1
|
Li R, Yan X, Zhao Y, Liu H, Wang J, Yuan Y, Li Q, Su J. Oxidative Stress Induced by Nuclear Factor Erythroid 2-Related Factor 2 (NRF2) Dysfunction Aggravates Chronic Inflammation Through the NAD +/SIRT3 Axis and Promotes Renal Injury in Diabetes. Antioxidants (Basel) 2025; 14:267. [PMID: 40227196 PMCID: PMC11939224 DOI: 10.3390/antiox14030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Diabetic nephropathy (DN), one of the most common and severe microvascular complications of diabetes, significantly increases the risk of renal failure and cardiovascular events. A high-glucose environment can lead to mitochondrial dysfunction in macrophages, which, through remodeling of energy metabolism, mediates the polarization of a pro-inflammatory phenotype and contributes to the formation of a chronic inflammatory microenvironment. Recent studies have found that high-glucose stimulation induces dysregulation of the nuclear factor erythroid 2-related factor 2 (NRF2) redox pathway in macrophages, leading to the generation of oxidative stress (OS) that further drives chronic inflammation. Therefore, it is crucial to fully understand how OS affects macrophage phenotypes and functions following NRF2 inhibition. This review analyzes the role of OS induced by NRF2 dysfunction in the chronic inflammation of DN and explores the relationship between OS and macrophage mitochondrial energy metabolism through the NAD⁺/NADH-SIRT3 axis, providing new therapeutic targets for targeting OS to improve the inflammatory microenvironment and vascular damage in DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basical Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China
| |
Collapse
|
2
|
Seki A, Kajiwara K, Teramachi J, Egusa M, Miyawaki T, Sawa Y. Exacerbation of diabetes due to F. Nucleatum LPS-induced SGLT2 overexpression in the renal proximal tubular epithelial cells. BMC Nephrol 2025; 26:38. [PMID: 39856606 PMCID: PMC11760738 DOI: 10.1186/s12882-025-03965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Diabetes treatments by the control of sodium-glucose cotransporter 2 (SGLT2) is commonly conducted while there are still uncertainties about the mechanisms for the SGLT2 overexpression in kidneys with diabetes. Previously, we have reported that glomeruli and proximal tubules with diabetic nephropathy express toll-like receptor TLR2/4, and that the TLR ligand lipopolysaccharide (LPS) of periodontal pathogens have caused nephropathy in diabetic model mice. Recently, many researchers suggested that the periodontal pathogenic bacteria Fusobacterium (F.) nucleatum has the TLR4-associated strong activator of the colorectal inflammation and cancer. The present study aimed to investigate the possibility of F. nucleatum as an exacerbation factor of diabetes through the renal SGLT2 induction. METHODS The induction of the SGLT2 by F. nucleatum LPS (Fn-LPS) were investigated in the streptozotocin-induced diabetic mouse renal tissue and cultured renal proximal epithelial cells. The changes of blood glucose levels and survival curves in diabetic mice with Fn-LPS were analyzed. The Fn-LPS-induced SGLT2 production in the diabetic mouse renal tissue and in the cultured proximal epithelial cells was examined by ELISA, quantitative RT-PCR, and immunohistochemical analysis. RESULTS The SGLT2 expression in the cultured mouse tubular epithelial cells was significantly increased by TNF- or co-culture with Fn-LPS-supplemented J774.1 cells. The period to reach diabetic condition was significantly shorter in Fn-LPS-administered diabetic mice than in diabetic mice. All Fn-LPS-administered-diabetic mice reached humane endpoints during the healthy period of all of the mice administered Fn-LPS only. The promotion of the SGLT2 expression at the inner lumen of proximal tubules were stronger in the Fn-LPS-administered-diabetic mice than in diabetic mice. The renal tissue SGLT2 mRNA amounts and the number of renal proximal tubules with overexpressed SGLT2 in the lumen were more in the Fn-LPS-administered-diabetic mice than in diabetic mice. CONCLUSIONS This study suggests that F. nucleatum causes the promotion of diabetes through the overexpression of SGLT2 in proximal tubules under the diabetic condition. Periodontitis with F. nucleatum may be a diabetic exacerbating factor.
Collapse
Affiliation(s)
- Aiko Seki
- Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-0914, Japan
| | - Koichiro Kajiwara
- Department of Oral Growth & Development, Fukuoka Dental College, 2- 15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Jumpei Teramachi
- Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita- ku, Okayama, 700-0914, Japan
| | - Masahiko Egusa
- Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5- 1 Shikata-cho, Kita-ku, Okayama, 700-0914, Japan
| | - Takuya Miyawaki
- Department of Dental Anesthesiology & Special Care Dentistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5- 1 Shikata-cho, Kita-ku, Okayama, 700-0914, Japan
| | - Yoshihiko Sawa
- Department of Oral Function & Anatomy, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita- ku, Okayama, 700-0914, Japan.
| |
Collapse
|
3
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
4
|
Hussein S, Hasan MM, Saeed AA, Tolba AM, Sameh R, Abdelghany EMA. Effect of human umbilical cord blood-mesenchymal stem cells on cisplatin-induced nephrotoxicity in rats. Mol Biol Rep 2024; 51:234. [PMID: 38282086 DOI: 10.1007/s11033-023-08958-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/06/2023] [Indexed: 01/30/2024]
Abstract
BACKGROUND Cisplatin-containing regimen is an effective treatment for several malignancies. However, cisplatin is an important cause of nephrotoxicity. So, many trials were performed to transplant stem cells systemically or locally to control cisplatin-induced nephrotoxicity. Stem cell therapeutic effect may be dependent on the regulation of inflammation and oxidant stress. AIM To investigate the effect of human umbilical cord blood-mesenchymal stem cells (hUCB-MSCs) on the histological structure, the oxidant stress, and the inflammatory gene expression in an experimental model of cisplatin-induced nephrotoxicity in rats. METHOD The rats were divided into 6 equal groups (each of 10 rats): Group I included normal rats that received no treatment. Group II included healthy rats that received IV hUCB-MSCs. Group III included untreated cisplatin-induced nephrotoxic rats. Group IV included cisplatin-induced nephrotoxic rats that received magnesium (Mg) injections after injury. Group V was injected with hUCB-MSCs after injury. Group VI received both Mg and hUCB-MSCs after injury. In tissue homogenates, reduced glutathione (GSH), superoxide dismutase (SOD), and malondialdehyde (MDA) activities were measured. Quantitative real-time-polymerase chain reaction (qRT-PCR) was performed to assess iNOS, TLR4, and NF-kB gene expression. Hematoxylin and eosin (H&E) staining was performed to study the histological structure of the kidney. Immunohistochemical staining of iNOS and NF-κB was performed, as well. RESULTS Disturbed kidney functions, oxidative status, and histological structure were seen in the rats that received cisplatin. Treated groups showed improvements in kidney functions, oxidative status, and histological structure, particularly in the combined treatment group. CONCLUSION In the cisplatin-induced nephrotoxicity model, hUCB-MSCs could improve the functional and morphological kidney structure by modulation of oxidative and inflammatory status.
Collapse
Affiliation(s)
- Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Mai M Hasan
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Abeer A Saeed
- Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa M Tolba
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reham Sameh
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman M A Abdelghany
- Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
5
|
Schömig T, Diefenhardt P, Plagmann I, Trinsch B, Merz T, Crispatzu G, Unnersjö-Jess D, Nies J, Pütz D, Sierra Gonzalez C, Schermer B, Benzing T, Brinkkoetter PT, Brähler S. The podocytes' inflammatory responses in experimental GN are independent of canonical MYD88-dependent toll-like receptor signaling. Sci Rep 2024; 14:2292. [PMID: 38280906 PMCID: PMC10821883 DOI: 10.1038/s41598-024-52565-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/20/2024] [Indexed: 01/29/2024] Open
Abstract
Podocytes form the kidney filtration barrier and continuously adjust to external stimuli to preserve their integrity even in the presence of inflammation. It was suggested that canonical toll-like receptor signaling, mediated by the adaptor protein MYD88, plays a crucial role in initiating inflammatory responses in glomerulonephritis (GN). We explored the influence of podocyte-intrinsic MYD88 by challenging wild-type (WT) and podocyte-specific Myd88 knockout (MyD88pko) mice, with a model of experimental GN (nephrotoxic nephritis, NTN). Next-generation sequencing revealed a robust upregulation of inflammatory pathways and changes in cytoskeletal and cell adhesion proteins in sorted podocytes from WT mice during disease. Unchallenged MyD88pko mice were healthy and showed no proteinuria, normal kidney function and lacked morphological changes. During NTN, MyD88pko exhibited a transient increase in proteinuria in comparison to littermates, while histological damage, podocyte ultrastructure in STED imaging and frequencies of infiltrating immune cells by flow cytometry were unchanged. MYD88-deficiency led to subtle changes in the podocyte transcriptome, without a significant impact on the overall podocyte response to inflammation, presumably through MYD88-independent signaling pathways. In conclusion, our study reveals a comprehensive analysis of podocyte adaptation to an inflammatory environment on the transcriptome level, while MYD88-deficiency had only limited impact on the course of GN suggesting additional signaling through MYD88-independent signaling.
Collapse
Affiliation(s)
- Thomas Schömig
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Paul Diefenhardt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Ingo Plagmann
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bastian Trinsch
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Tim Merz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Giuliano Crispatzu
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Jasper Nies
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - David Pütz
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Claudio Sierra Gonzalez
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Paul Thomas Brinkkoetter
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany.
| | - Sebastian Brähler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
6
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Atre R, Sharma R, Vadim G, Solanki K, Wadhonkar K, Singh N, Patidar P, Khabiya R, Samaur H, Banerjee S, Baig MS. The indispensability of macrophage adaptor proteins in chronic inflammatory diseases. Int Immunopharmacol 2023; 119:110176. [PMID: 37104916 DOI: 10.1016/j.intimp.2023.110176] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023]
Abstract
Adaptor proteins represent key signalling molecules involved in regulating immune responses. The host's innate immune system recognizes pathogens via various surface and intracellular receptors. Adaptor molecules are centrally involved in different receptor-mediated signalling pathways, acting as bridges between the receptors and other molecules. The presence of adaptors in major signalling pathways involved in the pathogenesis of various chronic inflammatory diseases has drawn attention toward the role of these proteins in such diseases. In this review, we summarize the importance and roles of different adaptor molecules in macrophage-mediated signalling in various chronic disease states. We highlight the mechanistic roles of adaptors and how they are involved in protein-protein interactions (PPI) via different domains to carry out signalling. Hence, we also provide insights into how targeting these adaptor proteins can be a good therapeutic strategy against various chronic inflammatory diseases.
Collapse
Affiliation(s)
- Rajat Atre
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rahul Sharma
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Gaponenko Vadim
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Khandu Wadhonkar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Neha Singh
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Pramod Patidar
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Rakhi Khabiya
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India; School of Pharmacy, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Harshita Samaur
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India
| | - Sreeparna Banerjee
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Indore, India.
| |
Collapse
|
8
|
Bódi N, Egyed-Kolumbán A, Onhausz B, Barta BP, Doghmi AAL, Balázs J, Szalai Z, Bagyánszki M. Intestinal Region-Dependent Alterations of Toll-Like Receptor 4 Expression in Myenteric Neurons of Type 1 Diabetic Rats. Biomedicines 2023; 11:129. [PMID: 36672637 PMCID: PMC9856165 DOI: 10.3390/biomedicines11010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023] Open
Abstract
Toll-like receptor 4 (TLR4) can activate pro-inflammatory cascades in the gastrointestinal tract. Our aim was to determine TLR4 expression in myenteric neurons of different gut regions using a type 1 diabetic model. Ten weeks after the onset of hyperglycemia, myenteric whole-mount preparations from the duodenum, ileum and colon of streptozotocin-induced diabetic, insulin-treated diabetic and control rats were prepared for TLR4/peripherin double-labelling fluorescent immunohistochemistry. Immunogold electron microscopy was applied to evaluate TLR4 expression in the myenteric perikaryon and neuropil. Tissue TLR4 levels were measured by enzyme-linked immunosorbent assay. In controls, the number and proportion of the TLR4-immunoreactive myenteric neurons showed an increasing tendency to aboral direction. These values were significantly higher in diabetics compared to controls in the duodenum and ileum, but were significantly lower in the colon. In diabetics, the distribution of TLR4-labelling gold particles between the perikaryon and neuropil of myenteric neurons varied in a different way by intestinal segment. TLR4 tissue concentration changed only in the diabetic duodenum, and it decreased in muscle/myenteric plexus-containing homogenates, while it increased in mucosa/submucosa/submucous plexus-containing samples relative to controls. Insulin had beneficial effects on TLR4 expression. These findings support that chronic hyperglycemia has segment-specific effects on TLR4 expression, contributing to gastrointestinal disorders in diabetic patients.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, 6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fu J, Sun Z, Wang X, Zhang T, Yuan W, Salem F, Yu SMW, Zhang W, Lee K, He JC. The single-cell landscape of kidney immune cells reveals transcriptional heterogeneity in early diabetic kidney disease. Kidney Int 2022; 102:1291-1304. [PMID: 36108806 PMCID: PMC9691617 DOI: 10.1016/j.kint.2022.08.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
The pathogenesis of diabetic kidney disease (DKD) involves multifactorial processes that converge to initiate and advance the disease. Although DKD is not typically classified as an inflammatory glomerular disease, mounting evidence supports the involvement of kidney inflammation as a key contributor in DKD pathogenesis, particularly through macrophages. However, detailed identification and corresponding phenotypic changes of macrophages in DKD remain poorly understood. To capture the gene expression changes in specific macrophage cell subsets in early DKD, we performed single-cell transcriptomic analysis of CD45-enriched kidney immune cells from type 1 diabetic OVE26 mice at two time points during the disease development. We also undertook a focused analysis of mononuclear phagocytes (macrophages and dendritic cells). Our results show increased resident and infiltrating macrophage subsets in the kidneys of mice with diabetes over time, with heightened expression of pro-inflammatory or anti-inflammatory genes in a subset-specific manner. Further analysis of macrophage polarization states in each subset in the kidneys showed changes consistent with the continuum of activation and differentiation states, with gene expression tending to shift toward undifferentiated phenotypes but with increased M1-like inflammatory phenotypes over time. By deconvolution analysis of RNAseq samples and by immunostaining of biopsies from patients with DKD, we further confirmed a differential expression of select genes in specific macrophage subsets essentially recapitulating the studies in mice. Thus, our study provides a comprehensive analysis of macrophage transcriptomic profiles in early DKD that underscores the dynamic macrophage phenotypes in disease progression.
Collapse
Affiliation(s)
- Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xuan Wang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Department of Medicine, Shanghai First People Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Tuo Zhang
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Weijie Yuan
- Division of Nephrology, Department of Medicine, Shanghai First People Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel Mon-Wei Yu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Renal Program, James J Peters VA Medical Center at Bronx, Bronx, New York, USA.
| |
Collapse
|
10
|
Lv Q, Li Z, Sui A, Yang X, Han Y, Yao R. The role and mechanisms of gut microbiota in diabetic nephropathy, diabetic retinopathy and cardiovascular diseases. Front Microbiol 2022; 13:977187. [PMID: 36060752 PMCID: PMC9433831 DOI: 10.3389/fmicb.2022.977187] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) and T2DM-related complications [such as retinopathy, nephropathy, and cardiovascular diseases (CVDs)] are the most prevalent metabolic diseases. Intriguingly, overwhelming findings have shown a strong association of the gut microbiome with the etiology of these diseases, including the role of aberrant gut bacterial metabolites, increased intestinal permeability, and pathogenic immune function affecting host metabolism. Thus, deciphering the specific microbiota, metabolites, and the related mechanisms to T2DM-related complications by combined analyses of metagenomics and metabolomics data can lead to an innovative strategy for the treatment of these diseases. Accordingly, this review highlights the advanced knowledge about the characteristics of the gut microbiota in T2DM-related complications and how it can be associated with the pathogenesis of these diseases. Also, recent studies providing a new perspective on microbiota-targeted therapies are included.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
11
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
12
|
The Yin and Yang of toll-like receptors in endothelial dysfunction. Int Immunopharmacol 2022; 108:108768. [DOI: 10.1016/j.intimp.2022.108768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 11/24/2022]
|
13
|
IGFBP5 promotes diabetic kidney disease progression by enhancing PFKFB3-mediated endothelial glycolysis. Cell Death Dis 2022; 13:340. [PMID: 35418167 PMCID: PMC9007962 DOI: 10.1038/s41419-022-04803-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 12/16/2022]
Abstract
Renal inflammation is a critical pathophysiological characteristic of diabetic kidney disease (DKD). The mechanism of the inflammatory response is complicated, and there are few effective treatments for renal inflammation that can be used clinically. Insulin-like growth factor-binding protein 5 (IGFBP5) is an important secretory protein that is related to inflammation and fibrosis in several tissues. Studies have shown that the IGFBP5 level is significantly upregulated in DKD. However, the function of IGFBP5 and its mechanism in DKD remain unclear. Here, we showed that IGFBP5 levels were significantly increased in the kidneys of diabetic mice. Ablation of IGFBP5 alleviated kidney inflammation in DKD mice. Mechanistically, IGFBP5 increased glycolysis, which was characterized by increases in lactic acid and the extracellular acidification rate, by activating the transcription factor early growth response 1 (EGR1) and enhancing the expression of PFKFB3 in endothelial cells. Furthermore, a mutation in PFKFB3 attenuated renal inflammation in DKD mice. Taken together, we provided evidence that IGFBP5 enhanced kidney inflammation through metabolic reprogramming of glomerular endothelial cells. Our results provide new mechanistic insights into the effect of IGFBP5 on kidney and highlight potential therapeutic opportunities for IGFBP5 and the metabolic regulators involved in DKD. ![]()
Collapse
|
14
|
Chen M, Deng H, Zhao Y, Miao X, Gu H, Bi Y, Zhu Y, Guo Y, Shi S, Xu J, Zhao D, Liu F. Toll-Like Receptor 2 Modulates Pulmonary Inflammation and TNF-α Release Mediated by Mycoplasma pneumoniae. Front Cell Infect Microbiol 2022; 12:824027. [PMID: 35372108 PMCID: PMC8968444 DOI: 10.3389/fcimb.2022.824027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives To investigate the roles that Toll-like receptors (TLRs) play in lung inflammation mediated by Mycoplasma pneumoniae (MP). Methods The changes in TLRs and tumor necrosis factor alpha (TNF-α) in peripheral blood of children with M. pneumoniae pneumonia (MPP) were monitored, and the interactions of signaling molecules regulating TNF-α release in A549 cells and neutrophils after M. pneumoniae stimulation were investigated. In TLR2 knockout (TLR2-/-) mice, the levels of TNF-α in bronchial alveolar lavage fluid (BALF) and peripheral blood after mycoplasma infection and the pathological changes in the lung tissue of mice were detected. Results TNF-α levels in peripheral blood of children with MPP were higher than those in non-infected children, and children with refractory MPP had the highest levels of TNF-α and TLR2. TNF-α secretion and TLR2, myeloid differentiation primary response 88 (MyD88) and phospho-p65(p-p65) levels were increased in stimulated cells. TNF-α secretion was suppressed upon siRNA-mediated TLR2 silencing. Pharmacological inhibition of nuclear factor-kappa B (NF-κB) and MyD88 effectively reduced TNF-α expression. Compared with wild-type mice, the TNF-α in serum and BALF decreased, and lung pro-inflammatory response was partially suppressed in TLR2-/- mice. Conclusion We concluded that TLR2 regulates M. pneumoniae-mediated lung inflammation and TNF-α release through the TLR2-MyD88-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ming Chen
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Deng
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhao
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xueqing Miao
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyan Gu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Bi
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Zhu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Guo
- Department of Respiratory Medicine, The Affiliated Wuxi Children’s Hospital of Nanjing Medical University, Wuxi, China
| | - Shuang Shi
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jiejing Xu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Deyu Zhao
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Deyu Zhao, ; Feng Liu,
| | - Feng Liu
- Department of Respiratory Medicine, Children’s Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Deyu Zhao, ; Feng Liu,
| |
Collapse
|
15
|
Zerumbone suppresses high glucose and LPS-induced inflammation in THP-1-derived macrophages by inhibiting the NF-κB/TLR signaling pathway. Nutr Res 2022; 100:58-69. [DOI: 10.1016/j.nutres.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 12/28/2021] [Accepted: 01/16/2022] [Indexed: 02/06/2023]
|
16
|
Zhang H, Hu J, Zhu J, Li Q, Fang L. Machine learning-based metabolism-related genes signature and immune infiltration landscape in diabetic nephropathy. Front Endocrinol (Lausanne) 2022; 13:1026938. [PMID: 36482994 PMCID: PMC9722730 DOI: 10.3389/fendo.2022.1026938] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND To identify the diagnostic biomarkers of metabolism-related genes (MRGs), and investigate the association of the MRGs and immune infiltration landscape in diabetic nephropathy (DN). METHODS The transcriptome matrix was downloaded from the GEO database. R package "limma" was utilized to identify the differential expressed MRGs (DE-MRGs) of HC and DN samples. Genetic Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of DE-MRGs were performed using "clusterProfiler" R package. WGCNA, LASSO, SVM-RFE, and RFE algorithms were employed to select the diagnostic feature biomarkers for DN. The ROC curve was used to evaluate discriminatory ability for diagnostic feature biomarkers. CIBERSORT algorithm was performed to investigate the fraction of the 22-types immune cells in HC and DN group. The correlation of diagnostic feature biomarkers and immune cells were performed via Spearman-rank correlation algorithm. RESULTS A total of 449 DE-MRGs were identified in this study. GO and KEGG pathway enrichment analysis indicated that the DE-MRGs were mainly enriched in small molecules catabolic process, purine metabolism, and carbon metabolism. ADI1, PTGS2, DGKH, and POLR2B were identified as diagnostic feature biomarkers for DN via WGCNA, LASSO, SVM-RFE, and RFE algorithms. The result of CIBERSORT algorithm illustrated a remarkable difference of immune cells in HC and DN group, and the diagnostic feature biomarkers were closely associated with immune cells. CONCLUSION ADI1, PTGS2, DGKH, and POLR2B were identified as diagnostic feature biomarkers for DN, and associated with the immune infiltration landscape, providing a novel perspective for the future research and clinical management for DN.
Collapse
Affiliation(s)
- Huangjie Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Jinguo Hu
- Department of Pharmacy, Hangzhou Traditional Chinese Medicine (TCM) Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfeng Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Qinglin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinglin Li, ; Luo Fang,
| | - Luo Fang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
- *Correspondence: Qinglin Li, ; Luo Fang,
| |
Collapse
|
17
|
Ito S, Nakashima H, Ishikiriyama T, Nakashima M, Yamagata A, Imakiire T, Kinoshita M, Seki S, Kumagai H, Oshima N. Effects of a CCR2 antagonist on macrophages and Toll-like receptor 9 expression in a mouse model of diabetic nephropathy. Am J Physiol Renal Physiol 2021; 321:F757-F770. [PMID: 34719947 DOI: 10.1152/ajprenal.00191.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
The pathogenesis of diabetic nephropathy (DN) is related to macrophage (Mφ) recruitment to the kidneys, tumor necrosis factor-α (TNF-α) production, and oxidative stress. Toll-like receptor 9 (TLR9) activation is reportedly involved in systemic inflammation, and it exacerbates this condition in metabolic syndrome. Therefore, we hypothesized that TLR9 plays a role in the pathogenesis of DN. Two subsets of kidney Mφs in DN model (db/db) mice were analyzed using flow cytometry to evaluate their distribution and TLR9 expression and function. Mice were administered the CCR2 antagonist INCB3344 for 8 wk; changes in Mφ distribution and function and its therapeutic effects on DN pathology were examined. Bone marrow-derived CD11bhigh (BM-Mφ) and tissue-resident CD11blow Mφs (Res-Mφ) were identified in the mouse kidneys. As DN progressed, the BM-Mφ number, TLR9 expression, and TNF-α production increased significantly. In Res-Mφs, reactive oxygen species (ROS) production and phagocytic activity were enhanced. INCB3344 decreased albuminuria, serum creatinine level, BM-Mφ abundance, TLR9 expression, and TNF-α production by BM-Mφs and ROS production by Res-Mφs. Both increased activation of BM-Mφ via TLR9 and TNF-α production and increased ROS production by Res-Mφs were involved in DN progression. Thus, inactivating Mφs and their TLR9 expression by INCB3344 is a potential therapeutic strategy for DN.NEW & NOTEWORTHY We classified kidney macrophages (Mφs) into bone marrow-derived Mφs (BM-Mφs) expressing high CD11b and tissue-specific resident Mφ (Res-Mφs) expressing low CD11b. In diabetic nephropathy (DN) model mice, Toll-like receptor 9 (TLR9) expression and TNF-α production via TLR9 activation in BM-Mφs and ROS production in Res-Mφs were enhanced. Furthermore, CCR2 antagonist suppressed the kidney infiltration of BM-Mφs and their function and the ROS production by Res-Mφs, with concomitant TLR9 suppression. Our study presents a new therapeutic strategy for DN.
Collapse
Affiliation(s)
- Seigo Ito
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroyuki Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Takuya Ishikiriyama
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Masahiro Nakashima
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Akira Yamagata
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Toshihiko Imakiire
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| | - Hiroo Kumagai
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| | - Naoki Oshima
- Department of Nephrology and Endocrinology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
18
|
Kajiwara K, Sawa Y. Overexpression of SGLT2 in the kidney of a P. gingivalis LPS-induced diabetic nephropathy mouse model. BMC Nephrol 2021; 22:287. [PMID: 34425759 PMCID: PMC8383391 DOI: 10.1186/s12882-021-02506-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 08/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background The overexpression of sodium-glucose cotransporter 2 (SGLT2) in diabetic kidneys has been reported. It has also been established that the diabetic glomerular endothelium expresses the toll-like receptors TLR2 and TLR4. The present study aims to examine the renal SGLT2 induction by the TLR2/4 ligand Porphyromonas (P.) gingivalis lipopolysaccharide (Pg-LPS) in mouse diabetic nephropathy. Methods Immunohistochemical study and tissue RT-PCR analyses were performed on mouse kidneys in streptozotocin (STZ)-induced diabetic ICR mice (STZ-ICR), in healthy ICR mice administered Pg-LPS (LPS-ICR), and in diabetic ICR mouse kidneys with Pg-LPS-induced nephropathy (LPS-STZ). Results In the quantitative analysis of blood sugar levels, the mean time to reach 600 mg/dl was shorter in the LPS-STZ than in the STZ-ICR kidneys. The rise in blood glucose levels was significantly steeper in the LPS-STZ than in the STZ-ICR kidneys. According to these data the LPS-STZ model suggests a marked glucose intolerance. The expression of SGLT2 was significantly stronger in the whole of the renal parenchyma of the LPS-STZ than in the LPS-ICR or in the STZ-ICR. The expression of SGLT2 was observed both in the renal tubules and around the renal tubules, and in the glomeruli of the LPS-STZ kidneys. In the analysis by tissue real-time PCR and cell ELISA, the expression of the SGLT2 gene and protein was significantly stronger in the LPS-STZ than in the LPS-ICR or in the STZ-ICR. There were no differences in the renal SGLT2 production in the LPS-ICR and the STZ-ICR kidneys. Conclusions Abnormally high renal expression of SGLT2 occurs in diabetic kidneys with P. gingivalis LPS. Periodontitis may be an exacerbating factor in diabetic nephropathy as well as in diabetes.
Collapse
Affiliation(s)
- Koichiro Kajiwara
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yoshihiko Sawa
- Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama, Kita-ku, 700-0914, Japan.
| |
Collapse
|
19
|
Marks KE, Cho K, Stickling C, Reynolds JM. Toll-like Receptor 2 in Autoimmune Inflammation. Immune Netw 2021; 21:e18. [PMID: 34277108 PMCID: PMC8263214 DOI: 10.4110/in.2021.21.e18] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022] Open
Abstract
TLR signaling is critical for broad scale immune recognition of pathogens and/or danger molecules. TLRs are particularly important for the activation and the maturation of cells comprising the innate immune response. In recent years it has become apparent that several different TLRs regulate the function of lymphocytes as well, albeit to a lesser degree compared to innate immunity. TLR2 heterodimerizes with either TLR1 or TLR6 to broadly recognize bacterial lipopeptides as well as several danger-associated molecular patterns. In general, TLR2 signaling promotes immune cell activation leading to tissue inflammation, which is advantageous for combating an infection. Conversely, inappropriate or dysfunctional TLR2 signaling leading to an overactive inflammatory response could be detrimental during sterile inflammation and autoimmune disease. This review will highlight and discuss recent research advances linking TLR2 engagement to autoimmune inflammation.
Collapse
Affiliation(s)
- Kathryne E Marks
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Kaylin Cho
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Courtney Stickling
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Joseph M Reynolds
- Center for Cancer Cell Biology, Immunology, and Infection, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
20
|
Moratal C, Laurain A, Naïmi M, Florin T, Esnault V, Neels JG, Chevalier N, Chinetti G, Favre G. Regulation of Monocytes/Macrophages by the Renin-Angiotensin System in Diabetic Nephropathy: State of the Art and Results of a Pilot Study. Int J Mol Sci 2021; 22:ijms22116009. [PMID: 34199409 PMCID: PMC8199594 DOI: 10.3390/ijms22116009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by albuminuria, loss of renal function, renal fibrosis and infiltration of macrophages originating from peripheral monocytes inside kidneys. DN is also associated with intrarenal overactivation of the renin-angiotensin system (RAS), an enzymatic cascade which is expressed and controlled at the cell and/or tissue levels. All members of the RAS are present in the kidneys and most of them are also expressed in monocytes/macrophages. This review focuses on the control of monocyte recruitment and the modulation of macrophage polarization by the RAS in the context of DN. The local RAS favors the adhesion of monocytes on renal endothelial cells and increases the production of monocyte chemotactic protein-1 and of osteopontin in tubular cells, driving monocytes into the kidneys. There, proinflammatory cytokines and the RAS promote the differentiation of macrophages into the M1 proinflammatory phenotype, largely contributing to renal lesions of DN. Finally, resolution of the inflammatory process is associated with a phenotype switch of macrophages into the M2 anti-inflammatory subset, which protects against DN. The pharmacologic interruption of the RAS reduces albuminuria, improves the trajectory of the renal function, decreases macrophage infiltration in the kidneys and promotes the switch of the macrophage phenotype from M1 to M2.
Collapse
Affiliation(s)
- Claudine Moratal
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
- Correspondence:
| | - Audrey Laurain
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Mourad Naïmi
- Université Côte d’Azur, CHU, 06000 Nice, France;
| | - Thibault Florin
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Vincent Esnault
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| | - Jaap G. Neels
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France;
| | - Nicolas Chevalier
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Giulia Chinetti
- Université Côte d’Azur, CHU, INSERM, C3M, 06000 Nice, France; (N.C.); (G.C.)
| | - Guillaume Favre
- Faculty of Medicine, Côte d’Azur University, 06107 Nice, France; (A.L.); (V.E.); (G.F.)
- Centre National de la Recherche Scientifique, UMR 7073, Laboratory of Physiology and Molecular Medicine (LP2M), 06107 Nice, France
- Nephrology, Dialysis and Transplantation Department, University Hospital, 06002 Nice, France;
| |
Collapse
|
21
|
Mosterd CM, Kanbay M, van den Born BJH, van Raalte DH, Rampanelli E. Intestinal microbiota and diabetic kidney diseases: the Role of microbiota and derived metabolites inmodulation of renal inflammation and disease progression. Best Pract Res Clin Endocrinol Metab 2021; 35:101484. [PMID: 33546983 DOI: 10.1016/j.beem.2021.101484] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) represents a growing public health burden and is the leading cause of end-stage kidney diseases. In recent years, host-gut microbiota interactions have emerged as an integral part for host homeostasis. In the context of nephropathies, mounting evidence supports a bidirectional microbiota-kidney crosstalk, which becomes particularly manifest during progressive kidney dysfunction. Indeed, in chronic kidney disease (CKD), the "healthy" microbiota structure is disrupted and intestinal microbes produce large quantities of uremic solutes responsible for renal damage; on the other hand, the uremic state, fueled by reduced renal clearance, causes shifts in microbial metabolism and composition, hence creating a vicious cycle in which dysbiosis and renal dysfunction are progressively worsened. In this review, we will summarize the evidence from clinical/experimental studies concerning the occurrence of gut dysbiosis in diabetic and non-diabetic CKD, discuss the functional consequences of dysbiosis for CKD progression and debate putative therapeutic interventions targeting the intestinal microbiome.
Collapse
Affiliation(s)
- C M Mosterd
- Department of Internal and Vascular Medicine, Amsterdam UMC, Location VUmc, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands.
| | - M Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - B J H van den Born
- Department of Nephrology and Vascular Medicine, Amsterdam UMC, Location AMC, the Netherlands
| | - D H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUmc, Diabetes Center, Amsterdam, the Netherlands
| | - E Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Costa FRC, Leite JA, Rassi DM, da Silva JF, Elias-Oliveira J, Guimarães JB, Foss-Freitas MC, Câmara NOS, Pontillo A, Tostes RC, Silva JS, Carlos D. NLRP1 acts as a negative regulator of Th17 cell programming in mice and humans with autoimmune diabetes. Cell Rep 2021; 35:109176. [PMID: 34038731 DOI: 10.1016/j.celrep.2021.109176] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/30/2020] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic β cells. We show here that the protein NOD-like receptor family pyrin domain containing 1 (NLRP1) has a key role in the pathogenesis of mouse and human T1D. More specifically, downregulation of NLRP1 expression occurs during T helper 17 (Th17) differentiation, alongside greater expression of several molecules related to Th17 cell differentiation in a signal transducers and activators of transcription 3 (STAT3)-dependent pathway. These changes lead to a consequent increase in interleukin 17 (IL-17) production within the pancreas and higher incidence of diabetes in streptozotocin (STZ)-injected mice. Finally, in patients with T1D and a SNP (rs12150220) in NLRP1, there is a robust decrease in IL-17 levels in serum and in memory Th17 cells from peripheral blood mononuclear cells. Our results demonstrate that NLRP1 acts as a negative regulator of the Th17 cell polarization program, making it an interesting target for intervention during the early stages of T1D.
Collapse
Affiliation(s)
- Frederico R C Costa
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jefferson A Leite
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Diane M Rassi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Josiane F da Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jefferson Elias-Oliveira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jhefferson B Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria C Foss-Freitas
- Department of Clinical Medicine, Internal Medicine Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Division of Metabolism, Endocrinology & Diabetes, Department of Internal Medicine, and Caswell Diabetes Institute University of Michigan, Ann Arbor, MI, USA
| | - Niels O S Câmara
- Department of Immunology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil; Department of Immunology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo, SP, Brazil
| | - Alessandra Pontillo
- Department of Immunology, Institute of Biomedical Sciences (ICB), University of São Paulo, São Paulo, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Fiocruz- Bi-Institutional Translational Medicine Platform, Ribeirão Preto, SP, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Liu M, Zen K. Toll-Like Receptors Regulate the Development and Progression of Renal Diseases. KIDNEY DISEASES 2021; 7:14-23. [PMID: 33614730 DOI: 10.1159/000511947] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/23/2020] [Indexed: 12/13/2022]
Abstract
Background Stimulated by both microbial and endogenous ligands, toll-like receptors (TLRs) play an important role in the development and progression of renal diseases. Summary As a highly conserved large family, TLRs have 11 members in humans (TLR1∼TLR11) and 13 members in mouse (TLR1∼TLR13). It has been widely reported that TLR2 and TLR4 signaling, activated by both exogenous and endogenous ligands, promote disease progression in both renal ischemia-reperfusion injury and diabetic nephropathy. TLR4 also vitally functions in CKD and infection-associated renal diseases such as pyelonephritis induced by urinary tract infection. Stimulation of intracellular TLR7/8 and TLR9 by host-derived nucleic acids also plays a key role in systemic lupus erythematosus. Given that certain microRNAs with GU-rich sequence have recently been found to be able to serve as TLR7/8 ligands, these microRNAs may initiate pro-inflammatory signal via activating TLR signal. Moreover, as microRNAs can be transferred across different organs via cell-secreted exosomes or protein-RNA complex, the TLR signaling activated by the miRNAs released by other injured organs may also result in renal dysfunction. Key Messages In this review, we sum up the recent progress in the role of TLRs in various forms of glomerulonephritis and discuss the possible prevention or therapeutic strategies for clinic treatment to renal diseases.
Collapse
Affiliation(s)
- Minghui Liu
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, China
| | - Ke Zen
- School of Life Science and Technology, Chinese Pharmaceutical University, Nanjing, China.,School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Jha AK, Gairola S, Kundu S, Doye P, Syed AM, Ram C, Murty US, Naidu VGM, Sahu BD. Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sci 2021; 271:119155. [PMID: 33548286 DOI: 10.1016/j.lfs.2021.119155] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Acute kidney injury (AKI) is a progressive renal complication which significantly affects the patient's life with huge economic burden. Untreated acute kidney injury eventually progresses to a chronic form and end-stage renal disease. Although significant breakthroughs have been made in recent years, there are still no effective pharmacological therapies for the treatment of acute kidney injury. Toll-like receptor 4 (TLR4) is a well-characterized pattern recognition receptor, and increasing evidence has shown that TLR4 mediated inflammatory response plays a pivotal role in the pathogenesis of acute kidney injury. The expression of TLR4 has been seen in resident renal cells, including podocytes, mesangial cells, tubular epithelial cells and endothelial cells. Activation of TLR4 signaling regulates the transcription of numerous pro-inflammatory cytokines and chemokines, resulting in renal inflammation. Therefore, targeting TLR4 and its downstream effectors could serve as an effective therapeutic intervention to prevent renal inflammation and subsequent kidney damage. For the first time, this review summarizes the literature on acute kidney injury from the perspective of TLR4 from year 2010 to 2020. In the current review, the role of TLR4 signaling pathway in AKI with preclinical evidence is discussed. Furthermore, we have highlighted several compounds of natural and synthetic origin, which have the potential to avert the renal TLR4 signaling in preclinical AKI models and have shown protection against AKI. This scientific review provides new ideas for targeting TLR4 in the treatment of AKI and provides strategies for the drug development against AKI.
Collapse
Affiliation(s)
- Ankush Kumar Jha
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Shobhit Gairola
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Pakpi Doye
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Abu Mohammad Syed
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Chetan Ram
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari PIN-781101, Assam, India.
| |
Collapse
|
25
|
Davanso MR, Crisma AR, Braga TT, Masi LN, do Amaral CL, Leal VNC, de Lima DS, Patente TA, Barbuto JA, Corrêa-Giannella ML, Lauterbach M, Kolbe CC, Latz E, Camara NOS, Pontillo A, Curi R. Macrophage inflammatory state in Type 1 diabetes: triggered by NLRP3/iNOS pathway and attenuated by docosahexaenoic acid. Clin Sci (Lond) 2021; 135:19-34. [PMID: 33399849 DOI: 10.1042/cs20201348] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Type 1 diabetes mellitus (T1D) is a chronic autoimmune disease characterized by insulin-producing pancreatic β-cell destruction and hyperglycemia. While monocytes and NOD-like receptor family-pyrin domain containing 3 (NLRP3) are associated with T1D onset and development, the specific receptors and factors involved in NLRP3 inflammasome activation remain unknown. Herein, we evaluated the inflammatory state of resident peritoneal macrophages (PMs) from genetically modified non-obese diabetic (NOD), NLRP3-KO, wild-type (WT) mice and in peripheral blood mononuclear cells (PBMCs) from human T1D patients. We also assessed the effect of docosahexaenoic acid (DHA) on the inflammatory status. Macrophages from STZ-induced T1D mice exhibited increased inflammatory cytokine/chemokine levels, nitric oxide (NO) secretion, NLRP3 and iNOS protein levels, and augmented glycolytic activity compared to control animals. In PMs from NOD and STZ-induced T1D mice, DHA reduced NO production and attenuated the inflammatory state. Furthermore, iNOS and IL-1β protein expression levels and NO production were lower in the PMs from diabetic NLRP3-KO mice than from WT mice. We also observed increased IL-1β secretion in PBMCs from T1D patients and immortalized murine macrophages treated with advanced glycation end products and palmitic acid. The present study demonstrated that the resident PMs are in a proinflammatory state characterized by increased NLRP3/iNOS pathway-mediated NO production, up-regulated proinflammatory cytokine/chemokine receptor expression and altered glycolytic activity. Notably, ex vivo treatment with DHA reverted the diabetes-induced changes and attenuated the macrophage inflammatory state. It is plausible that DHA supplementation could be employed as adjuvant therapy for treating individuals with T1D.
Collapse
MESH Headings
- Adult
- Animals
- Anti-Inflammatory Agents/pharmacology
- Cells, Cultured
- Cytokines/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/enzymology
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/immunology
- Docosahexaenoic Acids/pharmacology
- Female
- Humans
- Inflammation/chemically induced
- Inflammation/drug therapy
- Inflammation/enzymology
- Inflammation/immunology
- Inflammation Mediators/metabolism
- Macrophage Activation/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Male
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Middle Aged
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Nitric Oxide Synthase Type II/metabolism
- Pregnancy
- Signal Transduction
- Streptozocin
- Mice
Collapse
Affiliation(s)
- Mariana Rodrigues Davanso
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Amanda Rabello Crisma
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Laboratory of Physiology and Cell Signalling, Department of Clinical Analyses, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Tárcio Teodoro Braga
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
- Department of Basic Pathology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Laureane Nunes Masi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Sao Paulo, Brazil
| | - Cátia Lira do Amaral
- Campus of Exact Sciences and Technology, State University of Goias, Anapolis, Goias, Brazil
| | - Vinícius Nunes Cordeiro Leal
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Dhêmerson Souza de Lima
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Thiago Andrade Patente
- Laboratory of Tumour Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - José Alexandre Barbuto
- Laboratory of Tumour Immunology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Maria L Corrêa-Giannella
- Laboratory of Carbohydrates and Radioimmunoassay, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Post-graduation Program of Medicine, UNINOVE, Sao Paulo, Brazil
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Carl Christian Kolbe
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital, University of Bonn, Bonn, Germany
| | - Niels Olsen Saraiva Camara
- Laboratory of Immunology of Transplantation, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Alessandra Pontillo
- Laboratory of Immunogenetics, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro of Sul University, Sao Paulo, Sao Paulo, Brazil
- Butantan Institute, Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
26
|
Kajiwara K, Sawa Y, Fujita T, Tamaoki S. Immunohistochemical study for the expression of leukocyte adhesion molecules, and FGF23 and ACE2 in P. gingivalis LPS-induced diabetic nephropathy. BMC Nephrol 2021; 22:3. [PMID: 33407253 PMCID: PMC7786162 DOI: 10.1186/s12882-020-02203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
Objective The present study aims to examine the expression of leukocyte adhesion molecules and renal metabolic factors in diabetic mouse kidneys with periodontal pathogen Pg-LPS-induced nephropathy. Background We recently reported that the glomerular endothelium expresses toll-like receptor (TLR)2 and TLR4 in diabetic environments and TLR2/4 ligand Porphyromonas (P.) gingivalis lipopolysaccharides (Pg-LPS) induce nephropathy in diabetic mice. It is thought that Pg-LPS promotes the chronic inflammation with the overexpression of leukocyte adhesion molecules and renal-specific metabolic enzymes by the recognition of Pg-LPS via TLR in the diabetic kidneys. There have been no reports of the effects of periodontopathic bacteria on the expression of leukocyte adhesion molecules and the accumulation of physiologically active substances in the kidney. Methods The immunohistochemical investigation was performed on diabetic mouse kidney with Pg-LPS-induced nephropathy with glomerulosclerosis in glomeruli. Results There were no vessels which expressed vascular cell adhesion molecule-1 (VCAM-1), E-selectin, or fibroblast growth factor (FGF) 23 in streptozotocin (STZ)-induced diabetic ICR mice (STZ-ICR), or in healthy ICR mice administered Pg-LPS (LPS-ICR). However, in diabetic ICR mouse kidneys with Pg-LPS-induced nephropathy (LPS-STZ) the expression of VCAM-1 and the accumulation of FGF23 were observed in renal tubules and glomeruli, and the expression of E-selectin was observed in renal parenchyma and glomeruli. The angiotensin-converting enzyme 2 (ACE2) was detected in the proximal tubules but not in other regions of ICR, STZ-ICR, or LPS-ICR. In LPS-STZ ACE2 was detected both in renal tubules as well as in glomeruli. The Mac-1 and podoplanin-positive cells increased in the renal parenchyma with diabetic condition and there was the distribution of a large number of Mac-1-positive cells in LPS-STZ. Conclusions The Pg-LPS may induce diabetic renal inflammation such as glomerulosclerosis and tubulitis with infiltration of Mac-1/podoplanin positive macrophages via glomerular overexpression of VCAM-1 and E-selectin, resulting in accumulation of both ACE2 and FGF23 which were unmetabolized with the inflammation-induced kidney damage under the diabetic condition. Periodontitis may be a critical factor in the progress of nephropathy in diabetic patients.
Collapse
Affiliation(s)
- Koichiro Kajiwara
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Yoshihiko Sawa
- Department of Oral Function & Anatomy, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-0914, Japan.
| | - Takahiro Fujita
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| | - Sachio Tamaoki
- Department of Oral Growth & Development, Fukuoka Dental College, 2-15-1 Tamura, Sawara-ku, Fukuoka, 814-0193, Japan
| |
Collapse
|
27
|
Wang X, Antony V, Wang Y, Wu G, Liang G. Pattern recognition receptor-mediated inflammation in diabetic vascular complications. Med Res Rev 2020; 40:2466-2484. [PMID: 32648967 DOI: 10.1002/med.21711] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 01/03/2025]
Abstract
The innate immune system contains multiple classes of pattern recognition receptors (PRRs), which recognize pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) in the intracellular and extracellular space. Although PRRs are indispensable for the detection and clearance of invading pathogens, dysregulated PRR activation by extrinsic and intrinsic factors leads to inflammatory diseases. PRR-mediated inflammation has been shown to play a pivotal role in the pathogenesis of diabetic vascular complications (DVCs), which are the leading causes of morbidity and mortality in diabetic patients. Upon sensing hyperglycemia-generated DAMPs, PRRs activate intracellular signaling pathways leading to the production of proinflammatory cytokines and chemokines in various cells of the kidney, brain, eye, and heart. The resulting chronic, low-grade inflammation contributes to DVCs. In this review, we summarize the role of PRRs in DVCs including diabetic nephropathy, neuropathy, retinopathy, and cardiomyopathy. We propose that targeting PRRs and associated signaling pathways may be beneficial for the management of DVCs.
Collapse
Affiliation(s)
- Xu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Victor Antony
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhuji Biomedical Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhuji Biomedical Institute, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhuji, Zhejiang, China
| |
Collapse
|
28
|
Wong SK, Chin KY, Ima-Nirwana S. Toll-like Receptor as a Molecular Link between Metabolic Syndrome and Inflammation: A Review. Curr Drug Targets 2020; 20:1264-1280. [PMID: 30961493 DOI: 10.2174/1389450120666190405172524] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Metabolic Syndrome (MetS) involves a cluster of five conditions, i.e. obesity, hyperglycaemia, hypertension, hypertriglyceridemia and low High-Density Lipoprotein (HDL) cholesterol. All components of MetS share an underlying chronic inflammatory aetiology, manifested by increased levels of pro-inflammatory cytokines. The pathogenic role of inflammation in the development of MetS suggested that toll-like receptor (TLR) activation may trigger MetS. This review summarises the supporting evidence on the interactions between MetS and TLR activation, bridged by the elevation of TLR ligands during MetS. The regulatory circuits mediated by TLR activation, which modulates signal propagation, leading to the state of chronic inflammation, are also discussed. Taken together, TLR activation could be the molecular basis in the development of MetS-induced inflammation.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Lee H, Fessler MB, Qu P, Heymann J, Kopp JB. Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol 2020; 21:270. [PMID: 32660446 PMCID: PMC7358194 DOI: 10.1186/s12882-020-01921-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is characterized by inflammation, injury and fibrosis. Dysregulated innate immune responses mediated by macrophages play critical roles in progressive renal injury. The differentiation and polarization of macrophages into pro-inflammatory 'M1' and anti-inflammatory 'M2' states represent the two extreme maturation programs of macrophages during tissue injury. However, the effects of macrophage polarization on the pathogenesis of CKD are not fully understood. In this review, we discuss the innate immune mechanisms underlying macrophage polarization and the role of macrophage polarization in the initiation, progression, resolution and recurrence of CKD. Macrophage activation and polarization are initiated through recognition of conserved endogenous and exogenous molecular motifs by pattern recognition receptors, chiefly, Toll-like receptors (TLRs), which are located on the cell surface and in endosomes, and NLR inflammasomes, which are positioned in the cytosol. Recent data suggest that genetic variants of the innate immune molecule apolipoprotein L1 (APOL1) that are associated with increased CKD prevalence in people of African descent, mediate an atypical M1 macrophage polarization. Manipulation of macrophage polarization may offer novel strategies to address dysregulated immunometabolism and may provide a complementary approach along with current podocentric treatment for glomerular diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Michael B Fessler
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Peng Qu
- Institute of Heart and Vessel Diseases, Affiliated Second Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeffrey B Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Gao H, Wang X, Qu X, Zhai J, Tao L, Zhang Y, Song Y, Zhang W. Omeprazole attenuates cisplatin-induced kidney injury through suppression of the TLR4/NF-κB/NLRP3 signaling pathway. Toxicology 2020; 440:152487. [PMID: 32418911 DOI: 10.1016/j.tox.2020.152487] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 12/22/2022]
Abstract
Renal toxicity is the primary factor that limits clinical use of cisplatin (CP). A previous study showed that omeprazole (OME) protected against CP-induced toxicity in human renal tubular HK-2 cells and rat kidneys. However, the protective mechanisms of OME have not been characterized. We evaluated the ability of OME to inhibit CP-induced inflammation, and characterized the pathways responsible for this effect. Rats were randomly divided into five groups (n = 10/group). The OME groups were intraperitoneally injected with 1.8 or 3.6 mg OME /kg body weight once daily for 5 days. One hour after final administration of vehicle or OME, all rats (except those in control group and OME alone group) were intraperitoneally injected with 15 mg/kg CP. Twenty-four hours after CP injection, the surgery was applied. The time points and dosing of OME and CP were calculated based on previous studies and the therapeutic dose for patients. Omeprazole attenuated CP-induced apoptosis and damage in vivo and in vitro, as evidenced by increased cell viability and prevention of structural damage. Omeprazole ameliorated CP-induced renal injury through inhibition of NF-κB activation and IκBα degradation, and down-regulation of toll-like receptor 4 (TLR4) and Nod-like receptor protein 3 (NLRP3). Lipopolysaccharide, a TLR4 agonist, was used to verify this mechanism. The results indicated that OME inhibited CP-induced expression of inflammatory proteins, and this effect was blunted by co-treatment with LPS in HK-2 cells. These findings suggested that the protective effects of OME against CP-induced kidney damage may occur through inhibition of the TLR4/NF-κB/NLRP3 signaling pathway. This study provided evidence that OME may be a promising agent to inhibit CP-induced nephrotoxicity.
Collapse
Affiliation(s)
- Huan Gao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiangfeng Wang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Xiaoyu Qu
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Jinghui Zhai
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Lina Tao
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yueming Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China
| | - Yanqing Song
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| | - Wenrui Zhang
- Department of Pharmacy, the First Hospital of Jilin University, Changchun, Jilin, 130021, PR China.
| |
Collapse
|
31
|
Zahran AM, Nafady-Hego H, Askar E, Elmasry HM, Mohamad IL, El-Asheer OM, Esmail AM, Elsayh KI. Analysis of Toll-Like Receptor-2 and 4 Expressions in Peripheral Monocyte Subsets in Patients with Type 1 Diabetes Mellitus. Immunol Invest 2020; 50:113-124. [PMID: 32281447 DOI: 10.1080/08820139.2020.1714649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background: Dysfunction of the peripheral blood monocytes in the form of changes in their proportion, cytokines or pattern-recognition receptors (PRR) expressions may be involved in the pathogenesis of type 1 diabetes mellitus (T1DM). Our aim is to analyze the three monocyte subsets; classical, non-classical and intermediate monocytes and their expression of Toll-like receptors 2 (TLR-2) and 4 (TLR-4) in T1DM patients. Methods: The peripheral blood monocytes of 20 T1DM patients were analyzed by Flow cytometry to measure their count and TLR-2 and TLR-4 expression. Results: T1DM patients had more non-classical and intermediate monocytes, whereas classical monocytes were comparable between patients and control (20 healthy volunteers). Classical, non-classical and intermediate monocytes had no significant correlations with hemoglobin (Hb) A1C in controls, while all subsets showed positive correlations with HbA1C in T1DM. TLR-2 and TLR-4 expression were significantly increased in classical monocytes in patients, especially those with diabetic ketoacidosis (DKA), and both of them showed positive correlations with the duration of T1DM. The expression of TLR-2 inside non-classical monocytes showed a negative correlation with LDL cholesterol and TLR-4/TLR-2 ratio showed positive correlations with the duration of T1DM and negative correlations with total cholesterol. The expression of TLR-2 inside intermediate monocytes showed positive correlations with the duration of T1DM and TLR-4/TLR-2 ratio showed negative correlations with the duration of T1DM Conclusions: The observed changes in both proportions and TLR-2 and TLR-4 expression of monocyte subsets can raise the possible role in the pathogenesis of early stages of T1DM and DKA. Abbreviations APC: allophycocyanin; CBC: complete blood picture; DKA: diabetic acidosis; DM: diabetes mellitus; FITC: fluorescein isothiocyanate; FSC: forward scatter; Hb: haemoglobin; MFI: mean channel fluorescence intensity; PE: phycoerythrin; PRR: pattern-recognition receptors; SPSS: statistical package for the social sciences; SSC: side scatter; T1DM: Type1DM; TLRs: toll-like receptors.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute , Assiut, Egypt
| | - Hanaa Nafady-Hego
- Microbiology and Immunology Department, Faculty of Medicine, Assiut University , Assiut, Egypt.,Division of Translational Medicine, Sidra Medical and Research Center , Doha, Qatar
| | - Eman Askar
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Heba M Elmasry
- Department of Clinical Pathology, South Egypt Cancer Institute , Assiut, Egypt
| | - Ismail L Mohamad
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Osama M El-Asheer
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| | - Asmaa M Esmail
- Paediatric Department, Faculty of Medicine, Aswan University , Aswan, Egypt
| | - Khalid I Elsayh
- Paediatric Department, Faculty of Medicine, Assiut University , Assiut, Egypt
| |
Collapse
|
32
|
Jabłońska A, Neumayer C, Bolliger M, Burghuber C, Klinger M, Demyanets S, Nanobachvili J, Huk I. Insight into the expression of toll-like receptors 2 and 4 in patients with abdominal aortic aneurysm. Mol Biol Rep 2020; 47:2685-2692. [PMID: 32146682 DOI: 10.1007/s11033-020-05366-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
An abdominal aortic aneurysm (AAA) is a relatively common, life-threatening disease prevalent in persons over the age of 65. In recent years, an increasing number of studies have suggested that pattern-recognition receptors (PRRs), including Toll-like receptors (TLRs), may serve as important regulators in the development of AAAs. In this study, we evaluated the TLR2 and TLR4 expression in the aortic wall and blood of patients with AAA. The TLR2 and TLR4 mRNA expression were significantly higher in the blood of patients with AAA than in the blood of healthy volunteers (p = 0.009 and p = 0.010, respectively). The expression of TLR2 and TLR4 transcripts was also higher in the blood compared with the aortic wall tissue of AAA patients (p = 0.001 for both). Higher TLR2 protein expression was observed in the aortic wall of AAA patients compared with the blood (p = 0.026). A significantly higher concentration of TNF-α and IL-4 in patients with AAA than in healthy volunteers (p < 0.001 for both) was noticed. This study suggests that TLR2 may play a role in the inflammatory response in the aorta, both locally and systemically, in patients with AAA.
Collapse
Affiliation(s)
- Agnieszka Jabłońska
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 106 St., 93-232, Lodz, Poland. .,Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Michael Bolliger
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Christopher Burghuber
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Markus Klinger
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Svitlana Demyanets
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Josif Nanobachvili
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ihor Huk
- Division of Vascular Surgery, Department of Surgery, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| |
Collapse
|
33
|
Donate-Correa J, Luis-Rodríguez D, Martín-Núñez E, Tagua VG, Hernández-Carballo C, Ferri C, Rodríguez-Rodríguez AE, Mora-Fernández C, Navarro-González JF. Inflammatory Targets in Diabetic Nephropathy. J Clin Med 2020; 9:458. [PMID: 32046074 PMCID: PMC7074396 DOI: 10.3390/jcm9020458] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
One of the most frequent complications in patients with diabetes mellitus is diabetic nephropathy (DN). At present, it constitutes the first cause of end stage renal disease, and the main cause of cardiovascular morbidity and mortality in these patients. Therefore, it is clear that new strategies are required to delay the development and the progression of this pathology. This new approach should look beyond the control of traditional risk factors such as hyperglycemia and hypertension. Currently, inflammation has been recognized as one of the underlying processes involved in the development and progression of kidney disease in the diabetic population. Understanding the cascade of signals and mechanisms that trigger this maladaptive immune response, which eventually leads to the development of DN, is crucial. This knowledge will allow the identification of new targets and facilitate the design of innovative therapeutic strategies. In this review, we focus on the pathogenesis of proinflammatory molecules and mechanisms related to the development and progression of DN, and discuss the potential utility of new strategies based on agents that target inflammation.
Collapse
Affiliation(s)
- Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
| | - Desirée Luis-Rodríguez
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | - Víctor G. Tagua
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
| | | | - Carla Ferri
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Spain
| | | | - Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Juan F. Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (J.D.-C.); (E.M.-N.); (V.G.T.); (C.F.); (C.M.-F.)
- GEENDIAB (Grupo Español para el estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, 39008 Santander, Spain
- Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
- REDINREN (Red de Investigación Renal-RD16/0009/0022), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, 38010 San Cristóbal de La Laguna, Spain
| |
Collapse
|
34
|
Wang HQ, Wang SS, Chiufai K, Wang Q, Cheng XL. Umbelliferone ameliorates renal function in diabetic nephropathy rats through regulating inflammation and TLR/NF-κB pathway. Chin J Nat Med 2020; 17:346-354. [PMID: 31171269 DOI: 10.1016/s1875-5364(19)30040-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of renal failure, contributing to severe morbidity and mortality in diabetic patients. Umbelliferae (Umb) has been well characterized to exert protective effects in diabetes. However, the action and mechanism of Umb in DN remains unclear. In this work, we studied the effect of Umb in a streptozotocin (STZ)-induced DN rat model and explore its underlying mechanism. DN rats were treated withUmb (20, 40 mg·kg-1) orirbesartan (15 mg·kg-1) for 4 weeks. Levels of serum glucose, insulin, blood uric acid, creatinine, triglycerides (TG) and total cholesterol (TC) were measured bycommercial assay kits, respectively. Histopathological changes andinflammatory cytokine levels including IL-6, IL-1β and TNF-α in the kidney were also evaluated. Alterations in the expression of podocin, CD2AP and TLR/NF-κB were assessed by western blotting. Our results showed that Umb reduced renal injury in DN rat model, as evidenced by the decrease in blood glucose, 24 h urinary protein, serum creatinine, and blood uric acid. Umb also significantly ameliorated the renal histopathological alteration, and down-regulated the expression of epithelial-to-mesenchymal transition-related molecular markers podocin and CD2AP. Moreover, Umb inhibited TLR2, TLR4, MyD88 expressions, NF-κB activation and considerably reduced levels of other downstream inflammatory molecules (TNF-α, IL-6, IL-1β). These findings indicated that Umb improved renal function through regulating inflammation and TLR/NF-κB pathway, suggesting the potential efficacy of Umb in DN treatment.
Collapse
Affiliation(s)
- Han-Qing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Sha-Sha Wang
- School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, China
| | - Kuok Chiufai
- School of Health Sciences, Macao Polytechnic Institute, Macao SAR 999078, China
| | - Qi Wang
- Nanjing Dorra Pharmaceutical Co., Ltd., Nanjing 210012, China.
| | - Xiao-Lan Cheng
- Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
35
|
Xie F, Lei J, Ran M, Li Y, Deng L, Feng J, Zhong Y, Li J. Attenuation of Diabetic Nephropathy in Diabetic Mice by Fasudil through Regulation of Macrophage Polarization. J Diabetes Res 2020; 2020:4126913. [PMID: 32685556 PMCID: PMC7345603 DOI: 10.1155/2020/4126913] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/11/2020] [Accepted: 06/11/2020] [Indexed: 12/24/2022] Open
Abstract
Inflammation and fibrosis induced by hyperglycemia are considered to play a critical role in the pathogenesis of diabetic nephropathy. As macrophage polarization may determine the severity and progression of inflammation, regulation of macrophage polarization may be an effective method to treat diabetic complications. Fasudil, a potent Rho-kinase inhibitor, reportedly exhibits anti-inflammatory activity. However, whether fasudil reduces hyperglycemia-induced diabetic nephropathy via regulation of macrophage polarization remains unclear. In this study, we investigate the effect of fasudil on diabetic nephropathy in streptozotocin-induced type 1 diabetic mice. Our data showed that fasudil significantly decreased urinary protein and serum creatinine in diabetic mice, whereas it had no effect on the body weight and blood glucose. We also found increased M1-type macrophages and related proinflammatory cytokines, adverse fibrosis in renal tissue of diabetic mice. Interestingly, treatment of diabetic mice with fasudil increased the number of M2-type macrophages and related anti-inflammatory cytokines, which attenuated renal injury in diabetic mice. Taken together, the results of this study suggest that fasudil could slow the progression of diabetic nephropathy. The possible mechanism might be associated with its induction of M2 macrophage polarization and the reduction of M1 macrophage polarization and inflammation.
Collapse
Affiliation(s)
- Fajiang Xie
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Jiesen Lei
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Maoxia Ran
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Dazhou Central Hospital, Dazhou, Sichuan, China
| | - Yan Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Deng
- Department of Rheumatology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Feng
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Zhong
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiafu Li
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
36
|
van der Vlag J, Buijsers B. Heparanase in Kidney Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:647-667. [PMID: 32274730 DOI: 10.1007/978-3-030-34521-1_26] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primary filtration of blood occurs in the glomerulus in the kidney. Destruction of any of the layers of the glomerular filtration barrier might result in proteinuric disease. The glomerular endothelial cells and especially its covering layer, the glycocalyx, play a pivotal role in development of albuminuria. One of the main sulfated glycosaminoglycans in the glomerular endothelial glycocalyx is heparan sulfate. The endoglycosidase heparanase degrades heparan sulfate, thereby affecting glomerular barrier function, immune reactivity and inflammation. Increased expression of glomerular heparanase correlates with loss of glomerular heparan sulfate in many glomerular diseases. Most importantly, heparanase knockout in mice prevented the development of albuminuria after induction of experimental diabetic nephropathy and experimental glomerulonephritis. Therefore, heparanase could serve as a pharmacological target for glomerular diseases. Several factors that regulate heparanase expression and activity have been identified and compounds aiming to inhibit heparanase activity are currently explored.
Collapse
Affiliation(s)
- Johan van der Vlag
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands.
| | - Baranca Buijsers
- Department of Nephrology (480), Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|
38
|
Feng X, Yang R, Tian Y, Miao X, Guo H, Gao F, Yang L, Zhao S, Zhang W, Liu J, Li H, Tian Y, Zhao L, Wang S, Liu W, Wang K, Li Y, Wang Z, Liu Q, Wang C, Liu S. HMGB1 protein promotes glomerular mesangial matrix deposition via TLR2 in lupus nephritis. J Cell Physiol 2019; 235:5111-5119. [PMID: 31667864 DOI: 10.1002/jcp.29379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/27/2019] [Indexed: 01/22/2023]
Affiliation(s)
- Xiaojuan Feng
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Ran Yang
- Department of PathologyHebei Province Hospital of Chinese Medicine Shijiazhuang China
| | - Yuexin Tian
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Xinyan Miao
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Huifang Guo
- Department of RheumatologyThe Second Hospital of Hebei Medical University Shijiazhuang China
| | - Fan Gao
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Lin Yang
- Department of NephrologyThe Second Hospital of Hebei Medical University Shijiazhuang China
| | - Song Zhao
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Wei Zhang
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Jinxi Liu
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Hongbo Li
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Yu Tian
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
- Department of RheumatologyThe Second Hospital of Hebei Medical University Shijiazhuang China
| | - Lu Zhao
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Shuo Wang
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Wei Liu
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Kexin Wang
- School of Basic Medical SciencesHebei Medical University Shijiazhuang China
| | - Yuzhe Li
- School of Basic Medical SciencesHebei Medical University Shijiazhuang China
| | - Ziwei Wang
- School of Basic Medical SciencesHebei Medical University Shijiazhuang China
| | - Qingjuan Liu
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| | - Chunlin Wang
- Department of State Assets & Lab AdministrativeHebei Medical University Shijiazhuang China
| | - Shuxia Liu
- Department of Pathology, Hebei Key Laboratory of NephrologyHebei Medical University Shijiazhuang China
| |
Collapse
|
39
|
Unraveling the Role of Inflammation in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2019; 20:ijms20143393. [PMID: 31295940 PMCID: PMC6678414 DOI: 10.3390/ijms20143393] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/22/2022] Open
Abstract
Diabetic kidney disease (DKD) remains the leading cause of end-stage renal disease (ESRD) and is therefore a major burden on the healthcare system. Patients with DKD are highly susceptible to developing cardiovascular disease, which contributes to increased morbidity and mortality rates. While progress has been made to inhibit the acceleration of DKD, current standards of care reduce but do not eliminate the risk of DKD. There is growing appreciation for the role of inflammation in modulating the process of DKD. The focus of this review is on providing an overview of the current status of knowledge regarding the pathologic roles of inflammation in the development of DKD. Finally, we summarize recent therapeutic advances to prevent DKD, with a focus on the anti-inflammatory effects of newly developed agents.
Collapse
|
40
|
Abstract
The clinical onset of type 1 diabetes is characterized by the destruction of the insulin-producing β cells of the pancreas and is caused by autoantigen-induced inflammation (insulitis) of the islets of Langerhans. The current standard of care for type 1 diabetes mellitus patients allows for management of the disease with exogenous insulin, but patients eventually succumb to many chronic complications such as limb amputation, blindness, and kidney failure. New therapeutic approaches now on the horizon are looking beyond glycemic management and are evaluating new strategies from protecting and regenerating endogenous islets to treating the underlying autoimmunity through selective modulation of key immune cell populations. Currently, there are no effective treatments for the autoimmunity that causes the disease, and strategies that aim to delay or prevent the onset of the disease will play an important role in the future of diabetes research. In this review, we summarize many of the key efforts underway that utilize molecular approaches to selectively modulate this disease and look at new therapeutic paradigms that can transform clinical treatment.
Collapse
Affiliation(s)
- Daniel Sheehy
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Sean Quinnell
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Arturo J. Vegas
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
41
|
Tubulointerstitial Infiltration of M2 Macrophages in Henoch-Schönlein Purpura Nephritis Indicates the Presence of Glomerular Crescents and Bad Clinical Parameters. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8579619. [PMID: 30800680 PMCID: PMC6360621 DOI: 10.1155/2019/8579619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/03/2019] [Indexed: 01/20/2023]
Abstract
Henoch-Schönlein purpura (HSP) is the most common systemic vasculitis in children, and renal involvement (HSP nephritis, HSPN) is a severe manifestation. HSPN is histologically classified by the International Study of Kidney Disease in Children (ISKDC) based on mesangial hypercellularity and the extent of glomerular crescents. Macrophages, categorized as M1 or M2, frequently infiltrate in various glomerular and tubulointerstitial diseases and infiltration of specific subtypes is associated with disease progression. Therefore, to identify whether infiltration of M1 or M2 macrophages has clinical significance, we quantified the subtypes of macrophages in 49 HSPN specimens and correlated the counts with histologic features and clinical parameters. Higher tubulointerstitial M2 counts were associated with chronic renal failure (CRF), ISKDC classes III-IV, and crescents (P<0.001, 0.002, 0.001). Glomerular M2 counts were significantly related to ISKDC classes III-IV and crescents (area under curve, AUC 0.804, 0.833). Tubulointerstitial M2 counts were associated with CRF, ISKDC classes III-IV, and crescents (AUC 0.872, 0.778, 0.830). Tubulointerstitial M2 counts also revealed higher AUC than tubulointerstitial M1 counts for CRF (P=0.036) and ISKDC classes III-IV (P=0.047). Glomerular M2 counts revealed higher AUC than glomerular M1 counts for ISKDC classes III–IV (P=0.024). Tubulointerstitial M2 counts were the most powerful parameter for CRF (AUC 0.872) and revealed even higher AUC than ISKDC classification (AUC 0.716) with borderline significance (P=0.086) for CRF. In summary, tubulointerstitial M2 counts were a superior parameter to tubulointerstitial M1 counts and even to ISKDC classification indicating the presence of CRF.
Collapse
|
42
|
Liu BC, Tang TT, Lv LL. How Tubular Epithelial Cell Injury Contributes to Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:233-252. [PMID: 31399968 DOI: 10.1007/978-981-13-8871-2_11] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The renal tubules are the major component of the kidney and are vulnerable to a variety of injuries including ischemia, proteinuria, toxins, and metabolic disorders. It has long been believed that tubules are the victim of injury. In this review, we shift this concept to renal tubules as a driving force in the progression of kidney disease. In response to injury, tubular epithelial cells (TECs) can synthesize and secrete varieties of bioactive molecules that drive interstitial inflammation and fibrosis. Innate immune-sensing receptors on the TECs also aggravate immune responses. Necroinflammation, an auto-amplification loop between tubular cell death and interstitial inflammation, leads to the exacerbation of renal injury. Furthermore, TECs also play an active role in progressive renal injury via mechanisms associated with the conversion into collagen-producing fibroblast phenotype, cell cycle arrest at both G1/S and G2/M checkpoints, and metabolic disorder. Thus, a better understanding the mechanisms by which tubular injury drives AKI and CKD is necessary for the development of therapeutics to halt the progression of CKD.
Collapse
Affiliation(s)
- Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| | - Tao-Tao Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Lin-Li Lv
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| |
Collapse
|
43
|
Chen X, Zhao L, Xing Y, Lin B. RETRACTED: Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression. Biomed Pharmacother 2018; 108:7-14. [PMID: 30212710 DOI: 10.1016/j.biopha.2018.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/25/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concerns were raised about suspected duplicated features between the 'DN' and 'DN+anti-miR-NC' groups within Figure 2I, as detailed here: https://pubpeer.com/publications/FB14889727E5CF2651E012EEA10225#1. A journal investigation confirmed the presence of these suspected duplicated features. The journal asked the authors to provide an explanation to these concerns and the associated raw data. All authors were contacted on several occasions, but the journal did not receive a response. The Editor-in-Chief assessed the case and decided to retract the article.
Collapse
Affiliation(s)
- Xiaoping Chen
- Department of Endocrinology, The First Affiliated Hospital of Henan University, Kaifeng, 475000, China
| | - Lei Zhao
- Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Yanwei Xing
- Department of Pediatric, Kaifeng Hospital of TCM, Kaifeng, 475000, China
| | - Bo Lin
- Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Obesity and diabetes are worldwide epidemics. There is also a growing body of evidence relating the gut microbiome composition to insulin resistance. The purpose of this review is to delineate the studies linking gut microbiota to obesity, metabolic syndrome, and diabetes. RECENT FINDINGS Animal studies as well as proof of concept studies using fecal transplantation demonstrate the pivotal role of the gut microbiota in regulating insulin resistance states and inflammation. While we still need to standardize methodologies to study the microbiome, there is an abundance of evidence pointing to the link between gut microbiome, inflammation, and insulin resistance, and future studies should be aimed at identifying unifying mechanisms.
Collapse
Affiliation(s)
- Xinpu Chen
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA
| | - Sridevi Devaraj
- Department of Pathology & Immunology, Baylor College of Medicine and Texas Children's Hospital, 6621 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
45
|
Fernandes R, Viana SD, Nunes S, Reis F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1876-1897. [PMID: 30287404 DOI: 10.1016/j.bbadis.2018.09.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The increased prevalence of type 2 diabetes mellitus (T2DM) and life expectancy of diabetic patients fosters the worldwide prevalence of retinopathy and nephropathy, two major microvascular complications that have been difficult to treat with contemporary glucose-lowering medications. The gut microbiota (GM) has become a lively field research in the last years; there is a growing recognition that altered intestinal microbiota composition and function can directly impact the phenomenon of ageing and age-related disorders. In fact, human GM, envisaged as a potential source of novel therapeutics, strongly modulates host immunity and metabolism. It is now clear that gut dysbiosis and their products (e.g. p-cresyl sulfate, trimethylamine‑N‑oxide) dictate a secretory associated senescence phenotype and chronic low-grade inflammation, features shared in the physiological process of ageing ("inflammaging") as well as in T2DM ("metaflammation") and in its microvascular complications. This review provides an in-depth look on the crosstalk between GM, host immunity and metabolism. Further, it characterizes human GM signatures of elderly and T2DM patients. Finally, a comprehensive scrutiny of recent molecular findings (e.g. epigenetic changes) underlying causal relationships between GM dysbiosis and diabetic retinopathy/nephropathy complications is pinpointed, with the ultimate goal to unravel potential pathophysiological mechanisms that may be explored, in a near future, as personalized disease-modifying therapeutic approaches.
Collapse
Affiliation(s)
- Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
46
|
Yacov N, Feldman B, Volkov A, Ishai E, Breitbart E, Mendel I. Treatment with lecinoxoids attenuates focal and segmental glomerulosclerosis development in nephrectomized rats. Basic Clin Pharmacol Toxicol 2018; 124:131-143. [PMID: 30125459 PMCID: PMC7379519 DOI: 10.1111/bcpt.13114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 08/13/2018] [Indexed: 12/30/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) is a scarring process associated with chronic low‐grade inflammation ascribed to toll‐like receptor (TLR) activation and monocyte migration. We developed synthetic, small‐molecule lecinoxoids, VB‐201 and VB‐703, that differentially inhibit TLR‐2‐ and TLR‐4‐mediated activation and monocyte migration. The efficacy of anti‐inflammatory lecinoxoid treatment on FSGS development was explored using a 5/6 nephrectomy rat model. Five‐sixths of nephrectomized rats were treated with lecinoxoids VB‐201, VB‐703 or PBS, for 7 weeks. Upon sacrifice, albumin/creatinine ratio, glomerulosclerosis, fibrosis‐related gene expression and the number of glomerular and interstitial monocyte were evaluated. Treatment of nephrectomized rats with lecinoxoids ameliorated glomerulosclerosis. The percentage of damaged glomeruli, glomerular sclerosis and glomeruli fibrotic score was significantly reduced following VB‐201 and VB‐703 treatment. VB‐703 attenuated the expression of fibrosis hallmark genes collagen, fibronectin (FN) and transforming growth factor β (TGF‐β) in kidneys and improved albumin/creatinine ratio with higher efficacy than did VB‐201, but only VB‐201 significantly reduced the number of glomerular and interstitial monocytes. These results indicate that treatment with TLR‐2, and more prominently, TLR‐4 antagonizing lecinoxioids, is sufficient to significantly inhibit FSGS. Moreover, inhibiting monocyte migration can also contribute to treatment of FSGS. Our data demonstrate that targeting TLR‐2‐TLR‐4 and/or monocyte migration directly affects the priming phase of fibrosis and may consequently perturb disease parthogenesis.
Collapse
Affiliation(s)
| | | | - Alexander Volkov
- Institute of Pathology, The Chaim Sheba Medical Center, Tel-Hashomer, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | |
Collapse
|
47
|
Manigrasso MB, Friedman RA, Ramasamy R, D'Agati V, Schmidt AM. Deletion of the formin Diaph1 protects from structural and functional abnormalities in the murine diabetic kidney. Am J Physiol Renal Physiol 2018; 315:F1601-F1612. [PMID: 30132346 DOI: 10.1152/ajprenal.00075.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diaphanous 1 (DIAPH1), a member of the formin family, binds to the cytoplasmic domain of the receptor for advanced glycation end products (RAGE) and is required for RAGE signal transduction. Experiments employing genetic overexpression or deletion of Ager (the gene encoding RAGE) or its pharmacological antagonism implicate RAGE in the pathogenesis of diabetes-associated nephropathy. We hypothesized that DIAPH1 contributes to pathological and functional derangements in the kidneys of diabetic mice. We show that DIAPH1 is expressed in the human and murine diabetic kidney, at least in part in the tubulointerstitium and glomerular epithelial cells or podocytes. To test the premise that DIAPH1 is linked to diabetes-associated derangements in the kidney, we rendered male mice globally devoid of Diaph1 ( Diaph1-/-) or wild-type controls (C57BL/6 background) diabetic with streptozotocin. Control mice received equal volumes of citrate buffer. After 6 mo of hyperglycemia, diabetic Diaph1-/- mice displayed significantly reduced mesangial sclerosis, podocyte effacement, glomerular basement thickening, and urinary albumin-to-creatinine ratio compared with diabetic mice expressing Diaph1. Analysis of whole kidney cortex revealed that deletion of Diaph1 in diabetic mice significantly reduced expression of genes linked to fibrosis and inflammation. In glomerular isolates, expression of two genes linked to podocyte stress, growth arrest-specific 1 ( Gas1) and cluster of differentiation 36 ( Cd36), was significantly attenuated in diabetic Diaph1-/- mice compared with controls, in parallel with significantly higher levels of nestin (Nes) mRNA, a podocyte marker. Collectively, these data implicate DIAPH1 in the pathogenesis of diabetes-associated nephropathy and suggest that the RAGE-DIAPH1 axis is a logical target for therapeutic intervention in this disorder.
Collapse
Affiliation(s)
- Michaele B Manigrasso
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine , New York, New York
| | - Richard A Friedman
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Irving Medical Center , New York, New York
| | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine , New York, New York
| | - Vivette D'Agati
- Department of Pathology, College of Physicians and Surgeons, Columbia University , New York, New York
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University School of Medicine , New York, New York
| |
Collapse
|
48
|
Gewin LS. Renal fibrosis: Primacy of the proximal tubule. Matrix Biol 2018; 68-69:248-262. [PMID: 29425694 PMCID: PMC6015527 DOI: 10.1016/j.matbio.2018.02.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is the hallmark of chronic kidney disease and best predictor of renal survival. Many different cell types contribute to TIF progression including tubular epithelial cells, myofibroblasts, endothelia, and inflammatory cells. Previously, most of the attention has centered on myofibroblasts given their central importance in extracellular matrix production. However, emerging data focuses on how the response of the proximal tubule, a specialized epithelial segment vulnerable to injury, plays a central role in TIF progression. Several proximal tubular responses such as de-differentiation, cell cycle changes, autophagy, and metabolic changes may be adaptive initially, but can lead to maladaptive responses that promote TIF both through autocrine and paracrine effects. This review discusses the current paradigm of TIF progression and the increasingly important role of the proximal tubule in promoting TIF both in tubulointerstitial and glomerular injuries. A better understanding and appreciation of the role of the proximal tubule in TIF has important implications for therapeutic strategies to halt chronic kidney disease progression.
Collapse
Affiliation(s)
- Leslie S Gewin
- The Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
49
|
McCarty MF, Assanga SBI. Ferulic acid may target MyD88-mediated pro-inflammatory signaling - Implications for the health protection afforded by whole grains, anthocyanins, and coffee. Med Hypotheses 2018; 118:114-120. [PMID: 30037596 DOI: 10.1016/j.mehy.2018.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
Higher dietary intakes of anthocyanins have been linked epidemiologically to decreased risk for metabolic syndrome, type 2 diabetes and cardiovascular events; clinical trials and rodent studies evaluating ingestion of anthocyanin-rich extracts confirm favorable effects of these agents on endothelial function and metabolic syndrome. However, these benefits of anthocyanins are lost in rats whose gut microbiome has been eliminated with antibiotic treatment - pointing to bacterial metabolites of anthocyanins as the likely protective agents. A human pharmacokinetic assessment of orally administered cyanidin-3-O-glucoside, a prominent anthocyanin, has revealed that, whereas this compound is minimally absorbed, ferulic acid (FA) is one of its primary metabolites that appears in plasma. FA is a strong antioxidant and phase 2 inducer that has exerted marked anti-inflammatory effects in a number of rodent and cell culture studies; in particular, FA is highly protective in rodent models of diet-induced weight gain and metabolic syndrome. FA, a precursor for lignan synthesis, is widely distributed in plant-based whole foods, mostly in conjugated form; whole grains are a notable source. Coffee ingestion boosts plasma FA owing to gastrointestinal metabolism of chlorogenic acid. Hence, it is reasonable to suspect that FA mediates some of the broad health benefits that have been associated epidemiologically with frequent consumption of whole grains, anthocyanins, coffee, and unrefined plant-based foods. The molecular basis of the anti-inflammatory effects of FA may have been clarified by a recent study demonstrating that FA can target the adaptor protein MyD88; this plays an essential role in pro-inflammatory signaling by most toll-like receptors and interleukin-1β. If feasible oral intakes of FA can indeed down-regulate MyD88-dependent signaling, favorable effects of FA on neurodegeneration, hypothalamic inflammation, weight gain, adipocyte and beta cell function, adiponectin secretion, vascular health, and cartilage and bone integrity can be predicted. Since FA is well tolerated, safe, and natural, it may have great potential as a protective nutraceutical, and clinical trials evaluating its effects are needed.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 811 B Nahant Ct., San Diego, CA 92109, USA.
| | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Involved in innate immunity, toll-like receptors (TLRs) recognize pathogenic and endogenous ligands. Ligand binding initiates an inflammatory cascade which if sustained leads to fibrosis. This review summarizes the role of TLRs in diabetic kidney disease (DKD) with particular emphasis on TLR2 and TLR4. RECENT FINDINGS Collectively, preclinical evidence to date supports the causative role of TLR2 and TLR4 in both type I and type II DKD. The relative importance of each is still unclear. In experimental models, there are increased TLR2 and TLR4 ligands, expression and signalling. Functional studies using inhibitors or knockout animal models confirm causality. Clinical evidence also supports increased ligands and TLR2 and TLR4 expression in diabetes however there are no clinical studies examining whether interruption of these pathways confer renoprotection. SUMMARY Preclinical evidence to date supports the role of TLR2 and TLR4 in DKD. It will be useful to examine the value of interrupting these signalling pathways in clinical trials.
Collapse
|