1
|
Liu P, Zhou J, Cui H, Xu J, Ruan G, Ding C, Wang K. 1,25(OH) 2D 3 induces chondrocyte autophagy and reduces the loss of proteoglycans in osteoarthritis through inhibiting the NF-κB pathway. Clin Rheumatol 2025; 44:811-822. [PMID: 39775461 DOI: 10.1007/s10067-024-07281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Nuclear transcription factor-κB (NF-κB) activation is a pivotal event in the pathogenesis of osteoarthritis (OA). OA patients frequently exhibit vitamin D (VD) deficiency, which is commonly associated with NF-κB activation. Our study aimed to investigate whether VD could protect against OA by modulating NF-κB pathway and to explore the underlying mechanisms. METHODS Proteins levels were assessed by western blot analysis, gene expression was quantified by quantitative real-time polymerase chain reaction (qRT‒PCR) in vivo and in vitro. The expression of phosphorylated-p65 (p-p65) in knee OA rats was detected by immunohistochemistry, and an NF-κB nuclear translocation assay was validated in chondrocytes. Immunoprecipitation was employed to detect the interaction between NF-κB and vitamin D receptor (VDR) in vivo and in vitro. Small interfering RNA (Si-NF-κB and Si-VDR) transfection was used to investigate the role of NF-κB and VDR signaling pathway in knee OA rats under VD influence. Cartilage changes were visualized of knee OA rats using hematoxylin and eosin as well as safranin-O/fast green of staining. RESULTS Our findings indicated that VD alleviates OA by inhibiting NF-κB pathway, which in turn reduces chondrocyte apoptosis and extracellular matrix (ECM) degradation. Further analysis revealed that VD primarily stabilizes NF-κB through the interaction of VDR and NF-κB, modulating the AMPK/mTOR signaling pathway to enhance autophagy and delay the progression of OA. CONCLUSION This study highlights the protective role of VD in OA by stabilization of NF-κB, mainly through the interaction between VDR and NF-κB. This interaction regulates the AMPK/mTOR signaling pathway, promoting autophagy and suggesting a potential therapeutic strategy for OA management. Key Points • VD confers a protective effect on OA by primarily stabilizing NF-κB through the interaction between VDR and NF-κB, which in turn inhibits NF-κB phosphorylation and nuclear translocation. • In chondrocytes, VD helps shield against OA by blocking NF-κB's entry into the nucleus, subsequently regulating autophagy via the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Pingping Liu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
- Department of Rheumatology and Immunology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, China
| | - Junxian Zhou
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Haigang Cui
- Zhaoke Pharmaceutical Hefei Co, Hefei, 230000, China
| | - Jianhua Xu
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Guangfeng Ruan
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Kang Wang
- Department of Rheumatology and Immunology, Arthritis Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei, 230000, China.
| |
Collapse
|
2
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
3
|
Wang B, Cui K, Zhu B, Dong Y, Wang D, Singh B, Wu H, Li K, Eisa-Beygi S, Sun Y, Wong S, Cowan DB, Chen Y, Du M, Chen H. Epsins oversee smooth muscle cell reprograming by influencing master regulators KLF4 and OCT4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574714. [PMID: 39131381 PMCID: PMC11312448 DOI: 10.1101/2024.01.08.574714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Smooth muscle cells in major arteries play a crucial role in regulating coronary artery disease. Conversion of smooth muscle cells into other adverse cell types in the artery propels the pathogenesis of the disease. Curtailing artery plaque buildup by modulating smooth muscle cell reprograming presents us a new opportunity to thwart coronary artery disease. Here, our report how Epsins, a family of endocytic adaptor proteins oversee the smooth muscle cell reprograming by influencing master regulators OCT4 and KLF4. Using single-cell RNA sequencing, we characterized the phenotype of modulated smooth muscle cells in mouse atherosclerotic plaque and found that smooth muscle cells lacking epsins undergo profound reprogramming into not only beneficial myofibroblasts but also endothelial cells for injury repair of diseased endothelium. Our work lays concrete groundwork to explore an uncharted territory as we show that depleting Epsins bolsters smooth muscle cells reprograming to endothelial cells by augmenting OCT4 activity but restrain them from reprograming to harmful foam cells by destabilizing KLF4, a master regulator of adverse reprograming of smooth muscle cells. Moreover, the expression of Epsins in smooth muscle cells positively correlates with the severity of both human and mouse coronary artery disease. Integrating our scRNA-seq data with human Genome-Wide Association Studies (GWAS) identifies pivotal roles Epsins play in smooth muscle cells in the pathological process leading to coronary artery disease. Our findings reveal a previously unexplored direction for smooth muscle cell phenotypic modulation in the development and progression of coronary artery disease and unveil Epsins and their downstream new targets as promising novel therapeutic targets for mitigating metabolic disorders.
Collapse
Affiliation(s)
- Beibei Wang
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kui Cui
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Yunzhou Dong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Donghai Wang
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Bandana Singh
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Hao Wu
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Kathryn Li
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Shahram Eisa-Beygi
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Sun
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| | - Scott Wong
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Douglas B. Cowan
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| | - Yabing Chen
- Department of Pathology, Birmingham, AL 35294, USA; University of Alabama at Birmingham, and the Birmingham Veterans Affairs Medical Center, Birmingham, AL 35294, USA
| | - Mulong Du
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Hong Chen
- Vascular Biology Program, Boston Children’s Hospital and Department of Surgery, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
5
|
GCN5 participates in KLF4-VEGFA feedback to promote endometrial angiogenesis. iScience 2022; 25:104509. [PMID: 35733790 PMCID: PMC9207667 DOI: 10.1016/j.isci.2022.104509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/01/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
Endometrial angiogenesis is necessary for good endometrial receptivity. Krüppel-like factor 4 (KLF4) is a transcription factor that is essential for regulating angiogenesis. Here we found that vascular endothelial growth factor A (VEGFA) can form a positive feedback loop with KLF4 to promote the proliferation and migration of human endometrial microvascular endothelial cells (HEMECs) and inhibit cell apoptosis. General control non-derepressible 5 (GCN5) is also time-dependent on VEGFA and participates in the KLF4-VEGFA loop. In addition, we found that GCN5 is a succinyltransferase that modulates the succinylation of histones and nonhistones. GCN5 interacts with KLF4 and is recruited to the KLF4-binding site of the VEGFA promoter to succinylate H3K79, which initiates gene transcription epigenetically. For nonhistones, GCN5 succinylates KLF4 that is activated by ERK signaling in HEMECs treated with VEGFA to increase its transcription activity. These results demonstrate KLF4-VEGFA positive feedback loop is regulated by epigenetics, which contributes to endometrial angiogenesis. KLF4 mediates VEGFA-induced endometrial angiogenesis VEGFA increases the interaction between KLF4 and GCN5 VEGFA promotes H3K79 succinylation by upregulating KLF4 and GCN5 VEGFA succinylates KLF4 and promotes interaction of KLF4 and GCN5 via ERK pathway
Collapse
|
6
|
Biradar VS, Rajpathak SN, Joshi SR, Deobagkar DD. Functional and regulatory aspects of oxidative stress response in X monosomy. In Vitro Cell Dev Biol Anim 2021; 57:661-675. [PMID: 34505228 DOI: 10.1007/s11626-021-00604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
The partial/complete loss of one X chromosome in a human female leads to Turner syndrome (TS). TS individuals display a range of phenotypes including short stature, osteoporosis, ovarian malfunction, diabetes, and thyroid dysfunction. Epigenetic factors and regulatory networks are distinctly different in X monosomy (45, X). In a lifetime, an individual is exposed to a variety of stress conditions. To study whether X monosomy cells display a differential response upon exposure to mild stress as compared to normal 46, XX cells and whether this may contribute to various co-morbidities in aneuploid individuals, we have carried out a transcriptomic analysis of human fibroblasts 45, X and 46, XX after exposure to mild oxidative stress. Under these conditions, over 350 transcripts were seen to be differentially expressed in 45, X and 46, XX cells. Pathways associated with oxidative stress were differentially expressed highlighting the differential regulation of genes and associated phenotypes. It could be seen that X monosomy cells are more susceptible to oxidative stress as compared to normal cells and have altered molecular pathways both in normal conditions and also upon exposure to mild oxidative stress. To explore this aspect in detail, we have mapped the expressions of transcription factors (TFs) in 45, X and 46, XX cells. The network of transcription activating factors is differentially regulated in 45, X and 46, XX cells under stress exposure. It is tempting to speculate that the altered ability of 45, X (Turner) cells to respond to stress may play a significant role in the physiological function and altered phenotypes in Turner syndrome.
Collapse
Affiliation(s)
- Vinayak S Biradar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Shriram N Rajpathak
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Recombinant Department, Serum Institute of India Pvt. Ltd., Pune, 411 028, India
| | - Suraj R Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
- School of Physical Sciences, ISRO Space Technology Cell, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
7
|
Shi CS, Wu Y, Shu N, Jiang LL, Jiang B. Expression and role of specificity protein 1 and collagen I in recurrent pterygial tissues. Int J Ophthalmol 2021; 14:223-227. [PMID: 33614450 DOI: 10.18240/ijo.2021.02.07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/11/2020] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the expression profiles of the transcription factor specificity protein 1 (Sp1) and collagen I in recurrent pterygial tissues. What is more, to compare the changes of Sp1 and collagen I among primary pterygial tissue, recurrent pterygial tissue and conjunctival tissue. METHODS In the prospective study, we collected the pterygial tissues of 40 patients who underwent resection of primary pterygial tissue and recurrent pterygial tissue, and the conjunctival tissues of 10 patients with enucleation due to trauma. The relative expression levels of Sp1 and collagen I were analyzed by reverse transcription quantitative-polymerase chain reaction and Western blot. Paired t-test was performed to compare the Sp1 and collagen I of recurrent pterygial tissues, as well as the primary pterygial tissues and conjunctival tissues. In further, Pearson's hypothesis testing of correlation coefficients was used to compare the correlations of Sp1 and Collagen I. RESULTS The content of Sp1 and collagen I mRNA and protein was significantly greater in recurrent pterygial tissue than that was in primary and conjunctival tissue (P<0.05). There was a positive correlation between the mRNA and protein levels of Sp1 and collagen I in recurrent pterygial tissues (protein: r=0.913, P<0.05; mRNA: r=0.945, P<0.05). CONCLUSION Sp1 and collagen I are expressed in normal conjunctival, primary, and recurrent pterygial tissues, but expression is significantly greater in the latter. Sp1 and collagen I may be involved in the regulation of the development of recurrent pterygium.
Collapse
Affiliation(s)
- Chun-Sheng Shi
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China
| | - Yue Wu
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China
| | - Na Shu
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China
| | - Li-Li Jiang
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China
| | - Bo Jiang
- Department of Ophthalmology, Anhui No.2 Provincial People's Hospital, Hefei 230041, Anhui Province, China
| |
Collapse
|
8
|
Gu J, Qiu M, Lu Y, Ji Y, Qian Z, Sun W. Piperlongumine attenuates angiotensin-II-induced cardiac hypertrophy and fibrosis by inhibiting Akt-FoxO1 signalling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 82:153461. [PMID: 33497927 DOI: 10.1016/j.phymed.2021.153461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/09/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cardiac hypertrophy and fibrosis are closely related to cardiac dysfunction, especially diastolic dysfunction. Limited medications can be used to simultaneously delay cardiac hypertrophy and fibrosis in clinical practice. Piperlongumine (PLG) is an amide alkaloid extracted from Piper longum and has been shown to have multiple biological effects, including anticancer and antioxidant effects. However, the role of PLG in cardiac hypertrophy and fibrosis is not clear. PURPOSE The aim of this study was to reveal the role of PLG in cardiac hypertrophy and fibrosis and the associated mechanism. METHODS Cardiac hypertrophy and fibrosis were induced by angiotensin II (Ang II) in vivo and in vitro. The effect of PLG in vivo, in vitro and its mechanism were investigated by proliferation and apoptosis assays, western blot, real-time PCR, immunofluorescence, histochemistry, echocardiography, flow cytometry and chromatin immunoprecipitation. RESULTS Proliferation and apoptosis assays showed that 2.5 μM PLG slightly inhibited proliferation and did not promote apoptosis. Treatment with 5 mg/kg PLG obviously inhibited Ang II-induced cardiac hypertrophy and fibrosis in vivo. In vitro studies of neonatal rat cardiomyocytes (NRCMs) showed that the anti-hypertrophic effect of PLG was mediated by reducing the phosphorylation of Akt and thereby preserving the level of Forkhead box transcription factor O1 (FoxO1), since knockdown of FoxO1 by siRNA reversed the protective effect of PLG on NRCMs. In addition, PLG significantly decreased the Ang II-induced expression of profibrotic proteins in neonatal cardiac fibroblasts by reducing the expression of Krüppel-like factor 4 (KLF4) and the recruitment of KLF4 to the promoter regions of transforming growth factor-β and connective tissue growth factor. CONCLUSION We demonstrate the cardioprotective effects of PLG in both cardiac hypertrophy and fibrosis and the potential value of PLG for developing novel medications for pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jia Gu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Ming Qiu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China; School of Medicine, Southeast University, Nanjing, PR China
| | - Yan Lu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yue Ji
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| | - Zhihong Qian
- Department of Cardiology, Liyang People's Hospital, Liyang, PR China.
| | - Wei Sun
- Department of Cardiology, Liyang People's Hospital, Liyang, PR China; Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China.
| |
Collapse
|
9
|
Creamer TJ, Bramel EE, MacFarlane EG. Insights on the Pathogenesis of Aneurysm through the Study of Hereditary Aortopathies. Genes (Basel) 2021; 12:183. [PMID: 33514025 PMCID: PMC7912671 DOI: 10.3390/genes12020183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Thoracic aortic aneurysms (TAA) are permanent and localized dilations of the aorta that predispose patients to a life-threatening risk of aortic dissection or rupture. The identification of pathogenic variants that cause hereditary forms of TAA has delineated fundamental molecular processes required to maintain aortic homeostasis. Vascular smooth muscle cells (VSMCs) elaborate and remodel the extracellular matrix (ECM) in response to mechanical and biochemical cues from their environment. Causal variants for hereditary forms of aneurysm compromise the function of gene products involved in the transmission or interpretation of these signals, initiating processes that eventually lead to degeneration and mechanical failure of the vessel. These include mutations that interfere with transduction of stimuli from the matrix to the actin-myosin cytoskeleton through integrins, and those that impair signaling pathways activated by transforming growth factor-β (TGF-β). In this review, we summarize the features of the healthy aortic wall, the major pathways involved in the modulation of VSMC phenotypes, and the basic molecular functions impaired by TAA-associated mutations. We also discuss how the heterogeneity and balance of adaptive and maladaptive responses to the initial genetic insult might contribute to disease.
Collapse
Affiliation(s)
- Tyler J. Creamer
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily E. Bramel
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Predoctoral Training in Human Genetics and Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elena Gallo MacFarlane
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (T.J.C.); (E.E.B.)
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Conforti P, Besusso D, Brocchetti S, Campus I, Cappadona C, Galimberti M, Laporta A, Iennaco R, Rossi RL, Dickinson VB, Cattaneo E. RUES2 hESCs exhibit MGE-biased neuronal differentiation and muHTT-dependent defective specification hinting at SP1. Neurobiol Dis 2020; 146:105140. [PMID: 33065279 DOI: 10.1016/j.nbd.2020.105140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 10/23/2022] Open
Abstract
RUES2 cell lines represent the first collection of isogenic human embryonic stem cells (hESCs) carrying different pathological CAG lengths in the HTT gene. However, their neuronal differentiation potential has yet to be thoroughly evaluated. Here, we report that RUES2 during ventral telencephalic differentiation is biased towards medial ganglionic eminence (MGE). We also show that HD-RUES2 cells exhibit an altered MGE transcriptional signature in addition to recapitulating known HD phenotypes, with reduced expression of the neurodevelopmental regulators NEUROD1 and BDNF and increased cleavage of synaptically enriched N-cadherin. Finally, we identified the transcription factor SP1 as a common potential detrimental co-partner of muHTT by de novo motif discovery analysis on the LGE, MGE, and cortical genes differentially expressed in HD human pluripotent stem cells in our and additional datasets. Taken together, these observations suggest a broad deleterious effect of muHTT in the early phases of neuronal development that may unfold through its altered interaction with SP1.
Collapse
Affiliation(s)
- Paola Conforti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Dario Besusso
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Silvia Brocchetti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Ilaria Campus
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Claudio Cappadona
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Maura Galimberti
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Angela Laporta
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy
| | - Raffaele Iennaco
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Riccardo L Rossi
- Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Vittoria Bocchi Dickinson
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy
| | - Elena Cattaneo
- Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, 20122 Milan, Italy; Istituto Nazionale Genetica Molecolare, Romeo ed Enrica Invernizzi, Milan 20122, Italy.
| |
Collapse
|
11
|
Zhou J, Zhang L, Zheng B, Zhang L, Qin Y, Zhang X, Yang Z, Nie Z, Yang G, Yu J, Wen J. Salvia miltiorrhiza bunge exerts anti-oxidative effects through inhibiting KLF10 expression in vascular smooth muscle cells exposed to high glucose. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113208. [PMID: 32738388 DOI: 10.1016/j.jep.2020.113208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicinal herb Salvia miltiorrhiza Bunge(Danshen) and its components have been widely used to treat cardiovascular diseases for hundreds of years in China, including hypertension, diabetes, atherosclerosis, and chronic heart failure. Salvia miltiorrhiza injection (SMI), an aqueous extracts of Salvia miltiorrhiza Bunge, is one of most widely used traditional Chinese medicine injections. SMI is widely used in the treatment of diabetic vascular complications, However, the mechanisms remain to be defined. AIM OF THE STUDY To investigate protective mechanism of Salvia miltiorrhiza Bunge against ROS generation in VSMCs of diabetic mice and patients. MATERIALS AND METHODS Salvia miltiorrhiza injection (hereinafter referred to as SMI, 1.5 g mL-1), which was approved by the State Food and Drug Administration (approval number: Z32020161), was obtained from Shenlong Pharmaceutical Co., Ltd. (batch number: 11040314). SMI or vehicle were intraperitoneally administrated to the HFD-fed db/db mice, artery was harvested after 24weeks later. qRT-PCR and Western blot analysis were used to detect the expression of KLF6, KLF5, KLF4, KLF10, KLF12, and HO-1. DCFH-DA staining detected intracellular ROS production. Loss- and gain-of-function experiments of KLF10 were used to investigate the effect of KLF10 on the expression of HO-1. Dual-luciferase reporter assay evaluated the effect of KLF10 on the activity of the HO-1 promoter. RESULTS KLF10 expression and ROS generation are significantly increased in the arteries of HFD-fed db/db mice, VSMCs of diabetic patients, as well as in high glucose-treated VSMCs. KLF10 overexpression suppresses, while its knockdown facilitates the expression of heme oxygenase (HO-1) mRNA and protein. Further, Salvia miltiorrhiza injection (SMI) abrogates KLF10 upregulation and reduces ROS generation induced by high glucose in VSMCs. Mechanistically, KLF10 negatively regulates the HO-1 gene transcription via directly binding to its promoter. Accordingly, SMI treatment of VSMCs reduces ROS generation through inhibiting KLF10 expression and thus relieving KLF10 repression of the expression of HO-1 gene, subsequently contributing to upregulation of HO-1. CONCLUSION SMI exerts anti-oxidative effects on VSMCs exposed to high glucose through inhibiting KLF10 expression and thus upregulating HO-1.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Long Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - LiHui Zhang
- Department of Endocrinology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - Yan Qin
- Department of Central Laboratory Affiliated Hospital of Hebei University, Key Laboratory for Fractionation Mechanisms and Procedures, Baoding, Hebei, 07100, China
| | - XinHua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - ZiYuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory for Hematology, Shijiazhuang, Hebei, 050000, China
| | - GaoShan Yang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jing Yu
- The Second Department of Respiratory and Critical Care Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, China
| | - JinKun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
12
|
Pioglitazone protects blood vessels through inhibition of the apelin signaling pathway by promoting KLF4 expression in rat models of T2DM. Biosci Rep 2020; 39:221480. [PMID: 31829402 PMCID: PMC6928522 DOI: 10.1042/bsr20190317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Apelin, identified as the endogenous ligand of APJ, exerts various cardiovascular effects. However, the molecular mechanism underlying the regulation of apelin expression in vascular cells is poorly described. Pioglitazone (PIO) and Krüppel-like factor 4 (KLF4) exhibit specific biological functions on vascular physiology and pathophysiology by regulating differentiation- and proliferation-related genes. The present study aimed to investigate the roles of PIO and KLF4 in the transcriptional regulation of apelin in a high-fat diet/streptozotocin rat model of diabetes and in PIO-stimulated vascular smooth muscle cells (VSMCs). Immunohistochemistry, qRT-PCR, and Western blotting assays revealed that the aorta of the Type 2 diabetes mellitus (T2DM) rat models had a high expression of apelin, PIO could decrease the expression of apelin in the PIO-treated rats. In vitro, Western blotting assays and immunofluorescent staining results showed that the basal expression of apelin was decreased but that of KLF4 was increased when VSMCs were stimulated by PIO treatment. Luciferase and chromatin immunoprecipitation assay results suggested that KLF4 bound to the GKLF-binding site of the apelin promoter and negatively regulated the transcription activity of apelin in VSMCs under PIO stimulation. Furthermore, qRT-PCR and Western blotting assay results showed that the overexpression of KLF4 markedly decreased the basal expression of apelin, but the knockdown of KLF4 restored the PIO-induced expression of apelin. In conclusion, PIO inhibited the expression of apelin in T2DM rat models to prevent diabetic macroangiopathy, and negatively regulated the gene transcription of apelin by promoting transcription of KLF4 in the apelin promoter.
Collapse
|
13
|
Ma D, Zheng B, Liu HL, Zhao YB, Liu X, Zhang XH, Li Q, Shi WB, Suzuki T, Wen JK. Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission. PLoS Biol 2020; 18:e3000808. [PMID: 32817651 PMCID: PMC7462304 DOI: 10.1371/journal.pbio.3000808] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/01/2020] [Accepted: 07/31/2020] [Indexed: 01/10/2023] Open
Abstract
Although dysregulation of mitochondrial dynamics has been linked to cellular senescence, which contributes to advanced age-related disorders, it is unclear how Krüppel-like factor 5 (Klf5), an essential transcriptional factor of cardiovascular remodeling, mediates the link between mitochondrial dynamics and vascular smooth muscle cell (VSMC) senescence. Here, we show that Klf5 down-regulation in VSMCs is correlated with rupture of abdominal aortic aneurysm (AAA), an age-related vascular disease. Mice lacking Klf5 in VSMCs exacerbate vascular senescence and progression of angiotensin II (Ang II)-induced AAA by facilitating reactive oxygen species (ROS) formation. Klf5 knockdown enhances, while Klf5 overexpression suppresses mitochondrial fission. Mechanistically, Klf5 activates eukaryotic translation initiation factor 5a (eIF5a) transcription through binding to the promoter of eIF5a, which in turn preserves mitochondrial integrity by interacting with mitofusin 1 (Mfn1). Accordingly, decreased expression of eIF5a elicited by Klf5 down-regulation leads to mitochondrial fission and excessive ROS production. Inhibition of mitochondrial fission decreases ROS production and VSMC senescence. Our studies provide a potential therapeutic target for age-related vascular disorders.
Collapse
Affiliation(s)
- Dong Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - He-liang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Yong-bo Zhao
- Department of Cardiac surgery, the Fourth Hospital of Hebei Medical University, Shi Jiazhuang, China
| | - Xiao Liu
- Department of Cardiac surgery, the Fourth Hospital of Hebei Medical University, Shi Jiazhuang, China
| | - Xin-hua Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Qiang Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Wei-bo Shi
- Department of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang, China
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Jin-kun Wen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
14
|
Increased AT 2R expression is induced by AT 1R autoantibody via two axes, Klf-5/IRF-1 and circErbB4/miR-29a-5p, to promote VSMC migration. Cell Death Dis 2020; 11:432. [PMID: 32514012 PMCID: PMC7280191 DOI: 10.1038/s41419-020-2643-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
Vascular remodeling can be caused by angiotensin II type 1 receptor (AT1R) autoantibody (AT1-AA), although the related mechanism remains unknown. Angiotensin II type 2 receptor (AT2R) plays multiple roles in vascular remodeling through cross-talk with AT1R in the cytoplasm. Here, we aimed to explore the role and mechanism of AT2R in AT1-AA-induced vascular smooth muscle cell (VSMC) migration, which is a key event in vascular remodeling. In vitro and in vivo, we found that AT2R can promote VSMC migration in AT1-AA-induced vascular remodeling. Moreover, AT2R expression was upregulated via Klf-5/IRF-1-mediated transcriptional and circErbB4/miR-29a-5p-mediated posttranscriptional mechanisms in response to AT1-AA. Our data provide a molecular basis for AT1-AA-induced AT2R expression by transcription factors, namely, a circular RNA and a microRNA, and showed that AT2R participated in AT1-AA-induced VSMC migration during the development of vascular remodeling. AT2R may be a potential target for the treatment of AT1-AA-induced vascular diseases.
Collapse
|
15
|
Steuernagel L, Meckbach C, Heinrich F, Zeidler S, Schmitt AO, Gültas M. Computational identification of tissue-specific transcription factor cooperation in ten cattle tissues. PLoS One 2019; 14:e0216475. [PMID: 31095599 PMCID: PMC6522001 DOI: 10.1371/journal.pone.0216475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 04/22/2019] [Indexed: 01/01/2023] Open
Abstract
Transcription factors (TFs) are a special class of DNA-binding proteins that orchestrate gene transcription by recruiting other TFs, co-activators or co-repressors. Their combinatorial interplay in higher organisms maintains homeostasis and governs cell identity by finely controlling and regulating tissue-specific gene expression. Despite the rich literature on the importance of cooperative TFs for deciphering the mechanisms of individual regulatory programs that control tissue specificity in several organisms such as human, mouse, or Drosophila melanogaster, to date, there is still need for a comprehensive study to detect specific TF cooperations in regulatory processes of cattle tissues. To address the needs of knowledge about specific combinatorial gene regulation in cattle tissues, we made use of three publicly available RNA-seq datasets and obtained tissue-specific gene (TSG) sets for ten tissues (heart, lung, liver, kidney, duodenum, muscle tissue, adipose tissue, colon, spleen and testis). By analyzing these TSG-sets, tissue-specific TF cooperations of each tissue have been identified. The results reveal that similar to the combinatorial regulatory events of model organisms, TFs change their partners depending on their biological functions in different tissues. Particularly with regard to preferential partner choice of the transcription factors STAT3 and NR2C2, this phenomenon has been highlighted with their five different specific cooperation partners in multiple tissues. The information about cooperative TFs could be promising: i) to understand the molecular mechanisms of regulating processes; and ii) to extend the existing knowledge on the importance of single TFs in cattle tissues.
Collapse
Affiliation(s)
- Lukas Steuernagel
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Cornelia Meckbach
- Institute of Medical Bioinformatics, Goldschmidtstraße 1, University Medical Center Göttingen, Georg-August-University, 37077 Göttingen, Germany
| | - Felix Heinrich
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Sebastian Zeidler
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
| | - Armin O. Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), Albrecht-Thaer-Weg 3, Georg-August University, 37075, Göttingen, Germany
- * E-mail:
| |
Collapse
|
16
|
Zhu P, Lu H, Jing Y, Zhou H, Ding Y, Wang J, Guo D, Guo Z, Dong C. Interaction Between AGTR1 and PPARγ Gene Polymorphisms on the Risk of Nonalcoholic Fatty Liver Disease. Genet Test Mol Biomarkers 2019; 23:166-175. [PMID: 30793973 DOI: 10.1089/gtmb.2018.0203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIMS Nonalcoholic fatty liver disease (NAFLD) is an important public health issue worldwide. Several recent studies have reported that peroxisome proliferator-activated receptor-γ (PPARγ) and angiotensin II type 1 receptor (AGTR1) variants are associated with NAFLD occurrence, but the results have been inconsistent. The aim of this study was to analyze the interactions between PPARγ and AGTR1 polymorphisms and their associations with NAFLD in Chinese adults. METHODS Seven single nucleotide polymorphisms (SNPs) of the PPARγ gene and 5 SNPs of the AGTR1 gene were selected and genotyped in 1591 unrelated Chinese adults. The SNPAssoc package of R was used to examine the relationships between the selected SNPs and NAFLD. RESULTS After adjusting the covariance, the results from the overdominant model showed that participants carrying the T/C genotype of rs2638360 in AGTR1 have a decreased risk of NAFLD compared with those with T/T-C/C genotypes (odds ratio: 0.70, 95% confidence interval: 0.49-1.00). However, our results showed that none of the selected PPARγ variants were significantly associated with the risk of NAFLD after applying a false discovery rate correction. Among the 12 selected SNPs from PPARγ and AGTR1, model-based multifactor dimensionality reduction (MB-MDR) analyses for gene-gene interactions revealed that all the models were significantly associated with the increased risk of NAFLD (p < 0.05) except the 2-, 10-, 11-, and 12-locus models. Further, among the 10 SNPs negatively associated with NAFLD, the four-locus model (rs13431696 and rs3856806 in PPARγ, and rs5182, rs1492100 in ATGR1) and the five-locus model (rs9817428, rs1175543, rs13433696, and rs2920502 in PPARγ, and rs1492100 in ATGR1) were closely related with NAFLD susceptibility (p = 0.019 and p = 0.048, respectively). CONCLUSION Our present study suggests that interactions among multiple AGTR1 and PPARγ polymorphisms are associated with the risk of NAFLD in the Chinese population.
Collapse
Affiliation(s)
- Peifu Zhu
- 1 Zhangjiagang First People's Hospital, Suzhou, China
| | | | - Yang Jing
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Hui Zhou
- 4 Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Yi Ding
- 4 Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Jie Wang
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Zhirong Guo
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| | - Chen Dong
- 3 Department of Epidemiology and Statistics, School of Public Health, Jiangsu Key Laboratory and Translational Medicine for Geriatric Disease, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
17
|
Castilla R, Asuaje A, Rivière S, Romero CG, Martín P, Cao G, Kleiman de Pisarev D, Milesi V, Alvarez L. Environmental pollutant hexachlorobenzene induces hypertension in a rat model. CHEMOSPHERE 2018; 195:576-584. [PMID: 29277037 DOI: 10.1016/j.chemosphere.2017.11.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 05/10/2023]
Abstract
Hexachlorobenzene (HCB) is a dioxin-like environmental pollutant, widely distributed in the environment. New research links exposure to high levels of persistent organic environmental toxicants to cardiovascular disease, however little is known about the effect of HCB on vascular function and on blood pressure. The purpose of the present study was to evaluate biochemical and cardiovascular changes resulting from subchronic HCB exposure. Adult female Sprague-Dawley rats were treated with vehicle or HCB (5 or 500 mg/kg b.w) for 45 days. Systolic blood pressure (BP), recorded by tail cuff plethysmography, was significantly increased at 35, 40 and 45 days of 500 mg/kg HCB-treatment. HCB (500 mg/kg) increased arterial thickness, while both 5 and 500 mg/kg HCB decreased proliferating cell nuclear antigen (PCNA) protein levels and cellular nuclei in abdominal aortas indicating a hypertrophic process. Also, aortas from both groups of HCB-treated rats presented higher sensitivity to noradrenalin (NA) and a significant decrease in maximum contractile response. Arteries from 500 mg/kg HCB-treated rats showed a significant increase in the levels of transforming growth factor-β1 (TGF-β1) mRNA and angiotensin II type1 receptor (AT1), and a significant decrease in estrogen receptor alpha (ERα), endothelial nitric oxidide synthase (eNOS) protein expression and deiodinase II (DII) mRNA levels. In conclusion, we have demonstrated for the first time that subchronic HCB administration significantly increases BP and alters associated cardiovascular parameters in rats. In addition, HCB alters the expression of key vascular tissue molecules involved in BP regulation, such as TGF-β1, AT1, ERα, eNOS and DII.
Collapse
Affiliation(s)
- Rocío Castilla
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones Cardiológicas (ININCA), C1122AAJ Buenos Aires, Argentina.
| | - Agustín Asuaje
- Universidad Nacional de La Plata, Facultad de Ciencias Exactas, CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), 1900, La Plata, Buenos Aires, Argentina.
| | - Stéphanie Rivière
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones Cardiológicas (ININCA), C1122AAJ Buenos Aires, Argentina.
| | - Caimi Giselle Romero
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, C1121ABG, Buenos Aires, Argentina.
| | - Pedro Martín
- Universidad Nacional de La Plata, Facultad de Ciencias Exactas, CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), 1900, La Plata, Buenos Aires, Argentina.
| | - Gabriel Cao
- Universidad de Buenos Aires, CONICET, Instituto de Investigaciones Cardiológicas (ININCA), C1122AAJ Buenos Aires, Argentina.
| | - Diana Kleiman de Pisarev
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, C1121ABG, Buenos Aires, Argentina.
| | - Verónica Milesi
- Universidad Nacional de La Plata, Facultad de Ciencias Exactas, CONICET, Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), 1900, La Plata, Buenos Aires, Argentina.
| | - Laura Alvarez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Bioquímica Humana, Laboratorio de Efectos Biológicos de Contaminantes Ambientales, C1121ABG, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Yao S, Tian C, Ding Y, Ye Q, Gao Y, Yang N, Li Q. Down-regulation of Krüppel-like factor-4 by microRNA-135a-5p promotes proliferation and metastasis in hepatocellular carcinoma by transforming growth factor-β1. Oncotarget 2018; 7:42566-42578. [PMID: 27302923 PMCID: PMC5173156 DOI: 10.18632/oncotarget.9934] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like Factor-4 (KLF4) is a zinc finger transcription factor which plays an important role in cell cycle, proliferation and apoptosis. In Hepatocellular Carcinoma (HCC), the function of KLF4 has been characterized as tumor suppressor. However, the mechanism remains largely unknown. In this study, we demonstrated that TGF-β1 down-regulated KLF4 by activating miR-135a-5p. MiR-135a-5p promoted proliferation and metastasis in HCC cells by direct targeting KLF4 both in vitro and in vivo. In addition, miR-135a-5p expression was up-regulated in clinical HCC tissues, and was inversely correlated with the expression of KLF4. Taken together, our data indicated that TGF-β1 down-regulated KLF4 by activating miR-135a-5p, promoting proliferation and metastasis in HCC.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120,China
| | - Chuan Tian
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120,China
| | - Youcheng Ding
- Department of General Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120,China
| | - Qingwang Ye
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120,China
| | - Ning Yang
- Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Qi Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120,China.,Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| |
Collapse
|
19
|
Sapouckey SA, Deng G, Sigmund CD, Grobe JL. Potential mechanisms of hypothalamic renin-angiotensin system activation by leptin and DOCA-salt for the control of resting metabolism. Physiol Genomics 2017; 49:722-732. [PMID: 28986397 DOI: 10.1152/physiolgenomics.00087.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/22/2017] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin system (RAS), originally described as a circulating hormone system, is an enzymatic cascade in which the final vasoactive peptide angiotensin II (ANG) regulates cardiovascular, hydromineral, and metabolic functions. The RAS is also synthesized locally in a number of tissues including the brain, where it can act in a paracrine fashion to regulate blood pressure, thirst, fluid balance, and resting energy expenditure/resting metabolic rate (RMR). Recent studies demonstrate that ANG AT1A receptors (Agtr1a) specifically in agouti-related peptide (AgRP) neurons of the arcuate nucleus (ARC) coordinate autonomic and energy expenditure responses to various stimuli including deoxycorticosterone acetate (DOCA)-salt, high-fat feeding, and leptin. It remains unclear, however, how these disparate stimuli converge upon and activate this specific population of AT1A receptors in AgRP neurons. We hypothesize that these stimuli may act to stimulate local expression of the angiotensinogen (AGT) precursor for ANG, or the expression of AT1A receptors, and thereby local activity of the RAS within the (ARC). Here we review mechanisms that may control AGT and AT1A expression within the central nervous system, with a particular focus on mechanisms activated by steroids, dietary fat, and leptin.
Collapse
Affiliation(s)
- Sarah A Sapouckey
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guorui Deng
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Curt D Sigmund
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Justin L Grobe
- Department of Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, Iowa; .,Molecular Medicine Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Center for Hypertension Research, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Fraternal Order of Eagles' Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and.,Obesity Research & Education Initiative, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
20
|
Yu R, Han L, Ni X, Wang M, Xue P, Zhang L, Yuan M. Kruppel-like factor 4 inhibits non–small cell lung cancer cell growth and aggressiveness by stimulating transforming growth factor-β1-meidated ERK/JNK/NF-κB signaling pathways. Tumour Biol 2017. [PMID: 28631556 DOI: 10.1177/1010428317705574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Renzhi Yu
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Lei Han
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Xin Ni
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Minghuan Wang
- Community Health Service Center, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Ping Xue
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Li Zhang
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Mei Yuan
- Department of Respiratory Medicine, Hongqi Hospital of Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
21
|
Zhang Y, Li YH, Liu C, Nie CJ, Zhang XH, Zheng CY, Jiang W, Yin WN, Ren MH, Jin YX, Liu SF, Zheng B, Wen JK. miR-29a regulates vascular neointimal hyperplasia by targeting YY1. Cell Prolif 2016; 50. [PMID: 27910161 DOI: 10.1111/cpr.12322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/01/2016] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The formation of vascular neointima is mainly related to impairment of the vascular endothelial barrier and abnormal proliferation and migration of smooth muscle cells. The objective of this study was to investigate whether miR-29a exerts any promoting effect on the vascular neointimal hyperplasia and if so, its mechanism. MATERIALS AND METHODS RT-qPCR was performed to determine expression of miR-29a in vascular smooth muscle cells (VSMC) and vascular neointimal hyperplasia. To further understand its role, we restored its expression in VSMCs by transfection with miR-29a mimics or inhibitors. Effects of miR-29a on cell proliferation were also determined. RESULTS In this study, we used two kinds of model to observe the role of miR-29a in neointimal hyperplasia induced by carotid ligation or balloon injury. The major findings were that: (i) miR-29a overexpression promoted neointimal hyperplasia induced by carotid ligation; (ii) miR-29a increased proliferation of VSMCs, one aspect of which was by targeting expression of Ying and yang 1 protein (YY1), a negative regulator of Cyclin D1. A further aspect, was by increasing expression of Krüppel-like factor 5, a positive regulator of Cyclin D1, thereby allowing formation a synergistic effect. (iii) Tongxinluo (TXL), a traditional Chinese medicine reduced neointimal formation in ligated vessels by inhibiting VSMC proliferation and migration. CONCLUSIONS These findings provide a new molecular mechanism of TXL in decreasing neointima hyperplasia.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Hebei Center for Disease Control and Prevention, Shijiazhuang, China
| | - Chao Liu
- Laboratory Animal Center of Hebei Medical University, Shijiazhuang, China
| | - Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China.,Handan First Hospital, Handan, China
| | - Ming-Hui Ren
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Xin Jin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Shu-Feng Liu
- Laboratory Animal Center of Hebei Medical University, Shijiazhuang, China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
22
|
Ma D, Zhang RN, Wen Y, Yin WN, Bai D, Zheng GY, Li JS, Zheng B, Wen JK. 1, 25(OH) 2D 3-induced interaction of vitamin D receptor with p50 subunit of NF-κB suppresses the interaction between KLF5 and p50, contributing to inhibition of LPS-induced macrophage proliferation. Biochem Biophys Res Commun 2016; 482:366-374. [PMID: 27856242 DOI: 10.1016/j.bbrc.2016.11.069] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 11/12/2016] [Indexed: 10/20/2022]
Abstract
KLF5 and nuclear factor κB (NF-κB) regulate cell proliferation and inflammation. Vitamin D signaling through vitamin D receptor (VDR) exerts anti-proliferative and anti-inflammatory actions. However, an actual relationship between KLF5, NF-κB and VDR in the inflammation and proliferation of macrophages is still unclear. Here, we showed that LPS and proinflammatory cytokines stimulate KLF5 gene expression in macrophages, and that 1, 25(OH)2D3 suppresses LPS-induced KLF5 expression and cell proliferation via upregulation of VDR expression. Mechanistic studies suggested that KLF5 interacts with p50 subunit of NF-κB to cooperatively induce the expressions of positive cell cycle regulators cyclin B1 and Cdk1/Cdc2 in LPS-treated macrophages. Further studies revealed that 1, 25(OH)2D3-induced interaction of VDR with p50 decreases LPS-induced interaction of KLF5 with p50. Collectively, we identify a novel regulatory pathway in which 1, 25(OH)2D3 induces VDR expression and promotes VDR interaction with p50 subunit of NF-κB, which in turn attenuates the association of KLF5 with p50 subunit of NF-κB and thus exerts anti-inflammatory and anti-proliferative effects on macrophages.
Collapse
Affiliation(s)
- Dong Ma
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China; School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000, PR China
| | - Ruo-Nan Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Ya Wen
- Department of Neurology, Second Hospital of Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Wei-Na Yin
- Department of Pediatrics, Handan First Hospital, 056000, PR China
| | - Disi Bai
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000, PR China
| | - Guo-Ying Zheng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063000, PR China
| | - Jin-Shui Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
23
|
Nie CJ, Li YH, Zhang XH, Wang ZP, Jiang W, Zhang Y, Yin WN, Zhang Y, Shi HJ, Liu Y, Zheng CY, Zhang J, Zhang GL, Zheng B, Wen JK. SUMOylation of KLF4 acts as a switch in transcriptional programs that control VSMC proliferation. Exp Cell Res 2016; 342:20-31. [PMID: 26945917 DOI: 10.1016/j.yexcr.2016.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue due to its major implications for the prevention of pathological vascular conditions. The objective of this work was to assess the function of small ubiquitin-like modifier (SUMO)ylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in cultured cells and in animal models with balloon injury. We found that under basal conditions, binding of non-SUMOylated KLF4 to p300 activated p21 (p21(WAF1/CIP1))transcription, leading to VSMC growth arrest. PDGF-BB promoted the interaction between Ubc9 and KLF4 and the SUMOylation of KLF4, which in turn recruited transcriptional corepressors to the p21 promoter. The reduction in p21 enhanced VSMC proliferation. Additionally, the SUMOylated KLF4 did not affect the expression of KLF4, thereby forming a positive feedback loop enhancing cell proliferation. These results demonstrated that SUMOylated KLF4 plays an important role in cell proliferation by reversing the transactivation action of KLF4 on p21 induced with PDGF-BB.
Collapse
Affiliation(s)
- Chan-Juan Nie
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Hui Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China; Hebei Center for Disease Control and Prevention, Shijiazhuang 050000, China
| | - Xin-Hua Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Zhi-Peng Wang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wen Jiang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Wei-Na Yin
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yong Zhang
- Department of Urinary Surgery, Second Hospital of Hebei Medical University, Pingan Road, Shijiazhuang 050000, China
| | - Hui-Jing Shi
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Cui-Ying Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China
| | | | - Bin Zheng
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Zhongshan East Road, Shijiazhuang 050017, China.
| |
Collapse
|
24
|
Guo HL, Liao XH, Liu Q, Zhang L. Angiotensin II Type 2 Receptor Decreases Transforming Growth Factor-β Type II Receptor Expression and Function in Human Renal Proximal Tubule Cells. PLoS One 2016; 11:e0148696. [PMID: 26867007 PMCID: PMC4750982 DOI: 10.1371/journal.pone.0148696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023] Open
Abstract
Transforming growth factor-β (TGF-β), via its receptors, induces epithelial-mesenchymal transition (EMT) and plays an important role in the development of renal tubulointersitial fibrosis. Angiotensin II type 2 receptor (AT2R), which mediates beneficial renal physiological functions, has received attention as a prospective therapeutic target for renoprotection. In this study, we investigated the effect and underlying mechanism of AT2R on the TGF-β receptor II (TGF-βRII) expression and function in human proximal tubular cells (HK-2). Here, we show that the AT2R agonist CGP42112A decreased TGF-βRII protein expression in a concentration- and time-dependent manner in HK-2 cells. The inhibitory effect of the AT2R on TGF-βRII expression was blocked by the AT2R antagonists PD123319 or PD123177. Stimulation with TGF-β1 enhanced EMT in HK-2 cells, which was prevented by pre-treatment with CGP42112A. One of mechanisms in this regulation is associated with the increased TGF-βRII degradation after activation of AT2R. Furthermore, laser confocal immunofluorescence microscopy showed that AT2R and TGF-βRII colocalized in HK-2 cells. AT2R and TGF-βRII coimmunoprecipitated and this interaction was increased after AT2R agonist stimulation for 30 min. The inhibitory effect of the AT2R on TGF-βRII expression was also blocked by the nitric oxide synthase inhibitor L-NAME, indicating that nitric oxide is involved in the signaling pathway. Taken together, our study indicates that the renal AT2R regulates TGF-βRII expression and function via the nitric oxide pathway, which may be important in the control of renal tubulointerstitial fibrosis.
Collapse
MESH Headings
- Cell Line
- Dose-Response Relationship, Drug
- Epithelial-Mesenchymal Transition
- Fibrosis/pathology
- Humans
- Imidazoles/chemistry
- Kidney/pathology
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/pathology
- Microscopy, Confocal
- Microscopy, Fluorescence
- Nitric Oxide/chemistry
- Oligopeptides/chemistry
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyridines/chemistry
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Time Factors
Collapse
Affiliation(s)
- Hui-Lin Guo
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Xiao-Hui Liao
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Qi Liu
- Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| | - Ling Zhang
- Department of Nephrology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
- * E-mail: (LZ); (QL)
| |
Collapse
|
25
|
Jia ZM, Ai X, Teng JF, Wang YP, Wang BJ, Zhang X. p21 and CK2 interaction-mediated HDAC2 phosphorylation modulates KLF4 acetylation to regulate bladder cancer cell proliferation. Tumour Biol 2016; 37:8293-304. [PMID: 26729194 DOI: 10.1007/s13277-015-4618-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 01/20/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor involved in both tumor suppression and oncogenesis as a transcriptional activator or repressor in a context-dependent manner. KLF4 acts as a regulator of p53 depending on p21 status in breast cancer. However, the mechanisms underlying the distinct role of KLF4 remain poorly understood. Here, we revealed that p21 depletion converted KLF4 from a cell cycle inhibitor to a promoter of bladder cancer cell proliferation. Additionally, KLF4 was acetylated in a p21-dependent manner to inhibit bladder cancer cell growth as a tumor suppressor. However, deacetylated KLF4 functioned as an oncogene promoting bladder cancer cell proliferation. Mechanistically, p21 and CK2 interaction, but not CK2 alone, enhanced HDAC2 phosphorylation and restricted KLF4 deacetylation and subsequent tumor promotion. Furthermore, we observed that KLF4 was acetylated by CBP/p300 and that overexpression of CBP resulted in KLF4 acetylation and tumor suppression even in p21-depleted bladder cancer cells. Moreover, we discovered that Notch-1 knockdown-induced KLF4 is acetylated form of KLF4, which may mediate Notch-1 function in bladder cancer cell proliferation. Our data demonstrate that KLF4 acts as a tumor suppressor or oncogene to activate or repress target gene transcription depending on its acetylation status, which is regulated by p21 and CK2 interaction-mediated HDAC2 phosphorylation. Targeting KLF4 at the post-transcriptional levels may provide novel insight for bladder cancer therapy.
Collapse
Affiliation(s)
- Zhuo-Min Jia
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Urology, Military General Hospital of Beijing PLA, Beijing, 100700, China
| | - Xing Ai
- Department of Urology, Military General Hospital of Beijing PLA, Beijing, 100700, China.
| | - Jing-Fei Teng
- Department of Urology, Military General Hospital of Beijing PLA, Beijing, 100700, China
| | - Yun-Peng Wang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bao-Jun Wang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xu Zhang
- Department of Urology, Clinical Division of Surgery, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
26
|
Ke B, Zhang A, Wu X, Fang X. The Role of Krüppel-like Factor 4 in Renal Fibrosis. Front Physiol 2015; 6:327. [PMID: 26617530 PMCID: PMC4641914 DOI: 10.3389/fphys.2015.00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022] Open
Abstract
Chronic kidney disease (CKD) caused by renal fibrosis is an important public health concern. It is therefore necessary to understand the molecular pathogenesis of renal fibrosis in order to develop novel therapeutic strategies. KLF4 is the most extensively studied factor among the various members of the Krüppel-like factor (KLF) family of zinc finger-containing transcription factors. Many studies have demonstrated that KLF4 inhibits the activation of myofibroblasts and exerts an inhibitory effect on fibrosis. However, other studies have indicated that KLF4 may promote renal fibrosis. These controversial results suggest that KLF4 may be crucially involved in the development of renal fibrosis, although the underlying mechanism(s) remain unclear. Here, we summarize the recent progress made in understanding the role of KLF4 in renal fibrosis. Together, these findings suggest that KLF4 may participate in the development of renal fibrosis, but that its inhibition of fibrosis is greater than its promotion of the condition, which suggests that KLF4 may serve as a novel therapeutic target for renal fibrosis.
Collapse
Affiliation(s)
- Ben Ke
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Afei Zhang
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xianfeng Wu
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| | - Xiangdong Fang
- Department of Nephrology, Nanchang University School of Medicine, Second Affiliated Hospital to Nanchang University Nanchang, China
| |
Collapse
|
27
|
Lim PS, Sutton CR, Rao S. Protein kinase C in the immune system: from signalling to chromatin regulation. Immunology 2015; 146:508-22. [PMID: 26194700 DOI: 10.1111/imm.12510] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/29/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022] Open
Abstract
Protein kinase C (PKC) form a key family of enzymes involved in signalling pathways that specifically phosphorylates substrates at serine/threonine residues. Phosphorylation by PKC is important in regulating a variety of cellular events such as cell proliferation and the regulation of gene expression. In the immune system, PKCs are involved in regulating signal transduction pathways important for both innate and adaptive immunity, ultimately resulting in the expression of key immune genes. PKCs act as mediators during immune cell signalling through the immunological synapse. PKCs are traditionally known to be cytoplasmic signal transducers and are well embedded in the signalling pathways of cells to mediate the cells' response to a stimulus from the plasma membrane to the nucleus. PKCs are also found to transduce signals within the nucleus, a process that is distinct from the cytoplasmic signalling pathway. There is now growing evidence suggesting that PKC can directly regulate gene expression programmes through a non-traditional role as nuclear kinases. In this review, we will focus on the role of PKCs as key cytoplasmic signal transducers in immune cell signalling, as well as its role in nuclear signal transduction. We will also highlight recent evidence for its newly discovered regulatory role in the nucleus as a chromatin-associated kinase.
Collapse
Affiliation(s)
- Pek Siew Lim
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Christopher Ray Sutton
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| | - Sudha Rao
- Discipline of Biomedical Sciences, Faculty of Applied Science, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
28
|
He M, Zheng B, Zhang Y, Zhang XH, Wang C, Yang Z, Sun Y, Wu XL, Wen JK. KLF4 mediates the link between TGF-β1-induced gene transcription and H3 acetylation in vascular smooth muscle cells. FASEB J 2015; 29:4059-70. [PMID: 26082460 DOI: 10.1096/fj.15-272658] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 11/11/2022]
Abstract
Transcriptional activation by transcription factors is coupled with histone acetylation and chromatin remodeling. However, the relationship between TGF-β1-induced gene transcription by Krüppel-like factor (KLF)-4 and histone acetylation remains unknown. In our study, KLF4 overexpression or knockdown, respectively increased or decreased H3 acetylation and p300 occupancy, which is concentrated in the region containing TGF-β1 control elements (TCEs) of the genes by TGF-β1 regulation during vascular smooth muscle cell (VSMC) differentiation. Coimmunoprecipitation and glutathione S-transferase pull-down assays showed that phosphatase and tensin homolog (PTEN) formed a complex with KLF4 to inhibit the phosphorylation of the latter in basal conditions. After TGF-β1 signaling activation, PTEN was phosphorylated by p38 MAPK or PI3K/Akt signaling, phosphorylated PTEN lost its ability to dephosphorylate KLF4, and the cofactors interacting with KLF4 switched from PTEN to p300. Then, KLF4-p300 complexes were recruited to KLF4-binding sites of the gene promoter of VSMCs, to acetylate histone H3 and activate transcription. In addition, phosphorylated KLF4 enhanced p300 histone acetyltransferase (HAT) activity via the p38 MAPK pathway, which may be responsible for H3 acetylation. Taken together, the results of our study reveal a novel mechanism whereby KLF4 mediates the link between TGF-β1-induced gene transcription activation and H3 acetylation during VSMC differentiation.
Collapse
Affiliation(s)
- Ming He
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bin Zheng
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Zhang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin-Hua Zhang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chang Wang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhan Yang
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yan Sun
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiao-Li Wu
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jin-Kun Wen
- *Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, China Administration of Education, Hebei Medical University, Shijiazhuang, China; and Institute of Chinese Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
29
|
Liu J, Huang W, Lin Y, Bian L, He Y. Identification of proteins interacting with protein kinase C-δ in hyperthermia-induced apoptosis and thermotolerance of Tca8113 cells. Mol Med Rep 2015; 12:3821-3828. [PMID: 26017369 DOI: 10.3892/mmr.2015.3861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 04/30/2015] [Indexed: 11/06/2022] Open
Abstract
The purpose of the present study was to investigate the differential proteins that interact with protein kinase C‑δ (PKC‑δ) in hyperthermia‑induced apoptosis as well as thermotolerance in Tca8113 cells, and furthermore, to investigate the mechanisms of these processes in tumor cells. Activation of PKC‑δ was previously indicated to be involved in the heat sensitivity and thermal resistance of tongue squamous carcinoma cells. Tca8113 cell apoptosis was induced by incubation at 43˚C for 80 min and the thermotolerant Tca8113 cells (TT‑Tca8113) were generated through a gradient temperature‑elevating method. The apoptotic rate of the cells was determined by flow cytometry, while cleavage and activation of PKC‑δ were analyzed by western blot analysis. The proteins that interacted with PKC‑δ in the Tca8113 and TT‑Tca8113 cells were identified by co‑immunoprecipitation coupled with mass spectrometry. Co‑immunoprecipitation analysis followed by electrospray ionization mass spectrometric analysis were utilized to identify the pro‑ and anti‑apoptotic proteins that interacted with PKC‑δ. Significant cell apoptosis was observed in Tca8113 cells following hyperthermia, and the apoptotic rate was significantly higher than that in the control group (P<0.05). Marked PKC‑δ cleavage fragmentation was also identified. By contrast, the apoptotic rate of the TT‑Tca8113 cells was not significantly increased following hyperthermia and no PKC‑δ cleavage fragmentation was observed. Among the proteins interacting with PKC‑δ, 39 were found to be involved in the promotion of apoptosis and 16 in the inhibition of apoptosis of Tca8113 cells; these proteins were known to be involved in the regulation of cell proliferation, apoptosis, transcription and intracellular protein transport. The results of the present study provided evidence that PKC‑δ is a crucial factor in the heat sensitivity and thermal resistance of tongue squamous carcinoma cells and elucidated the underlying molecular basis, which may aid in the improvement of hyperthermic cancer treatments.
Collapse
Affiliation(s)
- Jianqi Liu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Wenchuan Huang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Yunhong Lin
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yongwen He
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
30
|
Protein kinase Cβ mediates downregulated expression of glucagon-like peptide-1 receptor in hypertensive rat renal arteries. J Hypertens 2015; 33:784-90; discussion 790. [DOI: 10.1097/hjh.0000000000000480] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
miR-200c-SUMOylated KLF4 feedback loop acts as a switch in transcriptional programs that control VSMC proliferation. J Mol Cell Cardiol 2015; 82:201-12. [PMID: 25791170 DOI: 10.1016/j.yjmcc.2015.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/27/2015] [Accepted: 03/10/2015] [Indexed: 02/07/2023]
Abstract
The regulation of vascular smooth muscle cell (VSMC) proliferation is an important issue because it has major implications for the prevention of pathological vascular conditions. Using microRNA array screen, we found the expression levels of 200 unique miRNAs in hyperplasic tissues. Among them, miR-200c expression substantially was down-regulated. The objective of this work was to assess the function of miR-200c and SUMOylated Krϋppel-like transcription factor 4 (KLF4) in the regulation of VSMC proliferation in both cultured cells and animal models of balloon injury. Under basal conditions, we found that miR-200c inhibited the expression of KLF4 and the SUMO-conjugating enzyme Ubc9. Upon PDGF-BB treatment, Ubc9 interacted with and promoted the SUMOylation of KLF4, which allowed the recruitment of transcriptional corepressors (e.g., nuclear receptor corepressor (NCoR) and HDAC2) to the miR-200c promoter. The reduction in miR-200c levels led to increased target gene expression (e.g., Ubc9 and KLF4), which further repressed miR-200c levels and accelerated VSMC proliferation. These results demonstrate that induction of a miR-200c-SUMOylated KLF4 feedback loop is a significant aspect of the PDGF-BB proliferative response in VSMCs and that targeting Ubc9 represents a novel approach for the prevention of restenosis.
Collapse
|
32
|
KLF15 and PPARα Cooperate to Regulate Cardiomyocyte Lipid Gene Expression and Oxidation. PPAR Res 2015; 2015:201625. [PMID: 25815008 PMCID: PMC4357137 DOI: 10.1155/2015/201625] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/19/2015] [Indexed: 12/13/2022] Open
Abstract
The metabolic myocardium is an omnivore and utilizes various carbon substrates to meet its energetic demand. While the adult heart preferentially consumes fatty acids (FAs) over carbohydrates, myocardial fuel plasticity is essential for organismal survival. This metabolic plasticity governing fuel utilization is under robust transcriptional control and studies over the past decade have illuminated members of the nuclear receptor family of factors (e.g., PPARα) as important regulators of myocardial lipid metabolism. However, given the complexity of myocardial metabolism in health and disease, it is likely that other molecular pathways are likely operative and elucidation of such pathways may provide the foundation for novel therapeutic approaches. We previously demonstrated that Kruppel-like factor 15 (KLF15) is an independent regulator of cardiac lipid metabolism thus raising the possibility that KLF15 and PPARα operate in a coordinated fashion to regulate myocardial gene expression requisite for lipid oxidation. In the current study, we show that KLF15 binds to, cooperates with, and is required for the induction of canonical PPARα-mediated gene expression and lipid oxidation in cardiomyocytes. As such, this study establishes a molecular module involving KLF15 and PPARα and provides fundamental insights into the molecular regulation of cardiac lipid metabolism.
Collapse
|
33
|
Abstract
Krüppel-like factors (KLFs) are zinc finger transcription factors that share homology in three C-terminal zinc finger domains. KLF family members are expressed in most if not all tissues and have diverse roles in organismal development and cell differentiation, function, and death. The glomerular podocyte is particularly sensitive to mitochondrial dysfunction, as seen in various genetic disorders manifesting as progressive glomerulosclerosis. In this issue of the JCI, Mallipattu and coworkers show that KLF6 expression is reduced in mouse and human glomerular disease. Podocyte-specific deletion of Klf6 expression in mice leads to mitochondrial dysfunction and apoptosis, followed by glomerulosclerosis. This is the first demonstration that defective transcriptional regulation of nuclear-encoded mitochondrial genes can result in experimental glomerular disease.
Collapse
|
34
|
Apara A, Goldberg JL. Molecular mechanisms of the suppression of axon regeneration by KLF transcription factors. Neural Regen Res 2014; 9:1418-21. [PMID: 25317150 PMCID: PMC4192940 DOI: 10.4103/1673-5374.139454] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 01/11/2023] Open
Abstract
Molecular mechanisms of the Krüppel-like family of transcription factors (KLFs) have been studied more in proliferating cells than in post-mitotic cells such as neurons. We recently found that KLFs regulate intrinsic axon growth ability in central nervous system (CNS) neurons including retinal ganglion cells, and hippocampal and cortical neurons. With at least 15 of 17 KLF family members expressed in neurons and at least 5 structurally unique subfamilies, it is important to determine how this complex family functions in neurons to regulate the intricate genetic programs of axon growth and regeneration. By characterizing the molecular mechanisms of the KLF family in the nervous system, including binding partners and gene targets, and comparing them to defined mechanisms defined outside the nervous system, we may better understand how KLFs regulate neurite growth and axon regeneration.
Collapse
Affiliation(s)
| | - Jeffrey L Goldberg
- Shiley Eye Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Targeting WNT1-inducible signaling pathway protein 2 alters human breast cancer cell susceptibility to specific lysis through regulation of KLF-4 and miR-7 expression. Oncogene 2014; 34:2261-71. [PMID: 24931170 DOI: 10.1038/onc.2014.151] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 03/17/2014] [Accepted: 03/26/2014] [Indexed: 01/10/2023]
Abstract
The molecular basis for the resistance of tumor cells to cell-mediated cytotoxicity remains poorly understood and thus poses a major challenge for cancer immunotherapy. The present study was designed to determine whether the WNT1-inducible signaling pathway protein 2 (WISP2, also referred to as CCN5), a key regulator of tumor cell plasticity, interferes with tumor susceptibility to cytotoxic T-lymphocyte (CTL)-mediated lysis. We found that silencing WISP2 signaling in human breast adenocarcinoma MCF7 cells impairs CTL-mediated cell killing by a mechanism involving stem cell marker Kruppel-like factor-4 (KLF-4) induction and microRNA-7 (miR-7) downregulation. Inhibition of transforming growth factor beta (TGF-β) signaling using the A83-01 inhibitor in MCF7-shWISP2 cells resulted in a significant reversal of the epithelial-to-mesenchymal-transitioned (EMT) phenotype, the expression of KLF-4 and a partial recovery of target susceptibility to CTLs. More importantly, we showed that silencing KLF-4 was accompanied by a reduction in MCF7-shWISP2 resistance to CTLs. Using human breast cancer tissues, we demonstrated the coexpression of KLF-4 with EMT markers and TGF-β pathway signaling components. More importantly, we found that KLF-4 expression was accompanied by miR-7 inhibition, which is partly responsible for impairing CTL-mediated lysis. Thus, our data indicate that WISP2 has a role in regulating tumor cell susceptibility through EMT by inducing the TGF-β signaling pathway, KLF-4 expression and miR-7 inhibition. These studies indicate for the first time that WISP2 acts as an activator of CTL-induced killing and suggests that the loss of its function promotes evasion of immunosurveillance and the ensuing progression of the tumor.
Collapse
|
36
|
He H, Li S, Chen H, Li L, Xu C, Ding F, Zhan Y, Ma J, Zhang S, Shi Y, Qu C, Liu Z. 12-O-tetradecanoylphorbol-13-acetate promotes breast cancer cell motility by increasing S100A14 level in a Kruppel-like transcription factor 4 (KLF4)-dependent manner. J Biol Chem 2014; 289:9089-9099. [PMID: 24532790 PMCID: PMC3979376 DOI: 10.1074/jbc.m113.534271] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/14/2014] [Indexed: 12/12/2022] Open
Abstract
The S100 protein family represents the largest subgroup of calcium binding EF-hand type proteins. These proteins have been reported to be involved in a wide range of biological functions that are related to normal cell development and tumorigenesis. S100A14 is a recently identified member of the S100 protein family and differentially expressed in a number of different human malignancies. However, the transcriptional regulation of S100A14 and its role in breast cancer needs to be further investigated. Here, we determined that 12-O-tetradecanoylphorbol-13-acetate (TPA) up-regulated the expression of KLF4 and facilitated its binding directly to two conserved GC-rich DNA segments within the S100A14 promoter, which is essential for the transactivation of KLF4 induced S100A14 expression. Furthermore, stable silencing of KLF4 significantly suppressed breast cancer cell migration induced by TPA. Collectively, these results offer insights into the fact that TPA provokes cell motility through regulating the expression and function of S100A14 in a KLF4-dependent manner.
Collapse
Affiliation(s)
- Huan He
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Sheng Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongyan Chen
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Li
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chengshan Xu
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fang Ding
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun Zhan
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianlin Ma
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuguang Zhang
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yaoting Shi
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chunfeng Qu
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhihua Liu
- From the State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
37
|
Chun JN, Kim SY, Park EJ, Kwon EJ, Bae DJ, Kim IS, Kim HK, Park JK, Lee SW, Park HH, So I, Jeon JH. Schisandrin B suppresses TGFβ1-induced stress fiber formation by inhibiting myosin light chain phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:364-371. [PMID: 24486209 DOI: 10.1016/j.jep.2014.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/24/2013] [Accepted: 01/21/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis fruit extract (SCE) has been used as a traditional oriental medicine for treating vascular diseases. However, the pharmacologic effects and mechanisms of SCE on vascular fibrosis are still largely unknown. Transforming growth factor β1 (TGFβ1)-mediated cellular changes are closely associated with the pathogenesis of vascular fibrotic diseases. Particularly, TGFβ1 induces actin stress fiber formation that is a crucial mechanism underlying vascular smooth muscle cell (VSMC) migration in response to vascular injury. In this study, we investigated the effect of SCE and its active ingredients on TGFβ1-induced stress fiber assembly in A7r5 VSMCs. MATERIALS AND METHODS To investigate pharmacological actions of SCE and its ingredients on TGFβ1-treated VSMCs, we have employed molecular and cell biological technologies, such as confocal microscopy, fluorescence resonance energy transfer, western blotting, and radiometric enzyme analyses. RESULTS We found that SCE inhibited TGFβ1-induced stress fiber formation and cell migration. Schisandrin B (SchB) showed the most prominent effect among the active ingredients of SCE tested. SchB reduced TGFβ1-mediated phosphorylation of myosin light chain, and this effect was independent of RhoA/Rho-associated kinase pathway. Fluorescence resonance energy transfer and radiometric enzyme assays confirmed that SchB inhibited myosin light chain kinase activity. We also showed that SchB decreased TGFβ1-mediated induction of α-smooth muscle actin by inhibiting Smad signaling. CONCLUSIONS The present study demonstrates that SCE and its active ingredient SchB suppressed TGFβ1-induced stress fiber formation at the molecular level. Therefore, our findings may help future investigations to develop multi-targeted therapeutic strategies that attenuate VSMC migration and vascular fibrosis.
Collapse
Affiliation(s)
- Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea; Department of Medicine, University of Ulsan, College of Medicine, Seoul 138-736, Republic of Korea
| | - Eun-Jung Park
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Eun Jung Kwon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Dong-Jun Bae
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - In-San Kim
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Hye Kyung Kim
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Jeonju 561-712, Republic of Korea
| | - Jong Kwan Park
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Jeonju 561-712, Republic of Korea
| | - Sung Won Lee
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710, Republic of Korea
| | - Hyun Ho Park
- Department of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 110-799, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea; Institute of Human-Environment Interface Biology, Seoul National University, Seoul 110-799, Republic of Korea.
| |
Collapse
|
38
|
Sun Y, Zheng B, Zhang XH, He M, Guo ZW, Wen JK. PPAR-γ agonist stabilizes KLF4 protein via activating Akt signaling and reducing KLF4 ubiquitination. Biochem Biophys Res Commun 2014; 443:382-8. [DOI: 10.1016/j.bbrc.2013.11.129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
|
39
|
Synthetic retinoid Am80 up-regulates apelin expression by promoting interaction of RARα with KLF5 and Sp1 in vascular smooth muscle cells. Biochem J 2013; 456:35-46. [PMID: 23992409 DOI: 10.1042/bj20130418] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous studies have demonstrated that both retinoids and apelin possess potent cardiovascular properties and that retinoids can mediate the expression of many genes in the cardiovascular system. However, it is not clear whether and how retinoids regulate apelin expression in rat VSMCs (vascular smooth muscle cells). In the present study, we investigated the molecular mechanism of apelin expression regulation by the synthetic retinoid Am80 in VSMCs. The results showed that Am80 markedly up-regulated apelin mRNA and protein levels in VSMCs. Furthermore, KLF5 (Krüppel-like factor 5) and Sp1 (stimulating protein-1) co-operatively mediated Am80-induced apelin expression through their direct binding to the TCE (transforming growth factor-β control element) on the apelin promoter. Interestingly, upon Am80 stimulation, the RARα (retinoic acid receptor α) was recruited to the apelin promoter by interacting with KLF5 and Sp1 prebound to the TCE site of the apelin promoter to form a transcriptional activation complex, subsequently leading to the up-regulation of apelin expression in VSMCs. An in vivo study indicated that Am80 increased apelin expression in balloon-injured arteries of rats, consistent with the results from the cultured VSMCs. Thus the results of the present study describe a novel mechanism of apelin regulation by Am80 and further expand the network of RARα in the retinoid pathway.
Collapse
|
40
|
Davis F, Rateri DL, Daugherty A. Aortic aneurysms in Loeys-Dietz syndrome - a tale of two pathways? J Clin Invest 2013; 124:79-81. [PMID: 24355917 DOI: 10.1172/jci73906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by skeletal abnormalities, craniofacial malformations, and a high predisposition for aortic aneurysm. In this issue of the JCI, Gallo et al. developed transgenic mouse strains harboring missense mutations in the genes encoding type I or II TGF-β receptors. These mice exhibited several LDS-associated phenotypes. Despite being functionally defective, the mutated receptors enhanced TGF-β signaling in vivo, inferred by detection of increased levels of phosphorylated Smad2. Aortic aneurysms in these LDS mice were ablated by treatment with the Ang II type 1 (AT1) receptor antagonist losartan. The results from this study will foster further interest into the potential therapeutic implications of AT1 receptor antagonists.
Collapse
|
41
|
Liu Y, Zheng B, Zhang XH, Nie CJ, Li YH, Wen JK. Localization and function of KLF4 in cytoplasm of vascular smooth muscle cell. Biochem Biophys Res Commun 2013; 436:162-8. [PMID: 23726909 DOI: 10.1016/j.bbrc.2013.05.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 01/04/2023]
Abstract
The Krüppel-like factor 4 is a DNA-binding transcriptional regulator that regulates a diverse array of cellular processes, including development, differentiation, proliferation, and apoptosis. The previous studies about KLF4 functions mainly focused on its role as a transcription factor, its functions in the cytoplasm are still unknown. In this study, we found that PDGF-BB could prompt the translocation of KLF4 to the cytoplasm through CRM1-mediated nuclear export pathway in vascular smooth muscle cells (VSMCs) and increased the interaction of KLF4 with actin in the cytoplasm. Further study showed that both KLF4 phosphorylation and SUMOylation induced by PDGF-BB participates in regulation of cytoskeletal organization by stabilizing the actin cytoskeleton in VSMCs. In conclusion, these results identify that KLF4 participates in the cytoskeletal organization by stabilizing cytoskeleton in the cytoplasm of VSMCs.
Collapse
MESH Headings
- Actin Cytoskeleton/drug effects
- Actin Cytoskeleton/metabolism
- Actins/metabolism
- Active Transport, Cell Nucleus/drug effects
- Animals
- Becaplermin
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/drug effects
- Cytoplasm/metabolism
- HEK293 Cells
- Humans
- Karyopherins/metabolism
- Kruppel-Like Factor 4
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Male
- Microscopy, Confocal
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/drug effects
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-sis/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sumoylation/drug effects
- Exportin 1 Protein
Collapse
Affiliation(s)
- Yan Liu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neurobiology and Vascular Biology, China
| | | | | | | | | | | |
Collapse
|
42
|
Chen X, Lu H, Rateri DL, Cassis LA, Daugherty A. Conundrum of angiotensin II and TGF-β interactions in aortic aneurysms. Curr Opin Pharmacol 2013; 13:180-5. [PMID: 23395156 DOI: 10.1016/j.coph.2013.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/08/2023]
Abstract
Angiotensin II (AngII) has been invoked as a principal mediator for the development and progression of both thoracic and abdominal aortic aneurysms. While there is consistency in experimental and clinical studies that overactivation of the renin angiotensin system promotes aortic aneurysm development, there are many unknowns regarding the mechanistic basis underlying AngII-induced aneurysms. Interactions of AngII with TGF-β in both thoracic and abdominal aortic aneurysms have been the focus of recent studies. While these studies have demonstrated profound effects of manipulating TGF-β activity on AngII-induced aortic aneurysms, they have also led to more questions regarding the interactions between AngII and this multifunctional cytokine. This review compiled the recent literature to provide insights into understanding the potentially complex interactions between AngII and TGF-β in the development of aortic aneurysms.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, United States
| | | | | | | | | |
Collapse
|
43
|
Auclair M, Vigouroux C, Boccara F, Capel E, Vigeral C, Guerci B, Lascols O, Capeau J, Caron-Debarle M. Peroxisome proliferator-activated receptor-γ mutations responsible for lipodystrophy with severe hypertension activate the cellular renin-angiotensin system. Arterioscler Thromb Vasc Biol 2013; 33:829-38. [PMID: 23393388 DOI: 10.1161/atvbaha.112.300962] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inactivating peroxisome proliferator-activated receptor-γ (PPARγ) mutations lead to a syndrome of familial partial lipodystrophy (FPLD3) associated with early-onset severe hypertension. PPARγ can repress the vascular renin-angiotensin system (RAS) and angiotensin II receptor 1 expression. We evaluated the relationships between PPARγ inactivation and cellular RAS using FPLD3 patients' cells and human vascular smooth muscle cells expressing mutant or wild-type PPARγ. Approach and Results- We identified 2 novel PPARG mutations, R165T and L339X, located in the DNA and ligand-binding domains of PPARγ, respectively in 4 patients from 2 FPLD3 families. In cultured skin fibroblasts and peripheral blood mononuclear cells from the 4 patients and healthy controls, we compared markers of RAS activation, oxidative stress, and inflammation, and tested the effect of modulators of PPARγ and angiotensin II receptor 1. We studied the impact of the 2 mutations on the transcriptional activity of PPARγ and on the vascular RAS in transfected human vascular smooth muscle cells. Systemic RAS was not altered in patients. However, RAS markers were overexpressed in patients' fibroblasts and peripheral blood mononuclear cells, as in vascular cells expressing mutant PPARγ. Angiotensin II-mediated mitogen-activated protein kinase activity increased in patients' fibroblasts, consistent with RAS constitutive activation. Patients' cells also displayed oxidative stress and inflammation. PPARγ activation and angiotensin II receptor 1 mRNA silencing reversed RAS overactivation, oxidative stress, and inflammation, arguing for a role of angiotensin II receptor 1 in these processes. CONCLUSIONS Two novel FPLD3-linked PPARG mutations are associated with a defective transrepression of cellular RAS leading to cellular dysfunction, which might contribute to the specific FPLD3-linked severe hypertension.
Collapse
Affiliation(s)
- Martine Auclair
- INSERM UMRS938, Centre de Recherche Saint Antoine, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|