of cholesterol transporters on macrophage foam cells. Furthermore, HDL modification and remodeling in atherosclerosis, inflammation, and diabetes impairs its function as an acceptor for cellular cholesterol. SUMMARY Recent advances in the understanding of the regulation of cholesterol transporters and their acceptors in atherosclerotic lesions indicate that HDL-based therapies should aim to enhance the activity of cholesterol transporters and improve both the quantity and quality of HDL.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, University of Leiden, Leiden, The Netherlands
| | | | | |
Collapse
|
39
|
Smith JD. Apolipoprotein A-I and its mimetics for the treatment of atherosclerosis. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2010; 11:989-996. [PMID: 20730693 PMCID: PMC3074469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although statin treatment leads consistently to a reduction in major adverse coronary events and death in clinical trials, approximately 60 to 70% residual risk of these outcomes still remains. One frontier of investigational drug research is treatment to increase HDL, the 'good cholesterol' that is associated with a reduced risk of coronary artery disease. HDL and its major protein apolipoprotein A-I (apoAI) are protective against atherosclerosis through several mechanisms, including the ability to mediate reverse cholesterol transport. This review focuses on the preclinical and clinical findings for two types of therapies for the treatment of atherosclerosis: apoAI-containing compounds and apoAI mimetic peptides. Both of these therapies have excellent potential to be useful clinically to promote atherosclerosis regression and stabilize existing plaques, but significant hurdles must be overcome in order to develop these approaches into safe and effective therapies.
Collapse
Affiliation(s)
- Jonathan D Smith
- Cleveland Clinic, Department of Cell Biology, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|