1
|
Ren X, Cui Z, Zhang Q, Su Z, Xu W, Wu J, Jiang H. JunB condensation attenuates vascular endothelial damage under hyperglycemic condition. J Mol Cell Biol 2024; 15:mjad072. [PMID: 38140943 PMCID: PMC11080659 DOI: 10.1093/jmcb/mjad072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/23/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
Endothelial damage is the initial and crucial factor in the occurrence and development of vascular complications in diabetic patients, contributing to morbidity and mortality. Although hyperglycemia has been identified as a damaging effector, the detailed mechanisms remain elusive. In this study, identified by ATAC-seq and RNA-seq, JunB reverses the inhibition of proliferation and the promotion of apoptosis in human umbilical vein endothelial cells treated with high glucose, mainly through the cell cycle and p53 signaling pathways. Furthermore, JunB undergoes phase separation in the nucleus and in vitro, mediated by its intrinsic disordered region and DNA-binding domain. Nuclear localization and condensation behaviors are required for JunB-mediated proliferation and apoptosis. Thus, our study uncovers the roles of JunB and its coacervation in repairing vascular endothelial damage caused by high glucose, elucidating the involvement of phase separation in diabetes and diabetic endothelial dysfunction.
Collapse
Affiliation(s)
- Xuxia Ren
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zexu Cui
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiaoqiao Zhang
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhiguang Su
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wei Xu
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhui Wu
- Center of Geriatrics and Gerontology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
2
|
Xu S, Wang F, Mai P, Peng Y, Shu X, Nie R, Zhang H. Mechanism Analysis of Vascular Calcification Based on Fluid Dynamics. Diagnostics (Basel) 2023; 13:2632. [PMID: 37627891 PMCID: PMC10453151 DOI: 10.3390/diagnostics13162632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular calcification is the abnormal deposition of calcium phosphate complexes in blood vessels, which is regarded as the pathological basis of multiple cardiovascular diseases. The flowing blood exerts a frictional force called shear stress on the vascular wall. Blood vessels have different hydrodynamic properties due to discrepancies in geometric and mechanical properties. The disturbance of the blood flow in the bending area and the branch point of the arterial tree produces a shear stress lower than the physiological magnitude of the laminar shear stress, which can induce the occurrence of vascular calcification. Endothelial cells sense the fluid dynamics of blood and transmit electrical and chemical signals to the full-thickness of blood vessels. Through crosstalk with endothelial cells, smooth muscle cells trigger osteogenic transformation, involved in mediating vascular intima and media calcification. In addition, based on the detection of fluid dynamics parameters, emerging imaging technologies such as 4D Flow MRI and computational fluid dynamics have greatly improved the early diagnosis ability of cardiovascular diseases, showing extremely high clinical application prospects.
Collapse
Affiliation(s)
- Shuwan Xu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Feng Wang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Peibiao Mai
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| | - Yanren Peng
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Xiaorong Shu
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Ruqiong Nie
- Department of Cardiology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou 510120, China; (Y.P.); (X.S.)
| | - Huanji Zhang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518033, China; (S.X.); (F.W.); (P.M.)
| |
Collapse
|
3
|
The mechanism and therapy of aortic aneurysms. Signal Transduct Target Ther 2023; 8:55. [PMID: 36737432 PMCID: PMC9898314 DOI: 10.1038/s41392-023-01325-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/15/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Aortic aneurysm is a chronic aortic disease affected by many factors. Although it is generally asymptomatic, it poses a significant threat to human life due to a high risk of rupture. Because of its strong concealment, it is difficult to diagnose the disease in the early stage. At present, there are no effective drugs for the treatment of aneurysms. Surgical intervention and endovascular treatment are the only therapies. Although current studies have discovered that inflammatory responses as well as the production and activation of various proteases promote aortic aneurysm, the specific mechanisms remain unclear. Researchers are further exploring the pathogenesis of aneurysms to find new targets for diagnosis and treatment. To better understand aortic aneurysm, this review elaborates on the discovery history of aortic aneurysm, main classification and clinical manifestations, related molecular mechanisms, clinical cohort studies and animal models, with the ultimate goal of providing insights into the treatment of this devastating disease. The underlying problem with aneurysm disease is weakening of the aortic wall, leading to progressive dilation. If not treated in time, the aortic aneurysm eventually ruptures. An aortic aneurysm is a local enlargement of an artery caused by a weakening of the aortic wall. The disease is usually asymptomatic but leads to high mortality due to the risk of artery rupture.
Collapse
|
4
|
Jiang M, Ding H, Huang Y, Wang L. Shear Stress and Metabolic Disorders-Two Sides of the Same Plaque. Antioxid Redox Signal 2022; 37:820-841. [PMID: 34148374 DOI: 10.1089/ars.2021.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Shear stress and metabolic disorder are the two sides of the same atherosclerotic coin. Atherosclerotic lesions are prone to develop at branches and curvatures of arteries, which are exposed to oscillatory and low shear stress exerted by blood flow. Meanwhile, metabolic disorders are pivotal contributors to the formation and advancement of atherosclerotic plaques. Recent Advances: Accumulated evidence has provided insight into the impact and mechanisms of biomechanical forces and metabolic disorder on atherogenesis, in association with mechanotransduction, epigenetic regulation, and so on. Moreover, recent studies have shed light on the cross talk between the two drivers of atherosclerosis. Critical Issues: There are extensive cross talk and interactions between shear stress and metabolic disorder during the pathogenesis of atherosclerosis. The communications may amplify the proatherogenic effects through increasing oxidative stress and inflammation. Nonetheless, the precise mechanisms underlying such interactions remain to be fully elucidated as the cross talk network is considerably complex. Future Directions: A better understanding of the cross talk network may confer benefits for a more comprehensive clinical management of atherosclerosis. Critical mediators of the cross talk may serve as promising therapeutic targets for atherosclerotic vascular diseases, as they can inhibit effects from both sides of the plaque. Hence, further in-depth investigations with advanced omics approaches are required to develop novel and effective therapeutic strategies against atherosclerosis. Antioxid. Redox Signal. 37, 820-841.
Collapse
Affiliation(s)
- Minchun Jiang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Huanyu Ding
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yu Huang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Li Wang
- Heart and Vascular Institute, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Nandan S, Schiavi-Tritz J, Hellmuth R, Dunlop C, Vaughan TJ, Dolan EB. Design and Verification of a Novel Perfusion Bioreactor to Evaluate the Performance of a Self-Expanding Stent for Peripheral Artery Applications. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:886458. [PMID: 35800467 PMCID: PMC9253816 DOI: 10.3389/fmedt.2022.886458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Endovascular stenting presents a promising approach to treat peripheral artery stenosis. However, a significant proportion of patients require secondary interventions due to complications such as in-stent restenosis and late stent thrombosis. Clinical failure of stents is not only attributed to patient factors but also on endothelial cell (EC) injury response, stent deployment techniques, and stent design. Three-dimensional in vitro bioreactor systems provide a valuable testbed for endovascular device assessment in a controlled environment replicating hemodynamic flow conditions found in vivo. To date, very few studies have verified the design of bioreactors based on applied flow conditions and their impact on wall shear stress, which plays a key role in the development of vascular pathologies. In this study, we develop a computationally informed bioreactor capable of capturing responses of human umbilical vein endothelial cells seeded on silicone tubes subjected to hemodynamic flow conditions and deployment of a self-expanding nitinol stents. Verification of bioreactor design through computational fluid dynamics analysis confirmed the application of pulsatile flow with minimum oscillations. EC responses based on morphology, nitric oxide (NO) release, metabolic activity, and cell count on day 1 and day 4 verified the presence of hemodynamic flow conditions. For the first time, it is also demonstrated that the designed bioreactor is capable of capturing EC responses to stent deployment beyond a 24-hour period with this testbed. A temporal investigation of EC responses to stent implantation from day 1 to day 4 showed significantly lower metabolic activity, EC proliferation, no significant changes to NO levels and EC's aligning locally to edges of stent struts, and random orientation in between the struts. These EC responses were indicative of stent-induced disturbances to local hemodynamics and sustained EC injury response contributing to neointimal growth and development of in-stent restenosis. This study presents a novel computationally informed 3D in vitro testbed to evaluate stent performance in presence of hemodynamic flow conditions found in native peripheral arteries and could help to bridge the gap between the current capabilities of 2D in vitro cell culture models and expensive pre-clinical in vivo models.
Collapse
Affiliation(s)
- Swati Nandan
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
- Vascular Flow Technology, Dundee, United Kingdom
| | - Jessica Schiavi-Tritz
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | | | - Craig Dunlop
- Vascular Flow Technology, Dundee, United Kingdom
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
- *Correspondence: Ted J. Vaughan
| | - Eimear B. Dolan
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
- Eimear B. Dolan
| |
Collapse
|
6
|
Li PH, Wang LQ, He JY, Zhu XL, Huang W, Wang SW, Qin QW, Sun HY. MicroRNA-124 Promotes Singapore Grouper Iridovirus Replication and Negatively Regulates Innate Immune Response. Front Immunol 2021; 12:767813. [PMID: 34858424 PMCID: PMC8631330 DOI: 10.3389/fimmu.2021.767813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023] Open
Abstract
Viral infections seriously affect the health of organisms including humans. Now, more and more researchers believe that microRNAs (miRNAs), one of the members of the non-coding RNA family, play significant roles in cell biological function, disease occurrence, and immunotherapy. However, the roles of miRNAs in virus infection (entry and replication) and cellular immune response remain poorly understood, especially in low vertebrate fish. In this study, based on the established virus-cell infection model, Singapore grouper iridovirus (SGIV)-infected cells were used to explore the roles of miR-124 of Epinephelus coioides, an economically mariculture fish in southern China and Southeast Asia, in viral infection and host immune responses. The expression level of E. coioides miR-124 was significantly upregulated after SGIV infection; miR-124 cannot significantly affect the entry of SGIV, but the upregulated miR-124 could significantly promote the SGIV-induced cytopathic effects (CPEs), the viral titer, and the expressions of viral genes. The target genes of miR-124 were JNK3/p38α mitogen-activated protein kinase (MAPK). Overexpression of miR-124 could dramatically inhibit the activation of NF-κB/activating protein-1 (AP-1), the transcription of proinflammatory factors, caspase-9/3, and the cell apoptosis. And opposite results happen when the expression of miR-124 was inhibited. The results suggest that E. coioides miR-124 could promote viral replication and negatively regulate host immune response by targeting JNK3/p38α MAPK, which furthers our understanding of virus and host immune interactions.
Collapse
Affiliation(s)
- Pin-Hong Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Li-Qun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jia-Yang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiang-Long Zhu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wei Huang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Shao-Wen Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Qi-Wei Qin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong-Yan Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Dual specific phosphatases (DUSPs) in cardiac hypertrophy and failure. Cell Signal 2021; 84:110033. [PMID: 33933582 DOI: 10.1016/j.cellsig.2021.110033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.
Collapse
|
8
|
Garg R, Kumariya S, Katekar R, Verma S, Goand UK, Gayen JR. JNK signaling pathway in metabolic disorders: An emerging therapeutic target. Eur J Pharmacol 2021; 901:174079. [PMID: 33812885 DOI: 10.1016/j.ejphar.2021.174079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
Metabolic Syndrome is a multifactorial disease associated with increased risk of cardiovascular disorders, type 2 diabetes mellitus, fatty liver disease, etc. Various stress stimuli such as reactive oxygen species, endoplasmic reticulum stress, mitochondrial dysfunction, increased cytokines, or free fatty acids are known to aggravate progressive development of hyperglycemia and hyperlipidemia. Although the exact mechanism contributing to altered metabolism is unclear. Evidence suggests stress kinase role to be a crucial one in metabolic syndrome. Stress kinase, c-jun N-terminal kinase activation (JNK) is involved in various metabolic manifestations including obesity, insulin resistance, fatty liver disease as well as cardiometabolic disorders. It emerged as a foremost mediator in regulating metabolism in the liver, skeletal muscle, adipose tissue as well as pancreatic β cells. It has three isoforms each having a unique and tissue-specific role in altered metabolism. Current findings based on genetic manipulation or chemical inhibition studies identified JNK isoforms to play a central role in the regulation of whole-body metabolism, suggesting it to be a novel therapeutic target. Hence, it is imperative to elucidate its role in metabolic syndrome onset and progression. The purpose of this review is to elucidate in vitro and in vivo implications of JNK signaling along with the therapeutic strategy to inhibit specific isoform. Since metabolic syndrome is an array of diseases and complex pathway, carefully examining each tissue will be important for specific treatment strategies.
Collapse
Affiliation(s)
- Richa Garg
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjana Kumariya
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Saurabh Verma
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Pharmacology Division, CSIR-Central Drug Research Institute, Jankipuram Extension, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Wang H, Sugimoto K, Lu H, Yang WY, Liu JY, Yang HY, Song YB, Yan D, Zou TY, Shen S. HDAC1-mediated deacetylation of HIF1α prevents atherosclerosis progression by promoting miR-224-3p-mediated inhibition of FOSL2. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:577-591. [PMID: 33510945 PMCID: PMC7815465 DOI: 10.1016/j.omtn.2020.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
We intended to characterize functional relevance of microRNA (miR)-224-3p in endothelial cell (EC) apoptosis and reactive oxygen species (ROS) accumulation in atherosclerosis, considering also the integral involvement of histone deacetylase 1 (HDAC1)-mediated hypoxia-inducible factor-1α (HIF1α) deacetylation. The binding affinity between miR-224-3p and Fos-like antigen 2 (FOSL2) was predicted and validated. Furthermore, we manipulated miR-224-3p, FOSL2, HDAC1, and HIF1α expression in oxidized low-density lipoprotein (ox-LDL)-induced ECs, aiming to clarify their effects on cell activities, inflammation, and ROS level. Additionally, we examined the impact of miR-224-3p on aortic atherosclerotic plaque and lesions in a high-fat-diet-induced atherosclerosis model in ApoE−/− mice. Clinical atherosclerotic samples and ox-LDL-induced human aortic ECs (HAECs) exhibited low HDAC1/miR-224-3p expression and high HIF1α/FOSL2 expression. miR-224-3p repressed EC cell apoptosis, inflammatory responses, and intracellular ROS levels through targeting FOSL2. HIF1α reduced miR-224-3p expression to accelerate EC apoptosis and ROS accumulation. Moreover, HDAC1 inhibited HIF1α expression by deacetylation, which in turn enhanced miR-224-3p expression to attenuate EC apoptosis and ROS accumulation. miR-224-3p overexpression reduced atherosclerotic lesions in vivo. In summary, HDAC1 overexpression may enhance the anti-atherosclerotic and endothelial-protective effects of miR-224-3p-mediated inhibition of FOSL2 by deacetylating HIF1α, underscoring a novel therapeutic insight against experimental atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hao Lu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Wan-Yong Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Ji-Yue Liu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Hong-Yu Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Yue-Bo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Dong Yan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Tian-Yu Zou
- Department of Encephalopathy, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, P.R. China
| | - Si Shen
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
10
|
Alarmins and c-Jun N-Terminal Kinase (JNK) Signaling in Neuroinflammation. Cells 2020; 9:cells9112350. [PMID: 33114371 PMCID: PMC7693759 DOI: 10.3390/cells9112350] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is involved in the progression or secondary injury of multiple brain conditions, including stroke and neurodegenerative diseases. Alarmins, also known as damage-associated molecular patterns, are released in the presence of neuroinflammation and in the acute phase of ischemia. Defensins, cathelicidin, high-mobility group box protein 1, S100 proteins, heat shock proteins, nucleic acids, histones, nucleosomes, and monosodium urate microcrystals are thought to be alarmins. They are released from damaged or dying cells and activate the innate immune system by interacting with pattern recognition receptors. Being principal sterile inflammation triggering agents, alarmins are considered biomarkers and therapeutic targets. They are recognized by host cells and prime the innate immune system toward cell death and distress. In stroke, alarmins act as mediators initiating the inflammatory response after the release from the cellular components of the infarct core and penumbra. Increased c-Jun N-terminal kinase (JNK) phosphorylation may be involved in the mechanism of stress-induced release of alarmins. Putative crosstalk between the alarmin-associated pathways and JNK signaling seems to be inherently interwoven. This review outlines the role of alarmins/JNK-signaling in cerebral neurovascular inflammation and summarizes the complex response of cells to alarmins. Emerging anti-JNK and anti-alarmin drug treatment strategies are discussed.
Collapse
|
11
|
Santos-Ledo A, Washer S, Dhanaseelan T, Eley L, Alqatani A, Chrystal PW, Papoutsi T, Henderson DJ, Chaudhry B. Alternative splicing of jnk1a in zebrafish determines first heart field ventricular cardiomyocyte numbers through modulation of hand2 expression. PLoS Genet 2020; 16:e1008782. [PMID: 32421721 PMCID: PMC7259801 DOI: 10.1371/journal.pgen.1008782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/29/2020] [Accepted: 04/18/2020] [Indexed: 02/07/2023] Open
Abstract
The planar cell polarity pathway is required for heart development and whilst the functions of most pathway members are known, the roles of the jnk genes in cardiac morphogenesis remain unknown as mouse mutants exhibit functional redundancy, with early embryonic lethality of compound mutants. In this study zebrafish were used to overcome early embryonic lethality in mouse models and establish the requirement for Jnk in heart development. Whole mount in-situ hybridisation and RT-PCR demonstrated that evolutionarily conserved alternative spliced jnk1a and jnk1b transcripts were expressed in the early developing heart. Maternal zygotic null mutant zebrafish lines for jnk1a and jnk1b, generated using CRISPR-Cas9, revealed a requirement for jnk1a in formation of the proximal, first heart field (FHF)-derived portion of the cardiac ventricular chamber. Rescue of the jnk1a mutant cardiac phenotype was only possible by injection of the jnk1a EX7 Lg alternatively spliced transcript. Analysis of mutants indicated that there was a reduction in the size of the hand2 expression field in jnk1a mutants which led to a specific reduction in FHF ventricular cardiomyocytes within the anterior lateral plate mesoderm. Moreover, the jnk1a mutant ventricular defect could be rescued by injection of hand2 mRNA. This study reveals a novel and critical requirement for Jnk1 in heart development and highlights the importance of alternative splicing in vertebrate cardiac morphogenesis. Genetic pathways functioning through jnk1 may be important in human heart malformations with left ventricular hypoplasia.
Collapse
Affiliation(s)
- Adrian Santos-Ledo
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Sam Washer
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tamil Dhanaseelan
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Lorraine Eley
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Ahlam Alqatani
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Paul W. Chrystal
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Tania Papoutsi
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Deborah J. Henderson
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| | - Bill Chaudhry
- Biosciences Institute, Faculty of Medicine, International Centre for Life, Newcastle University, United Kingdom
| |
Collapse
|
12
|
Souilhol C, Serbanovic-Canic J, Fragiadaki M, Chico TJ, Ridger V, Roddie H, Evans PC. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes. Nat Rev Cardiol 2020; 17:52-63. [PMID: 31366922 DOI: 10.1038/s41569-019-0239-5] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
Abstract
Flowing blood generates a frictional force called shear stress that has major effects on vascular function. Branches and bends of arteries are exposed to complex blood flow patterns that exert low or low oscillatory shear stress, a mechanical environment that promotes vascular dysfunction and atherosclerosis. Conversely, physiologically high shear stress is protective. Endothelial cells are critical sensors of shear stress but the mechanisms by which they decode complex shear stress environments to regulate physiological and pathophysiological responses remain incompletely understood. Several laboratories have advanced this field by integrating specialized shear-stress models with systems biology approaches, including transcriptome, methylome and proteome profiling and functional screening platforms, for unbiased identification of novel mechanosensitive signalling pathways in arteries. In this Review, we describe these studies, which reveal that shear stress regulates diverse processes and demonstrate that multiple pathways classically known to be involved in embryonic development, such as BMP-TGFβ, WNT, Notch, HIF1α, TWIST1 and HOX family genes, are regulated by shear stress in arteries in adults. We propose that mechanical activation of these pathways evolved to orchestrate vascular development but also drives atherosclerosis in low shear stress regions of adult arteries.
Collapse
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Jovana Serbanovic-Canic
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Timothy J Chico
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK
| | - Victoria Ridger
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Hannah Roddie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Paul C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.
- Bateson Centre for Lifecourse Biology, University of Sheffield, Sheffield, UK.
- INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, UK.
| |
Collapse
|
13
|
Peng Z, Shu B, Zhang Y, Wang M. Endothelial Response to Pathophysiological Stress. Arterioscler Thromb Vasc Biol 2019; 39:e233-e243. [PMID: 31644356 DOI: 10.1161/atvbaha.119.312580] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Located in the innermost layer of the vasculature and directly interacting with blood flow, endothelium integrates various biochemical and biomechanical signals to maintain barrier function with selective permeability, vascular tone, blood fluidity, and vascular formation. Endothelial cells respond to laminar and disturbed flow by structural and functional adaption, which involves reprogramming gene expression, cell proliferation and migration, senescence, autophagy and cell death, as well as synthesizing signal molecules (nitric oxide and prostanoids, etc) that act in manners of autocrine, paracrine, or juxtacrine. Inflammation occurs after infection or tissue injury. Dysregulated inflammatory response participates in pathogenesis of many diseases. Endothelial cells exposed to inflammatory stimuli from the circulation or the microenvironment exhibit impaired vascular tone, increased permeability, elevated procoagulant activity, and dysregulated vascular formation, collectively contributing to the development of vascular diseases. Understanding the endothelial response to pathophysiological stress of hemodynamics and inflammation provides mechanistic insights into cardiovascular diseases, as well as therapeutic opportunities.
Collapse
Affiliation(s)
- Zekun Peng
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyan Shu
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yurong Zhang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- From the State Key Laboratory of Cardiovascular Disease (Z.P., B.S., Y.Z., M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Clinical Pharmacology Center (M.W.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
JNK and cardiometabolic dysfunction. Biosci Rep 2019; 39:BSR20190267. [PMID: 31270248 PMCID: PMC6639461 DOI: 10.1042/bsr20190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiometabolic syndrome (CMS) describes the cluster of metabolic and cardiovascular diseases that are generally characterized by impaired glucose tolerance, intra-abdominal adiposity, dyslipidemia, and hypertension. CMS currently affects more than 25% of the world’s population and the rates of diseases are rapidly rising. These CMS conditions represent critical risk factors for cardiovascular diseases including atherosclerosis, heart failure, myocardial infarction, and peripheral artery disease (PAD). Therefore, it is imperative to elucidate the underlying signaling involved in disease onset and progression. The c-Jun N-terminal Kinases (JNKs) are a family of stress signaling kinases that have been recently indicated in CMS. The purpose of this review is to examine the in vivo implications of JNK as a potential therapeutic target for CMS. As the constellation of diseases associated with CMS are complex and involve multiple tissues and environmental triggers, carefully examining what is known about the JNK pathway will be important for specificity in treatment strategies.
Collapse
|
15
|
Hoppstädter J, Ammit AJ. Role of Dual-Specificity Phosphatase 1 in Glucocorticoid-Driven Anti-inflammatory Responses. Front Immunol 2019; 10:1446. [PMID: 31316508 PMCID: PMC6611420 DOI: 10.3389/fimmu.2019.01446] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) potently inhibit pro-inflammatory responses and are widely used for the treatment of inflammatory diseases, such as allergies, autoimmune disorders, and asthma. Dual-specificity phosphatase 1 (DUSP1), also known as mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1), exerts its effects by dephosphorylation of MAPKs, i.e., extracellular-signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Endogenous DUSP1 expression is tightly regulated at multiple levels, involving both transcriptional and post-transcriptional mechanisms. DUSP1 has emerged as a central mediator in the resolution of inflammation, and upregulation of DUSP1 by GCs has been suggested to be a key mechanism of GC actions. In this review, we discuss the impact of DUSP1 on the efficacy of GC-mediated suppression of inflammation and address the underlying mechanisms.
Collapse
Affiliation(s)
- Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, Saarbrücken, Germany
| | - Alaina J Ammit
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Poston RN. Atherosclerosis: integration of its pathogenesis as a self-perpetuating propagating inflammation: a review. Cardiovasc Endocrinol Metab 2019; 8:51-61. [PMID: 31588428 PMCID: PMC6738649 DOI: 10.1097/xce.0000000000000172] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
This review proposes that the development of the atherosclerotic plaque is critically dependent on its inflammatory components forming a self-perpetuating and propagating positive feedback loop. The components involved are: (1) LDL oxidation, (2) activation of the endothelium, (3) recruitment of inflammatory monocytes, (4) macrophage accumulation, which induces LDL oxidation, and (5) macrophage generation of inflammatory mediators, which also activate the endothelium. Through these stages, the positive feedback loop is formed, which generates and promotes expansion of the atherosclerotic process. To illustrate this dynamic of lesion development, the author previously produced a computer simulation, which allowed realistic modelling. This hypothesis on atherogenesis can explain the existence and characteristic focal morphology of the atherosclerotic plaque. Each of the components contributing to the feedback loop is discussed. Many of these components also contain subsidiary positive feedback loops, which could exacerbate the overall process.
Collapse
Affiliation(s)
- Robin N. Poston
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Gori T. Endothelial Function: A Short Guide for the Interventional Cardiologist. Int J Mol Sci 2018; 19:ijms19123838. [PMID: 30513819 PMCID: PMC6320818 DOI: 10.3390/ijms19123838] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
An impaired function of the coronary endothelium is an important determinant of all stages of atherosclerosis, from initiation, to mediation of functional phenomena—such as spasm and plaque erosion, to atherothrombotic complications. Endothelial function is modified by therapies, including stent implantation. Finally, endothelial function changes over time, in response to physical stimuli and pharmocotherapies, and its assessment might provide information on how individual patients respond to specific therapies. In this review, we describe the role of the endothelium in the continuum of coronary atherosclerosis, from the perspective of the interventional cardiologist. In the first part, we review the current knowledge of the role of endothelial (dys)function on atherosclerotic plaque progression/instabilization and on the mechanisms of ischemia, in the absence of coronary artery stenosis. In the second part of this review, we describe the impact of coronary artery stenting on endothelial function, platelet aggregation, and inflammation.
Collapse
Affiliation(s)
- Tommaso Gori
- Kardiologie I, Zentrum für Kardiologie der Universitätsmedizin Mainz and DZHK Standort Rhein-Main, Langenbeckstr 1, 55131 Mainz, Germany.
| |
Collapse
|
18
|
Ng PY, McIntosh KA, Hargrave G, Ho KH, Paul A, Plevin R. Inhibition of cytokine-mediated JNK signalling by purinergic P2Y 11 receptors, a novel protective mechanism in endothelial cells. Cell Signal 2018; 51:59-71. [PMID: 30076967 DOI: 10.1016/j.cellsig.2018.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Previous research from our laboratory has demonstrated a novel phenomenon whereby GPCRs play a role in inhibiting cytokine-mediated c-Jun N-terminal kinase (JNK) signalling. So far this novel phenomenon seems to have been vastly overlooked, with little research in the area. Therefore, in this study we explored this further; by assessing the potential of P2YRs to mediate inhibition of cytokine-mediated JNK signalling and related functional outcomes in human endothelial cells. We utilised primary endothelial cells, and employed the use of endogenous activators of P2YRs and well characterised pharmacological inhibitors, to assess signalling parameters mediated by P2YRs, Interleukin-1β (IL-1β), TNFα and JNK. Activation of P2YRs with adenosine tri-phosphate (ATP) resulted in a time- and concentration-dependent inhibition of IL-1β-mediated phosphorylation of JNK and associated kinase activity. The effect was specific for cytokine-mediated JNK signalling, as ATP was without effect on JNK induced by other non-specific activators (e.g. sorbitol, anisomycin), nor effective against other MAPK pathways such as p38 and the canonical NFκB cascade. Pharmacological studies demonstrated a role for the P2Y11 receptor in mediating this effect, but not the P2Y1 nor the adenosine receptors (A1, A2A, A2B & A3). The novel Gαq/11 inhibitor YM254890 and a protein kinase A (PKA) inhibitor H89 both partially reversed ATP-mediated inhibition of IL-1β-stimulated JNK indicating involvement of both Gαq/11 and Gαs mediated pathways. ATP also partially reversed IL-1β-mediated induction of cyclo‑oxygenase-2 (COX-2) and E-selectin. Collectively, these studies indicate the potential for activation of purinergic receptors to protect the endothelium from inflammatory driven JNK activation and may be a new target for inflammatory disease therapy.
Collapse
Affiliation(s)
- Pei Y Ng
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Kathryn A McIntosh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK.
| | - Gillian Hargrave
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Ka H Ho
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Andrew Paul
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Robin Plevin
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| |
Collapse
|
19
|
Shvedova M, Anfinogenova Y, Atochina-Vasserman EN, Schepetkin IA, Atochin DN. c-Jun N-Terminal Kinases (JNKs) in Myocardial and Cerebral Ischemia/Reperfusion Injury. Front Pharmacol 2018; 9:715. [PMID: 30026697 PMCID: PMC6041399 DOI: 10.3389/fphar.2018.00715] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
In this article, we review the literature regarding the role of c-Jun N-terminal kinases (JNKs) in cerebral and myocardial ischemia/reperfusion injury. Numerous studies demonstrate that JNK-mediated signaling pathways play an essential role in cerebral and myocardial ischemia/reperfusion injury. JNK-associated mechanisms are involved in preconditioning and post-conditioning of the heart and the brain. The literature and our own studies suggest that JNK inhibitors may exert cardioprotective and neuroprotective properties. The effects of modulating the JNK-depending pathways in the brain and the heart are reviewed. Cardioprotective and neuroprotective mechanisms of JNK inhibitors are discussed in detail including synthetic small molecule inhibitors (AS601245, SP600125, IQ-1S, and SR-3306), ion channel inhibitor GsMTx4, JNK-interacting proteins, inhibitors of mixed-lineage kinase (MLK) and MLK-interacting proteins, inhibitors of glutamate receptors, nitric oxide (NO) donors, and anesthetics. The role of JNKs in ischemia/reperfusion injury of the heart in diabetes mellitus is discussed in the context of comorbidities. According to reviewed literature, JNKs represent promising therapeutic targets for protection of the brain and the heart against ischemic stroke and myocardial infarction, respectively. However, different members of the JNK family exert diverse physiological properties which may not allow for systemic administration of non-specific JNK inhibitors for therapeutic purposes. Currently available candidate JNK inhibitors with high therapeutic potential are identified. The further search for selective JNK3 inhibitors remains an important task.
Collapse
Affiliation(s)
- Maria Shvedova
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
| | - Yana Anfinogenova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| | - Elena N. Atochina-Vasserman
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- RASA Center, Kazan Federal University, Kazan, Russia
| | - Igor A. Schepetkin
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Dmitriy N. Atochin
- Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, United States
- RASA Center in Tomsk, Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
20
|
Crowley T, Buckley CD, Clark AR. Stroma: the forgotten cells of innate immune memory. Clin Exp Immunol 2018; 193:24-36. [PMID: 29729109 PMCID: PMC6038004 DOI: 10.1111/cei.13149] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 12/20/2022] Open
Abstract
All organisms are exposed constantly to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. While the innate immune system is the front line of response to each stimulant, it has been considered traditionally to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of 'innate immune memory' has been known for nearly a century, and is accepted among myeloid biologists. In recent years other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting that innate immune memory is a trait common to several cell types. During the last 30 years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if under-appreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory.
Collapse
Affiliation(s)
- T. Crowley
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirmingham, UK
| | - C. D. Buckley
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirmingham, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UKUniversity of OxfordOxfordUK
| | - A. R. Clark
- Institute of Inflammation and Ageing, College of Medical and Dental SciencesUniversity of BirminghamBirmingham, UK
| |
Collapse
|
21
|
Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial–mesenchymal transition in atherosclerosis. Cardiovasc Res 2018; 114:565-577. [DOI: 10.1093/cvr/cvx253] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/02/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Martin C Harmsen
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease (IICD), Faculty of Medicine, Dentistry & Health, Royal Hallamshire Hospital, University of Sheffield, Sheffield, UK
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1 (EA11), 9713GZ Groningen, The Netherlands
| |
Collapse
|
22
|
Feng S, Bowden N, Fragiadaki M, Souilhol C, Hsiao S, Mahmoud M, Allen S, Pirri D, Ayllon BT, Akhtar S, Thompson AAR, Jo H, Weber C, Ridger V, Schober A, Evans PC. Mechanical Activation of Hypoxia-Inducible Factor 1α Drives Endothelial Dysfunction at Atheroprone Sites. Arterioscler Thromb Vasc Biol 2017; 37:2087-2101. [PMID: 28882872 PMCID: PMC5659306 DOI: 10.1161/atvbaha.117.309249] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/14/2017] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Atherosclerosis develops near branches and bends of arteries that are exposed to low shear stress (mechanical drag). These sites are characterized by excessive endothelial cell (EC) proliferation and inflammation that promote lesion initiation. The transcription factor HIF1α (hypoxia-inducible factor 1α) is canonically activated by hypoxia and has a role in plaque neovascularization. We studied the influence of shear stress on HIF1α activation and the contribution of this noncanonical pathway to lesion initiation. Approach and Results— Quantitative polymerase chain reaction and en face staining revealed that HIF1α was expressed preferentially at low shear stress regions of porcine and murine arteries. Low shear stress induced HIF1α in cultured EC in the presence of atmospheric oxygen. The mechanism involves the transcription factor nuclear factor-κB that induced HIF1α transcripts and induction of the deubiquitinating enzyme Cezanne that stabilized HIF1α protein. Gene silencing revealed that HIF1α enhanced proliferation and inflammatory activation in EC exposed to low shear stress via induction of glycolysis enzymes. We validated this observation by imposing low shear stress in murine carotid arteries (partial ligation) that upregulated the expression of HIF1α, glycolysis enzymes, and inflammatory genes and enhanced EC proliferation. EC-specific genetic deletion of HIF1α in hypercholesterolemic apolipoprotein E–defecient mice reduced inflammation and endothelial proliferation in partially ligated arteries, indicating that HIF1α drives inflammation and vascular dysfunction at low shear stress regions. Conclusions— Mechanical low shear stress activates HIF1α at atheroprone regions of arteries via nuclear factor-κB and Cezanne. HIF1α promotes atherosclerosis initiation at these sites by inducing excessive EC proliferation and inflammation via the induction of glycolysis enzymes.
Collapse
Affiliation(s)
- Shuang Feng
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Neil Bowden
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Maria Fragiadaki
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Celine Souilhol
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Sarah Hsiao
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Marwa Mahmoud
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Scott Allen
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Daniela Pirri
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Blanca Tardajos Ayllon
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Shamima Akhtar
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - A A Roger Thompson
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Hanjoong Jo
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Christian Weber
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Victoria Ridger
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Andreas Schober
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.)
| | - Paul C Evans
- From the Department of Infection, Immunity, and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre (S.F., N.B., M.F., C.S., H.S., M.M., D.P., B.T.A., A.A.R.T., V.R., P.C.E.) and Sheffield Institute for Translational Neuroscience (S.A.), University of Sheffield, United Kingdom; Institute for Cardiovascular Prevention, Ludwig-Maximilians University of Munich and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Germany (S.A., C.W., A.S.); and Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta (H.J.).
| |
Collapse
|
23
|
Franck G, Mawson T, Sausen G, Salinas M, Masson GS, Cole A, Beltrami-Moreira M, Chatzizisis Y, Quillard T, Tesmenitsky Y, Shvartz E, Sukhova GK, Swirski FK, Nahrendorf M, Aikawa E, Croce KJ, Libby P. Flow Perturbation Mediates Neutrophil Recruitment and Potentiates Endothelial Injury via TLR2 in Mice: Implications for Superficial Erosion. Circ Res 2017; 121:31-42. [PMID: 28428204 DOI: 10.1161/circresaha.117.310694] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/25/2023]
Abstract
RATIONALE Superficial erosion currently causes up to a third of acute coronary syndromes; yet, we lack understanding of its mechanisms. Thrombi because of superficial intimal erosion characteristically complicate matrix-rich atheromata in regions of flow perturbation. OBJECTIVE This study tested in vivo the involvement of disturbed flow and of neutrophils, hyaluronan, and Toll-like receptor 2 ligation in superficial intimal injury, a process implicated in superficial erosion. METHODS AND RESULTS In mouse carotid arteries with established intimal lesions tailored to resemble the substrate of human eroded plaques, acute flow perturbation promoted downstream endothelial cell activation, neutrophil accumulation, endothelial cell death and desquamation, and mural thrombosis. Neutrophil loss-of-function limited these findings. Toll-like receptor 2 agonism activated luminal endothelial cells, and deficiency of this innate immune receptor decreased intimal neutrophil adherence in regions of local flow disturbance, reducing endothelial cell injury and local thrombosis (P<0.05). CONCLUSIONS These results implicate flow disturbance, neutrophils, and Toll-like receptor 2 signaling as mechanisms that contribute to superficial erosion, a cause of acute coronary syndrome of likely growing importance in the statin era.
Collapse
Affiliation(s)
- Grégory Franck
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Thomas Mawson
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Grasiele Sausen
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Manuel Salinas
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Gustavo Santos Masson
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Andrew Cole
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Marina Beltrami-Moreira
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Yiannis Chatzizisis
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Thibault Quillard
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Yevgenia Tesmenitsky
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Eugenia Shvartz
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Galina K Sukhova
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Filip K Swirski
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Matthias Nahrendorf
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Elena Aikawa
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Kevin J Croce
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.)
| | - Peter Libby
- From the Department of Cardiovascular Medicine (G.F., T.M., G.S., M.S., A.C., M.B.-M., Y.C., T.Q., Y.T., E.S., G.K.S., E.A., K.J.C., P.L.), and Center for Interdisciplinary Cardiovascular Sciences (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston (G.S.M., F.K.S., M.N.); and Department of Engineering and Technology, College of Engineering and Computing, Nova Southeastern University, Fort Lauderdale, FL (M.S.).
| |
Collapse
|
24
|
Flow signaling and atherosclerosis. Cell Mol Life Sci 2016; 74:1835-1858. [PMID: 28039525 PMCID: PMC5391278 DOI: 10.1007/s00018-016-2442-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022]
Abstract
Atherosclerosis rarely develops in the region of arteries exposed to undisturbed flow (u-flow, unidirectional flow). Instead, atherogenesis occurs in the area exposed to disturbed flow (d-flow, multidirectional flow). Based on these general pathohistological observations, u-flow is considered to be athero-protective, while d-flow is atherogenic. The fact that u-flow and d-flow induce such clearly different biological responses in the wall of large arteries indicates that these two types of flow activate each distinct intracellular signaling cascade in vascular endothelial cells (ECs), which are directly exposed to blood flow. The ability of ECs to differentially respond to the two types of flow provides an opportunity to identify molecular events that lead to endothelial dysfunction and atherosclerosis. In this review, we will focus on various molecular events, which are differentially regulated by these two flow types. We will discuss how various kinases, ER stress, inflammasome, SUMOylation, and DNA methylation play roles in the differential flow response, endothelial dysfunction, and atherosclerosis. We will also discuss the interplay among the molecular events and how they coordinately regulate flow-dependent signaling and cellular responses. It is hoped that clear understanding of the way how the two flow types beget each unique phenotype in ECs will lead us to possible points of intervention against endothelial dysfunction and cardiovascular diseases.
Collapse
|
25
|
Solinas G, Becattini B. JNK at the crossroad of obesity, insulin resistance, and cell stress response. Mol Metab 2016; 6:174-184. [PMID: 28180059 PMCID: PMC5279903 DOI: 10.1016/j.molmet.2016.12.001] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The cJun-N-terminal-kinase (JNK) plays a central role in the cell stress response, with outcomes ranging from cell death to cell proliferation and survival, depending on the specific context. JNK is also one of the most investigated signal transducers in obesity and insulin resistance, and studies have identified new molecular mechanisms linking obesity and insulin resistance. Emerging evidence indicates that whereas JNK1 and JNK2 isoforms promote the development of obesity and insulin resistance, JNK3 activity protects from excessive adiposity. Furthermore, current evidence indicates that JNK activity within specific cell types may, in specific stages of disease progression, promote cell tolerance to the stress associated with obesity and type-2 diabetes. SCOPE OF REVIEW This review provides an overview of the current literature on the role of JNK in the progression from obesity to insulin resistance, NAFLD, type-2 diabetes, and diabetes complications. MAJOR CONCLUSION Whereas current evidence indicates that JNK1/2 inhibition may improve insulin sensitivity in obesity, the role of JNK in the progression from insulin resistance to diabetes, and its complications is largely unresolved. A better understanding of the role of JNK in the stress response to obesity and type-2 diabetes, and the development of isoform-specific inhibitors with specific tissue distribution will be necessary to exploit JNK as possible drug target for the treatment of type-2 diabetes.
Collapse
Affiliation(s)
- Giovanni Solinas
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden.
| | - Barbara Becattini
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|
26
|
Serbanovic-Canic J, de Luca A, Warboys C, Ferreira PF, Luong LA, Hsiao S, Gauci I, Mahmoud M, Feng S, Souilhol C, Bowden N, Ashton JP, Walczak H, Firmin D, Krams R, Mason JC, Haskard DO, Sherwin S, Ridger V, Chico TJA, Evans PC. Zebrafish Model for Functional Screening of Flow-Responsive Genes. Arterioscler Thromb Vasc Biol 2016; 37:130-143. [PMID: 27834691 PMCID: PMC5172514 DOI: 10.1161/atvbaha.116.308502] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. Approach and Results— First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2–like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. Conclusions— We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.
Collapse
Affiliation(s)
- Jovana Serbanovic-Canic
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Amalia de Luca
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Christina Warboys
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Pedro F Ferreira
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Le A Luong
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Sarah Hsiao
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Ismael Gauci
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Marwa Mahmoud
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Shuang Feng
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Celine Souilhol
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Neil Bowden
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - John-Paul Ashton
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Henning Walczak
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - David Firmin
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Rob Krams
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Justin C Mason
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Dorian O Haskard
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Spencer Sherwin
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Victoria Ridger
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Timothy J A Chico
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Paul C Evans
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom.
| |
Collapse
|
27
|
Breitenstein A, Stämpfli SF, Reiner MF, Shi Y, Keller S, Akhmedov A, Schaub Clerigué A, Spescha RD, Beer HJ, Lüscher TF, Tanner FC, Camici GG. The MAP kinase JNK2 mediates cigarette smoke-induced arterial thrombosis. Thromb Haemost 2016; 117:83-89. [PMID: 27761579 DOI: 10.1160/th16-05-0351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 09/29/2016] [Indexed: 01/26/2023]
Abstract
Despite public awareness of its deleterious effects, smoking remains a major cause of death. Indeed, it is a risk factor for atherothrombotic complications and in line with this, the introduction of smoking ban in public areas reduced smoking-associated cardiovascular complications. Nonetheless, smoking remains a major concern, and molecular mechanisms by which it causes cardiovascular disease are not known. Peripheral blood monocytes from healthy smokers displayed increased JNK2 and tissue factor (TF) gene expression compared to non-smokers (n=15, p<0.05). Similarly, human aortic endothelial cells exposed to cigarette smoke total particulate matter (CS-TPM) revealed increased TF expression mediated by JNK2 (n=4; p<0.05). Wild-type and JNK2-/- mice were exposed to cigarette smoke for two weeks after which arterial thrombosis was investigated. Wild-type mice exposed to smoke displayed reduced time to thrombotic arterial occlusion (n=8; p<0.05) and increased tissue factor activity (n=7; p<0.05) as compared to wild-type controls (n=6), while JNK2-/-mice exposed to smoke maintained an unaltered thrombotic potential (n=8; p=NS) and tissue factor activity (n=8) comparable to that of JNK2-/- and wild-type controls (n=6; p=NS). Smoking caused an increased production of reactive oxygen species (ROS) in wild-type but not in JNK2-/- mice (n=7; p<0.05 for wild-type mice and n=5-6; p=NS for JNK2-/- mice). In conclusion, the MAP kinase JNK2 mediates cigarette smoke-induced TF activation, arterial thrombosis and ROS production. These results underscore a major role of JNK2 in smoke-mediated thrombus formation and may offer an attractive target to prevent smoke-related thrombosis in those subjects which do not manage quitting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Giovanni G Camici
- Dr. Giovanni G. Camici, PhD, Center for Molecular Cardiology, Wagistrasse 12, 8952 Schlieren, Switzerland, Tel.: +41 44 635 64 68, Fax: +41 44 635 68 27, E-mail:
| |
Collapse
|
28
|
Bowden N, Bryan MT, Duckles H, Feng S, Hsiao S, Kim HR, Mahmoud M, Moers B, Serbanovic-Canic J, Xanthis I, Ridger VC, Evans PC. Experimental Approaches to Study Endothelial Responses to Shear Stress. Antioxid Redox Signal 2016; 25:389-400. [PMID: 26772071 DOI: 10.1089/ars.2015.6553] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Shear stress controls multiple physiological processes in endothelial cells (ECs). RECENT ADVANCES The response of ECs to shear has been studied using a range of in vitro and in vivo models. CRITICAL ISSUES This article describes some of the experimental techniques that can be used to study endothelial responses to shear stress. It includes an appraisal of large animal, rodent, and zebrafish models of vascular mechanoresponsiveness. It also describes several bioreactors to apply flow to cells and physical methods to separate mechanoresponses from mass transport mechanisms. FUTURE DIRECTIONS We conclude that combining in vitro and in vivo approaches can provide a detailed mechanistic view of vascular responses to force and that high-throughput systems are required for unbiased assessment of the function of shear-induced molecules. Antioxid. Redox Signal. 25, 389-400.
Collapse
Affiliation(s)
- Neil Bowden
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Matthew T Bryan
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Hayley Duckles
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Shuang Feng
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Sarah Hsiao
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Hyejeong Rosemary Kim
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| | - Marwa Mahmoud
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Britta Moers
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Jovana Serbanovic-Canic
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| | - Ioannis Xanthis
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Victoria C Ridger
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom
| | - Paul C Evans
- 1 Department of Infection, Immunity and Cardiovascular Disease and INSIGNEO Institute of in silico Medicine, Sheffield, United Kingdom .,2 The Bateson Centre, University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
29
|
Yurdagul A, Orr AW. Blood Brothers: Hemodynamics and Cell-Matrix Interactions in Endothelial Function. Antioxid Redox Signal 2016; 25:415-34. [PMID: 26715135 PMCID: PMC5011636 DOI: 10.1089/ars.2015.6525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/25/2015] [Accepted: 12/23/2015] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Alterations in endothelial function contribute to a variety of vascular diseases. In pathological conditions, the endothelium shows a reduced ability to regulate vasodilation (endothelial dysfunction) and a conversion toward a proinflammatory and leaky phenotype (endothelial activation). At the interface between the vessel wall and blood, the endothelium exists in a complex microenvironment and must translate changes in these environmental signals to alterations in vessel function. Mechanical stimulation and endothelial cell interactions with the vascular matrix, as well as a host of soluble factors, coordinately contribute to this dynamic regulation. RECENT ADVANCES Blood hemodynamics play an established role in the regulation of endothelial function. However, a growing body of work suggests that subendothelial matrix composition similarly and coordinately regulates endothelial cell phenotype such that blood flow affects matrix remodeling, which affects the endothelial response to flow. CRITICAL ISSUES Hemodynamics and soluble factors likely affect endothelial matrix remodeling through multiple mechanisms, including transforming growth factor β signaling and alterations in cell-matrix receptors, such as the integrins. Likewise, differential integrin signaling following matrix remodeling appears to regulate several key flow-induced responses, including nitric oxide production, regulation of oxidant stress, and activation of proinflammatory signaling and gene expression. Microvascular remodeling responses, such as angiogenesis and arteriogenesis, may also show coordinated regulation by flow and matrix. FUTURE DIRECTIONS Identifying the mechanisms regulating the dynamic interplay between hemodynamics and matrix remodeling and their contribution to the pathogenesis of cardiovascular disease remains an important research area with therapeutic implications across a variety of conditions. Antioxid. Redox Signal. 25, 415-434.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| | - A. Wayne Orr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center–Shreveport, Shreveport, Louisiana
| |
Collapse
|
30
|
Mason JC. Cytoprotective pathways in the vascular endothelium. Do they represent a viable therapeutic target? Vascul Pharmacol 2016; 86:41-52. [PMID: 27520362 DOI: 10.1016/j.vph.2016.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/08/2016] [Indexed: 12/28/2022]
Abstract
The vascular endothelium is a critical interface, which separates the organs from the blood and its contents. The endothelium has a wide variety of functions and maintenance of endothelial homeostasis is a multi-dimensional active process, disruption of which has potentially deleterious consequences if not reversed. Vascular injury predisposes to endothelial apoptosis, dysfunction and development of atherosclerosis. Endothelial dysfunction is an end-point, a central feature of which is increased ROS generation, a reduction in endothelial nitric oxide synthase and increased nitric oxide consumption. A dysfunctional endothelium is a common feature of diseases including rheumatoid arthritis, systemic lupus erythematosus, diabetes mellitus and chronic renal impairment. The endothelium is endowed with a variety of constitutive and inducible mechanisms that act to minimise injury and facilitate repair. Endothelial cytoprotection can be enhanced by exogenous factors such as vascular endothelial growth factor, prostacyclin and laminar shear stress. Target genes include endothelial nitric oxide synthase, heme oxygenase-1, A20 and anti-apoptotic members of the B cell lymphoma protein-2 family. In light of the importance of endothelial function, and the link between its disruption and the risk of atherothrombosis, interest has focused on therapeutic conditioning and reversal of endothelial dysfunction. A detailed understanding of cytoprotective signalling pathways, their regulation and target genes is now required to identify novel therapeutic targets. The ultimate aim is to add vasculoprotection to current therapeutic strategies for systemic inflammatory diseases, in an attempt to reduce vascular injury and prevent or retard atherogenesis.
Collapse
Affiliation(s)
- Justin C Mason
- Vascular Science, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, London, UK.
| |
Collapse
|
31
|
Mahmoud MM, Kim HR, Xing R, Hsiao S, Mammoto A, Chen J, Serbanovic-Canic J, Feng S, Bowden NP, Maguire R, Ariaans M, Francis SE, Weinberg PD, van der Heiden K, Jones EA, Chico TJA, Ridger V, Evans PC. TWIST1 Integrates Endothelial Responses to Flow in Vascular Dysfunction and Atherosclerosis. Circ Res 2016; 119:450-62. [PMID: 27245171 PMCID: PMC4959828 DOI: 10.1161/circresaha.116.308870] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/20/2016] [Accepted: 05/27/2016] [Indexed: 11/18/2022]
Abstract
RATIONALE Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.
Collapse
Affiliation(s)
- Marwa M Mahmoud
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Hyejeong Rosemary Kim
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Rouyu Xing
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Sarah Hsiao
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Akiko Mammoto
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Jing Chen
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Jovana Serbanovic-Canic
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Shuang Feng
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Neil P Bowden
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Richard Maguire
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Markus Ariaans
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Sheila E Francis
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Peter D Weinberg
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Kim van der Heiden
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Elizabeth A Jones
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Timothy J A Chico
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Victoria Ridger
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.)
| | - Paul C Evans
- From the Department of Infection, Immunity and Cardiovascular Disease, INSIGNEO Institute for In Silico Medicine, and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom (M.M.M., H.R.K., S.H., J.S.-C., S.F., N.P.B., R.M., M.A., S.E.F., T.J.A.C., V.R., P.C.E.); ERASMUS MC, Rotterdam, The Netherlands (R.X., K.v.d.H.); Vascular Biology Program, Department of Surgery (A.M.) and Department of Ophthalmology (J.C.), Boston Children's Hospital, Harvard Medical School, MA; Department of Bioengineering, Imperial College London, London, United Kingdom (P.D.W.); and Department of Cardiovascular Science, Katholieke Universiteit Leuven, Leuven, Belgium (E.A.J.).
| |
Collapse
|
32
|
Schober A, Weber C. Mechanisms of MicroRNAs in Atherosclerosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:583-616. [DOI: 10.1146/annurev-pathol-012615-044135] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Andreas Schober
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig Maximilians University Munich, Munich 80336, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich 80336, Germany;
| |
Collapse
|
33
|
Abstract
Atherosclerosis remains a major cause of morbidity and mortality worldwide, and a thorough understanding of the underlying pathophysiological mechanisms is crucial for the development of new therapeutic strategies. Although atherosclerosis is a systemic inflammatory disease, coronary atherosclerotic plaques are not uniformly distributed in the vascular tree. Experimental and clinical data highlight that biomechanical forces, including wall shear stress (WSS) and plaque structural stress (PSS), have an important role in the natural history of coronary atherosclerosis. Endothelial cell function is heavily influenced by changes in WSS, and longitudinal animal and human studies have shown that coronary regions with low WSS undergo increased plaque growth compared with high WSS regions. Local alterations in WSS might also promote transformation of stable to unstable plaque subtypes. Plaque rupture is determined by the balance between PSS and material strength, with plaque composition having a profound effect on PSS. Prospective clinical studies are required to ascertain whether integrating mechanical parameters with medical imaging can improve our ability to identify patients at highest risk of rapid disease progression or sudden cardiac events.
Collapse
|
34
|
Farwell SLN, Kanyi D, Hamel M, Slee JB, Miller EA, Cipolle MD, Lowe-Krentz LJ. Heparin Decreases in Tumor Necrosis Factor α (TNFα)-induced Endothelial Stress Responses Require Transmembrane Protein 184A and Induction of Dual Specificity Phosphatase 1. J Biol Chem 2016; 291:5342-54. [PMID: 26769965 DOI: 10.1074/jbc.m115.681288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 11/06/2022] Open
Abstract
Despite the large number of heparin and heparan sulfate binding proteins, the molecular mechanism(s) by which heparin alters vascular cell physiology is not well understood. Studies with vascular smooth muscle cells (VSMCs) indicate a role for induction of dual specificity phosphatase 1 (DUSP1) that decreases ERK activity and results in decreased cell proliferation, which depends on specific heparin binding. The hypothesis that unfractionated heparin functions to decrease inflammatory signal transduction in endothelial cells (ECs) through heparin-induced expression of DUSP1 was tested. In addition, the expectation that the heparin response includes a decrease in cytokine-induced cytoskeletal changes was examined. Heparin pretreatment of ECs resulted in decreased TNFα-induced JNK and p38 activity and downstream target phosphorylation, as identified through Western blotting and immunofluorescence microscopy. Through knockdown strategies, the importance of heparin-induced DUSP1 expression in these effects was confirmed. Quantitative fluorescence microscopy indicated that heparin treatment of ECs reduced TNFα-induced increases in stress fibers. Monoclonal antibodies that mimic heparin-induced changes in VSMCs were employed to support the hypothesis that heparin was functioning through interactions with a receptor. Knockdown of transmembrane protein 184A (TMEM184A) confirmed its involvement in heparin-induced signaling as seen in VSMCs. Therefore, TMEM184A functions as a heparin receptor and mediates anti-inflammatory responses of ECs involving decreased JNK and p38 activity.
Collapse
Affiliation(s)
- Sara Lynn N Farwell
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Daniela Kanyi
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, the Department of Chemistry, Lehigh University, Allentown, Pennsylvania 18103
| | - Marianne Hamel
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Joshua B Slee
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015, the Department of Natural Sciences, DeSales University, Center Valley, Pennsylvania 18034
| | - Elizabeth A Miller
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Mark D Cipolle
- the Department of Surgery, Lehigh Valley Hospital Center, Allentown, Pennsylvania 18103, and
| | - Linda J Lowe-Krentz
- From the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015,
| |
Collapse
|
35
|
Leo V, Stefanachi A, Nacci C, Leonetti F, de Candia M, Carotti A, Altomare CD, Montagnani M, Cellamare S. Galloyl benzamide-based compounds modulating tumour necrosis factor α-stimulated c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signalling pathways. ACTA ACUST UNITED AC 2015; 67:1380-92. [PMID: 26078032 DOI: 10.1111/jphp.12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/08/2015] [Indexed: 12/27/2022]
Abstract
OBJECTIVES The aim of this work is to investigate whether and how two newly synthesized 3,4,5-trimethoxygalloyl-containing compounds 1 and 3 interfere with the mitogen-activated protein kinase (MAPK) signalling pathways involved in several pathological events, ranging from inflammatory diseases to cancer. METHODS The effects on the phosphorylation of MAP kinases (c-Jun N-terminal kinases (JNKs), p38) and activation of nuclear factor-kappa B (NF-κB) pathways of 1 and its 1H-indazole-containing analogue 3, compared with those elicited by the known Adenosine Triphosphate (ATP)-competitive JNK inhibitor SP600125, were evaluated through Western blot analysis in murine fibroblasts NIH-3T3 and human endothelial cells EA.hy926 acutely treated with tumour necrosis factor-α (TNF-α). Their effects on cell viability were also assessed by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. KEY FINDINGS In cultured murine fibroblasts, 1 inhibited JNK signalling with a different mechanism from SP600125. It reduced c-Jun phosphorylation without altering phosphorylation levels of JNK protein. Compound 3, showing a profile similar to SP600125, inhibited JNK phosphorylation and partially inhibited p38 MAPK at 50 μm concentration. Compound 3 and SP600125 showed similar behaviour in both cell cultures. In contrast, compound 1 in EA.hy926 cells significantly interfered with JNK phosphorylation, did not decrease phosphorylation of c-Jun (Ser73), whereas significantly suppressed phosphorylation of p38 MAPK and reversed degradation of NF-κB signalling components. CONCLUSIONS 3,4,5-Trimethoxygalloyl-based compounds 1 and 3, which did not show significant cell toxicity, modulate the TNF-α-induced activation of MAPK signalling, mainly inhibiting phosphorylation of JNK, c-Jun and p38 MAPK, in murine fibroblasts and human endothelial cells with different MAPK selectivity profiles. These compounds deserve future investigation in specific cell-based disease models and in-vivo pharmacology.
Collapse
Affiliation(s)
- Valentina Leo
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Angela Stefanachi
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Carmela Nacci
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Modesto de Candia
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Angelo Carotti
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Cosimo D Altomare
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Monica Montagnani
- Dipartimento di Scienze Biomediche e Oncologia Umana, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| | - Saverio Cellamare
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
36
|
Song J, Park J, Jeong E, So AY, Pyee J, Park H. Apoptotic Effect of Pinosylvin at a High Concentration Regulated by c-Jun N-Terminal Kinase in Bovine Aortic Endothelial Cells. ACTA ACUST UNITED AC 2015. [DOI: 10.5352/jls.2015.25.4.416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Abstract
Atherosclerosis is characterised by the accumulation of lipid-laden macrophages in atherosclerotic lesions and occurs preferentially at arterial branching points, which are prone to inflammation during hyperlipidaemic stress. The increased susceptibility at branching sites of arteries is attributable to poor adaptation of arterial endothelial cells to disturbed blood flow. In the past 5 years, several studies have provided mechanistic insights into the regulatory roles of microRNAs (miRNAs) in inflammatory activation, proliferation, and regeneration of endothelial cells during this maladaptive process. The intercellular transfer of vesicle-bound miRNAs contributes to arterial homeostasis, and the combinatorial effect of multiple miRNAs controls the unresolved inflammation orchestrated by macrophages in atherosclerotic lesions. In this Review, we highlight the miRNA-dependent regulation of the endothelial phenotype and the proliferative reserve that occurs in response to altered haemodynamic conditions as a prerequisite for atherogenic inflammation. In particular, we discuss the regulation of transcriptional modules by miRNAs and the protective role of complementary strand pairs, which encompasses remote miRNA signalling. In addition, we review the roles of miRNA tandems and describe the relevance of RNA target selection and competition to the behaviour of lesional macrophages. Elucidating miRNA-mediated regulatory mechanisms can aid the development of novel diagnostic and therapeutic strategies for atherosclerosis.
Collapse
|
38
|
LI CHANGYI, YANG LINGCHAO, GUO KAI, WANG YUEPENG, LI YIGANG. Mitogen-activated protein kinase phosphatase-1: A critical phosphatase manipulating mitogen-activated protein kinase signaling in cardiovascular disease (Review). Int J Mol Med 2015; 35:1095-102. [DOI: 10.3892/ijmm.2015.2104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/29/2015] [Indexed: 11/06/2022] Open
|
39
|
Kwak BR, Bäck M, Bochaton-Piallat ML, Caligiuri G, Daemen MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC. Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 2014; 35:3013-20, 3020a-3020d. [PMID: 25230814 DOI: 10.1093/eurheartj/ehu353] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which develop at regions of arteries that are exposed to complex blood flow. In addition, plaque progression and eventually plaque rupture is influenced by a complex interaction between biological and mechanical factors-mechanical forces regulate the cellular and molecular composition of plaques and, conversely, the composition of plaques determines their ability to withstand mechanical load. A deeper understanding of these interactions is essential for designing new therapeutic strategies to prevent lesion development and promote plaque stabilization. Moreover, integrating clinical imaging techniques with finite element modelling techniques allows for detailed examination of local morphological and biomechanical characteristics of atherosclerotic lesions that may be of help in prediction of future events. In this ESC Position Paper on biomechanical factors in atherosclerosis, we summarize the current 'state of the art' on the interface between mechanical forces and atherosclerotic plaque biology and identify potential clinical applications and key questions for future research.
Collapse
Affiliation(s)
- Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, CMU, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland
| | | | | | | | | | | | - Imo E Hoefer
- University Medical Center Urecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | - Paul C Evans
- Department of Cardiovascular Science, Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| |
Collapse
|
40
|
Amini N, Boyle JJ, Moers B, Warboys CM, Malik TH, Zakkar M, Francis SE, Mason JC, Haskard DO, Evans PC. Requirement of JNK1 for endothelial cell injury in atherogenesis. Atherosclerosis 2014; 235:613-8. [PMID: 24956536 PMCID: PMC4104040 DOI: 10.1016/j.atherosclerosis.2014.05.950] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 04/11/2014] [Accepted: 05/22/2014] [Indexed: 12/24/2022]
Abstract
Objective The c-Jun N-terminal kinase (JNK) family regulates fundamental physiological processes including apoptosis and metabolism. Although JNK2 is known to promote foam cell formation during atherosclerosis, the potential role of JNK1 is uncertain. We examined the potential influence of JNK1 and its negative regulator, MAP kinase phosphatase-1 (MKP-1), on endothelial cell (EC) injury and early lesion formation using hypercholesterolemic LDLR−/− mice. Methods and results To assess the function of JNK1 in early atherogenesis, we measured EC apoptosis and lesion formation in LDLR−/− or LDLR−/−/JNK1−/− mice exposed to a high fat diet for 6 weeks. En face staining using antibodies that recognise active, cleaved caspase-3 (apoptosis) or using Sudan IV (lipid deposition) revealed that genetic deletion of JNK1 reduced EC apoptosis and lesion formation in hypercholesterolemic mice. By contrast, although EC apoptosis was enhanced in LDLR−/−/MKP-1−/− mice compared to LDLR−/− mice, lesion formation was unaltered. Conclusion We conclude that JNK1 is required for EC apoptosis and lipid deposition during early atherogenesis. Thus pharmacological inhibitors of JNK may reduce atherosclerosis by preventing EC injury as well as by influencing foam cell formation. We studied the role of JNK1 MAP kinase in atherosclerosis. JNK1 was required for endothelial cell apoptosis and lesion formation. An interaction between flow, JNK1 activity and endothelial injury was detected. Targeting of JNK1 may have clinical utility to prevent atherosclerosis.
Collapse
Affiliation(s)
- Narges Amini
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Joseph J Boyle
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Britta Moers
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK
| | - Christina M Warboys
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Talat H Malik
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Mustafa Zakkar
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Sheila E Francis
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK
| | - Justin C Mason
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Dorian O Haskard
- British Heart Foundation Cardiovascular Sciences Unit, National Heart and Lung Institute, Imperial College London, UK
| | - Paul C Evans
- Department of Cardiovascular Sciences, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, Sheffield, UK.
| |
Collapse
|
41
|
Warboys CM, de Luca A, Amini N, Luong L, Duckles H, Hsiao S, White A, Biswas S, Khamis R, Chong CK, Cheung WM, Sherwin SJ, Bennett MR, Gil J, Mason JC, Haskard DO, Evans PC. Disturbed flow promotes endothelial senescence via a p53-dependent pathway. Arterioscler Thromb Vasc Biol 2014; 34:985-95. [PMID: 24651677 DOI: 10.1161/atvbaha.114.303415] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Although atherosclerosis is associated with systemic risk factors such as age, high cholesterol, and obesity, plaque formation occurs predominately at branches and bends that are exposed to disturbed patterns of blood flow. The molecular mechanisms that link disturbed flow-generated mechanical forces with arterial injury are uncertain. To illuminate them, we investigated the effects of flow on endothelial cell (EC) senescence. APPROACH AND RESULTS LDLR(-/-) (low-density lipoprotein receptor(-/-)) mice were exposed to a high-fat diet for 2 to 12 weeks (or to a normal chow diet as a control) before the assessment of cellular senescence in aortic ECs. En face staining revealed that senescence-associated β-galactosidase activity and p53 expression were elevated in ECs at sites of disturbed flow in response to a high-fat diet. By contrast, ECs exposed to undisturbed flow did not express senescence-associated β-galactosidase or p53. Studies of aortae from healthy pigs (aged 6 months) also revealed enhanced senescence-associated β-galactosidase staining at sites of disturbed flow. These data suggest that senescent ECs accumulate at disturbed flow sites during atherogenesis. We used in vitro flow systems to examine whether a causal relationship exists between flow and EC senescence. Exposure of cultured ECs to flow (using either an orbital shaker or a syringe-pump flow bioreactor) revealed that disturbed flow promoted EC senescence compared with static conditions, whereas undisturbed flow reduced senescence. Gene silencing studies demonstrated that disturbed flow induced EC senescence via a p53-p21 signaling pathway. Disturbed flow-induced senescent ECs exhibited reduced migration compared with nonsenescent ECs in a scratch wound closure assay, and thus may be defective for arterial repair. However, pharmacological activation of sirtuin 1 (using resveratrol or SRT1720) protected ECs from disturbed flow-induced senescence. CONCLUSIONS Disturbed flow promotes endothelial senescence via a p53-p21-dependent pathway which can be inhibited by activation of sirtuin 1. These observations support the principle that pharmacological activation of sirtuin 1 may promote cardiovascular health by suppressing EC senescence at atheroprone sites.
Collapse
Affiliation(s)
- Christina M Warboys
- From the British Heart Foundation Cardiovascular Science Unit, National Heart and Lung Institute (C.M.W., A.d.L., NA., R.K., W.-M.C., J.C.M., D.O.H.), Department of Aeronautics (S.J.S.), and MRC Clinical Sciences Centre (J.G.), Imperial College London, London, United Kingdom; Departments of Cardiovascular Science (L.L., H.D., S.H., S.B., P.C.E.) and Materials Science and Engineering (A.W., C.K.C.) and Insigneo Institute of In Silico Medicine (P.C.E.), University of Sheffield, Sheffield, United Kingdom; and Division of Cardiovascular Medicine, University of Cambridge, Cambridge, United Kingdom (M.R.B.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Soluble thrombomodulin is a paracrine anti-apoptotic factor for vascular endothelial protection. Int J Cardiol 2014; 172:340-9. [DOI: 10.1016/j.ijcard.2014.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 12/11/2013] [Accepted: 01/08/2014] [Indexed: 11/24/2022]
|
43
|
Cole JE, Mitra AT, Monaco C. Treating atherosclerosis: the potential of Toll-like receptors as therapeutic targets. Expert Rev Cardiovasc Ther 2014; 8:1619-35. [DOI: 10.1586/erc.10.149] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
44
|
Haskard DO, Boyle JJ, Evans PC, Mason JC, Randi AM. Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirculation 2013; 20:203-16. [PMID: 23121167 DOI: 10.1111/micc.12020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the medium and large arteries driven in large part by the accumulation of oxidized low-density lipoproteins and other debris at sites rendered susceptible because of the geometry of the arterial tree. As lesions develop, they acquire a pathologic microcirculation that perpetuates lesion progression, both by providing a means for further monocyte and T-lymphocyte recruitment into the arterial wall and by the physical and chemical stresses caused by micro-hemorrhage. This review summarizes work performed in our department investigating the roles of signaling pathways, alone and in combination, that lead to specific programs of gene expression in the atherosclerotic environment. Focusing particularly on cytoprotective responses that might be enhanced therapeutically, the work has encompassed the anti-inflammatory effects of arterial laminar shear stress, mechanisms of induction of membrane inhibitors that prevent complement-mediated injury, homeostatic macrophage responses to hemorrhage, and the transcriptional mechanisms that control the stability, survival, and quiescence of endothelial monolayers. Lastly, while the field has been dominated by investigation into the mechanisms of DNA transcription, we consider the importance of parallel post-transcriptional regulatory mechanisms for fine-tuning functional gene expression repertoires.
Collapse
Affiliation(s)
- Dorian O Haskard
- Vascular Science Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London W12 ONN, UK.
| | | | | | | | | |
Collapse
|
45
|
Abstract
At least 468 individual genes have been manipulated by molecular methods to study their effects on the initiation, promotion, and progression of atherosclerosis. Most clinicians and many investigators, even in related disciplines, find many of these genes and the related pathways entirely foreign. Medical schools generally do not attempt to incorporate the relevant molecular biology into their curriculum. A number of key signaling pathways are highly relevant to atherogenesis and are presented to provide a context for the gene manipulations summarized herein. The pathways include the following: the insulin receptor (and other receptor tyrosine kinases); Ras and MAPK activation; TNF-α and related family members leading to activation of NF-κB; effects of reactive oxygen species (ROS) on signaling; endothelial adaptations to flow including G protein-coupled receptor (GPCR) and integrin-related signaling; activation of endothelial and other cells by modified lipoproteins; purinergic signaling; control of leukocyte adhesion to endothelium, migration, and further activation; foam cell formation; and macrophage and vascular smooth muscle cell signaling related to proliferation, efferocytosis, and apoptosis. This review is intended primarily as an introduction to these key signaling pathways. They have become the focus of modern atherosclerosis research and will undoubtedly provide a rich resource for future innovation toward intervention and prevention of the number one cause of death in the modern world.
Collapse
Affiliation(s)
- Paul N Hopkins
- Cardiovascular Genetics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.
| |
Collapse
|
46
|
Van der Heiden K, Gijsen FJH, Narracott A, Hsiao S, Halliday I, Gunn J, Wentzel JJ, Evans PC. The effects of stenting on shear stress: relevance to endothelial injury and repair. Cardiovasc Res 2013; 99:269-75. [PMID: 23592806 DOI: 10.1093/cvr/cvt090] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Stent deployment following balloon angioplasty is used routinely to treat coronary artery disease. These interventions cause damage and loss of endothelial cells (EC), and thus promote in-stent thrombosis and restenosis. Injured arteries are repaired (intrinsically) by locally derived EC and by circulating endothelial progenitor cells which migrate and proliferate to re-populate denuded regions. However, re-endothelialization is not always complete and often dysfunctional. Moreover, the molecular and biomechanical mechanisms that control EC repair and function in stented segments are poorly understood. Here, we propose that stents modify endothelial repair processes, in part, by altering fluid shear stress, a mechanical force that influences EC migration and proliferation. A more detailed understanding of the biomechanical processes that control endothelial healing would provide a platform for the development of novel therapeutic approaches to minimize damage and promote vascular repair in stented arteries.
Collapse
Affiliation(s)
- Kim Van der Heiden
- Biomedical Engineering, Department Cardiology, ErasmusMC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int J Cell Biol 2012; 2012:176287. [PMID: 22778741 PMCID: PMC3388591 DOI: 10.1155/2012/176287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.
Collapse
|
48
|
Diversity and specificity of the mitogen-activated protein kinase phosphatase-1 functions. Cell Mol Life Sci 2012; 70:223-37. [PMID: 22695679 DOI: 10.1007/s00018-012-1041-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/09/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
The balance of protein phosphorylation is achieved through the actions of a family of protein serine/threonine kinases called the mitogen-activated protein kinases (MAPKs). The propagation of MAPK signals is attenuated through the actions of the MAPK phosphatases (MKPs). The MKPs specifically inactivate the MAPKs by direct dephosphorylation. The archetypal MKP family member, MKP-1 has garnered much of the attention amongst its ten other MKP family members. Initially viewed to play a redundant role in the control of MAPK signaling, it is now clear that MKP-1 exerts profound regulatory functions on the immune, metabolic, musculoskeletal and nervous systems. This review focuses on the physiological functions of MKP-1 that have been revealed using mouse genetic approaches. The implications from studies using MKP-1-deficient mice to uncover the role of MKP-1 in disease will be discussed.
Collapse
|
49
|
Abstract
The MKPs (mitogen-activated protein kinase phosphatases) are a family of at least ten DUSPs (dual-specificity phosphatases) which function to terminate the activity of the MAPKs (mitogen-activated protein kinases). Several members have already been demonstrated to have distinct roles in immune function, cancer, fetal development and metabolic disorders. One DUSP of renewed interest is the inducible nuclear phosphatase MKP-2, which dephosphorylates both ERK (extracellular-signal-regulated kinase) and JNK (c-Jun N-terminal kinase) in vitro. Recently, the understanding of MKP-2 function has been advanced due to the development of mouse knockout models, which has resulted in the discovery of novel roles for MKP-2 in the regulation of sepsis, infection and cell-cycle progression that are distinct from those of other DUSPs. However, many functions for MKP-2 still await to be characterized.
Collapse
|
50
|
Aung HH, Lame MW, Gohil K, He G, Denison MS, Rutledge JC, Wilson DW. Comparative gene responses to collected ambient particles in vitro: endothelial responses. Physiol Genomics 2011; 43:917-29. [PMID: 21652769 DOI: 10.1152/physiolgenomics.00051.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidemiologic studies associate exposure to ambient particulate matter (APM) with increased cardiovascular mortality. Since both pulmonary inflammation and systemic circulation of ultrafine particles are hypothesized as initiating cardiovascular effects, we examined responses of potential target cells in vitro. Human aortic endothelial cells (HAEC) were exposed to 10 μg/ml fine and ultrafine APM collected in an urban setting in summer 2006 or winter 2007 in the San Joaquin Valley, California. RNA isolated after 3 h was analyzed with high-density oligonucleotide arrays. Summer APM treatment affected genes involved in xenobiotic and oxidoreductase activity, transcription factors, and inflammatory responses in HAEC, while winter APM had a robust xenobiotic but lesser inflammatory response. Real-time polymerase chain reaction analysis confirmed that particulate matter (PM)-treated HAEC increased mRNA levels of xenobiotic response enzymes CYP1A1, ALDH1A3, and TIPARP and cellular stress response transcription factor ATF3. Inflammatory response genes included E-selectin, PTGS2, CXCL-2 (MIP-2α), and CCL-2 (MCP-1). Multiplex protein assays showed secretion of IL-6 and MCP-1 by HAEC. Since induction of CYP1A1 is mediated through the ligand-activated aryl hydrocarbon receptor (AhR), we demonstrated APM induced AhR nuclear translocation by immunofluorescence and Western blotting and activation of the AhR response element using a luciferase reporter construct. Inhibitor studies suggest differential influences of polycyclic aromatic hydrocarbon signaling, ROS-mediated responses and endotoxin alter stress and proinflammatory endothelial cell responses. Our findings demonstrate gene responses correlated with current concepts that systemic inflammation drives cardiovascular effects of particulate air pollution. We also demonstrate a unique pattern of gene responses related to xenobiotic metabolism in PM-exposed HAEC.
Collapse
Affiliation(s)
- Hnin H Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|