1
|
Li L, Mang XY, Jiang KW, Zhao Y, Chen YR. Swimming training promotes angiogenesis of endothelial progenitor cells by upregulating IGF1 expression and activating the PI3K/AKT pathway in type 2 diabetic rats. Mol Med Rep 2024; 30:237. [PMID: 39422032 PMCID: PMC11529167 DOI: 10.3892/mmr.2024.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024] Open
Abstract
The present study aimed to investigate the effect of swimming training on the angiogenesis of endothelial progenitor cells (EPCs) in type 2 diabetes mellitus (T2DM) rats by upregulating the insulin‑like growth factor 1 (IGF1) expression and to reveal its potential mechanism of action. Male Sprague‑Dawley rats were divided into the Control, Model, Model train, Model train + short interfering (si)‑NC and Model train + si‑IGF1 groups. Serum glucose levels were measured using the oral glucose tolerance test. EPCs were isolated from the bone marrow cavity and identified through morphological observation and immunofluorescence staining. The expression of IGF‑1 mRNA in rat serum and EPCs was analyzed by reverse transcription‑quantitative PCR. The fasting insulin levels in serum were assessed by ELISA. Cell Counting Kit‑8, scratch assay and tube formation assay were used to determine the cell viability, migration and tube formation of rat EPCs, and western blotting was employed to measure the expression levels of IGF1, phosphoinositide 3‑kinase (PI3K), phosphorylated‑PI3K, protein kinase B (AKT) and phosphorylated‑AKT. The present study demonstrated that swimming training significantly decreased the glucose levels and homeostatic model assessment of insulin resistance scores, but increased the fasting insulin levels and IGF1 mRNA expression. Microscopic observation and immunofluorescence identification suggested that EPCs were successfully isolated. In addition, swimming training markedly elevated the levels of IGF1 and promoted cell viability, migration and tube formation in rat EPCs. Furthermore, IGF1 knockdown experiments indicated that swimming training might play a regulatory role by elevating the IGF1 expression to activate the PI3K/AKT pathway. Overall, swimming training promoted the angiogenesis of EPCs in T2DM rats and its potential mechanism may be related to the upregulation of IGF1 expression and the activation of the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Lan Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiao-Ying Mang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ke-Wei Jiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Ying Zhao
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yu-Rong Chen
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, P.R. China
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
2
|
Wang Y, Kuang Z, Xing X, Qiu Y, Zhang J, Shao D, Huang J, Dai C, He W. Proximal tubular FHL2, a novel downstream target of hypoxia inducible factor 1, is a protector against ischemic acute kidney injury. Cell Mol Life Sci 2024; 81:244. [PMID: 38814462 PMCID: PMC11139843 DOI: 10.1007/s00018-024-05289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Four-and-a-half LIM domains protein 2 (FHL2) is an adaptor protein that may interact with hypoxia inducible factor 1α (HIF-1α) or β-catenin, two pivotal protective signaling in acute kidney injury (AKI). However, little is known about the regulation and function of FHL2 during AKI. We found that FHL2 was induced in renal tubular cells in patients with acute tubular necrosis and mice model of ischemia-reperfusion injury (IRI). In cultured renal proximal tubular cells (PTCs), hypoxia induced FHL2 expression and promoted the binding of HIF-1 to FHL2 promoter. Compared with control littermates, mice with PTC-specific deletion of FHL2 gene displayed worse renal function, more severe morphologic lesion, more tubular cell death and less cell proliferation, accompanying by downregulation of AQP1 and Na, K-ATPase after IRI. Consistently, loss of FHL2 in PTCs restricted activation of HIF-1 and β-catenin signaling simultaneously, leading to attenuation of glycolysis, upregulation of apoptosis-related proteins and downregulation of proliferation-related proteins during IRI. In vitro, knockdown of FHL2 suppressed hypoxia-induced activation of HIF-1α and β-catenin signaling pathways. Overexpression of FHL2 induced physical interactions between FHL2 and HIF-1α, β-catenin, GSK-3β or p300, and the combination of these interactions favored the stabilization and nuclear translocation of HIF-1α and β-catenin, enhancing their mediated gene transcription. Collectively, these findings identify FHL2 as a direct downstream target gene of HIF-1 signaling and demonstrate that FHL2 could play a critical role in protecting against ischemic AKI by promoting the activation of HIF-1 and β-catenin signaling through the interactions with its multiple protein partners.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Ziwei Kuang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Xueqi Xing
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Yumei Qiu
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jie Zhang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Dandan Shao
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Jiaxin Huang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China
| | - Chunsun Dai
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, 262 North Zhongshan Road, Nanjing, Jiangsu, 210003, China.
| |
Collapse
|
3
|
Luan X, Zhai J, Li S, Du Y. Downregulation of FHL2 suppressed trophoblast migration, invasion and epithelial-mesenchymal transition in recurrent miscarriage. Reprod Biomed Online 2024; 48:103342. [PMID: 37945432 DOI: 10.1016/j.rbmo.2023.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 11/12/2023]
Abstract
RESEARCH QUESTION Is four and a half LIM domain 2 (FHL2) involved in trophoblast migration, invasion and epithelial-mesenchymal transition (EMT) in recurrent miscarriage? DESIGN Villus tissue was collected from 24 patients who had experienced recurrent miscarriage and 24 healthy controls. FHL2 mRNA and protein expression in villus specimens were observed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Small interfering RNA and overexpression plasmid were used to change the FHL2 expression. JAR and HTR8/SVneo cell lines were used to conduct scratch-wound assay and transwell assay to detect trophoblast migration and invasion of FHL2. Downstream molecule expression of mRNA and protein and EMT markers were verified by qRT-PCR and Western blot. RESULTS Significantly lower FHL2 mRNA (P = 0.019) and protein (P = 0.0014) expression was found in trophoblasts from the recurrent miscarriage group compared with healthy controls. FHL2 knockdown repressed migration (P = 0.0046), invasion (P < 0.001) and EMT, as shown by significant differences in mRNA and protein expression of the EMT markers N-cadherin, E-cadherin, Vimentin and Snail (all P < 0.05) of extravillus trophoblasts. FHL2 overexpression enhanced migration (P = 0.025), invasion (P < 0.001) and EMT of extravillus trophoblasts (all EMT markers P < 0.05). The positive upstream factor FHL2 in the extracellular signal-related kinase pathway induced JunD expression, thereby promoting trophoblast migration and invasion via matrix metalloproteinase 2. CONCLUSIONS FHL2 is involved in a regulatory pathway of trophoblast migration, invasion and EMT during early pregnancy, and may have a role in recurrent miscarriage pathogenesis, which can serve as a possible target for novel therapeutic development.
Collapse
Affiliation(s)
- Xiaorui Luan
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Junyu Zhai
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Shang Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Yanzhi Du
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200135, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China.
| |
Collapse
|
4
|
Kuo CS, Chen CY, Huang HL, Tsai HY, Chou RH, Wei JH, Huang PH, Lin SJ. Melatonin Improves Ischemia-Induced Circulation Recovery Impairment in Mice with Streptozotocin-Induced Diabetes by Improving the Endothelial Progenitor Cells Functioning. Int J Mol Sci 2022; 23:ijms23179839. [PMID: 36077238 PMCID: PMC9456213 DOI: 10.3390/ijms23179839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with diabetes mellitus tend to develop ischemia-related complications and have compromised endothelial progenitor cell (EPC) function. Melatonin protects against ischemic injury, possibly via EPC modulation. We investigated whether melatonin pretreatment could restore EPC function impairment and improve circulation recovery in a diabetic critical limb ischemia mouse model. Under 25 mM high-glucose medium in vitro, EPC proliferation, nitric oxide production, tube formation, and endothelial nitric oxide synthase (eNOS) phosphorylation were significantly suppressed. Hyperglycemia promoted EPC senescence and apoptosis as well as increased reactive oxygen species (ROS) production. Melatonin treatment reversed the harmful effects of hyperglycemia on EPC through adenosine monophosphate–activated protein kinase-related mechanisms to increase eNOS phosphorylation and heme oxygenase-1 expression. In an in-vivo study, after a 4-week surgical induction of hindlimb ischemia, mice with streptozotocin (STZ)-induced diabetes showed significant reductions in new vessel formation, tissue reperfusion, and EPC mobilization in ischemic hindlimbs compared to non-diabetic mice. Mice with STZ-induced diabetes that received melatonin treatment (10 mg/kg/day, intraperitoneal) had significantly improved blood perfusion ratios of ischemic to non-ischemic limb, EPC mobilization, and densities of capillaries. In addition, a murine bone marrow transplantation model to support these findings demonstrated that melatonin stimulated bone marrow-originated EPCs to differentiate into vascular endothelial cells in femoral ligation-induced ischemic muscles. In summary, this study suggests that melatonin treatment augments EPC function along with neovascularization in response to ischemia in diabetic mice. We illustrated the protective effects of melatonin on EPC H2O2 production, senescence, and migration through melatonin receptors and modulating eNOS, AMPK, and HO-1 activities at the cellular level. Thus, melatonin might be used to treat the impairment of EPC mobilization and circulation recuperation in response to ischemic injury caused by chronic hyperglycemia. Additional studies are needed to elucidate the applicability of the results in humans.
Collapse
Affiliation(s)
- Chin-Sung Kuo
- Division of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chi-Yu Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hsin-Lei Huang
- Department of Nursing, College of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112303, Taiwan
- Correspondence: (H.-L.H.); (P.-H.H.); Tel.: +886-2-2871-2121 (H.-L.H.); +886-2-2875-7434 (P.-H.H.); Fax: +886-2-2875-7435 (H.-L.H. & P.-H.H.)
| | - Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ruey-Hsing Chou
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Jih-Hua Wei
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Internal Medicine, Min-Sheng General Hospital, Taoyuan 330056, Taiwan
- Department of Nutrition and Health Sciences, School of Healthcare Management, Kai-Nan University, Taoyuan 338103, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Correspondence: (H.-L.H.); (P.-H.H.); Tel.: +886-2-2871-2121 (H.-L.H.); +886-2-2875-7434 (P.-H.H.); Fax: +886-2-2875-7435 (H.-L.H. & P.-H.H.)
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Cardiovascular Research Center, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 110301, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei 112401, Taiwan
| |
Collapse
|
5
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
6
|
Tian D, Xiang Y, Tang Y, Ge Z, Li Q, Zhang Y. Circ-ADAM9 targeting PTEN and ATG7 promotes autophagy and apoptosis of diabetic endothelial progenitor cells by sponging mir-20a-5p. Cell Death Dis 2020; 11:526. [PMID: 32661238 PMCID: PMC7359341 DOI: 10.1038/s41419-020-02745-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/16/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023]
Abstract
Dysfunction of endothelial progenitor cells (EPCs) is a key factor in vascular complications of diabetes mellitus. Although the roles of microRNAs and circular RNAs in regulating cell functions have been thoroughly studied, their role in regulating autophagy and apoptosis of EPCs remains to be elucidated. This study investigated the roles of mir-20a-5p and its predicted target circ-ADAM9 in EPCs treated with high glucose (30 mM) and in a diabetic mouse hind limb ischemia model. It is found that Mir-20a-5p inhibited autophagy and apoptosis of EPCs induced by high-concentration glucose. Further, mir-20a-5p could inhibit the expression of PTEN and ATG7 in EPCs, and promote the phosphorylation of AKT and mTOR proteins under high-glucose condition. Investigation of the underlying mechanism revealed that circ-ADAM9, as a miRNA sponges of mir-20a-5p, promoted autophagy and apoptosis of EPCs induced by high-concentration glucose. Circ-ADAM9 upregulated PTEN and ATG7 in interaction with mir-20a-5p, and inhibited the phosphorylation of AKT and mTOR to aggravate autophagy and apoptosis of EPCs under high glucose. In addition, silencing of circ-ADAM9 increased microvessel formation in the hind limbs of diabetic mice. Our findings disclose a novel autophagy/apoptosis-regulatory pathway that is composed of mir-20a-5p, circ-ADAM9, PTEN, and ATG7. Circ-ADAM9 is a potential novel target for regulating the function of diabetic EPCs and angiogenesis.
Collapse
Affiliation(s)
- Ding Tian
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuowang Ge
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qianhui Li
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
7
|
Sommer J, Dorn C, Gäbele E, Bataille F, Freese K, Seitz T, Thasler WE, Büttner R, Weiskirchen R, Bosserhoff A, Hellerbrand C. Four-And-A-Half LIM-Domain Protein 2 (FHL2) Deficiency Aggravates Cholestatic Liver Injury. Cells 2020; 9:cells9010248. [PMID: 31963815 PMCID: PMC7016690 DOI: 10.3390/cells9010248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cholestasis occurs in different clinical circumstances and leads to severe hepatic disorders. The four-and-a-half LIM-domain protein 2 (FHL2) is a scaffolding protein that modulates multiple signal transduction pathways in a tissue- and cell context-specific manner. In this study, we aimed to gain insight into the function of FHL2 in cholestatic liver injury. FHL2 expression was significantly increased in the bile duct ligation (BDL) model in mice. In Fhl2-deficient (Fhl2-ko) mice, BDL caused a more severe portal and parenchymal inflammation, extended portal fibrosis, higher serum transaminase levels, and higher pro-inflammatory and pro-fibrogenic gene expression compared to wild type (wt) mice. FHL2 depletion in HepG2 cells with siRNA resulted in a higher expression of the bile acid transporter Na+-taurocholate cotransporting polypeptide (NTCP) gene. Furthermore, FHL2-depleted HepG2 cells showed higher expression of markers for oxidative stress, lower B-cell lymphoma 2 (Bcl2) expression, and higher Bcl2-associated X protein (BAX) expression after stimulation with deoxycholic acid (DCA). In hepatic stellate cells (HSCs), FHL2 depletion caused an increased expression of TGF-β and several pro-fibrogenic matrix metalloproteinases. In summary, our study shows that deficiency in FHL2 aggravates cholestatic liver injury and suggests FHL2-mediated effects on bile acid metabolisms and HSCs as potential mechanisms for pronounced hepatocellular injury and fibrosis.
Collapse
Affiliation(s)
- Judith Sommer
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | - Christoph Dorn
- Institute of Pharmacy, University Regensburg, D-93053 Regensburg, Germany;
| | - Erwin Gäbele
- Department of Internal Medicine I, University Hospital Regensburg, D-93053 Regensburg, Germany;
| | - Frauke Bataille
- Institute of Pathology, University Regensburg, D-93049 Regensburg, Germany;
| | - Kim Freese
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | - Tatjana Seitz
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
| | | | - Reinhard Büttner
- Institute of Pathology, University Hospital Cologne, D-50937 Cologne, Germany;
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany;
| | - Anja Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander University Erlangen-Nürnberg, Fahrstr. 17, D-91054 Erlangen, Germany; (J.S.); (K.F.); (T.S.); (A.B.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, D-91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-24644; Fax: +49-9131-85-22485
| |
Collapse
|
8
|
Chen CY, Tsai HY, Tsai SH, Chu PH, Huang PH, Chen JW, Lin SJ. Deletion of the FHL2 gene attenuates intima-media thickening in a partially ligated carotid artery ligated mouse model. J Cell Mol Med 2019; 24:160-173. [PMID: 31714683 PMCID: PMC6933399 DOI: 10.1111/jcmm.14687] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/03/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022] Open
Abstract
The four and a half LIM domain protein 2 (FHL2) is a member of the four and a half LIM domain (FHL) gene family, and it is associated with cholesterol‐enriched diet‐promoted atherosclerosis. However, the effect of FHL2 protein on vascular remodelling in response to hemodynamic alterations remains unclear. Here, we investigated the role of FHL2 in a model of restricted blood flow‐induced atherosclerosis. To promote neointimal hyperplasia in vivo, we subjected FHL2+/+ and FHL2−/− mice to partial ligation of the left carotid artery (LCA). The expression of p‐ERK and p‐AKT was decreased in FHL2−/− mice. FHL2 bound to AKT regulated AKT phosphorylation and led to Rac1‐GTP inactivation. FHL2 silencing in human aortic smooth muscle cells down‐regulated the PDGF‐induced phosphorylation of ERK and AKT. Furthermore, FHL2 silencing reduced cytoskeleton conformational changes and caused cell cycle arrest. We concluded that FHL2 is essential for the regulation of arterial smooth muscle cell function. FHL2 modulates proliferation and migration via mitogen‐activated protein kinase (MAPK) and PI3K‐AKT signalling, leading to arterial wall thickening and thus neointimal hyperplasia.
Collapse
Affiliation(s)
- Chi-Yu Chen
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pao-Hsien Chu
- First Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan.,Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
9
|
FHL2 mediates podocyte Rac1 activation and foot process effacement in hypertensive nephropathy. Sci Rep 2019; 9:6693. [PMID: 31040292 PMCID: PMC6491468 DOI: 10.1038/s41598-019-42328-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/06/2019] [Indexed: 01/04/2023] Open
Abstract
RAAS inhibition has been the standard treatment for CKD for years because it can reduce proteinuria and hence retard renal function decline, but the proteinuria reduction effect is still insufficient in many patients. Podocyte foot process and slit diaphragm are the final barrier to prevent serum proteins leak into urine, and podocyte foot process effacement is the common pathway of all proteinruic diseases. Cell structure are regulated by three evolutionarily conserved Rho GTPases, notably, Rac1 activation is sufficient and necessary for podocyte foot process effacement, however, Rac1 inhibition is not an option for kidney disease treatment because of its systemic side effects. Four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in podocytes and has been implicated in regulating diverse biological functions. Here, we used micro-dissected human kidney samples, in vitro podocyte culture experiments, and a hypertension animal model to determine the possible role of FHL2 in hypertensive nephropathy. FHL2 was abundantly upregulated in hypertensive human glomeruli and animal kidney samples. Genetic deletion of the FHL2 did not alter normal renal structure or function but mitigated hypertension-induced podocyte foot process effacement and albuminuria. Mechanistically, angiotensin II-induced podocyte cytoskeleton reorganization via FAK-Rac1 axis, FHL2 binds with FAK and is an important mediator of Ang II induced Rac1 activation, thus, FHL2 inhibition can selectively block FAK-Rac1 axis in podocyte and prevent proteinuria. These results provide important insights into the mechanisms of podocyte foot process effacement and points out a promising strategy to treat kidney disease.
Collapse
|
10
|
Abstract
The 4-and-a-half LIM domain protein 2 (FHL2) is a multifunctional adaptor protein that can interact with cell surface receptors, cytosolic adaptor and structural proteins, kinases, and nuclear transcription factors. It is involved in numerous functional activities, including the epithelial-mesenchymal transition, cell proliferation, apoptosis, adhesion, migration, structural stability, and gene expression. Despite this, FHL2-knockout (KO) mice are viable and fertile with no obvious abnormalities, rather suggesting a high capacity for fine-tuning adjustment and functional redundancy of FHL2. Indeed, challenging FHL2-KO cells or mice provided numerous evidences for the great functional significance of FHL2. In recent years, several reviews have been published describing the high capacity of FHL2 to bind diverse proteins as well as the versatile functions of FHL2, emphasizing in particular its role in cardiovascular diseases and carcinogenesis. Here, we view the function of FHL2 from a different perspective. We summarize the published data demonstrating the impact of FHL2 on wound healing and inflammation. FHL2 seems to be involved in numerous steps of these extremely complex and multidirectional but tightly regulated tissue remodeling processes, supporting tissue repair and coordinating inflammation. Deficiency of FHL2 not only slows down ongoing wound healing but also often turns it into a chronic condition.-Wixler, V. The role of FHL2 in wound healing and inflammation.
Collapse
Affiliation(s)
- Viktor Wixler
- Centre for Molecular Biology of Inflammation, Institute of Molecular Virology, Westfaelische Wilhelms University Muenster, Muenster, Germany
| |
Collapse
|
11
|
Su SH, Wu CH, Chiu YL, Chang SJ, Lo HH, Liao KH, Tsai CF, Tsai TN, Lin CH, Cheng SM, Cheng CC, Wang HW. Dysregulation of Vascular Endothelial Growth Factor Receptor-2 by Multiple miRNAs in Endothelial Colony-Forming Cells of Coronary Artery Disease. J Vasc Res 2017; 54:22-32. [PMID: 28122380 DOI: 10.1159/000449202] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Endothelial colony-forming cells (ECFCs) have the potential to be used in regenerative medicine. Dysfunction of ECFCs is correlated with the onset of cardiovascular disorders, especially coronary artery disease (CAD). Binding of vascular endothelial growth factor A (VEGFA) to vascular endothelial growth factor receptor-2 (VEGFR2) triggers cell motility and angiogenesis of ECFCs, which are crucial to vascular repair. METHODS To identify the miRNA-VEGFR2-dependent regulation of ECFC functions, ECFCs isolated from peripheral blood of disease-free and CAD individuals were subjected to small RNA sequencing for identification of anti-VEGFR2 miRNAs. The angiogenic activities of the miRNAs were determined in both in vitro and in vivo mice models. RESULTS Three miRNAs, namely miR-410-3p, miR-497-5p, and miR-2355-5p, were identified to be upregulated in CAD-ECFCs, and VEGFR2 was their common target gene. Knockdown of these miRNAs not only restored the expression of VEGFR2 and increased angiogenic activities of CAD-ECFCs in vitro, but also promoted blood flow recovery in ischemic limbs in vivo. miR-410-3p, miR-497-5p, and miR-2355-5p could serve as potential biomarkers for CAD detection as they are highly expressed in the plasma of CAD patients. CONCLUSIONS This modulation could help develop new therapeutic modalities for cardiovascular diseases and other vascular dysregulated diseases, especially tumor angiogenesis.
Collapse
Affiliation(s)
- Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Simvastatin pretreatment enhances ischemia-induced neovascularization and blood flow recovery in streptozotocin-treated mice. J Vasc Surg 2016; 64:1112-1120.e1. [DOI: 10.1016/j.jvs.2014.11.088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 11/15/2014] [Indexed: 11/18/2022]
|
13
|
Goltz D, Hittetiya K, Gevensleben H, Kirfel J, Diehl L, Meyer R, Büttner R. Loss of the LIM-only protein Fhl2 impairs inflammatory reaction and scar formation after cardiac ischemia leading to better hemodynamic performance. Life Sci 2016; 151:348-358. [DOI: 10.1016/j.lfs.2016.02.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/11/2016] [Accepted: 02/23/2016] [Indexed: 01/09/2023]
|
14
|
Wang HW, Su SH, Wang YL, Chang ST, Liao KH, Lo HH, Chiu YL, Hsieh TH, Huang TS, Lin CS, Cheng SM, Cheng CC. MicroRNA-134 Contributes to Glucose-Induced Endothelial Cell Dysfunction and This Effect Can Be Reversed by Far-Infrared Irradiation. PLoS One 2016; 11:e0147067. [PMID: 26799933 PMCID: PMC4723308 DOI: 10.1371/journal.pone.0147067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/27/2015] [Indexed: 12/19/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that is increasing worldwide. Furthermore, it is associated with the deregulation of vascular-related functions, which can develop into major complications among DM patients. Endothelial colony forming cells (ECFCs) have the potential to bring about medical repairs because of their post-natal angiogenic activities; however, such activities are impaired by high glucose- (HG) and the DM-associated conditions. Far-infrared radiation (FIR) transfers energy as heat that is perceived by the thermoreceptors in human skin. Several studies have revealed that FIR improves vascular endothelial functioning and boost angiogenesis. FIR has been used as anti-inflammatory therapy and as a clinical treatment for peripheral circulation improvement. In addition to vascular repair, there is increasing evidence to show that FIR can be applied to a variety of diseases, including cardiovascular disorders, hypertension and arthritis. Yet mechanism of action of FIR and the biomarkers that indicate FIR effects remain unclear. MicroRNA-134 (miR-134-5p) was identified by small RNA sequencing as being increased in high glucose (HG) treated dfECFCs (HG-dfECFCs). Highly expressed miR-134 was also validated in dmECFCs by RT-qPCR and it is associated with impaired angiogenic activities of ECFCs. The functioning of ECFCs is improved by FIR treatment and this occurs via a reduction in the level of miR-134 and an increase in the NRIP1 transcript, a direct target of miR-134. Using a mouse ischemic hindlimb model, the recovery of impaired blood flow in the presence of HG-dfECFCs was improved by FIR pretreatment and this enhanced functionality was decreased when there was miR-134 overexpression in the FIR pretreated HG-dfECFCs. In conclusion, our results reveal that the deregulation of miR-134 is involved in angiogenic defects found in DM patients. FIR treatment improves the angiogenic activity of HG-dfECFCs and dmECFCs and FIR has potential as a treatment for DM. Detection of miR-134 expression in FIR-treated ECFCs should help us to explore further the effectiveness of FIR therapy.
Collapse
Affiliation(s)
- Hsei-Wei Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- VGH-YM Genome Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Shu-Han Su
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Yen-Li Wang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ting Chang
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Ko-Hsun Liao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Hung-Hao Lo
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Lin Chiu
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Han Hsieh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Tse-Shun Huang
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Chin-Sheng Lin
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Shu-Meng Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Chung Cheng
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Tsai HY, Lin CP, Huang PH, Li SY, Chen JS, Lin FY, Chen JW, Lin SJ. Coenzyme Q10 Attenuates High Glucose-Induced Endothelial Progenitor Cell Dysfunction through AMP-Activated Protein Kinase Pathways. J Diabetes Res 2016; 2016:6384759. [PMID: 26682233 PMCID: PMC4670652 DOI: 10.1155/2016/6384759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 05/10/2015] [Indexed: 11/22/2022] Open
Abstract
Coenzyme Q10 (CoQ10), an antiapoptosis enzyme, is stored in the mitochondria of cells. We investigated whether CoQ10 can attenuate high glucose-induced endothelial progenitor cell (EPC) apoptosis and clarified its mechanism. EPCs were incubated with normal glucose (5 mM) or high glucose (25 mM) environment for 3 days, followed by treatment with CoQ10 (10 μM) for 24 hr. Cell proliferation, nitric oxide (NO) production, and JC-1 assay were examined. The specific signal pathways of AMP-activated protein kinase (AMPK), eNOS/Akt, and heme oxygenase-1 (HO-1) were also assessed. High glucose reduced EPC functional activities, including proliferation and migration. Additionally, Akt/eNOS activity and NO production were downregulated in high glucose-stimulated EPCs. Administration of CoQ10 ameliorated high glucose-induced EPC apoptosis, including downregulation of caspase 3, upregulation of Bcl-2, and increase in mitochondrial membrane potential. Furthermore, treatment with CoQ10 reduced reactive oxygen species, enhanced eNOS/Akt activity, and increased HO-1 expression in high glucose-treated EPCs. These effects were negated by administration of AMPK inhibitor. Transplantation of CoQ10-treated EPCs under high glucose conditions into ischemic hindlimbs improved blood flow recovery. CoQ10 reduced high glucose-induced EPC apoptosis and dysfunction through upregulation of eNOS, HO-1 through the AMPK pathway. Our findings provide a potential treatment strategy targeting dysfunctional EPC in diabetic patients.
Collapse
Affiliation(s)
- Hsiao-Ya Tsai
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Pei Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine and Institute of Biotechnology in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- *Po-Hsun Huang: and
| | - Szu-Yuan Li
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute and Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
- Division of Cardiology, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- *Shing-Jong Lin:
| |
Collapse
|
16
|
Kurakula K, Vos M, Logiantara A, Roelofs JJTH, Nieuwenhuis MA, Koppelman GH, Postma DS, Brandsma CA, Sin DD, Bossé Y, Nickle DC, van Rijt LS, de Vries CJM. Deficiency of FHL2 attenuates airway inflammation in mice and genetic variation associates with human bronchial hyper-responsiveness. Allergy 2015. [PMID: 26222912 DOI: 10.1111/all.12709] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Asthma is an inflammatory disease that involves airway hyper-responsiveness and mucus hypersecretion. The LIM-only protein FHL2 is a crucial modulator of multiple signal transduction pathways and functions as a scaffold in specific protein-protein interactions. OBJECTIVE We sought to investigate the role of FHL2 in airway inflammation. METHODS Allergic airway inflammation was induced in WT and FHL2-knock out (FHL2-KO) mice with ovalbumin (OVA). Lung tissue, bronchoalveolar lavage fluid (BALF) and draining lymph node cells were analysed for inflammation. FHL2 loss and gain of function studies were performed in lung epithelial cells. RESULTS FHL2-deficient mice challenged with OVA show significantly reduced airway inflammation as evidenced by reduced infiltration of inflammatory cells including eosinophils, dendritic cells, B cells and T cells. Furthermore, mucus production was decreased in FHL2-KO mice. In BALF, the levels of IL-5, IL-13, eotaxin-1 and eotaxin-2 were significantly lower in FHL2-KO mice. In addition, draining lymph node cells from FHL2-KO mice show reduced levels of IL-5 and IL-13. Consistent with this, OVA-specific serum IgG and IgE levels were reduced in FHL2-KO mice. We also found that phosphorylation of ERK1/2 is markedly attenuated in FHL2-KO lung. Knock-down of FHL2 in human lung epithelial cells resulted in a striking decrease in ERK1/2 phosphorylation and mRNA levels of inflammatory cytokines and MUC5AC, whereas FHL2 overexpression exhibited opposite effects. Finally, the SNP rs4851765 shows an association with the severity of bronchial hyper-responsiveness. CONCLUSION These results highlight functional involvement of FHL2 in airway inflammation and identify FHL2 as a novel gene associated with asthma severity in human.
Collapse
Affiliation(s)
- K. Kurakula
- Deartment of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - M. Vos
- Deartment of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - A. Logiantara
- Department of Experimental Immunology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - J. J. T. H. Roelofs
- Department of Pathology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - M. A. Nieuwenhuis
- University of Groningen; University Medical Center Groningen; Department of Pulmonology; GRIAC Research Institute; Groningen The Netherlands
| | - G. H. Koppelman
- University of Groningen; University Medical Center Groningen; Department of Pediatric Pulmonology; Beatrix Children's Hospital; GRIAC Research Institute; Groningen The Netherlands
| | - D. S. Postma
- University of Groningen; University Medical Center Groningen; Department of Pulmonology; GRIAC Research Institute; Groningen The Netherlands
| | - C. A. Brandsma
- University of Groningen; University Medical Center Groningen; Department of Pathology and Medical Biology; GRIAC Research Institute; Groningen The Netherlands
| | - D. D. Sin
- The University of British Columbia James Hogg Research Laboratory; St Paul's Hospital; Vancouver Canada
- Respiratory Division; Department of Medicine; University of British Columbia; Vancouver Canada
| | - Y. Bossé
- Department of Molecular Medicine; Laval University; Quebec City Canada
- Institut Universitaire de Cardiologie et de Pneumologie de Quebec; Laval University; Quebec City Canada
| | - D. C. Nickle
- Genetics; Rosetta Inpharmatics; Merck Seattle WA USA
- Merck Research Laboratories; Boston MA USA
| | - L. S. van Rijt
- Department of Experimental Immunology; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| | - C. J. M. de Vries
- Deartment of Medical Biochemistry; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
| |
Collapse
|
17
|
Integrated network model provides new insights into castration-resistant prostate cancer. Sci Rep 2015; 5:17280. [PMID: 26603105 PMCID: PMC4658549 DOI: 10.1038/srep17280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/28/2015] [Indexed: 12/12/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the main challenge for prostate cancer treatment. Recent studies have indicated that extending the treatments to simultaneously targeting different pathways could provide better approaches. To better understand the regulatory functions of different pathways, a system-wide study of CRPC regulation is necessary. For this purpose, we constructed a comprehensive CRPC regulatory network by integrating multiple pathways such as the MEK/ERK and the PI3K/AKT pathways. We studied the feedback loops of this network and found that AKT was involved in all detected negative feedback loops. We translated the network into a predictive Boolean model and analyzed the stable states and the control effects of genes using novel methods. We found that the stable states naturally divide into two obvious groups characterizing PC3 and DU145 cells respectively. Stable state analysis further revealed that several critical genes, such as PTEN, AKT, RAF, and CDKN2A, had distinct expression behaviors in different clusters. Our model predicted the control effects of many genes. We used several public datasets as well as FHL2 overexpression to verify our finding. The results of this study can help in identifying potential therapeutic targets, especially simultaneous targets of multiple pathways, for CRPC.
Collapse
|
18
|
Tran MK, Kurakula K, Koenis DS, de Vries CJM. Protein-protein interactions of the LIM-only protein FHL2 and functional implication of the interactions relevant in cardiovascular disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:219-28. [PMID: 26548523 DOI: 10.1016/j.bbamcr.2015.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022]
Abstract
FHL2 belongs to the LIM-domain only proteins and contains four and a half LIM domains, each of which are composed of two zinc finger structures. FHL2 exhibits specific interaction with proteins exhibiting diverse functions, including transmembrane receptors, transcription factors and transcription co-regulators, enzymes, and structural proteins. The function of these proteins is regulated by FHL2, which modulates intracellular signal transduction pathways involved in a plethora of cellular tasks. The present review summarizes the current knowledge on the protein interactome of FHL2 and provides an overview of the functional implication of these interactions in apoptosis, migration, and regulation of nuclear receptor function. FHL2 was originally identified in the heart and there is extensive literature available on the role of FHL2 in the cardiovascular system, which is also summarized in this review.
Collapse
Affiliation(s)
- M Khang Tran
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kondababu Kurakula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Duco S Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlie J M de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Tang Y, Zhang Y, Chen Y, Xiang Y, Xie Y. Role of the microRNA, miR-206, and its target PIK3C2α in endothelial progenitor cell function – potential link with coronary artery disease. FEBS J 2015; 282:3758-72. [PMID: 26175229 DOI: 10.1111/febs.13372] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 07/06/2015] [Accepted: 07/08/2015] [Indexed: 01/07/2023]
Abstract
Coronary artery disease is a major cause of morbidity and mortality worldwide. Impaired endothelial function and integrity are major contributory factors to coronary artery disease. MicroRNAs have been proposed to play an important role in coronary artery disease pathogenesis. In the present study, the expression of miR-206 was found to be significantly upregulated in peripheral blood endothelial progenitor cells from patients with coronary artery disease compared to healthy donors. MiR-206 was found to regulate endothelial progenitor cell activities by targeting the protein kinase PIK3C2α, which showed decreased expression in coronary artery disease endothelial progenitor cells. Knockdown of miR-206 in coronary artery disease endothelial progenitor cells rescued their angiogenic and vasculogenic abilities both in vitro and in vivo in a mouse ischemic hindlimb model. Furthermore, knockdown of miR-206 activated not only PIK3C2α, but also the angiogenic signal modulators Akt and endothelial nitric oxide synthase. It is therefore proposed that repression of the phosphoinositide 3-kinase/Akt/endothelial nitric oxide synthase signal transduction pathway by miR-206 downregulates angiogenesis contributing to the pathophysiology of coronary artery disease.
Collapse
Affiliation(s)
- Yong Tang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yachen Zhang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yu Chen
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yin Xiang
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| | - Yuquan Xie
- Department of Cardiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China
| |
Collapse
|
20
|
Ebrahimian T, Simon D, Lemarié CA, Simeone S, Heidari M, Mann KK, Wassmann S, Lehoux S. Absence of Four-and-a-Half LIM Domain Protein 2 Decreases Atherosclerosis in ApoE
−/−
Mice. Arterioscler Thromb Vasc Biol 2015; 35:1190-7. [DOI: 10.1161/atvbaha.114.305071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 03/01/2015] [Indexed: 02/07/2023]
Abstract
Objective—
Four-and-a-half LIM domain protein-2 (FHL2) is expressed in endothelial cells, vascular smooth muscle cells, and leukocytes. It regulates cell survival, migration, and inflammatory response, but its role in atherogenesis is unknown.
Approach and Results—
To investigate the role of FHL2 in atherosclerosis, FHL2-deficient mice were crossed with ApoE-deficient mice, to generate ApoE/FHL2−/− mice. After high-fat diet, ApoE/FHL2−/− mice had significantly smaller atherosclerotic plaques than ApoE−/− mice in the aortic sinus, the brachiocephalic artery, and the aorta. This was associated with enhanced collagen and smooth muscle cell contents and a 2-fold reduction in macrophage content within the plaques of ApoE/FHL-2−/− versus ApoE−/− mice. This could be explained, in part, by the reduction in aortic ICAM-1 (intracellular adhesion molecule) mRNA and VCAM-1 (vascular cell adhesion molecule) protein expression in the plaque. Aortic gene expression of the chemokines CX3CL1 and CCL5 was increased in ApoE/FHL2−/− versus ApoE−/− mice. Peritoneal thioglycollate injection elicited equivalent numbers of monocytes and macrophages in both groups, but a significantly lower number of proinflammatory Ly6C high monocytes were recruited in ApoE/FHL2−/− versus ApoE−/− mice. Furthermore, mRNA levels of CX3CR1 were 2-fold higher in monocytes from ApoE/FHL2−/− versus ApoE−/− mice. Finally, we investigated the potential importance of myeloid cell FHL2 deficiency in atherosclerosis. After being irradiated, ApoE−/− or ApoE/FHL2−/− mice were transplanted with ApoE−/− or ApoE/FHL2−/− bone marrow. After high-fat diet, both chimeric groups developed smaller plaques than ApoE−/− transplanted with ApoE−/− bone marrow.
Conclusions—
These results suggest that FHL2 in both myeloid and vascular cells may play an important role in atherosclerosis by promoting proinflammatory chemokine production, adhesion molecule expression, and proinflammatory monocyte recruitment.
Collapse
Affiliation(s)
- Talin Ebrahimian
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - David Simon
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Catherine A. Lemarié
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Stefania Simeone
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Maryam Heidari
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Koren K. Mann
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sven Wassmann
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Stephanie Lehoux
- From the Lady Davis Institute for Medical Research, Department of Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
21
|
Li SY, Huang PH, Tarng DC, Lin TP, Yang WC, Chang YH, Yang AH, Lin CC, Yang MH, Chen JW, Schmid-Schönbein GW, Chien S, Chu PH, Lin SJ. Four-and-a-Half LIM Domains Protein 2 Is a Coactivator of Wnt Signaling in Diabetic Kidney Disease. J Am Soc Nephrol 2015; 26:3072-84. [PMID: 25855776 DOI: 10.1681/asn.2014100989] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/23/2015] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) is a microvascular complication that leads to kidney dysfunction and ESRD, but the underlying mechanisms remain unclear. Podocyte Wnt-pathway activation has been demonstrated to be a trigger mechanism for various proteinuric diseases. Notably, four-and-a-half LIM domains protein 2 (FHL2) is highly expressed in urogenital systems and has been implicated in Wnt/β-catenin signaling. Here, we used in vitro podocyte culture experiments and a streptozotocin-induced DKD model in FHL2 gene-knockout mice to determine the possible role of FHL2 in DKD and to clarify its association with the Wnt pathway. In human and mouse kidney tissues, FHL2 protein was abundantly expressed in podocytes but not in renal tubular cells. Treatment with high glucose or diabetes-related cytokines, including angiotensin II and TGF-β1, activated FHL2 protein and Wnt/β-catenin signaling in cultured podocytes. This activation also upregulated FHL2 expression and promoted FHL2 translocation from cytosol to nucleus. Genetic deletion of the FHL2 gene mitigated the podocyte dedifferentiation caused by activated Wnt/β-catenin signaling under Wnt-On, but not under Wnt-Off, conditions. Diabetic FHL2(+/+) mice developed markedly increased albuminuria and thickening of the glomerular basement membrane compared with nondiabetic FHL2(+/+) mice. However, FHL2 knockout significantly attenuated these DKD-induced changes. Furthermore, kidney samples from patients with diabetes had a higher degree of FHL2 podocyte nuclear translocation, which was positively associated with albuminuria and progressive renal function deterioration. Therefore, we conclude that FHL2 has both structural and functional protein-protein interactions with β-catenin in the podocyte nucleus and that FHL2 protein inhibition can mitigate Wnt/β-catenin-induced podocytopathy.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Der-Cherng Tarng
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, and Institute of Physiology, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ping Lin
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wu-Chang Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hwa Chang
- Department of Urology, Taipei Veterans General Hospital, Department of Urology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - An-Hang Yang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, and Institute of Anatomy and Cell Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Ching Lin
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Division of Hematology and Oncology, Department of Medicine, Taipei Veterans General Hospital and Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Geert W Schmid-Schönbein
- The Institute of Engineering in Medicine, University of California San Diego, La Jolla, California
| | - Shu Chien
- Departments of Bioengineering, Nanoengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, California; and
| | - Pao-Hsien Chu
- Division of Cardiology, Department of Internal Medicine; Healthcare Center; Heart Failure Center, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taipei, Taiwan
| | - Shing-Jong Lin
- Department of Medical Research, Taipei Veterans General Hospital, Institute and Department of Pharmacology, and Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
FHL2 regulates hematopoietic stem cell functions under stress conditions. Leukemia 2014; 29:615-24. [PMID: 25179730 PMCID: PMC4346553 DOI: 10.1038/leu.2014.254] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/16/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022]
Abstract
FHL2, a member of the four and one half LIM domain protein family, is a critical transcriptional modulator. Here, we identify FHL2 as a critical regulator of hematopoietic stem cells (HSCs) that is essential for maintaining HSC self-renewal under regenerative stress. We find that Fhl2 loss has limited effects on hematopoiesis under homeostatic conditions. In contrast, Fhl2-null chimeric mice reconstituted with Fhl2-null bone marrow cells developed abnormal hematopoiesis with significantly reduced numbers of HSCs, hematopoietic progenitor cells (HPCs), red blood cells and platelets as well as hemoglobin levels. In addition, HSCs displayed a significantly reduced self-renewal capacity and were skewed toward myeloid lineage differentiation. We find that Fhl2 loss reduces both HSC quiescence and survival in response to regenerative stress, probably as a consequence of Fhl2-loss-mediated down-regulation of cyclin dependent kinase (CDK)-inhibitors, including p21(Cip) and p27(Kip1). Interestingly, FHL2 is regulated under control of a tissue specific promoter in hematopoietic cells and it is down-regulated by DNA hypermethylation in the leukemia cell line and primary leukemia cells. Furthermore, we find that down-regulation of FHL2 frequently occurs in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) patients, raising a possibility that FHL2 down-regulation plays a role in the pathogenesis of myeloid malignancies.
Collapse
|
23
|
Abstract
A series of studies has been presented in the search for proof of circulating and resident vascular progenitor cells, which can differentiate into endothelial and smooth muscle cells and pericytes in animal and human studies. In terms of pluripotent stem cells, including embryonic stem cells, iPS, and partial-iPS cells, they display a great potential for vascular lineage differentiation. Development of stem cell therapy for treatment of vascular and ischemic diseases remains a major challenging research field. At the present, there is a clear expansion of research into mechanisms of stem cell differentiation into vascular lineages that are tested in animal models. Although there are several clinical trials ongoing that primarily focus on determining the benefits of stem cell transplantation in ischemic heart or peripheral ischemic tissues, intensive investigation for translational aspects of stem cell therapy would be needed. It is a hope that stem cell therapy for vascular diseases could be developed for clinic application in the future.
Collapse
Affiliation(s)
- Li Zhang
- From the Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); and Department of Cardiology, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Qingbo Xu
- From the Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China (L.Z.); and Department of Cardiology, Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.).
| |
Collapse
|
24
|
Dysregulated miR-361-5p/VEGF axis in the plasma and endothelial progenitor cells of patients with coronary artery disease. PLoS One 2014; 9:e98070. [PMID: 24865854 PMCID: PMC4035317 DOI: 10.1371/journal.pone.0098070] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/24/2014] [Indexed: 02/07/2023] Open
Abstract
Dysfunction and reduction of circulating endothelial progenitor cell (EPC) is correlated with the onset of cardiovascular disorders including coronary artery disease (CAD). VEGF is a known mitogen for EPC to migrate out of bone marrow to possess angiogenic activities, and the plasma levels of VEGF are inversely correlated to the progression of CAD. Circulating microRNAs (miRNAs) in patient body fluids have recently been considered to hold the potential of being novel disease biomarkers and drug targets. However, how miRNAs and VEGF cooperate to regulate CAD progression is still unclear. Through the small RNA sequencing (smRNA-seq), we deciphered the miRNome patterns of EPCs with different angiogenic activities, hypothesizing that miRNAs targeting VEGF must be more abundant in EPCs with lower angiogenic activities. Candidates of anti-VEGF miRNAs, including miR-361-5p and miR-484, were enriched in not only diseased EPCs but also the plasma of CAD patients. However, we found out only miR-361-5p, but not miR-484, was able to suppress VEGF expression and EPC activities. Reporter assays confirmed the direct binding and repression of miR-361-5p to the 3′-UTR of VEGF mRNA. Knock down of miR-361-5p not only restored VEGF levels and angiogenic activities of diseased EPCs in vitro, but further promoted blood flow recovery in ischemic limbs of mice. Collectively, we discovered a miR-361-5p/VEGF-dependent regulation that could help to develop new therapeutic modalities not only for ischemia-related diseases but also for tumor angiogenesis.
Collapse
|
25
|
Kurakula K, Vos M, Otermin Rubio I, Marinković G, Buettner R, Heukamp LC, Stap J, de Waard V, van Tiel CM, de Vries CJ. The LIM-only protein FHL2 reduces vascular lesion formation involving inhibition of proliferation and migration of smooth muscle cells. PLoS One 2014; 9:e94931. [PMID: 24736599 PMCID: PMC3988136 DOI: 10.1371/journal.pone.0094931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/20/2014] [Indexed: 01/01/2023] Open
Abstract
The LIM-only protein FHL2, also known as DRAL or SLIM3, has a function in fine-tuning multiple physiological processes. FHL2 is expressed in the vessel wall in smooth muscle cells (SMCs) and endothelial cells and conflicting data have been reported on the regulatory function of FHL2 in SMC phenotype transition. At present the function of FHL2 in SMCs in vascular injury is unknown. Therefore, we studied the role of FHL2 in SMC-rich lesion formation. In response to carotid artery ligation FHL2-deficient (FHL2-KO) mice showed accelerated lesion formation with enhanced Ki67 expression compared with wild-type (WT)-mice. Consistent with these findings, cultured SMCs from FHL2-KO mice showed increased proliferation through enhanced phosphorylation of extracellular-regulated kinase-1/2 (ERK1/2) and induction of CyclinD1 expression. Overexpression of FHL2 in SMCs inhibited CyclinD1 expression and CyclinD1-knockdown blocked the enhanced proliferation of FHL2-KO SMCs. We also observed increased CyclinD1 promoter activity in FHL2-KO SMCs, which was reduced upon ERK1/2 inhibition. Furthermore, FHL2-KO SMCs showed enhanced migration compared with WT SMCs. In conclusion, FHL2 deficiency in mice results in exacerbated SMC-rich lesion formation involving increased proliferation and migration of SMCs via enhanced activation of the ERK1/2-CyclinD1 signaling pathway.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariska Vos
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Iker Otermin Rubio
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Goran Marinković
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Jan Stap
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Claudia M. van Tiel
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Carlie J.M. de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|