1
|
Zhuang C, Cui F, Chen J, He D, Sun T, Wang P. Rbm39 ameliorates metabolic dysfunction-associated steatotic liver disease by regulating Apob and Fabp4. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167815. [PMID: 40147697 DOI: 10.1016/j.bbadis.2025.167815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Excessive hepatic lipid accumulation is the hallmark of metabolic dysfunction-associated steatotic liver disease (MASLD), yet its underlying mechanisms still not fully understood. In this study, we identified RNA binding motif protein 39 (Rbm39) as a key modulator of hepatic lipid homeostasis during MASLD progression. To establish in vivo MASLD model, mice were fed either a high-fat diet (HFD) or a Gubra-Amylin NASH (GAN) diet. We employed adeno-associated virus to manipulate Rbm39 expression levels to assess its role in MASLD. Transcriptome analysis was conducted to pinpoint the genes targeted by Rbm39. Western blot, RT-PCR, dual-luciferase reporter gene assays, and alternative splicing analysis were utilized to delve into the molecular mechanisms. Our results showed that Rbm39 expression was notably decreased in the livers of MASLD mice. Knockdown of hepatic Rbm39 aggravated HFD-induced hepatic steatosis and GAN diet-induced MASH, along with a notable decrease in serum lipid levels. Conversely, overexpression of Rbm39 attenuated MASLD development and progression. RNA sequencing data analysis indicated that Rbm39 regulated the expression of apolipoprotein B (Apob) and fatty acid-binding protein 4 (Fabp4), both of which are crucial for lipid transport. Mechanistically, Rbm39 enhanced the transcription of Apob by upregulating hepatocyte nuclear factor 4α (Hnf4α), while it suppressed Fabp4 transcription by regulating alternative splicing of hypoxia inducible factor-1α (Hif-1α). These findings highlight the pivotal role of Rbm39 in maintaining hepatic lipid homeostasis and suggest its potential as a therapeutic target for MASLD.
Collapse
Affiliation(s)
- Chunbo Zhuang
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Fangfang Cui
- Department of Gastroenterology, Kaifeng People's Hospital, Kaifeng, Henan 475000, PR China
| | - Jin Chen
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Dezhi He
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Ting Sun
- Department of Clinical Laboratory, Key Clinical Laboratory of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Pei Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China.
| |
Collapse
|
2
|
Hamdy H, Shen C, Xu J, Fan D, Zhang Y, Li H, Wei Y, Sun J. Hepatocyte nuclear factor 4-Alpha: a key regulator in liver carcinogenesis. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01064-7. [PMID: 40392499 DOI: 10.1007/s13402-025-01064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 04/09/2025] [Indexed: 05/22/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, associated with viral hepatitis, alcohol consumption, and non-alcoholic fatty liver disease. Hepatocyte nuclear factor 4 alpha (HNF4α), a crucial transcription factor for liver function (glucose and lipid metabolism, bile acid homeostasis, and cellular differentiation), is often dysregulated in HCC progression. This review provides a comprehensive overview of the role of HNF4α in hepatic oncogenesis, providing novel inshight into its regulatory effects on epithelial-mesenchymal transition (EMT), metabolic alterations (including the Warburg effect), cell cycle control, and tumor microenvironment. We also discuss therapeutic strategies targeting HNF4α focusing on restoring metabolic balance and inducing apoptosis. This integrated analysis advances our understanding of HNF4α's contribution to HCC and may pave the way for the development of targeted therapies (Fig. 1).
Collapse
Affiliation(s)
- Hayam Hamdy
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Chang Shen
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Jiashun Xu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Die Fan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yiwen Zhang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Hui Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.
| | - Yonglong Wei
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650051, China.
| | - Jianwei Sun
- Yunnan Key Laboratory of Cell Metabolism and Diseases, Center for Life Sciences, School of Life Sciences, The Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.
| |
Collapse
|
3
|
Bhattacharya S, Fernandez CJ, Kamrul-Hasan ABM, Pappachan JM. Monogenic diabetes: An evidence-based clinical approach. World J Diabetes 2025; 16:104787. [DOI: 10.4239/wjd.v16.i5.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/20/2025] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Monogenic diabetes is a heterogeneous disorder characterized by hyperglycemia arising from defects in a single gene. Maturity-onset diabetes of the young (MODY) is the most common type with 14 subtypes, each linked to specific mutations affecting insulin synthesis, secretion and glucose regulation. Common traits across MODY subtypes include early-onset diabetes, a family history of autosomal dominant diabetes, lack of features of insulin resistance, and absent islet cell autoimmunity. Many cases are misdiagnosed as type 1 and type 2 diabetes mellitus. Biomarkers and scoring systems can help identify candidates for genetic testing. GCK-MODY, a common subtype, manifests as mild hyperglycemia and doesn’t require treatment except during pregnancy. In contrast, mutations in HNF4A, HNF1A, and HNF1B genes lead to progressive beta-cell failure and similar risks of complications as type 2 diabetes mellitus. Neonatal diabetes mellitus (NDM) is a rare form of monogenic diabetes that usually presents within the first six months. Half of the cases are lifelong, while others experience transient remission. Permanent NDM is most commonly due to activating mutations in genes encoding the adenosine triphosphate-sensitive potassium channel (KCNJ11 or ABCC8) and can be transitioned to sulfonylurea after confirmation of diagnosis. Thus, in many cases, monogenic diabetes offers an opportunity to provide precision treatment. The scope has broadened with next-generation sequencing (NGS) technologies, replacing older methods like Sanger sequencing. NGS can be for targeted gene panels, whole-exome sequencing (WES), or whole-genome sequencing. Targeted gene panels offer specific information efficiently, while WES provides comprehensive data but comes with bioinformatic challenges. The surge in testing has also led to an increase in variants of unknown significance (VUS). Deciding whether VUS is disease-causing or benign can be challenging. Computational models, functional studies, and clinical knowledge help to determine pathogenicity. Advances in genetic testing technologies offer hope for improved diagnosis and personalized treatment but also raise concerns about interpretation and ethics.
Collapse
Affiliation(s)
| | - Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston PE21 9QS, Lincolnshire, United Kingdom
| | | | - Joseph M Pappachan
- Faculty of Science, Manchester Metropolitan University, Manchester M15 6BH, Greater Manchester, United Kingdom
- Department of Endocrinology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
4
|
Bazzazzadehgan S, Shariat-Madar Z, Mahdi F. Distinct Roles of Common Genetic Variants and Their Contributions to Diabetes: MODY and Uncontrolled T2DM. Biomolecules 2025; 15:414. [PMID: 40149950 PMCID: PMC11940602 DOI: 10.3390/biom15030414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/26/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) encompasses a range of clinical manifestations, with uncontrolled diabetes leading to progressive or irreversible damage to various organs. Numerous genes associated with monogenic diabetes, exhibiting classical patterns of inheritance (autosomal dominant or recessive), have been identified. Additionally, genes involved in complex diabetes, which interact with environmental factors to trigger the disease, have also been discovered. These genetic findings have raised hopes that genetic testing could enhance diagnostics, disease surveillance, treatment selection, and family counseling. However, the accurate interpretation of genetic data remains a significant challenge, as variants may not always be definitively classified as either benign or pathogenic. Research to date, however, indicates that periodic reevaluation of genetic variants in diabetes has led to more consistent findings, with biases being steadily eliminated. This has improved the interpretation of variants across diverse ethnicities. Clinical studies suggest that genetic risk information may motivate patients to adopt behaviors that promote the prevention or management of T2DM. Given that the clinical features of certain monogenic diabetes types overlap with T2DM, and considering the significant role of genetic variants in diabetes, healthcare providers caring for prediabetic patients should consider genetic testing as part of the diagnostic process. This review summarizes current knowledge of the most common genetic variants associated with T2DM, explores novel therapeutic targets, and discusses recent advancements in the pharmaceutical management of uncontrolled T2DM.
Collapse
Affiliation(s)
- Shadi Bazzazzadehgan
- Department of Pharmacy Administration, School of Pharmacy, University of Mississippi, University, MS 38677, USA;
| | - Zia Shariat-Madar
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| | - Fakhri Mahdi
- Division of Pharmacology, School of Pharmacy, University of Mississippi, Oxford, MS 38677, USA;
| |
Collapse
|
5
|
Wu Y, Ren L, Mao C, Shen Z, Zhu W, Su Z, Lin X, Lin X. Small hepatitis B virus surface antigen (SHBs) induces dyslipidemia by suppressing apolipoprotein-AII expression through ER stress-mediated modulation of HNF4α and C/EBPγ. J Virol 2024; 98:e0123924. [PMID: 39470210 PMCID: PMC11575332 DOI: 10.1128/jvi.01239-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Persistent infection with hepatitis B virus (HBV) often leads to disruptions in lipid metabolism. Apolipoprotein AII (apoAII) plays a crucial role in lipid metabolism and is implicated in various metabolic disorders. However, whether HBV could regulate apoAII and contribute to HBV-related dyslipidemia and the underlying mechanism remain unclear. This study revealed significant reductions in apoAII expression in HBV-expressing cell lines, the serum, and liver tissues of HBV-transgenic mice. The impact of HBV on apoAII is related to small hepatitis B virus surface antigen (SHBs). Overexpression of SHBs decreased apoAII levels in SHBs-expressing hepatoma cells, transgenic mice, and the serum of HBV-infected patients, whereas suppression of SHBs increased apoAII expression. Mechanistic investigations demonstrated that SHBs repressed the apoAII promoter activity through a HNF4α- and C/EBPγ-dependent manner; SHBs simultaneously upregulated C/EBPγ and downregulated HNF4α by inhibiting the PI3K/AKT signaling pathway through activating endoplasmic reticulum (ER) stress. Serum lipid profile assessments revealed notable decreases in high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), and triglycerides (TG) in SHBs-transgenic mice compared to control mice. However, concurrent overexpression of apoAII in these mice effectively counteracted these reductions in lipid levels. In HBV patients, SHBs levels were negatively correlated with serum levels of HDL-C, LDL-C, TC, and TG, whereas apoAII levels positively correlated with lipid content. This study underscores that SHBs contributes to dyslipidemia by suppressing the PI3K/AKT pathway via inducing ER stress, leading to altered expression of HNF4α and C/EBPγ, and subsequently reducing apoAII expression.IMPORTANCEThe significance of this study lies in its comprehensive examination of how the hepatitis B virus (HBV), specifically through its small hepatitis B virus surface antigen (SHBs), impacts lipid metabolism-a key aspect often disrupted by chronic HBV infection. By elucidating the role of SHBs in regulating apolipoprotein AII (apoAII), a critical player in lipid processes and associated metabolic disorders, this research provides insights into the molecular pathways contributing to HBV-related dyslipidemia. Discovering that SHBs downregulates apoAII through mechanisms involving the repression of the apoAII promoter via HNF4α and C/EBPγ, and the modulation of the PI3K/AKT signaling pathway via endoplasmic reticulum (ER) stress, adds critical knowledge to HBV pathogenesis. The research also shows an inverse correlation between SHBs expression and key lipid markers in HBV-infected individuals, suggesting that apoAII overexpression could counteract the lipid-altering effects of SHBs, offering new avenues for understanding and managing the metabolic implications of HBV infection.
Collapse
Affiliation(s)
- Yunli Wu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| | - Lan Ren
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Chenglei Mao
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhiqing Shen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Wenyu Zhu
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Zhijun Su
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xinjian Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| | - Xu Lin
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Kashobwe L, Sadrabadi F, Braeuning A, Leonards PEG, Buhrke T, Hamers T. In vitro screening of understudied PFAS with a focus on lipid metabolism disruption. Arch Toxicol 2024; 98:3381-3395. [PMID: 38953992 PMCID: PMC11402862 DOI: 10.1007/s00204-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made chemicals used in many industrial applications. Exposure to PFAS is associated with several health risks, including a decrease in infant birth weight, hepatoxicity, disruption of lipid metabolism, and decreased immune response. We used the in vitro cell models to screen six less studied PFAS [perfluorooctane sulfonamide (PFOSA), perfluoropentanoic acid (PFPeA), perfluoropropionic acid (PFPrA), 6:2 fluorotelomer alcohol (6:2 FTOH), 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and 8:2 fluorotelomer sulfonic acid (8:2 FTSA)] for their capacity to activate nuclear receptors and to cause differential expression of genes involved in lipid metabolism. Cytotoxicity assays were run in parallel to exclude that observed differential gene expression was due to cytotoxicity. Based on the cytotoxicity assays and gene expression studies, PFOSA was shown to be more potent than other tested PFAS. PFOSA decreased the gene expression of crucial genes involved in bile acid synthesis and detoxification, cholesterol synthesis, bile acid and cholesterol transport, and lipid metabolism regulation. Except for 6:2 FTOH and 8:2 FTSA, all tested PFAS downregulated PPARA gene expression. The reporter gene assay also showed that 8:2 FTSA transactivated the farnesoid X receptor (FXR). Based on this study, PFOSA, 6:2 FTSA, and 8:2 FTSA were prioritized for further studies to confirm and understand their possible effects on hepatic lipid metabolism.
Collapse
Affiliation(s)
- Lackson Kashobwe
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Faezeh Sadrabadi
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Pim E G Leonards
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Timo Hamers
- Vrije Universiteit Amsterdam, Amsterdam Institute for Life and Environment (A-LIFE), De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Van Dender C, Timmermans S, Paakinaho V, Vanderhaeghen T, Vandewalle J, Claes M, Garcia B, Roman B, De Waele J, Croubels S, De Bosscher K, Meuleman P, Herpain A, Palvimo JJ, Libert C. A critical role for HNF4α in polymicrobial sepsis-associated metabolic reprogramming and death. EMBO Mol Med 2024; 16:2485-2515. [PMID: 39261648 PMCID: PMC11473810 DOI: 10.1038/s44321-024-00130-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/24/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
In sepsis, limited food intake and increased energy expenditure induce a starvation response, which is compromised by a quick decline in the expression of hepatic PPARα, a transcription factor essential in intracellular catabolism of free fatty acids. The mechanism upstream of this PPARα downregulation is unknown. We found that sepsis causes a progressive hepatic loss-of-function of HNF4α, which has a strong impact on the expression of several important nuclear receptors, including PPARα. HNF4α depletion in hepatocytes dramatically increases sepsis lethality, steatosis, and organ damage and prevents an adequate response to IL6, which is critical for liver regeneration and survival. An HNF4α agonist protects against sepsis at all levels, irrespectively of bacterial loads, suggesting HNF4α is crucial in tolerance to sepsis. In conclusion, hepatic HNF4α activity is decreased during sepsis, causing PPARα downregulation, metabolic problems, and a disturbed IL6-mediated acute phase response. The findings provide new insights and therapeutic options in sepsis.
Collapse
Affiliation(s)
- Céline Van Dender
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ville Paakinaho
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Tineke Vanderhaeghen
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, VIB, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Maarten Claes
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bruno Garcia
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, Center Hospitalier Universitaire de Lille, 59000, Lille, France
| | - Bart Roman
- Research Group SynBioC, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jan De Waele
- Department of Intensive Care Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Karolien De Bosscher
- Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Antoine Herpain
- Experimental Laboratory of Intensive Care, Université Libre de Bruxelles, 1050, Brussels, Belgium
- Department of Intensive Care, St.-Pierre University Hospital, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Claude Libert
- Center for Inflammation Research, VIB, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
8
|
Vonolfen MC, Meyer Zu Altenschildesche FL, Nam HJ, Brodesser S, Gyenis A, Buellesbach J, Lam G, Thummel CS, Storelli G. Drosophila HNF4 acts in distinct tissues to direct a switch between lipid storage and export in the gut. Cell Rep 2024; 43:114693. [PMID: 39235946 DOI: 10.1016/j.celrep.2024.114693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/15/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Nutrient digestion, absorption, and export must be coordinated in the gut to meet the nutritional needs of the organism. We used the Drosophila intestine to characterize the mechanisms that coordinate the fate of dietary lipids. We identified enterocytes specialized in absorbing and exporting lipids to peripheral organs. Distinct hepatocyte-like cells, called oenocytes, communicate with these enterocytes to adjust intestinal lipid storage and export. A single transcription factor, Drosophila hepatocyte nuclear factor 4 (dHNF4), supports this gut-liver axis. In enterocytes, dHNF4 maximizes dietary lipid export by preventing their sequestration in cytoplasmic lipid droplets. In oenocytes, dHNF4 promotes the expression of the insulin antagonist ImpL2 to activate Foxo and suppress lipid retention in enterocytes. Disruption of this switch between lipid storage and export is associated with intestinal inflammation, suggesting a lipidic origin for inflammatory bowel diseases. These studies establish dHNF4 as a central regulator of intestinal metabolism and inter-organ lipid trafficking.
Collapse
Affiliation(s)
- Maximilian C Vonolfen
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Fenja L Meyer Zu Altenschildesche
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Susanne Brodesser
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Akos Gyenis
- University of Cologne, Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Jan Buellesbach
- Institute for Evolution & Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany
| | - Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Gilles Storelli
- University of Cologne, Faculty of Mathematics and Natural Sciences, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany; Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Zhu B, Gupta K, Cui K, Wang B, Malovichko MV, Han X, Li K, Wu H, Arulsamy KS, Singh B, Gao J, Wong S, Cowan DB, Wang D, Biddinger S, Srivastava S, Shi J, Chen K, Chen H. Targeting Liver Epsins Ameliorates Dyslipidemia in Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609742. [PMID: 39253478 PMCID: PMC11383288 DOI: 10.1101/2024.08.26.609742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rationale Low density cholesterol receptor (LDLR) in the liver is critical for the clearance of low-density lipoprotein cholesterol (LDL-C) in the blood. In atherogenic conditions, proprotein convertase subtilisin/kexin 9 (PCSK9) secreted by the liver, in a nonenzymatic fashion, binds to LDLR on the surface of hepatocytes, preventing its recycling and enhancing its degradation in lysosomes, resulting in reduced LDL-C clearance. Our recent studies demonstrate that epsins, a family of ubiquitin-binding endocytic adaptors, are critical regulators of atherogenicity. Given the fundamental contribution of circulating LDL-C to atherosclerosis, we hypothesize that liver epsins promote atherosclerosis by controlling LDLR endocytosis and degradation. Objective We will determine the role of liver epsins in promoting PCSK9-mediated LDLR degradation and hindering LDL-C clearance to propel atherosclerosis. Methods and Results We generated double knockout mice in which both paralogs of epsins, namely, epsin-1 and epsin-2, are specifically deleted in the liver (Liver-DKO) on an ApoE -/- background. We discovered that western diet (WD)-induced atherogenesis was greatly inhibited, along with diminished blood cholesterol and triglyceride levels. Mechanistically, using scRNA-seq analysis on cells isolated from the livers of ApoE-/- and ApoE-/- /Liver-DKO mice on WD, we found lipogenic Alb hi hepatocytes to glycogenic HNF4α hi hepatocytes transition in ApoE-/- /Liver-DKO. Subsequently, gene ontology analysis of hepatocyte-derived data revealed elevated pathways involved in LDL particle clearance and very-low-density lipoprotein (VLDL) particle clearance under WD treatment in ApoE-/- /Liver-DKO, which was coupled with diminished plasma LDL-C levels. Further analysis using the MEBOCOST algorithm revealed enhanced communication score between LDLR and cholesterol, suggesting elevated LDL-C clearance in the ApoE-/- Liver-DKO mice. In addition, we showed that loss of epsins in the liver upregulates of LDLR protein level. We further showed that epsins bind LDLR via the ubiquitin-interacting motif (UIM), and PCSK9-triggered LDLR degradation was abolished by depletion of epsins, preventing atheroma progression. Finally, our therapeutic strategy, which involved targeting liver epsins with nanoparticle-encapsulated siRNAs, was highly efficacious at inhibiting dyslipidemia and impeding atherosclerosis. Conclusions Liver epsins promote atherogenesis by mediating PCSK9-triggered degradation of LDLR, thus raising the circulating LDL-C levels. Targeting epsins in the liver may serve as a novel therapeutic strategy to treat atherosclerosis by suppression of PCSK9-mediated LDLR degradation.
Collapse
Affiliation(s)
- Bo Zhu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Krishan Gupta
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kui Cui
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Beibei Wang
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Marina V Malovichko
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Xiangfei Han
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kathryn Li
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Hao Wu
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Kulandai Samy Arulsamy
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bandana Singh
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Jianing Gao
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Scott Wong
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Douglas B Cowan
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Dazhi Wang
- College of Medicine Molecular Pharmacology, University of South Florida, Tampa, FL, United States
| | - Sudha Biddinger
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sanjay Srivastava
- Department of Medicine, Division of Cardiovascular Medicine, University of Louisville, Louisville, KY, United States
| | - Jinjun Shi
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Das S, Ravi H, Devi Rajeswari V, Venkatraman G, Ramasamy M, Dhanasekaran S, Ramanathan G. Therapeutic insight into the role of nuclear protein HNF4α in liver carcinogenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:1-37. [PMID: 39843133 DOI: 10.1016/bs.apcsb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α), a well-preserved member of the nuclear receptor superfamily of transcription factors, is found in the liver. It is recognized as a central controller of gene expression specific to the liver and plays a key role in preserving the liver's homeostasis. Irregular expression of HNF4α is increasingly recognized as a crucial factor in the proliferation, cell death, invasiveness, loss of specialized functions, and metastasis of cancer cells. An increasing number of studies are pointing to abnormal HNF4α expression as a key component of cancer cell invasion, apoptosis, proliferation, dedifferentiation, and metastasis. Understanding HNF4α's intricate involvement in liver carcinogenesis provides a promising avenue for therapeutic intervention. This chapter attempts to shed light on the diverse aspects of HNF4's role in liver carcinogenesis and demonstrate how this knowledge can be harnessed for approaches to prevent and treat liver cancer. This comprehensive chapter will offer an elaborate perspective on HNF4's function in liver cancer, delineating its molecular mechanisms that aid in the emergence of liver cancer. Furthermore, it will highlight the potential to help create more effective and precisely targeted therapeutic strategies, rekindling fresh optimism in the fight against this formidable condition.
Collapse
Affiliation(s)
- Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
11
|
Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun 2024; 15:4034. [PMID: 38740814 DOI: 10.1038/s41467-024-48550-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
12
|
Dong X, Wang J, Zhao M, Du X, Fan H, Fu Y, Gong Z, Miao S. Betaine Alleviates High-Fat Diet Induced Excessive Lipid Deposition in Gibel Carp Hepatopancreas and L8824 Cells by Enhancing VLDL Secretion through HNF4 α/MTTP Pathway. AQUACULTURE NUTRITION 2024; 2024:8886237. [PMID: 38469394 PMCID: PMC10927341 DOI: 10.1155/2024/8886237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
Betaine, a methyl donor, plays a crucial role in lipid metabolism. Previous studies have shown that appropriate betaine supplementation in a high-fat diet reduces triglycerides (TG) of serum and hepatopancreas in fish. However, the underlying mechanism remains unclear. This study examined whether betaine can enhance the secretion of very low-density lipoprotein (VLDL) and sought to identify the specific mechanisms through which this enhancement occurs. A lipid accumulation model was established in gibel carp and L8824 cells using a high-fat diet and oleic acid, respectively. Different doses of betaine (1, 4, and 16 g/kg in the diet; 400 μmol in cell culture) were administered, and measurements were taken for lipid deposition, gene expression of HNF4α, MTTP, and ApoB, as well as the regulation of Mttp and Apob promoters by HNF4α. The results showed that betaine supplementation mitigated lipid droplet accumulation, TG levels, and VLDL production induced by the high-fat diet in gibel carp hepatopancreas and L8824 cells. Moreover, betaine not only increased VLDL content in the cell culture supernatant but also reversed the inhibitory effects of the high-fat diet on protein expression of MTTP, ApoB, and HNF4α in both gibel carp hepatopancreas and L8824 cells. Additionally, HNF4α exhibits transactivating activity on the promoter of Mttp in gibel carp. These findings suggest that betaine supplementation exerts its effects through the HNF4α/MTTP/ApoB pathway, promoting the assembly and secretion of VLDL and effectively reducing lipid accumulation in the hepatopancreas of farmed gibel carp fed a high-fat diet.
Collapse
Affiliation(s)
- Xiaojing Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Jianqiao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjie Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xuedi Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongying Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuanyuan Fu
- Ningbo Institute of Oceanography, Ningbo 315832, Zhejiang, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shuyan Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Li Z, Zheng D, Zhang T, Ruan S, Li N, Yu Y, Peng Y, Wang D. The roles of nuclear receptors in cholesterol metabolism and reverse cholesterol transport in nonalcoholic fatty liver disease. Hepatol Commun 2024; 8:e0343. [PMID: 38099854 PMCID: PMC10727660 DOI: 10.1097/hc9.0000000000000343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
As the most prevalent chronic liver disease globally, NAFLD encompasses a pathological process that ranges from simple steatosis to NASH, fibrosis, cirrhosis, and HCC, closely associated with numerous extrahepatic diseases. While the initial etiology was believed to be hepatocyte injury caused by lipid toxicity from accumulated triglycerides, recent studies suggest that an imbalance of cholesterol homeostasis is of greater significance. The role of nuclear receptors in regulating liver cholesterol homeostasis has been demonstrated to be crucial. This review summarizes the roles and regulatory mechanisms of nuclear receptors in the 3 main aspects of cholesterol production, excretion, and storage in the liver, as well as their cross talk in reverse cholesterol transport. It is hoped that this review will offer new insights and theoretical foundations for the study of the pathogenesis and progression of NAFLD and provide new research directions for extrahepatic diseases associated with NAFLD.
Collapse
|
14
|
Grassi M, Laubscher B, Pandey AV, Tschumi S, Graber F, Schaller A, Janner M, Aeberli D, Hewer E, Nuoffer JM, Gautschi M. Expanding the p.(Arg85Trp) Variant-Specific Phenotype of HNF4A: Features of Glycogen Storage Disease, Liver Cirrhosis, Impaired Mitochondrial Function, and Glomerular Changes. Mol Syndromol 2023; 14:347-361. [PMID: 37766831 PMCID: PMC10521240 DOI: 10.1159/000529306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/22/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The p.(Arg85Trp) variant-specific phenotype of hepatocyte nuclear factor 4 alpha shows a complex clinical picture affecting three different organ systems and their corresponding metabolisms. Little is known about the molecular mechanisms involved and their relationship with the diverse symptoms seen in the context of this specific variant. Here, we present data of a new patient that expand the clinical phenotype, suggesting possible disease mechanisms. Case Presentation Clinical data were extracted from the patient's charts. The liver, kidney, and muscle were analyzed with routine histology and electron microscopy. Mitochondrial function was assessed by respirometric analyses and enzymatic activity assays. Structure and sequence analyses of this specific variant were investigated by in silico analyses. Our patient showed the known features of the variant-specific phenotype, including macrosomia, congenital hyperinsulinism, transient hepatomegaly, and renal Fanconi syndrome. In addition to that, she showed liver cirrhosis, chronic kidney failure, and altered mitochondrial morphology and function. The clinical and biochemical phenotype had features of a new type of glycogen storage disease. Discussion This case expands the p.(Arg85Trp) variant-specific phenotype. Possible pathomechanistic explanations for the documented multiorgan involvement and changes of symptoms and signs during development of this ultra-rare but instructive disorder are discussed.
Collapse
Affiliation(s)
- Mara Grassi
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Bernard Laubscher
- Department of Pediatrics, Réseau hospitalier neuchâtelois, Neuchâtel, Switzerland
- Department of Pediatrics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Amit V. Pandey
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sibylle Tschumi
- Pediatric Nephrology, Inselspital, University Hospital Bern, Bern, Switzerland
| | | | - André Schaller
- Department of Human Genetics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Marco Janner
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Daniel Aeberli
- Department of Rheumatology and Immunology, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Ekkehard Hewer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Institute of Pathology, Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Nuoffer
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Matthias Gautschi
- Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
- Institute of Clinical Chemistry, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Ungurianu A, Zanfirescu A, Margină D. Sirtuins, resveratrol and the intertwining cellular pathways connecting them. Ageing Res Rev 2023; 88:101936. [PMID: 37116286 DOI: 10.1016/j.arr.2023.101936] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023]
Abstract
Sirtuins are a family of NAD+-dependent deacylases with numerous physiological and pathological implications, which lately became an attractive therapeutic target. Sirtuin-activating compounds (STACs) could be useful in disease prevention and treatment. Despite its bioavailability issues, resveratrol exerts a myriad of beneficial effects, known as the "resveratrol paradox". Modulation of sirtuins' expression and activity may, in fact, underlie many of resveratrol revered actions; however, the cellular pathways affected by modulating the activity of each sirtuin isoform, in different physio-pathological conditions, are not fully known. The purpose of this review was to summarize recent reports concerning the effects of resveratrol on the activity of sirtuins in different experimental settings, focusing on in vitro and in vivo preclinical studies. Most reports concern SIRT1, however recent studies dive into the effects initiated via other isoforms. Numerous cellular signaling pathways were reported to be modulated by resveratrol in a sirtuin-dependent manner (increased phosphorylation of MAPKs, AKT, AMPK, RhoA, BDNF, decreased activation of NLRP3 inflammasome, NF-κB, STAT3, upregulation of SIRT1/SREBP1c pathway, reduced β-amyloid via SIRT1-NF-κB-BACE1 signaling and counteracting mitochondrial damage by deacetylating PGC-1α). Thus, resveratrol may be the ideal candidate in the search for STACs as a tool for preventing and treating inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Anca Ungurianu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Zanfirescu
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmacology, Traian Vuia 6, 020956 Bucharest, Romania.
| | - Denisa Margină
- Carol Davila University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, 020956 Bucharest, Romania
| |
Collapse
|
16
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
17
|
Martinez-Calle M, Courbon G, Hunt-Tobey B, Francis C, Spindler J, Wang X, dos Reis LM, Martins CS, Salusky IB, Malluche H, Nickolas TL, Moyses RM, Martin A, David V. Transcription factor HNF4α2 promotes osteogenesis and prevents bone abnormalities in mice with renal osteodystrophy. J Clin Invest 2023; 133:e159928. [PMID: 37079387 PMCID: PMC10231994 DOI: 10.1172/jci159928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023] Open
Abstract
Renal osteodystrophy (ROD) is a disorder of bone metabolism that affects virtually all patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes including fractures, cardiovascular events, and death. In this study, we showed that hepatocyte nuclear factor 4α (HNF4α), a transcription factor mostly expressed in the liver, is also expressed in bone, and that osseous HNF4α expression was dramatically reduced in patients and mice with ROD. Osteoblast-specific deletion of Hnf4α resulted in impaired osteogenesis in cells and mice. Using multi-omics analyses of bones and cells lacking or overexpressing Hnf4α1 and Hnf4α2, we showed that HNF4α2 is the main osseous Hnf4α isoform that regulates osteogenesis, cell metabolism, and cell death. As a result, osteoblast-specific overexpression of Hnf4α2 prevented bone loss in mice with CKD. Our results showed that HNF4α2 is a transcriptional regulator of osteogenesis, implicated in the development of ROD.
Collapse
Affiliation(s)
- Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guillaume Courbon
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bridget Hunt-Tobey
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Connor Francis
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jadeah Spindler
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xueyan Wang
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Luciene M. dos Reis
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Carolina S.W. Martins
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Isidro B. Salusky
- Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Hartmut Malluche
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Thomas L. Nickolas
- Department of Medicine, Columbia Irving University Medical Center, New York, New York, USA
| | - Rosa M.A. Moyses
- LIM 16, Nephrology Department, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Universidade de São Paulo, São Paulo, Brazil
| | - Aline Martin
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Francoeur MJ, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. CELL GENOMICS 2023; 3:100304. [PMID: 37228746 PMCID: PMC10203276 DOI: 10.1016/j.xgen.2023.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 12/02/2022] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we substantially improve the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of the genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, QC H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Cardiovascular Disease Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
19
|
Abstract
Hepatocyte nuclear factor 4 α (HNF4α) is a highly conserved member of the nuclear receptor superfamily expressed at high levels in the liver, kidney, pancreas, and gut. In the liver, HNF4α is exclusively expressed in hepatocytes, where it is indispensable for embryonic and postnatal liver development and for normal liver function in adults. It is considered a master regulator of hepatic differentiation because it regulates a significant number of genes involved in hepatocyte-specific functions. Loss of HNF4α expression and function is associated with the progression of chronic liver disease. Further, HNF4α is a target of chemical-induced liver injury. In this review, we discuss the role of HNF4α in liver pathophysiology and highlight its potential use as a therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Manasi Kotulkar
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Dakota R Robarts
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
20
|
Zhao H, Wang D, Xing C, Lv B, Wang X, He B. Pioglitazone can improve liver sex hormone-binding globulin levels and lipid metabolism in polycystic ovary syndrome by regulating hepatocyte nuclear factor-4α. J Steroid Biochem Mol Biol 2023; 229:106265. [PMID: 36737028 DOI: 10.1016/j.jsbmb.2023.106265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a common reproductive and metabolic disorder that is closely correlated with insulin resistance. Sex hormone-binding globulin (SHBG) is an important carrier for regulating androgen activity and is affected by insulin level, which is related to metabolic abnormalities and long-term prognosis of PCOS. Insulin sensitizer pioglitazone can improve the SHBG level and dyslipidaemia in PCOS, but the mechanism remains unclear. We investigated liver SHBG expression, liver lipid levels, and the effects and potential mechanisms of pioglitazone on reproductive and metabolic disorders in a rat model of polycystic ovary syndrome with insulin resistance (PCOS-IR). PCOS-IR was induced by letrozole and a high-fat diet. Metformin was used as a positive control. Additionally, dihydrotestosterone and oleic acid combined with palmitic acid were used to induce the HepG2 cell models with IR. The cells were exposed to pioglitazone alone or in combination with a hepatocyte nuclear factor (HNF)- 4α inhibitor. Changes in biochemical characteristics were analysed using an enzyme-linked immunosorbent assay. Vaginal smears were used to analyse the oestrous cycle, and ovarian histology was used to analyse the changes in ovarian morphology. The degree of IR in vivo and in vitro was measured using the hyperinsulinaemic-euglycaemic clamp and glucose oxidase techniques. The levels of key anabolism-related proteins, including SHBG, HNF-4α, and peroxidase proliferator-activated receptor (PPAR-γ), were measured using western blots. Pioglitazone and metformin significantly increased the SHBG levels in the sera and livers. Compared to metformin, pioglitazone significantly improved the lipid droplet deposition, triglyceride (TG) and total cholesterol (TC) levels, HNF-4α protein expression, and weights of the livers in the PCOS-IR rats. After applying pioglitazone with an HNF-4α inhibitor in the PCOS-IR cell models, we found that pioglitazone may increase SHBG and improve IR, TG, and TC levels by upregulating HNF-4α. Similar to metformin, pioglitazone also restored the oestrous cycle and ovarian morphology, ameliorated IR and hyperandrogenaemia in the PCOS-IR rats. Our findings hint at the value of HNF-4α in the treatment of PCOS by PIO, which could shed light on potential targets that may be used in treatments for PCOS with metabolic disorders.
Collapse
Affiliation(s)
- Han Zhao
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Dongxu Wang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Chuan Xing
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Bo Lv
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Xiaochen Wang
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110000, PR China.
| |
Collapse
|
21
|
Chen Y, Lv J, Fu L, Wu Y, Zhou S, Liu S, Zheng L, Feng W, Zhang L. Metabolome-wide association study of four groups of persistent organic pollutants and abnormal blood lipids. ENVIRONMENT INTERNATIONAL 2023; 173:107817. [PMID: 36822003 DOI: 10.1016/j.envint.2023.107817] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Environmental exposure increases the risk of dyslipidemia, which affects human health. Research has shown that persistent organic pollutants (POPs), including per- and polyfluoroalkyl substances (PFASs), polychlorinated biphenyls, polybrominated diphenyl ethers, and phthalate metabolites, are associated with a higher risk of abnormal blood lipid levels in humans. However, the key molecules involved in dyslipidemia and the mechanisms are not fully understood. This study aims to investigate the biomarkers that mediate the relationships between blood lipids and four groups of POPs and revealed their potential mechanisms. Specifically, in 278 male blood samples, blood lipid and POPs levels were measured and metabolites were detected using untargeted metabolomics. Spearman's correlation analysis and binary logistic regression were employed to assess the relationship between POPs and lipid indexes. We observed that PFASs were associated with a higher risk of abnormal total cholesterol (TC) and low-density lipoprotein (LDL), while other POPs displayed little association with abnormal lipid indexes. Among all the PFASs, 6:2Cl-PFESA was associated with the fewest metabolites. A metabolome-wide association study combined with a meet-in-the-middle approach was used to identify potential biomarkers that mediate the association between POPs and abnormal blood lipids. The mediation analysis pointed to 105 significant mediators as potential biomarkers mediating the association between PFASs and TC, and 82 significant mediators were potential biomarkers that mediated the association between PFASs and LDL. 24-Hydroxycholesterol, 3alpha,7alpha-dihydroxy-5beta-cholestan-26-al, PC(18:0/0:0), PC(22:5/0:0), GPCho(18:1/18:1), LysoPC(22:2(13Z,16Z)), LysoPC(16:0), 9(S)-HODE, 9,10-DHOME, l-glutamate, 4-hydroxybutyric acid, cytosine, PC(14:1(9Z)/18:0), sphinganine, and (S)-beta-aminoisobutyrate were identified as important biomarkers. The mechanism may mainly involves glycerophospholipid metabolism, primary bile acid biosynthesis, and linoleic acid metabolism. PPARγ likely plays a role in the associations between PFASs and abnormal cholesterol metabolism. Overall, our study provides clues for the early detection of PFAS-induced dyslipidemia and brings forth a theoretical framework for further research into this mechanism.
Collapse
Affiliation(s)
- Yiran Chen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Jiayun Lv
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lei Fu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yan Wu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Si Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Shiwei Liu
- School of Public Health, China Medical University, Shenyang 110122, China
| | - Linjie Zheng
- School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Wenru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; Institute of Public Health, Guangzhou Medical University & Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| |
Collapse
|
22
|
Sun Y, Shen Y, Liang X, Zheng H, Zhang Y. MicroRNAs as Biomarkers and Therapeutic Targets for Nonalcoholic Fatty Liver Disease: A Narrative Review. Clin Ther 2023; 45:234-247. [PMID: 36841739 DOI: 10.1016/j.clinthera.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/27/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world. However, biomarkers for NAFLD diagnosis and liver-specific drugs for treatment are lacking. This article reviews the possibility of circulating miRNAs in the diagnosis and treatment of NAFLD diseases and focuses on several well-studied miRNAs to provide preclinical data for subsequent related studies. METHODS Related articles were identified through searches of the PubMed database for literature published from 2010 to December 2022. Search terms included NAFLD, microRNA, biomarker, diagnosis, and therapy. FINDINGS Current research data indicate that some key circulating miRNAs may be used as diagnostic biomarkers of NAFLD and the combination of several miRNAs improves diagnostic performance. In addition, some preclinical trials using cell and mouse models provide a basis for some miRNAs as potential therapeutic targets. IMPLICATIONS Current evidence suggests that circulating miRNAs are potential noninvasive biomarkers for clinical diagnosis of NAFLD, which needs to be validated in more heterogeneous and larger cohorts. In addition, several miRNAs regulate multiple downstream pathways related to the pathophysiology of NAFLD in a cell- and tissue-specific manner, making them attractive drug therapeutic targets for NAFLD. However, more preclinical and clinical trials are needed for these miRNAs to become therapeutic targets of NAFLD.
Collapse
Affiliation(s)
- Yu Sun
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, 238 Longyan Road, Beichen District, 300134 Tianjin, China.
| | - Yongming Shen
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, 238 Longyan Road, Beichen District, 300134 Tianjin, China
| | - Xiurui Liang
- Department of Cardiology, The First Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Huilin Zheng
- School of Biological & Chemical Engineering, Zhejiang University of Science and Technology, Zhejiang, China
| | - Yitong Zhang
- Department of Clinical Laboratory, Tianjin Children's Hospital/Tianjin University Children's Hospital, 238 Longyan Road, Beichen District, 300134 Tianjin, China
| |
Collapse
|
23
|
Hamilton MC, Fife JD, Akinci E, Yu T, Khowpinitchai B, Cha M, Barkal S, Thi TT, Yeo GH, Ramos Barroso JP, Jake Francoeur M, Velimirovic M, Gifford DK, Lettre G, Yu H, Cassa CA, Sherwood RI. Systematic elucidation of genetic mechanisms underlying cholesterol uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.500804. [PMID: 36711952 PMCID: PMC9881906 DOI: 10.1101/2023.01.09.500804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Genetic variation contributes greatly to LDL cholesterol (LDL-C) levels and coronary artery disease risk. By combining analysis of rare coding variants from the UK Biobank and genome-scale CRISPR-Cas9 knockout and activation screening, we have substantially improved the identification of genes whose disruption alters serum LDL-C levels. We identify 21 genes in which rare coding variants significantly alter LDL-C levels at least partially through altered LDL-C uptake. We use co-essentiality-based gene module analysis to show that dysfunction of the RAB10 vesicle transport pathway leads to hypercholesterolemia in humans and mice by impairing surface LDL receptor levels. Further, we demonstrate that loss of function of OTX2 leads to robust reduction in serum LDL-C levels in mice and humans by increasing cellular LDL-C uptake. Altogether, we present an integrated approach that improves our understanding of genetic regulators of LDL-C levels and provides a roadmap for further efforts to dissect complex human disease genetics.
Collapse
Affiliation(s)
- Marisa C. Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - James D. Fife
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tian Yu
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sammy Barkal
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Thi Tun Thi
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Grace H.T. Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Juan Pablo Ramos Barroso
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Matthew Jake Francoeur
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David K. Gifford
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Guillaume Lettre
- Montreal Heart Institute, Montréal, Québec, H1T 1C8, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, H3T 1J4, Canada
| | - Haojie Yu
- Precision Medicine Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cardiovascular Disease Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher A. Cassa
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Richard I. Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Roh YJ, Kim Y, Lee JS, Oh JH, Lee SM, Yoon EL, Lee SR, Jun DW. Regulation of Hepatocyte Nuclear Factor 4α Attenuated Lipotoxicity but Increased Bile Acid Toxicity in Non-Alcoholic Fatty Liver Disease. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111682. [PMID: 36362837 PMCID: PMC9699296 DOI: 10.3390/life12111682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4α) is a key master transcriptional factor for hepatic fat and bile acid metabolic pathways. We aimed to investigate the role of HNF4α in non-alcoholic fatty liver disease (NAFLD). The role of HNF4α was evaluated in free fatty acid-induced lipotoxicity and chenodeoxycholic acid (CDCA)-induced bile acid toxicity. Furthermore, the role of HNF4α was evaluated in a methionine choline deficiency (MCD)-diet-induced NAFLD model. The overexpression of HNF4α reduced intracellular lipid contents and attenuated palmitic acid (PA)-induced lipotoxicity. However, the protective effects of HNF4α were reversed when CDCA was used in a co-treatment with PA. HNF4α knockdown recovered cell death from bile acid toxicity. The inhibition of HNF4α decreased intrahepatic inflammation and the NAFLD activity score in the MCD model. Hepatic HNF4α inhibition can attenuate bile acid toxicity and be more effective as a therapeutic strategy in NAFLD patients; however, it is necessary to study the optimal timing of HNF4α inhibition.
Collapse
Affiliation(s)
- Yoon Jin Roh
- Department of Dermatology, Chung-Ang University Hospital, Seoul 04763, Korea
| | - Yun Kim
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Korea
| | - Jae Sun Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
| | - Ju Hee Oh
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
| | - Seung Min Lee
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
| | - Eileen Laurel Yoon
- Department of Gastroenterology, Hanyang University School of Medicine, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
| | - Sung Ryol Lee
- Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea
- Correspondence: (S.R.L.); (D.W.J.)
| | - Dae Won Jun
- Hanyang Medicine-Engineering-Bio Collaborative & Comprehensive Center for Drug Development, Hanyang University, Seoul 04763, Korea
- Department of Translational Medical Science, Hanyang University Graduate School of Biomedical Science and Engineering, Seoul 04763, Korea
- Department of Gastroenterology, Hanyang University School of Medicine, Seoul 04763, Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
- Correspondence: (S.R.L.); (D.W.J.)
| |
Collapse
|
25
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
26
|
Pérez-Martí A, Ramakrishnan S, Li J, Dugourd A, Molenaar MR, De La Motte LR, Grand K, Mansouri A, Parisot M, Lienkamp SS, Saez-Rodriguez J, Simons M. Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes. eLife 2022; 11:74391. [PMID: 35550039 PMCID: PMC9154741 DOI: 10.7554/elife.74391] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In diabetic patients, dyslipidemia frequently contributes to organ damage such as diabetic kidney disease (DKD). Dyslipidemia is associated with both excessive deposition of triacylglycerol (TAG) in lipid droplets (LD) and lipotoxicity. Yet, it is unclear how these two effects correlate with each other in the kidney and how they are influenced by dietary patterns. By using a diabetes mouse model, we find here that high fat diet enriched in the monounsaturated oleic acid (OA) caused more lipid storage in LDs in renal proximal tubular cells (PTC) but less tubular damage than a corresponding butter diet with the saturated palmitic acid (PA). This effect was particularly evident S2/S3 but not S1 segments of the proximal tubule. Combining transcriptomics, lipidomics and functional studies, we identify endoplasmic reticulum (ER) stress as the main cause of PA-induced PTC injury. Mechanistically, ER stress is caused by elevated levels of saturated TAG precursors, reduced LD formation and, consequently, higher membrane order in the ER. Simultaneous addition of OA rescues the cytotoxic effects by normalizing membrane order and by increasing both TAG and LD formation. Our study thus emphasizes the importance of monounsaturated fatty acids for the dietary management of DKD by preventing lipid bilayer stress in the ER and promoting TAG and LD formation in PTCs.
Collapse
Affiliation(s)
- Albert Pérez-Martí
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Suresh Ramakrishnan
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Jiayi Li
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Martijn R Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratorium (EMBL), Heidelberg, Germany
| | - Luigi R De La Motte
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anis Mansouri
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163, INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | | | | | - Matias Simons
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
27
|
Transcriptional Integration of Distinct Microbial and Nutritional Signals by the Small Intestinal Epithelium. Cell Mol Gastroenterol Hepatol 2022; 14:465-493. [PMID: 35533983 PMCID: PMC9305020 DOI: 10.1016/j.jcmgh.2022.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS The intestine constantly interprets and adapts to complex combinations of dietary and microbial stimuli. However, the transcriptional strategies by which the intestinal epithelium integrates these coincident sources of information remain unresolved. We recently found that microbiota colonization suppresses epithelial activity of hepatocyte nuclear factor 4 nuclear receptor transcription factors, but their integrative regulation was unknown. METHODS We compared adult mice reared germ-free or conventionalized with a microbiota either fed normally or after a single high-fat meal. Preparations of unsorted jejunal intestinal epithelial cells were queried using lipidomics and genome-wide assays for RNA sequencing and ChIP sequencing for the activating histone mark H3K27ac and hepatocyte nuclear factor 4 alpha. RESULTS Analysis of lipid classes, genes, and regulatory regions identified distinct nutritional and microbial responses but also simultaneous influence of both stimuli. H3K27ac sites preferentially increased by high-fat meal in the presence of microbes neighbor lipid anabolism and proliferation genes, were previously identified intestinal stem cell regulatory regions, and were not hepatocyte nuclear factor 4 alpha targets. In contrast, H3K27ac sites preferentially increased by high-fat meal in the absence of microbes neighbor targets of the energy homeostasis regulator peroxisome proliferator activated receptor alpha, neighbored fatty acid oxidation genes, were previously identified enterocyte regulatory regions, and were hepatocyte factor 4 alpha bound. CONCLUSIONS Hepatocyte factor 4 alpha supports a differentiated enterocyte and fatty acid oxidation program in germ-free mice, and that suppression of hepatocyte factor 4 alpha by the combination of microbes and high-fat meal may result in preferential activation of intestinal epithelial cell proliferation programs. This identifies potential transcriptional mechanisms for intestinal adaptation to multiple signals and how microbiota may modulate intestinal lipid absorption, epithelial cell renewal, and systemic energy balance.
Collapse
|
28
|
He Q, Liu L, Wei J, Jiang J, Rong Z, Chen X, Zhao J, Jiang K. Roles and action mechanisms of bile acid-induced gastric intestinal metaplasia: a review. Cell Death Dis 2022; 8:158. [PMID: 35379788 PMCID: PMC8979943 DOI: 10.1038/s41420-022-00962-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/11/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Gastric intestinal metaplasia (IM) is a precancerous lesion that increases the risk of subsequent gastric cancer (GC) development. Therefore, the mechanism of IM has been the focus of basic and clinical research. Helicobacter pylori (H. pylori) infection has been recognized as the main pathogenesis of gastric IM. However, more and more studies have shown that chronic inflammation of gastric mucosa caused by bile reflux is the key pathogenic factor of gastric IM. Bile reflux activates the expression of IM biomarkers via the bile acid receptor. In addition, microRNAs, exosomes, and epigenetics are also involved in the occurrence and development of bile acid-induced gastric IM. Currently, the relevant research is still very few. The molecular mechanism of the phenotypic transformation of gastrointestinal epithelial cells induced by bile acids has not been fully understood. This article mainly reviews the physiology and pathology of bile acid, mechanism of gastric IM induced by bile acid, bile acid receptors, and so on, in order to provide reference for further research.
Collapse
Affiliation(s)
- Qijin He
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Limin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Jingge Wei
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Jiaying Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Zheng Rong
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| | - Kui Jiang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Institute of Digestive Diseases, Tianjin Key Laboratory of Digestive Diseases, No. 154 Anshan Road, Tianjin, 300052, China.
| |
Collapse
|
29
|
Haque E, Teeli AS, Winiarczyk D, Taguchi M, Sakuraba S, Kono H, Leszczyński P, Pierzchała M, Taniguchi H. HNF1A POU Domain Mutations Found in Japanese Liver Cancer Patients Cause Downregulation of HNF4A Promoter Activity with Possible Disruption in Transcription Networks. Genes (Basel) 2022; 13:genes13030413. [PMID: 35327967 PMCID: PMC8949677 DOI: 10.3390/genes13030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte nuclear factor 1A (HNF1A) is the master regulator of liver homeostasis and organogenesis and regulates many aspects of hepatocyte functions. It acts as a tumor suppressor in the liver, evidenced by the increased proliferation in HNF1A knockout (KO) hepatocytes. Hence, we postulated that any loss-of-function variation in the gene structure or composition (mutation) could trigger dysfunction, including disrupted transcriptional networks in liver cells. From the International Cancer Genome Consortium (ICGC) database of cancer genomes, we identified several HNF1A mutations located in the functional Pit-Oct-Unc (POU) domain. In our biochemical analysis, we found that the HNF1A POU-domain mutations Y122C, R229Q and V259F suppressed HNF4A promoter activity and disrupted the binding of HNF1A to its target HNF4A promoter without any effect on the nuclear localization. Our results suggest that the decreased transcriptional activity of HNF1A mutants is due to impaired DNA binding. Through structural simulation analysis, we found that a V259F mutation was likely to affect DNA interaction by inducing large conformational changes in the N-terminal region of HNF1A. The results suggest that POU-domain mutations of HNF1A downregulate HNF4A gene expression. Therefore, to mimic the HNF1A mutation phenotype in transcription networks, we performed siRNA-mediated knockdown (KD) of HNF4A. Through RNA-Seq data analysis for the HNF4A KD, we found 748 differentially expressed genes (DEGs), of which 311 genes were downregulated (e.g., HNF1A, ApoB and SOAT2) and 437 genes were upregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping revealed that the DEGs were involved in several signaling pathways (e.g., lipid and cholesterol metabolic pathways). Protein–protein network analysis suggested that the downregulated genes were related to lipid and cholesterol metabolism pathways, which are implicated in hepatocellular carcinoma (HCC) development. Our study demonstrates that mutations of HNF1A in the POU domain result in the downregulation of HNF1A target genes, including HNF4A, and this may trigger HCC development through the disruption of HNF4A–HNF1A transcriptional networks.
Collapse
Affiliation(s)
- Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Masahiko Taguchi
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Shun Sakuraba
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Hidetoshi Kono
- Molecular Modeling and Simulation Group, National Institutes for Quantum Science and Technology, Kizugawa 619-0215, Japan; (M.T.); (S.S.); (H.K.)
| | - Paweł Leszczyński
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Mariusz Pierzchała
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (A.S.T.); (D.W.); (P.L.); (M.P.)
- Correspondence: ; Tel.: +48-22-736-70-95
| |
Collapse
|
30
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease worldwide. It refers to a range of liver conditions affecting people who drink little or no alcohol. NAFLD comprises non-alcoholic fatty liver and non-alcoholic steatohepatitis (NASH), the more aggressive form of NAFLD. NASH is featured by steatosis, lobular inflammation, hepatocyte injury, and various degrees of fibrosis. Although much progress has been made over the past decades, the pathogenic mechanism of NAFLD remains to be fully elucidated. Hepatocyte nuclear factor 4α (HNF4α) is a nuclear hormone receptor that is highly expressed in hepatocytes. Hepatic HNF4α expression is markedly reduced in NAFLD patients and mouse models of NASH. HNF4α has been shown to regulate bile acid, lipid, glucose, and drug metabolism. In this review, we summarize the recent advances in the understanding of the pathogenesis of NAFLD with a focus on the regulation of HNF4α and the role of hepatic HNF4α in NAFLD. Several lines of evidence have shown that hepatic HNF4α plays a key role in the initiation and progression of NAFLD. Recent data suggest that hepatic HNF4α may be a promising target for treatment of NAFLD.
Collapse
|
31
|
Transcriptional Regulation of Hepatic Autophagy by Nuclear Receptors. Cells 2022; 11:cells11040620. [PMID: 35203271 PMCID: PMC8869834 DOI: 10.3390/cells11040620] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/04/2023] Open
Abstract
Autophagy is an adaptive self-eating process involved in degradation of various cellular components such as carbohydrates, lipids, proteins, and organelles. Its activity plays an essential role in tissue homeostasis and systemic metabolism in response to diverse challenges, including nutrient depletion, pathogen invasion, and accumulations of toxic materials. Therefore, autophagy dysfunctions are intimately associated with many human diseases such as cancer, neurodegeneration, obesity, diabetes, infection, and aging. Although its acute post-translational regulation is well described, recent studies have also shown that autophagy can be controlled at the transcriptional and post-transcriptional levels. Nuclear receptors (NRs) are in general ligand-dependent transcription factors consisting of 48 members in humans. These receptors extensively control transcription of a variety of genes involved in development, metabolism, and inflammation. In this review, we discuss the roles and mechanisms of NRs in an aspect of transcriptional regulation of hepatic autophagy, and how the NR-driven autophagy pathway can be harnessed to treat various liver diseases.
Collapse
|
32
|
The essential role for endothelial cell sprouting in coronary collateral growth. J Mol Cell Cardiol 2022; 165:158-171. [PMID: 35074317 PMCID: PMC8940680 DOI: 10.1016/j.yjmcc.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
Abstract
RATIONALE Coronary collateral growth is a natural bypass for ischemic heart diseases. It offers tremendous therapeutic benefit, but the process of coronary collateral growth isincompletely understood due to limited preclinical murine models that would enable interrogation of its mechanisms and processes via genetic modification and lineage tracing. Understanding the processes by which coronary collaterals develop can unlock new therapeutic strategies for ischemic heart disease. OBJECTIVE To develop a murine model of coronary collateral growth by repetitive ischemia and investigate whether capillary endothelial cells could contribute to the coronary collateral formation in an adult mouse heart after repetitive ischemia by lineage tracing. METHODS AND RESULTS A murine model of coronary collateral growth was developed using short episodes of repetitive ischemia. Repetitive ischemia stimulation resulted in robust collateral growth in adult mouse hearts, validated by high-resolution micro-computed tomography. Repetitive ischemia-induced collateral formation compensated ischemia caused by occlusion of the left anterior descending artery. Cardiac function improved during ischemia after repetitive ischemia, suggesting the improvement of coronary blood flow. A capillary-specific Cre driver (Apln-CreER) was used for lineage tracing capillary endothelial cells. ROSA mT/mG reporter mice crossed with the Apln-CreER transgene mice underwent a 17 days' repetitive ischemia protocol for coronary collateral growth. Two-photon and confocal microscopy imaging of heart slices revealed repetitive ischemia-induced coronary collateral growth initiated from sprouting Apelin+ endothelial cells. Newly formed capillaries in the collateral-dependent zone expanded in diameter upon repetitive ischemia stimulation and arterialized with smooth muscle cell recruitment, forming mature coronary arteries. Notably, pre-existing coronary arteries and arterioles were not Apelin+, and all Apelin+ collaterals arose from sprouting capillaries. Cxcr4, Vegfr2, Jag1, Mcp1, and Hif1⍺ mRNA levels in the repetitive ischemia-induced hearts were also upregulated at the early stage of coronary collateral growth, suggesting angiogenic signaling pathways are activated for coronary collaterals formation during repetitive ischemia. CONCLUSIONS We developed a murine model of coronary collateral growth induced by repetitive ischemia. Our lineage tracing study shows that sprouting endothelial cells contribute to coronary collateral growth in adult mouse hearts. For the first time, sprouting angiogenesis is shown to give rise to mature coronary arteries in response to repetitive ischemia in the adult mouse hearts.
Collapse
|
33
|
Goel C, Monga SP, Nejak-Bowen K. Role and Regulation of Wnt/β-Catenin in Hepatic Perivenous Zonation and Physiological Homeostasis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:4-17. [PMID: 34924168 PMCID: PMC8747012 DOI: 10.1016/j.ajpath.2021.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Metabolic heterogeneity or functional zonation is a key characteristic of the liver that allows different metabolic pathways to be spatially regulated within the hepatic system and together contribute to whole body homeostasis. These metabolic pathways are segregated along the portocentral axis of the liver lobule into three hepatic zones: periportal, intermediate or midzonal, and perivenous. The liver performs complementary or opposing metabolic functions within different hepatic zones while synergistic functions are regulated by overlapping zones, thereby maintaining the overall physiological stability. The Wnt/β-catenin signaling pathway is well known for its role in liver growth, development, and regeneration. In addition, the Wnt/β-catenin pathway plays a fundamental and dominant role in hepatic zonation and signals to orchestrate various functions of liver metabolism and pathophysiology. The β-catenin protein is the central player in the Wnt/β-catenin signaling cascade, and its activation is crucial for metabolic patterning of the liver. However, dysregulation of Wnt/β-catenin signaling is also implicated in different liver pathologies, including those associated with metabolic syndrome. β-Catenin is preferentially localized in the central region of the hepatic lobule surrounding the central vein and regulates multiple functions of this region. This review outlines the role of Wnt/β-catenin signaling pathway in controlling the different metabolic processes surrounding the central vein and its relation to liver homeostasis and dysfunction.
Collapse
Affiliation(s)
- Chhavi Goel
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
34
|
Descoeudres N, Jouneau L, Henry C, Gorrichon K, Derré-Bobillot A, Serror P, Gillespie LL, Archambaud C, Pagliuso A, Bierne H. An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Front Cell Infect Microbiol 2021; 11:761945. [PMID: 34858876 PMCID: PMC8631403 DOI: 10.3389/fcimb.2021.761945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Listeria monocytogenes causes severe foodborne illness in pregnant women and immunocompromised individuals. After the intestinal phase of infection, the liver plays a central role in the clearance of this pathogen through its important functions in immunity. However, recent evidence suggests that during long-term infection of hepatocytes, a subpopulation of Listeria may escape eradication by entering a persistence phase in intracellular vacuoles. Here, we examine whether this long-term infection alters hepatocyte defense pathways, which may be instrumental for bacterial persistence. We first optimized cell models of persistent infection in human hepatocyte cell lines HepG2 and Huh7 and primary mouse hepatocytes (PMH). In these cells, Listeria efficiently entered the persistence phase after three days of infection, while inducing a potent interferon response, of type I in PMH and type III in HepG2, while Huh7 remained unresponsive. RNA-sequencing analysis identified a common signature of long-term Listeria infection characterized by the overexpression of a set of genes involved in antiviral immunity and the under-expression of many acute phase protein (APP) genes, particularly involved in the complement and coagulation systems. Infection also altered the expression of cholesterol metabolism-associated genes in HepG2 and Huh7 cells. The decrease in APP transcripts was correlated with lower protein abundance in the secretome of infected cells, as shown by proteomics, and also occurred in the presence of APP inducers (IL-6 or IL-1β). Collectively, these results reveal that long-term infection with Listeria profoundly deregulates the innate immune functions of hepatocytes, which could generate an environment favorable to the establishment of persistent infection.
Collapse
Affiliation(s)
- Natalie Descoeudres
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Luc Jouneau
- Université Paris-Saclay, INRAE, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France
| | - Céline Henry
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kevin Gorrichon
- Université Paris-Saclay, Institut de Biologie Intégrative de la Cellule, CEA, CNRS UMR 9198, Université Paris-Sud, Gif-sur-Yvette, France
| | | | - Pascale Serror
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Laura Lee Gillespie
- Terry Fox Cancer Research Laboratories, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Cristel Archambaud
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| |
Collapse
|
35
|
Behlen JC, Lau CH, Li Y, Dhagat P, Stanley JA, Rodrigues Hoffman A, Golding MC, Zhang R, Johnson NM. Gestational Exposure to Ultrafine Particles Reveals Sex- and Dose-Specific Changes in Offspring Birth Outcomes, Placental Morphology, and Gene Networks. Toxicol Sci 2021; 184:204-213. [PMID: 34609516 DOI: 10.1093/toxsci/kfab118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Particulate matter (PM) causes adverse developmental outcomes following prenatal exposure, but the underlying biological mechanisms remain uncertain. Here we elucidate the effects of diesel exhaust ultrafine particle (UFP) exposure during pregnancy on placental and fetal development. Time-mated C57Bl/6n mice were gestationally exposed to UFPs at a low dose (LD, 100 µg/m3) or high dose (HD, 500 µg/m3) for 6 h daily. Phenotypic effects on fetuses and placental morphology at gestational day (GD) of 18.5 were evaluated, and RNA sequencing was characterized for transcriptomic changes in placental tissue from male and female offspring. A significant decrease in average placental weights and crown to rump lengths was observed in female offspring in the LD exposure group. Gestational UFP exposure altered placental morphology in a dose- and sex-specific manner. Average female decidua areas were significantly greater in the LD and HD groups. Maternal lacunae mean areas were increased in the female LD group, whereas fetal blood vessel mean areas were significantly greater in the male LD and HD groups. RNA sequencing indicated several disturbed cellular functions related to lipid metabolism, which were most pronounced in the LD group and especially in female placental tissue. Our findings demonstrate the vulnerability of offspring exposed to UFPs during pregnancy, highlighting sex-specific effects and emphasizing the importance of mitigating PM exposure to prevent adverse health outcomes.
Collapse
Affiliation(s)
| | | | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - Prit Dhagat
- Alabama School of Osteopathic Medicine, Dothan, Alabama 36303, USA
| | - Jone A Stanley
- Covance Laboratories, Inc., Greenfield, Indiana 46140, USA
| | | | | | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.,Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
36
|
Qu M, Qu H, Jia Z, Kay SA. HNF4A defines tissue-specific circadian rhythms by beaconing BMAL1::CLOCK chromatin binding and shaping the rhythmic chromatin landscape. Nat Commun 2021; 12:6350. [PMID: 34732735 PMCID: PMC8566521 DOI: 10.1038/s41467-021-26567-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/12/2021] [Indexed: 11/30/2022] Open
Abstract
Transcription modulated by the circadian clock is diverse across cell types, underlying circadian control of peripheral metabolism and its observed perturbation in human diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the genome-wide distribution of core clock component BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. Additionally, the epigenetic state and accessibility of the liver genome dynamically change throughout the day, synchronized with chromatin occupancy of HNF4A and clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our results may provide a general mechanism for establishing circadian rhythm heterogeneity during development and disease progression, governed by chromatin structure.
Collapse
Affiliation(s)
- Meng Qu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
- Graduate Program in Genetics, Genomics, and Bioinformatics, University of California, Riverside, CA, 92521, USA
| | - Steve A Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
37
|
Xu Y, Hu S, Jadhav K, Zhu Y, Pan X, Bawa FC, Yin L, Zhang Y. Hepatocytic Activating Transcription Factor 3 Protects Against Steatohepatitis via Hepatocyte Nuclear Factor 4α. Diabetes 2021; 70:2506-2517. [PMID: 34475098 PMCID: PMC8564409 DOI: 10.2337/db21-0181] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022]
Abstract
Activating transcription factor 3 (ATF3) has been shown to play an important role in HDL metabolism; yet, the role of hepatocytic ATF3 in the development of steatohepatitis remains elusive. Here we show that adenoassociated virus-mediated overexpression of human ATF3 in hepatocytes prevents diet-induced steatohepatitis in C57BL/6 mice and reverses steatohepatitis in db/db mice. Conversely, global or hepatocyte-specific loss of ATF3 aggravates diet-induced steatohepatitis. Mechanistically, hepatocytic ATF3 induces hepatic lipolysis and fatty acid oxidation and inhibits inflammation and apoptosis. We further show that hepatocyte nuclear factor 4α (HNF4α) is required for ATF3 to improve steatohepatitis. Thus, the current study indicates that ATF3 protects against steatohepatitis through, at least in part, hepatic HNF4α. Targeting hepatic ATF3 may be useful for treatment of steatohepatitis.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| |
Collapse
|
38
|
Teeli AS, Łuczyńska K, Haque E, Gayas MA, Winiarczyk D, Taniguchi H. Disruption of Tumor Suppressors HNF4α/HNF1α Causes Tumorigenesis in Liver. Cancers (Basel) 2021; 13:cancers13215357. [PMID: 34771521 PMCID: PMC8582545 DOI: 10.3390/cancers13215357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatocyte nuclear factor-4α (HNF4α) and hepatocyte nuclear factor-1α (HNF1α) are transcription factors that influence the development and maintenance of homeostasis in a variety of tissues, including the liver. As such, disruptions in their transcriptional networks can herald a number of pathologies, such as tumorigenesis. Largely considered tumor suppressants in liver cancer, these transcription factors regulate key events of inflammation, epithelial-mesenchymal transition, metabolic reprogramming, and the differentiation status of the cell. High-throughput analysis of cancer cell genomes has identified a number of hotspot mutations in HNF1α and HNF4α in liver cancer. Such results also showcase HNF1α and HNF4α as important therapeutic targets helping us step into the era of personalized medicine. In this review, we update current findings on the roles of HNF1α and HNF4α in liver cancer development and progression. It covers the molecular mechanisms of HNF1α and HNF4α dysregulation and also highlights the potential of HNF4α as a therapeutic target in liver cancer.
Collapse
Affiliation(s)
- Aamir Salam Teeli
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Kamila Łuczyńska
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Effi Haque
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Mohmmad Abrar Gayas
- Department of Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Jammu 19000, India;
| | - Dawid Winiarczyk
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
| | - Hiroaki Taniguchi
- Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (A.S.T.); (K.Ł.); (E.H.); (D.W.)
- Correspondence:
| |
Collapse
|
39
|
Barthelson K, Pederson SM, Newman M, Lardelli M. Brain Transcriptome Analysis of a Protein-Truncating Mutation in Sortilin-Related Receptor 1 Associated With Early-Onset Familial Alzheimer's Disease Indicates Early Effects on Mitochondrial and Ribosome Function. J Alzheimers Dis 2021; 79:1105-1119. [PMID: 33386808 DOI: 10.3233/jad-201383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The early cellular stresses leading to Alzheimer's disease (AD) remain poorly understood because we cannot access living, asymptomatic human AD brains for detailed molecular analyses. Sortilin-related receptor 1 (SORL1) encodes a multi-domain receptor protein genetically associated with both rare, early-onset familial AD (EOfAD) and common, sporadic, late-onset AD (LOAD). SORL1 protein has been shown to act in the trafficking of the amyloid β A4 precursor protein (AβPP) that is proteolysed to form one of the pathological hallmarks of AD, amyloid-β (Aβ) peptide. However, other functions of SORL1 in AD are less well understood. OBJECTIVE To investigate the effects of heterozygosity for an EOfAD-like mutation in SORL1 on the brain transcriptome of young-adult mutation carriers using zebrafish as a model organism. METHODS We performed targeted mutagenesis to generate an EOfAD-like mutation in the zebrafish orthologue of SORL1 and performed RNA-sequencing on mRNA isolated from the young adult brains of siblings in a family of fish either wild type (non-mutant) or heterozygous for the EOfAD-like mutation. RESULTS We identified subtle differences in gene expression indicating changes in mitochondrial and ribosomal function in the mutant fish. These changes appear to be independent of changes in mitochondrial content or the expression of AβPP-related proteins in zebrafish. CONCLUSION These findings provided evidence supporting that EOfAD mutations in SORL1 affect mitochondrial and ribosomal function and provide the basis for future investigation elucidating the nature of these effects.
Collapse
Affiliation(s)
- Karissa Barthelson
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Stephen Martin Pederson
- Bioinformatics Hub, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Morgan Newman
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| | - Michael Lardelli
- Alzheimer's Disease Genetics Laboratory, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
40
|
Li P, Chen X, Dong M, Luo J, Lu S, Chen M, Zhang Y, Zhou H, Jiang H. Gut inflammation exacerbates high-fat diet induced steatosis by suppressing VLDL-TG secretion through HNF4α pathway. Free Radic Biol Med 2021; 172:459-469. [PMID: 34186207 DOI: 10.1016/j.freeradbiomed.2021.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is increasingly identified in inflammatory bowel disease (IBD) patients with unclear etiology. In the current study we assessed the contribution of colonic inflammation to NAFLD development and the underlying mechanism in a mouse model for IBD. Our results showed that dextran sulfate sodium (DSS)-induced gut colitis directly led to hepatic inflammation, injury and further exacerbated hepatic steatosis caused by high fat diet (HF) feeding. The essential genes assessment, hepatic metabolic analysis and triglyceride-rich very low-density lipoprotein (VLDL-TG) secretion assays revealed a higher β-oxidation of fatty acids (FAs) but impaired VLDL-TG secretion in liver of DSS-treated mice. Disruption of the intestinal barrier by DSS promoted liver inflammation, which strongly suppressed hepatic VLDL-TG secretion and further aggravated HF-induced VLDL-TG secretion impairment through down-regulation of apolipoprotein B (APOB), hence promoting the storage of triglycerides (TG) in the liver. Inflammation induced by mixed proinflammatory cytokines or LPS obviously inhibited the expression of microsomal triglyceride transfer protein (MTP) and APOB expression and subsequently increased TG content via the suppression of HNF4α in mouse primary hepatocytes. In addition, the downregulation of MTP and APOB by proinflammatory cytokines was also rescued through activating Hnf4α by cortisol. Altogether, our results demonstrated that chronic inflammation exacerbated hepatic steatosis by inhibiting the secreting of hepatic VLDL-TG through HNF4α pathway, suggesting that restoring hepatic VLDL-TG secretion may be a novel strategy for treatment of NAFLD in IBD.
Collapse
Affiliation(s)
- Ping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiu Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Minlei Dong
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Shuanghui Lu
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingqiong Zhang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
41
|
Ren H, Hu F, Wang D, Kang X, Feng X, Zhang L, Zhou B, Liu S, Yuan G. Sirtuin 2 Prevents Liver Steatosis and Metabolic Disorders by Deacetylation of Hepatocyte Nuclear Factor 4α. Hepatology 2021; 74:723-740. [PMID: 33636024 PMCID: PMC8453713 DOI: 10.1002/hep.31773] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Sirtuin 2 (SIRT2), an NAD+ -dependent deacetylase, is involved in various cellular processes regulating metabolic homeostasis and inflammatory responses; however, its role in hepatic steatosis and related metabolic disorders is unknown. APPROACH AND RESULTS Integrating the published genomic data on NAFLD samples from humans and rodents available in the Gene Expression Omnibus, we found that SIRT2 was significantly down-regulated in livers from patients with advanced NAFLD and high-fat diet (HFD)-induced NAFLD mice. This study further revealed that SIRT2 was markedly decreased in obese (ob/ob) mice and in palmitate-treated HepG2 cells. Restoration of hepatic SIRT2 expression in ob/ob or HFD-fed mice largely alleviated insulin resistance, hepatic steatosis, and systematic inflammation, whereas SIRT2 liver-specific ablation exacerbated these metabolic dysfunctions in HFD-fed C57BL/6J mice. Mechanistically, SIRT2 stabilized the hepatocyte nuclear factor 4α (HNF4α) protein by binding to and deacetylating HNF4α on lysine 458. Furthermore, HNF4α was sufficient to mediate SIRT2 function, and SIRT2-HNF4α interaction was required for SIRT2 function both in vivo and in vitro. CONCLUSIONS Collectively, the present study provided evidence that SIRT2 functions as a crucial negative regulator in NAFLD and related metabolic disorders and that targeting the SIRT2-HNF4α pathway may be a promising strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Huihui Ren
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China.,Branch of National Clinical Research Center for Metabolic DiseaseHubeiP.R. China
| | - Fuqing Hu
- Gastrointestinal SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Dan Wang
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Xiaonan Kang
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Xiaohui Feng
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Lu Zhang
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Bowen Zhou
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Siyue Liu
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China
| | - Gang Yuan
- Department of EndocrinologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanP.R. China.,Branch of National Clinical Research Center for Metabolic DiseaseHubeiP.R. China
| |
Collapse
|
42
|
Pan G, Cavalli M, Wadelius C. Polymorphisms rs55710213 and rs56334587 regulate SCD1 expression by modulating HNF4A binding. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194724. [PMID: 34171462 DOI: 10.1016/j.bbagrm.2021.194724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The stearoyl-CoA desaturase 1 (SCD1) gene at 10q24.31 encodes the rate limiting enzyme SCD1 that catalyzes the biosynthesis of monounsaturated fatty acids (MUFAs) from saturated fatty acids (SFAs). Dysregulated SCD1 activity has been observed in many human diseases including non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and several types of cancer. HNF4A is a central regulator of glucose and lipid metabolism and previous studies suggested that it is deeply involved in regulating the SCD1 activity in the liver. However, the underlying mechanisms on whether and how SCD1 is regulated by HNF4A have not been explored in detail. In this study, we found that HNF4A regulates SCD1 expression by directly binding to the key regulatory regions in the SCD1 locus. Knocking down of HNF4A significantly downregulated the expression of SCD1. Variants rs55710213 and rs56334587 in intron 5 of SCD1 directly reside in a canonical HNF4A binding site. The GG haplotype of rs55710213 and rs56334587 is associated with decreased SCD1 activity by disrupting the binding of HNF4A, which further decreased the enhancer activity and SCD1 expression. In conclusion, our study demonstrated that SCD1 is directly regulated by HNF4A, which may be helpful in the understanding of the altered metabolic pathways in many diseases associated with dysregulated SCD1 or HNF4A or both.
Collapse
Affiliation(s)
- Gang Pan
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Marco Cavalli
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Claes Wadelius
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
43
|
Ahn J, Lee H, Jung CH, Ha SY, Seo HD, Kim YI, Ha T. 6-Gingerol Ameliorates Hepatic Steatosis via HNF4α/miR-467b-3p/GPAT1 Cascade. Cell Mol Gastroenterol Hepatol 2021; 12:1201-1213. [PMID: 34139323 PMCID: PMC8445893 DOI: 10.1016/j.jcmgh.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS The development of nonalcoholic fatty liver disease (NAFLD) can be modulated by microRNAs (miRNA). Dietary polyphenols modulate the expression of miRNA such as miR-467b-3p in the liver. In addition, 6-gingerol (6-G), the functional polyphenol of ginger, has been reported to ameliorate hepatic steatosis; however, the exact mechanism involved and the role of miRNA remain elusive. In this study, we assessed the role of miR-467b-3p in the pathogenesis of hepatic steatosis and the regulation of miR-467b-3p by 6-G through the hepatocyte nuclear factor 4α (HNF4α). METHODS miR-467b-3p expression was measured in free fatty acid (FFA)-treated hepatocytes or liver from high-fat diet (HFD)-fed mice. Gain- or loss-of-function of miR-467b-3p was induced using miR-467b-3p-specific miRNA mimic or miRNA inhibitor, respectively. 6-G was exposed to FFA-treated cells and HFD-fed mice. The HNF4α/miR-467b-3p/GPAT1 axis was measured in mouse and human fatty liver tissues. RESULTS We found that miR-467b-3p was down-regulated in liver tissues from HFD-fed mice and in FFA-treated Hepa1-6 cells. Overexpression of miR-467b-3p decreased intracellular lipid accumulation in FFA-treated hepatocytes and mitigated hepatic steatosis in HFD-fed mice via negative regulation of glycerol-3-phosphate acyltransferase-1 (GPAT1). In addition, miR-467b-3p up-regulation by 6-G was observed. 6-G inhibited FFA-induced lipid accumulation and mitigated hepatic steatosis. Moreover, it increased the transcriptional activity of HNF4α, resulting in the increase of miR-467b-3p and subsequent decrease of GPAT1. HNF4α/miR-467b-3p/GPAT1 signaling also was observed in human samples with hepatic steatosis. CONCLUSIONS Our findings establish a novel mechanism by which 6-G improves NAFLD. This suggests that targeting of the HNF4α/miR-467b-3p/GPAT1 cascade may be used as a potential therapeutic strategy to control NAFLD.
Collapse
Affiliation(s)
- Jiyun Ahn
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| | - Hyunjung Lee
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Chang Hwa Jung
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea
| | - Seung Yeon Ha
- Department of Pathology, Gachon University of Medicine and Science, Incheon, Korea
| | - Hyo-Deok Seo
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea
| | - Young In Kim
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Department of Food Science and Technology, Jeonbuk National University, Jeonju-si, South Korea
| | - Taeyoul Ha
- Metabolism and Nutrition Research Group, Korea Food Research Institute, Wanju-gun, Korea,Division of Food Biotechnology, University of Science and Technology, Daejeon, Korea,Correspondence Address correspondence to: Jiyun Ahn, PhD, DVM, Metabolism and Nutrition Research Group, Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Korea.
| |
Collapse
|
44
|
Huck I, Morris EM, Thyfault J, Apte U. Hepatocyte-Specific Hepatocyte Nuclear Factor 4 Alpha (HNF4) Deletion Decreases Resting Energy Expenditure by Disrupting Lipid and Carbohydrate Homeostasis. Gene Expr 2021; 20:157-168. [PMID: 33691903 PMCID: PMC8201658 DOI: 10.3727/105221621x16153933463538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hepatocyte nuclear factor 4 alpha (HNF4) is required for hepatocyte differentiation and regulates expression of genes involved in lipid and carbohydrate metabolism including those that control VLDL secretion and gluconeogenesis. Whereas previous studies have focused on specific genes regulated by HNF4 in metabolism, its overall role in whole-body energy utilization has not been studied. In this study, we used indirect calorimetry to determine the effect of hepatocyte-specific HNF4 deletion (HNF4-KO) in mice on whole-body energy expenditure (EE) and substrate utilization in fed, fasted, and high-fat diet (HFD) conditions. HNF4-KO had reduced resting EE during fed conditions and higher rates of carbohydrate oxidation with fasting. HNF4-KO mice exhibited decreased body mass caused by fat mass depletion despite no change in energy intake and evidence of positive energy balance. HNF4-KO mice were able to upregulate lipid oxidation during HFD, suggesting that their metabolic flexibility was intact. However, only hepatocyte-specific HNF4-KO mice exhibited significant reduction in basal metabolic rate and spontaneous activity during HFD. Consistent with previous studies, hepatic gene expression in HNF4-KO supports decreased gluconeogenesis and decreased VLDL export and hepatic -oxidation in HNF4-KO livers across all feeding conditions. Together, our data suggest that deletion of hepatic HNF4 increases dependence on dietary carbohydrates and endogenous lipids for energy during fed and fasted conditions by inhibiting hepatic gluconeogenesis, hepatic lipid export, and intestinal lipid absorption resulting in decreased whole-body energy expenditure. These data clarify the role of hepatic HNF4 on systemic metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Ian Huck
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - E. Matthew Morris
- †Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John Thyfault
- †Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
- ‡Research Service, Kansas City VA Medical Center, Kansas City, KS, USA
| | - Udayan Apte
- *Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
45
|
Xu Y, Zhu Y, Hu S, Xu Y, Stroup D, Pan X, Bawa FC, Chen S, Gopoju R, Yin L, Zhang Y. Hepatocyte Nuclear Factor 4α Prevents the Steatosis-to-NASH Progression by Regulating p53 and Bile Acid Signaling (in mice). Hepatology 2021; 73:2251-2265. [PMID: 33098092 PMCID: PMC8062586 DOI: 10.1002/hep.31604] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS Hepatocyte nuclear factor 4α (HNF4α) is highly enriched in the liver, but its role in the progression of nonalcoholic liver steatosis (NAFL) to NASH has not been elucidated. In this study, we investigated the effect of gain or loss of HNF4α function on the development and progression of NAFLD in mice. APPROACH AND RESULTS Overexpression of human HNF4α protected against high-fat/cholesterol/fructose (HFCF) diet-induced steatohepatitis, whereas loss of Hnf4α had opposite effects. HNF4α prevented hepatic triglyceride accumulation by promoting hepatic triglyceride lipolysis, fatty acid oxidation, and VLDL secretion. Furthermore, HNF4α suppressed the progression of NAFL to NASH. Overexpression of human HNF4α inhibited HFCF diet-induced steatohepatitis in control mice but not in hepatocyte-specific p53-/- mice. In HFCF diet-fed mice lacking hepatic Hnf4α, recapitulation of hepatic expression of HNF4α targets cholesterol 7α-hydroxylase and sterol 12α-hydroxylase and normalized hepatic triglyceride levels and attenuated steatohepatitis. CONCLUSIONS The current study indicates that HNF4α protects against diet-induced development and progression of NAFLD by coordinating the regulation of lipolytic, p53, and bile acid signaling pathways. Targeting hepatic HNF4α may be useful for treatment of NASH.
Collapse
Affiliation(s)
- Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- Present address: Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Diane Stroup
- Department of Chemistry and Biochemistry, Kent State University, OH 44272, USA
| | - Xiaoli Pan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Fathima Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
46
|
Fragki S, Dirven H, Fletcher T, Grasl-Kraupp B, Bjerve Gützkow K, Hoogenboom R, Kersten S, Lindeman B, Louisse J, Peijnenburg A, Piersma AH, Princen HMG, Uhl M, Westerhout J, Zeilmaker MJ, Luijten M. Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Crit Rev Toxicol 2021; 51:141-164. [PMID: 33853480 DOI: 10.1080/10408444.2021.1888073] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Associations between per- and polyfluoroalkyl substances (PFASs) and increased blood lipids have been repeatedly observed in humans, but a causal relation has been debated. Rodent studies show reverse effects, i.e. decreased blood cholesterol and triglycerides, occurring however at PFAS serum levels at least 100-fold higher than those in humans. This paper aims to present the main issues regarding the modulation of lipid homeostasis by the two most common PFASs, PFOS and PFOA, with emphasis on the underlying mechanisms relevant for humans. Overall, the apparent contrast between human and animal data may be an artifact of dose, with different molecular pathways coming into play upon exposure to PFASs at very low versus high levels. Altogether, the interpretation of existing rodent data on PFOS/PFOA-induced lipid perturbations with respect to the human situation is complex. From a mechanistic perspective, research on human liver cells shows that PFOS/PFOA activate the PPARα pathway, whereas studies on the involvement of other nuclear receptors, like PXR, are less conclusive. Other data indicate that suppression of the nuclear receptor HNF4α signaling pathway, as well as perturbations of bile acid metabolism and transport might be important cellular events that require further investigation. Future studies with human-relevant test systems would help to obtain more insight into the mechanistic pathways pertinent for humans. These studies shall be designed with a careful consideration of appropriate dosing and toxicokinetics, so as to enable biologically plausible quantitative extrapolations. Such research will increase the understanding of possible perturbed lipid homeostasis related to PFOS/ PFOA exposure and the potential implications for human health.
Collapse
Affiliation(s)
- Styliani Fragki
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tony Fletcher
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, UK
| | - Bettina Grasl-Kraupp
- Institute of Cancer Research, Medical University of Vienna, Borschkegasse 8a, Vienna, Austria
| | | | - Ron Hoogenboom
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Jochem Louisse
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Ad Peijnenburg
- Wageningen Food Safety Research (WFSR), Wageningen, The Netherlands
| | - Aldert H Piersma
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hans M G Princen
- Metabolic Health Research, The Netherlands Organization of Applied Scientific Research (TNO), Gaubius Laboratory, Leiden, The Netherlands
| | - Maria Uhl
- Environment Agency Austria (EAA), Vienna, Austria
| | - Joost Westerhout
- Risk Analysis for Products In Development, The Netherlands Organization of Applied Scientific Research (TNO), Utrecht, The Netherlands
| | - Marco J Zeilmaker
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
47
|
Kuefner MS. Secretory Phospholipase A2s in Insulin Resistance and Metabolism. Front Endocrinol (Lausanne) 2021; 12:732726. [PMID: 34512555 PMCID: PMC8429832 DOI: 10.3389/fendo.2021.732726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
The phospholipases A2 (PLA2) superfamily encompasses enzymes commonly found in mammalian tissues and snake venom. Many of these enzymes have unique tissue distribution, function, and substrate specificity suggesting distinct biological roles. In the past, much of the research on secretory PLA2s has analyzed their roles in inflammation, anti-bacterial actions, and atherosclerosis. In recent studies utilizing a variety of mouse models, pancreatic islets, and clinical trials, a role for many of these enzymes in the control of metabolism and insulin action has been revealed. In this review, this research, and the unique contributions of the PLA2 enzymes in insulin resistance and metabolism.
Collapse
|
48
|
Chen C, Zhang M, Li Y, Wang S, Xie D, Wen X, Hu Y, Shen J, He X, You C, Tocher DR, Monroig Ó. Identification of miR-145 as a Key Regulator Involved in LC-PUFA Biosynthesis by Targeting hnf4α in the Marine Teleost Siganus canaliculatus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15123-15133. [PMID: 33291871 DOI: 10.1021/acs.jafc.0c04649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fish, particularly marine species, are considered as the major source of long-chain polyunsaturated fatty acids (LC-PUFA) in the human diet. The extent to which fish can synthesize LC-PUFA varies with species and is regulated by dietary fatty acids and ambient salinity. Therefore, to enable fish to produce more LC-PUFA, comprehending the mechanisms underlying the regulation of LC-PUFA biosynthesis is necessary. Here, the regulatory roles of miR-145 were investigated in the marine teleost rabbitfish Siganus canaliculatus. The hepatic abundance of miR-145 was lower in rabbitfish reared in low salinity (10 ppt) in comparison with that of those cultured in seawater (32 ppt), while the opposite pattern was observed for the transcripts of the transcription factor hepatocyte nuclear factor 4 alpha (Hnf4α), known to affect rabbitfish LC-PUFA biosynthesis. Rabbitfish hnf4α was identified as a target of miR-145 by luciferase reporter assays, and overexpression of miR-145 in the S. canaliculatus hepatocyte line (SCHL) markedly reduced the expression of Hnf4α and its target genes involved in LC-PUFA biosynthesis, namely, Δ4 fads2, Δ6Δ5 fads2, and elovl5. The opposite pattern was observed when miR-145 was knocked down in SCHL cells, with these effects being attenuated by subsequent hnf4α knockdown. Moreover, increasing endogenous Hnf4α by the knockdown of miR-145 increased the expression of LC-PUFA biosynthesis genes and enhanced the synthesis of LC-PUFA in both SCHL cells and rabbitfish in vivo. This is the first report to identify miR-145 as a key effector of LC-PUFA biosynthesis by targeting hnf4α, providing a novel insight into the mechanisms of the regulation of LC-PUFA biosynthesis in vertebrates.
Collapse
Affiliation(s)
- Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
| | - Yuanyou Li
- Guangdong Laboratory for Lingnan Modern Agriculture, School of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
- Research Center for Nutrition & Feed and Healthy Breeding of Aquatic Animals of Guangdong Province, Shantou 515063, China
| | - Dizhi Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, School of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Xiaobo Wen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
- Guangdong Laboratory for Lingnan Modern Agriculture, School of Marine Sciences of South China Agricultural University, Guangzhou 510642, China
| | - Yu Hu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
| | - Jiajian Shen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
| | - Xianda He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
| | - Cuihong You
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, 243 DaXue Road, Shantou 515063, China
| | - Douglas R Tocher
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland FK9 4LA, UK
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| |
Collapse
|
49
|
Xiao Y, Kim M, Lazar MA. Nuclear receptors and transcriptional regulation in non-alcoholic fatty liver disease. Mol Metab 2020; 50:101119. [PMID: 33220489 PMCID: PMC8324695 DOI: 10.1016/j.molmet.2020.101119] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND As a result of a sedentary lifestyle and excess food consumption in modern society, non-alcoholic fatty liver disease (NAFLD) characterized by fat accumulation in the liver is becoming a major disease burden. Non-alcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by inflammation and fibrosis that can lead to hepatocellular carcinoma and liver failure. Nuclear receptors (NRs) are a family of ligand-regulated transcription factors that closely control multiple aspects of metabolism. Their transcriptional activity is modulated by various ligands, including hormones and lipids. NRs serve as potential pharmacological targets for NAFLD/NASH and other metabolic diseases. SCOPE OF REVIEW In this review, we provide a comprehensive overview of NRs that have been studied in the context of NAFLD/NASH with a focus on their transcriptional regulation, function in preclinical models, and studies of their clinical utility. MAJOR CONCLUSIONS The transcriptional regulation of NRs is context-dependent. During the dynamic progression of NAFLD/NASH, NRs play diverse roles in multiple organs and different cell types in the liver, which highlights the necessity of targeting NRs in a stage-specific and cell-type-specific manner to enhance the efficacy and safety of treatment methods.
Collapse
Affiliation(s)
- Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mindy Kim
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Cheng Y, Li Y, Li W, Song Y, Zeng R, Lu K. Effect of hepatocyte nuclear factor 4 on the fecundity of Nilaparvata lugens: Insights from RNA interference combined with transcriptomic analysis. Genomics 2020; 112:4585-4594. [DOI: 10.1016/j.ygeno.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 12/30/2022]
|