1
|
He Z, Zhang Z, Xu P, Dirsch VM, Wang L, Wang K. Laminarin Reduces Cholesterol Uptake and NPC1L1 Protein Expression in High-Fat Diet (HFD)-Fed Mice. Mar Drugs 2023; 21:624. [PMID: 38132943 PMCID: PMC10744832 DOI: 10.3390/md21120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Aberrantly high dietary cholesterol intake and intestinal cholesterol uptake lead to dyslipidemia, one of the risk factors for cardiovascular diseases (CVDs). Based on previous studies, laminarin, a polysaccharide found in brown algae, has hypolipidemic activity, but its underlying mechanism has not been elucidated. In this study, we investigated the effect of laminarin on intestinal cholesterol uptake in vitro, as well as the lipid and morphological parameters in an in vivo model of high-fat diet (HFD)-fed mice, and addressed the question of whether Niemann-Pick C1-like 1 protein (NPC1L1), a key transporter mediating dietary cholesterol uptake, is involved in the mechanistic action of laminarin. In in vitro studies, BODIPY-cholesterol-labeled Caco-2 cells were examined using confocal microscopy and a fluorescence reader. The results demonstrated that laminarin inhibited cholesterol uptake into Caco-2 cells in a concentration-dependent manner (EC50 = 20.69 μM). In HFD-fed C57BL/6J mice, laminarin significantly reduced the serum levels of total cholesterol (TC), total triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). It also decreased hepatic levels of TC, TG, and total bile acids (TBA) while promoting the excretion of fecal cholesterol. Furthermore, laminarin significantly reduced local villous damage in the jejunum of HFD mice. Mechanistic studies revealed that laminarin significantly downregulated NPC1L1 protein expression in the jejunum of HFD-fed mice. The siRNA-mediated knockdown of NPC1L1 attenuated the laminarin-mediated inhibition of cholesterol uptake in Caco-2 cells. This study suggests that laminarin significantly improves dyslipidemia in HFD-fed mice, likely by reducing cholesterol uptake through a mechanism that involves the downregulation of NPC1L1 expression.
Collapse
Affiliation(s)
- Zhuoqian He
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
| | - Zhongyin Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China;
| | - Pengfei Xu
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
| | - Verena M. Dirsch
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Limei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, China
| | - Kewei Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University Medical College, Qingdao 266073, China; (Z.H.); (P.X.); (K.W.)
- Institute of Innovative Drugs, Qingdao University, Qingdao 266071, China
| |
Collapse
|
2
|
Lucà F, Oliva F, Rao CM, Abrignani MG, Amico AF, Di Fusco SA, Caretta G, Di Matteo I, Di Nora C, Pilleri A, Ceravolo R, Rossini R, Riccio C, Grimaldi M, Colivicchi F, Gulizia MM. Appropriateness of Dyslipidemia Management Strategies in Post-Acute Coronary Syndrome: A 2023 Update. Metabolites 2023; 13:916. [PMID: 37623860 PMCID: PMC10456563 DOI: 10.3390/metabo13080916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
It has been consistently demonstrated that circulating lipids and particularly low-density lipoprotein cholesterol (LDL-C) play a significant role in the development of coronary artery disease (CAD). Several trials have been focused on the reduction of LDL-C values in order to interfere with atherothrombotic progression. Importantly, for patients who experience acute coronary syndrome (ACS), there is a 20% likelihood of cardiovascular (CV) event recurrence within the two years following the index event. Moreover, the mortality within five years remains considerable, ranging between 19 and 22%. According to the latest guidelines, one of the main goals to achieve in ACS is an early improvement of the lipid profile. The evidence-based lipid pharmacological strategy after ACS has recently been enhanced. Although novel lipid-lowering drugs have different targets, the result is always the overexpression of LDL receptors (LDL-R), increased uptake of LDL-C, and lower LDL-C plasmatic levels. Statins, ezetimibe, and PCSK9 inhibitors have been shown to be safe and effective in the post-ACS setting, providing a consistent decrease in ischemic event recurrence. However, these drugs remain largely underprescribed, and the consistent discrepancy between real-world data and guideline recommendations in terms of achieved LDL-C levels represents a leading issue in secondary prevention. Although the cost-effectiveness of these new therapeutic advancements has been clearly demonstrated, many concerns about the cost of some newer agents continue to limit their use, affecting the outcome of patients who experienced ACS. In spite of the fact that according to the current recommendations, a stepwise lipid-lowering approach should be adopted, several more recent data suggest a "strike early and strike strong" strategy, based on the immediate use of statins and, eventually, a dual lipid-lowering therapy, reducing as much as possible the changes in lipid-lowering drugs after ACS. This review aims to discuss the possible lipid-lowering strategies in post-ACS and to identify those patients who might benefit most from more powerful treatments and up-to-date management.
Collapse
Affiliation(s)
- Fabiana Lucà
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy
| | - Carmelo Massimiliano Rao
- Cardiology Department, Grande Ospedale Metropolitano, AO Bianchi Melacrino Morelli, 89129 Reggio Calabria, Italy;
| | | | | | - Stefania Angela Di Fusco
- Clinical and Rehabilitation Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00100 Roma, Italy
| | - Giorgio Caretta
- Sant’Andrea Hospital, ASL 5 Regione Liguria, 19124 La Spezia, Italy
| | - Irene Di Matteo
- De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy
| | - Concetta Di Nora
- Department of Cardiothoracic Science, Azienda Sanitaria Universitaria Integrata di Udine, 33100 Udine, Italy
| | - Anna Pilleri
- Cardiology Unit, Brotzu Hospital, 09121 Cagliari, Italy
| | - Roberto Ceravolo
- Cardiology Department, Giovanni Paolo II Hospital, 88046 Lamezia Terme, Italy
| | - Roberta Rossini
- Cardiology Unit, Ospedale Santa Croce e Carle, 12100 Cuneo, Italy
| | - Carmine Riccio
- Cardiovascular Department, Sant’Anna e San Sebastiano Hospital, 81100 Caserta, Italy
| | - Massimo Grimaldi
- Department of Cardiology, General Regional Hospital “F. Miulli”, 70021 Bari, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Department, San Filippo Neri Hospital, ASL Roma 1, 00100 Roma, Italy
| | | |
Collapse
|
3
|
André R, Pacheco R, Alves AC, Santos HM, Bourbon M, Serralheiro ML. The Hypocholesterolemic Potential of the Edible Algae Fucus vesiculosus: Proteomic and Quantitative PCR Analysis. Foods 2023; 12:2758. [PMID: 37509850 PMCID: PMC10379601 DOI: 10.3390/foods12142758] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
A brown seaweed consumed worldwide, Fucus vesiculosus, has been used to prevent atherosclerosis and hypercholesterolemia, among other uses. However, the mechanisms of action that lead to these effects are not yet fully understood. This work aims to study the in vitro effect of an aqueous extract of F. vesiculosus, previously characterized as rich in phlorotannins and peptides, on the expression of different proteins involved in the synthesis and transport of cholesterol. A proteomic analysis, Western blot, and qRT-PCR analysis were performed to identify protein changes in HepG2 cells exposed to 0.25 mg/mL of the F. vesiculosus extract for 24 h. The proteomic results demonstrated that, in liver cells, the extract decreases the expression of four proteins involved in the cholesterol biosynthesis process (CYP51A1, DHCR24, HMGCS1 and HSD17B7). Additionally, a 12.76% and 18.40% decrease in the expression of two important transporters proteins of cholesterol, NPC1L1 and ABCG5, respectively, was also observed, as well as a 30% decrease in NPC1L1 mRNA levels in the cells exposed to the extract compared to control cells. Our study reveals some of the mechanisms underlying the actions of bioactive compounds from F. vesiculosus that may explain its previously reported hypocholesterolemic effect, future prospecting its use as a functional food.
Collapse
Affiliation(s)
- Rebeca André
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rita Pacheco
- Department of Chemical Engineering, ISEL-Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Institute of Molecular Sciences, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Ana Catarina Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Hugo M Santos
- LAQV@REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, Rúa dos Inventores, 2825-182 Caparica, Portugal
| | - Mafalda Bourbon
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Unidade de I&D, Grupo de Investigação Cardiovascular, Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Maria Luísa Serralheiro
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Department of Chemistry and Biochemistry, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, C8 Bldg, 1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Yu WQ, Wang XL, Ji HH, Miao M, Zhang BH, Li H, Zhang ZY, Ji CF, Guo SD. CM3-SII polysaccharide obtained from Cordyceps militaris ameliorates hyperlipidemia in heterozygous LDLR-deficient hamsters by modulating gut microbiota and NPC1L1 and PPARα levels. Int J Biol Macromol 2023; 239:124293. [PMID: 37011745 DOI: 10.1016/j.ijbiomac.2023.124293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Accumulating evidence has demonstrated that polysaccharides derived from edible fungi have lipid-lowering effects in mice. However, the lipid metabolism mechanisms in mice and humans are different. We have previously elucidated the structural characteristics of the alkali-extracted polysaccharide CM3-SII obtained from Cordyceps militaris. This study aimed to investigate whether CM3-SII could ameliorate hyperlipidemia in a heterozygous low-density lipoprotein receptor (LDLR)-deficient hamster model of hyperlipidemia. Our data demonstrated that CM3-SII significantly decreased total plasma cholesterol, non-high-density lipoprotein cholesterol, and triglyceride levels in heterozygous LDLR-deficient hamsters. Unlike ezetimibe, CM3-SII could enhance the concentration of plasma apolipoprotein A1 and the expression of liver X receptor α/ATP-binding cassette transporter G8 mRNA pathway and suppress the expression of Niemann-Pick C1-like 1, which help to reduce cholesterol levels further. Moreover, the results of molecular docking analysis demonstrated that CM3-SII could directly bind to Niemann-Pick C1-like 1 with high affinity. The triglyceride-lowering mechanisms of CM3-SII were related to its downregulation of sterol regulatory element-binding protein 1c and upregulation of peroxisome proliferator-activated receptor α. Importantly, CM3-SII increased the abundance of Actinobacteria and Faecalibaculum and the ratio of Bacteroidetes/Firmicutes. Thus, CM3-SII attenuated hyperlipidemia by modulating the expression of multiple molecules involved in lipid metabolism and the gut microbiota.
Collapse
|
5
|
Zhang G, Li X, Huang X. m6A-related bioinformatics analysis and functional characterization reveals that METTL3-mediated NPC1L1 mRNA hypermethylation facilitates progression of atherosclerosis via inactivation of the MAPK pathway. Inflamm Res 2023; 72:429-442. [PMID: 36583755 DOI: 10.1007/s00011-022-01681-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Accumulating evidence has demonstrated that N6-methyladenosine (m6A) plays important roles in many major diseases, including atherosclerosis (AS). In the present study, we aimed to explore the transcriptomic m6A landscape of endothelial function-associated genes and identify potential regulators in AS progression. METHODS The GEO data (GSE142386) from MeRIP-seq in human umbilical vein endothelial cells (HUVECs) with METTL3 knocked down or not were analyzed. RNA-seq was performed to identify differences in gene expression. Gene ontology (GO) functional and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses were conducted to evaluate the potential functions of the differentially expressed genes. MeRIP-qPCR was used to measure the m6A and mRNA levels of the top 8 downregulated genes, and NPC1L1 was selected as the candidate gene. Oxidized low-density lipoprotein (ox-LDL) was used to stimulate HUVECs, and METTL3 or NPC1L1 was silenced in ox-LDL-treated cells. And Transwell, ELISA, and cell apoptosis assays were performed to assess cell functional injury. ApoE-/- mice were fed with high-fat diet for 8 weeks to establish an AS model, and adenovirus-mediated NPC1L1 shRNA or NC shRNA was injected into the mice through the tail vein. Mouse aortic tissue damage and plaque deposition were evaluated by H&E, Oil Red O, and TUNEL staining. RESULTS One hundred and ninety-four hypermethylated m6A peaks and 222 hypomethylated peaks were detected in response to knockdown of METTL3. Genes with altered m6A peaks were significantly involved in the histone modification, enzyme activity, and formation of multiple complexes and were predominantly enriched in the MAPK pathway. NPC1L1 was a most significantly downregulated transcript in response to knockdown of METTL3. Moreover, knockdown of NPC1L1 or de-m6A (METTL3 knockdown)-mediated downregulation of NPC1L1 could improve ox-LDL-induced dysfunction of HUVECs in vitro and high-fat diet-induced atherosclerotic plaque in vivo, which was associated with the inactivation of the MAPK pathway. CONCLUSION METTL3-mediated NPC1L1 mRNA hypermethylation facilitates AS progression by regulating the MAPK pathway, and NPC1L1 may be a novel target for the treatment of AS.
Collapse
Affiliation(s)
- Guoan Zhang
- Department of Cardiovascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xuewen Li
- Department of Cardiovascular Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
6
|
Recent advances in the screening methods of NPC1L1 inhibitors. Biomed Pharmacother 2022; 155:113732. [PMID: 36166964 DOI: 10.1016/j.biopha.2022.113732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
NPC1L1 is a crucial protein involved in sterol lipid absorption and has been shown to play an important role in intestinal cholesterol absorption. Hypercholesterolemia is a significant risk factor for cardiovascular diseases such as coronary heart disease. Screening of NPC1L1 inhibitors is critical for gaining a full understanding of lipid metabolism, developing new cholesterol-lowering medicines, and treating cardiovascular diseases. This work summarized existing methodologies for screening NPC1L1 inhibitors and evaluated their challenges, and will assist the development of novel cholesterol-lowering medications and therapeutic strategies for hypercholesterolemia and other cholesterol-related metabolic disorders.
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW The transintestinal cholesterol efflux (TICE) pathway is the second described route for plasma cholesterol fecal elimination. This article summarizes recent TICE research progresses, involving TICE inducers, molecular determinants of this pathway, and its role in lipoprotein metabolism. RECENT FINDINGS TICE is an active pathway in mice, rats, and humans. Kinetic measurements showed that under basal conditions, the relative contribution of TICE in fecal elimination of plasma cholesterol is quantitatively less important than the hepatobiliary pathway. However, the amplitude of TICE can be induced by numerous nutritional factors and pharmacological drugs. More importantly, by contrast with the stimulation of biliary cholesterol excretion that is associated with an increased risk of gallstone formation, TICE appears as a safer therapeutical target. Finally, several independent studies have demonstrated that TICE is actively contributing to the anti-atherogenic reverse cholesterol pathway reinforcing the interest to better understand its mode of action. The discovery of TICE and the understanding of its mode of action open new therapeutical perspectives for patients at high risk of cardiovascular diseases.
Collapse
|
8
|
Xia B, Lin P, Ji Y, Yin J, Wang J, Yang X, Li T, Yang Z, Li F, Guo S. Ezetimibe promotes CYP7A1 and modulates PPARs as a compensatory mechanism in LDL receptor-deficient hamsters. Lipids Health Dis 2020; 19:24. [PMID: 32035489 PMCID: PMC7007651 DOI: 10.1186/s12944-020-1202-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/24/2020] [Indexed: 11/10/2022] Open
Abstract
Background The LDL-C lowering effect of ezetimibe has been attributed primarily to increased catabolism of LDL-C via up-regulation of LDL receptor (LDLR) and decreased cholesterol absorption. Recently, ezetimibe has been demonstrated to have reverse cholesterol transport (RCT) promoting effects in mice, hamsters and humans. However, the underlying mechanisms are still not clear. The aim of this study is to investigate whether ezetimibe improves RCT-related protein expression in LDLR−/− hamsters. Methods A high-fat diet was used to induce a human-like hyperlipidemia in LDLR−/− hamsters. Lipid profiles were assayed by commercially available kits, and the effects of ezetimibe on lipid metabolism-related protein expression were carried out via western blot. Results Our data demonstrated that ezetimibe administration significantly reduced plasma total cholesterol (~ 51.6% reduction, P < 0.01) and triglyceride (from ~ 884.1 mg/dL to ~ 277.3 mg/dL) levels in LDLR−/− hamsters fed a high-fat diet. Ezetimibe administration (25 mg/kg/d) significantly promoted the protein expression of cholesterol 7 alpha-hydroxylase A1 (CYP7A1), LXRβ and peroxisome proliferator-activated receptor (PPAR) γ; and down-regulated the protein expression of PPARα and PPARβ. However, it showed no significant effect on sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, proprotein convertase subtilisin/kexin type 9 (PCSK9), Niemann-Pick C1-like 1 (NPC1L1), and ATP-biding cassette (ABC) G5/G8. Conclusion Ezetimibe may accelerate the transformation from cholesterol to bile acid via promoting CYP7A1 and thereby enhance RCT. As a compensatory mechanism of TG lowering, ezetimibe promoted the protein expression of PPARγ and decreased PPARα and β. These results are helpful in explaining the lipid-lowering effects of ezetimibe and the potential compensatory mechanisms.
Collapse
Affiliation(s)
- Bin Xia
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Yubin Ji
- College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jiayu Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Jin Wang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China
| | - Xiaoqian Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Ting Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Zixun Yang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China
| | - Fahui Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China.
| | - Shoudong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, 7166# Baotongxi Street, Weifang, 261053, Shandong Province, China. .,College of Pharmacy Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076, China.
| |
Collapse
|
9
|
Yamamoto H, Yamanashi Y, Takada T, Mu S, Tanaka Y, Komine T, Suzuki H. Hepatic Expression of Niemann-Pick C1-Like 1, a Cholesterol Reabsorber from Bile, Exacerbates Western Diet-Induced Atherosclerosis in LDL Receptor Mutant Mice. Mol Pharmacol 2019; 96:47-55. [PMID: 31064810 DOI: 10.1124/mol.119.115840] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022] Open
Abstract
Westernization of dietary habits increases lipid intake and is responsible for increased numbers of patients with atherosclerotic diseases. Niemann-Pick C1-Like 1 (NPC1L1)-a cholesterol importer-plays a crucial role in dietary cholesterol absorption in the intestine and is closely associated with several lipid-related diseases, including atherosclerosis. NPC1L1 is highly expressed in the liver and intestine in humans, whereas NPC1L1 expression is low in the rodent liver. Due to species differences in the tissue distribution of NPC1L1, there are limited studies on the pathophysiological role of hepatic NPC1L1, a cholesterol reabsorber from bile. In the present study, to explore whether hepatic NPC1L1 is involved in the development/progression of atherosclerosis, we compared four kinds of atherosclerosis mouse models with different expression levels of NPC1L1 in the intestinal and liver tissues in a genetic background of dysfunctional low-density lipoprotein receptor mutation. Western diet (WD)-induced hyperlipidemia and atherosclerotic plaque formation were more severe in mice expressing NPC1L1 in both the liver and intestine (plasma cholesterol, 839.5 mg/dl; plaque area, 29.5% of total aorta), compared with mice expressing NPC1L1 only in the intestine (plasma cholesterol, 573.1 mg/dl; plaque area, 13.3% of total aorta). Such hepatic NPC1L1-mediated promotion of hyperlipidemia and atherosclerosis was not observed in mice not expressing intestinal NPC1L1 and mice treated with ezetimibe, an NPC1L1 inhibitor used clinically for dyslipidemia. These results suggested that hepatic NPC1L1 promotes WD-induced dyslipidemia and atherosclerosis in concert with intestinal NPC1L1. Our findings provide novel insights into the pathophysiological importance of hepatic NPC1L1 in development/progression of atherosclerosis. SIGNIFICANCE STATEMENT: Niemann-Pick C1-Like 1 (NPC1L1) protein, a cholesterol importer and a molecular target of ezetimibe clinically used for dyslipidemia, is highly expressed not only in the intestine, but also in the liver in humans, although the pathophysiological importance of hepatic NPC1L1 in atherosclerotic diseases remained unclear. By using novel mouse models to separately analyze the effects of hepatic and intestinal NPC1L1 on the development/progression of atherosclerosis, we first demonstrated that hepatic NPC1L1 accelerates Western diet-induced atherosclerotic plaque formation in an intestinal NPC1L1-dependent and an ezetimibe-sensitive manner.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihide Yamanashi
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shuang Mu
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Tanaka
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toko Komine
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
de Boer JF, Schonewille M, Dikkers A, Koehorst M, Havinga R, Kuipers F, Tietge UJ, Groen AK. Transintestinal and Biliary Cholesterol Secretion Both Contribute to Macrophage Reverse Cholesterol Transport in Rats—Brief Report. Arterioscler Thromb Vasc Biol 2017; 37:643-646. [DOI: 10.1161/atvbaha.116.308558] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 11/16/2022]
Abstract
Objective—
Reverse cholesterol transport comprises efflux of cholesterol from macrophages and its subsequent removal from the body with the feces and thereby protects against formation of atherosclerotic plaques. Because of lack of suitable animal models that allow for evaluation of the respective contributions of biliary cholesterol secretion and transintestinal cholesterol excretion (TICE) to macrophage reverse cholesterol transport under physiological conditions, the relative importance of both pathways in this process has remained controversial.
Approach and Results—
To separate cholesterol traffic via the biliary route from TICE, bile flow was mutually diverted between rats, continuously, for 3 days. Groups of 2 weight-matched rats were designated as a pair, and both rats were equipped with cannulas in the bile duct and duodenum. Bile from rat 1 was diverted to the duodenum of rat 2, whereas bile from rat 2 was rerouted to the duodenum of rat 1. Next, rat 1 was injected with [
3
H]cholesterol-loaded macrophages. [
3
H]Cholesterol secreted via the biliary route was consequently diverted to rat 2 and could thus be quantified from the feces of that rat. On the other hand, [
3
H]cholesterol tracer in the feces of rat 1 reflected macrophage-derived cholesterol excreted via TICE. Using this setup, we found that 63% of the label secreted with the fecal neutral sterols had travelled via the biliary route, whereas 37% was excreted via TICE.
Conclusions—
TICE and biliary cholesterol secretion contribute to macrophage reverse cholesterol transport in rats. The majority of macrophage-derived cholesterol is however excreted via the hepatobiliary route.
Collapse
Affiliation(s)
- Jan Freark de Boer
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Marleen Schonewille
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Arne Dikkers
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Martijn Koehorst
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Rick Havinga
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Folkert Kuipers
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Uwe J.F. Tietge
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| | - Albert K. Groen
- From the Departments of Pediatrics (J.F.d.B., M.S., A.D., M.K., R.H., F.K., U.J.F.T., A.K.G.) and Laboratory Medicine (F.K., A.K.G.), University of Groningen, University Medical Center Groningen, The Netherlands
| |
Collapse
|
11
|
Lin X, Racette SB, Ma L, Wallendorf M, Ostlund RE. Ezetimibe Increases Endogenous Cholesterol Excretion in Humans. Arterioscler Thromb Vasc Biol 2017; 37:990-996. [PMID: 28279967 DOI: 10.1161/atvbaha.117.309119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Ezetimibe improves cardiovascular outcomes when added to optimum statin treatment. It lowers low-density lipoprotein cholesterol and percent intestinal cholesterol absorption, but the exact cardioprotective mechanism is unknown. We tested the hypothesis that the dominant effect of ezetimibe is to increase the reverse transport of cholesterol from rapidly mixing endogenous cholesterol pool into the stool. APPROACH AND RESULTS In a randomized, placebo-controlled, double-blind parallel trial in 24 healthy subjects with low-density lipoprotein cholesterol 100 to 200 mg/dL, we measured cholesterol metabolism before and after a 6-week treatment period with ezetimibe 10 mg/d or placebo. Plasma cholesterol was labeled by intravenous infusion of cholesterol-d7 in a lipid emulsion and dietary cholesterol with cholesterol-d5 and sitostanol-d4 solubilized in oil. Plasma and stool samples collected during a cholesterol- and phytosterol-controlled metabolic kitchen diet were analyzed by mass spectrometry. Ezetimibe reduced intestinal cholesterol absorption efficiency 30±4.3% (SE, P<0.0001) and low-density lipoprotein cholesterol 19.8±1.9% (P=0.0001). Body cholesterol pool size was unchanged, but fecal endogenous cholesterol excretion increased 66.6±12.2% (P<0.0001) and percent cholesterol excretion from body pools into the stool increased 74.7±14.3% (P<0.0001), whereas plasma cholesterol turnover rose 26.2±3.6% (P=0.0096). Fecal bile acids were unchanged. CONCLUSIONS Ezetimibe increased the efficiency of reverse cholesterol transport from rapidly mixing plasma and tissue pools into the stool. Further work is needed to examine the potential relation of reverse cholesterol transport and whole body cholesterol metabolism to coronary events and the treatment of atherosclerosis. CLINICAL TRIALS REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT01603758.
Collapse
Affiliation(s)
- Xiaobo Lin
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Susan B Racette
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Lina Ma
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Michael Wallendorf
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.)
| | - Richard E Ostlund
- From the Division of Endocrinology, Metabolism & Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO (X.L., S.B.R., L.M., R.E.O.); Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO (S.B.R.); and Division of Biostatistics, Washington University School of Medicine, St. Louis, MO (M.W.).
| |
Collapse
|
12
|
Drouin-Chartier JP, Tremblay AJ, Lemelin V, Lépine MC, Lamarche B, Couture P. Ezetimibe increases intestinal expression of the LDL receptor gene in dyslipidaemic men with insulin resistance. Diabetes Obes Metab 2016; 18:1226-1235. [PMID: 27460541 DOI: 10.1111/dom.12749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 01/25/2023]
Abstract
AIM To gain further insight into intestinal cholesterol homeostasis in dyslipidaemic men with insulin resistance (IR) by examining the impact of treatment with ezetimibe on the expression of key genes involved in cholesterol synthesis and LDL receptor (R)-mediated uptake of lipoproteins. METHODS A total of 25 men with dyslipidaemia and IR were recruited to participate in this double-blind, randomized, crossover, placebo-controlled trial. Participants received 10 mg/day ezetimibe or placebo for periods of 12 weeks each. Intestinal gene expression was measured by quantitative PCR in duodenal biopsy samples collected by gastroduodenoscopy at the end of each treatment. RESULTS A total of 20 participants completed the protocol. Treatment with ezetimibe significantly increased intestinal LDLR (+16.2%; P = .01), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoAR; +14.0%; P = .04) and acetyl-Coenzyme A acetyltransferase 2 (ACAT-2) mRNA expression (+12.5%; P = .03). Changes in sterol regulatory element-binding transcription factor 2 (SREBP-2) expression were significantly correlated with changes in HMG-CoAR (r = 0.55; P < .05), ACAT-2 (r = 0.69; P < .001) and proprotein convertase substilisin/kexin type 9 (PCSK9) expression (r = 0.45; P < .05). CONCLUSIONS These results show that inhibition of intestinal cholesterol absorption by ezetimibe increases expression of the LDLR gene, supporting the concept that increased LDL clearance with ezetimibe treatment occurs not only in the liver but also in the small intestine.
Collapse
Affiliation(s)
| | - André J Tremblay
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Valéry Lemelin
- Department of Gastroenterology, CHU de Québec-Université Laval, Quebec City, Canada
| | - Marie-Claude Lépine
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Benoît Lamarche
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Patrick Couture
- Department of Medicine, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
- Department of Medicine, Lipid Research Center, CHU de Québec-Université Laval, Quebec City, Canada
| |
Collapse
|
13
|
Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet. Nutr Res 2016; 36:964-973. [DOI: 10.1016/j.nutres.2016.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 05/24/2016] [Accepted: 06/01/2016] [Indexed: 11/22/2022]
|
14
|
Meriwether D, Sulaiman D, Wagner A, Grijalva V, Kaji I, Williams KJ, Yu L, Fogelman S, Volpe C, Bensinger SJ, Anantharamaiah GM, Shechter I, Fogelman AM, Reddy ST. Transintestinal transport of the anti-inflammatory drug 4F and the modulation of transintestinal cholesterol efflux. J Lipid Res 2016; 57:1175-93. [PMID: 27199144 DOI: 10.1194/jlr.m067025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/28/2023] Open
Abstract
The site and mechanism of action of the apoA-I mimetic peptide 4F are incompletely understood. Transintestinal cholesterol efflux (TICE) is a process involved in the clearance of excess cholesterol from the body. While TICE is responsible for at least 30% of the clearance of neutral sterols from the circulation into the intestinal lumen, few pharmacological agents have been identified that modulate this pathway. We show first that circulating 4F selectively targets the small intestine (SI) and that it is predominantly transported into the intestinal lumen. This transport of 4F into the SI lumen is transintestinal in nature, and it is modulated by TICE. We also show that circulating 4F increases reverse cholesterol transport from macrophages and cholesterol efflux from lipoproteins via the TICE pathway. We identify the cause of this modulation of TICE either as 4F being a cholesterol acceptor with respect to enterocytes, from which 4F enhances cholesterol efflux, or as 4F being an intestinal chaperone with respect to TICE. Our results assign a novel role for 4F as a modulator of the TICE pathway and suggest that the anti-inflammatory functions of 4F may be a partial consequence of the codependent intestinal transport of both 4F and cholesterol.
Collapse
Affiliation(s)
- David Meriwether
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Dawoud Sulaiman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Molecular Toxicology Interdepartmental Degree Program, University of California Los Angeles, Los Angeles, CA
| | - Alan Wagner
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Izumi Kaji
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Kevin J Williams
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Spencer Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Carmen Volpe
- Division of Laboratory Animal Medicine, University of California Los Angeles, Los Angeles, CA
| | - Steven J Bensinger
- Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA
| | - G M Anantharamaiah
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Ishaiahu Shechter
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Srinivasa T Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA Department of Medical and Molecular Pharmacology, University of California Los Angeles, Los Angeles, CA Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
15
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
16
|
Wang K, Cao T, Zhao L, Yang Y, Feng Y, Duan Y, Yuan L, Xing C, Ren H. Study of the Blood Supply Fraction of the Ascending Aorta and Its Effect in Diagnosing Early Ascending Aortic Atherosclerosis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2016; 35:547-552. [PMID: 26921087 DOI: 10.7863/ultra.15.04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
OBJECTIVES To investigate the capacity of blood storage of certain large arteries during diastole, we first studied the ascending aorta by echocardiography. The concept of the blood supply fraction of the ascending aorta was then introduced to evaluate elastic retraction of the ascending aortic wall and determine its role in diagnosing early atherosclerosis of the ascending aorta. METHODS First, we enrolled 120 healthy volunteers and divided them into 3 groups according to age: 20 to 35 years (B1 group), 36 to 50 years (B2 group), and 51 to 65 years (B3 group); there were 40 volunteers in each group. We used echocardiography to measure the blood supply fraction in each volunteer and compared the results for each group. Then we enrolled 40 patients (51-65 years) with early atherosclerosis of the ascending aorta, measured the blood supply fraction of each, and compared the results with the B3 group. RESULTS The mean blood supply fractions ± SD in the B1, B2, and B3 groups were 21.75% ± 1.53%, 20.76% ± 1.62%, and 18.44% ± 1.19%, respectively. The fraction in the B3 group was significantly lower than those in the B1 and B2 groups (P < .01). The fraction in the patients with early atherosclerosis was 14.92% ± 1.01%, which was obviously lower than that in the B3 group (P < .01). CONCLUSIONS The blood supply fraction of the ascending aorta decreases with age, and it could be used as a parameter for diagnosis of early atherosclerosis of the ascending aorta.
Collapse
Affiliation(s)
- Kun Wang
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Tiesheng Cao
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China.
| | - Lianbi Zhao
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong Yang
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Feng
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunyou Duan
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Lijun Yuan
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Changyang Xing
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| | - Huari Ren
- Department of Ultrasound Diagnostics, Tang Du Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Temel RE, Brown JM. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion. Trends Pharmacol Sci 2015; 36:440-51. [PMID: 25930707 DOI: 10.1016/j.tips.2015.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 01/02/2023]
Abstract
Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.
Collapse
Affiliation(s)
- Ryan E Temel
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536-0509, USA.
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA.
| |
Collapse
|
18
|
Xie P, Zeng X, Xiao J, Sun B, Yang D. Transgenic CGI-58 expression in macrophages alleviates the atherosclerotic lesion development in ApoE knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1683-90. [PMID: 25178844 DOI: 10.1016/j.bbalip.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
Comparative Gene Identification-58 (CGI-58), as an adipose triglyceride lipase (ATGL) activator, strongly in- creases ATGL-mediated triglyceride (TG) catabolism. Previous studies have shown that CGI-58 affects intestinal cholesterol homeostasis independently of ATGL activity. Therefore, we hypothesized that CGI-58 was involved in macrophage cholesterol metabolism and consequently atherosclerotic lesion formation. Here, we generated macrophage-specific CGI-58 transgenic mice (Mac-CGI-58 Tg) using an SRA promoter, which was further mated with ApoE-/- mice to create litters of CGI-58 Tg/ApoE-/- mice. These CGI-58 Tg/ApoE-/- mice exhibited an anti-atherosclerosis phenotype compared with wild type (WT) controls (CGI-58 WT/ApoE-/-), illustrated by less plaque area in aortic roots. Moreover, macrophage-specific CGI-58 overexpression in mice resulted in upregulated levels of plasma total cholesterol and HDL-cholesterol. Consequently, higher expression levels of PPARa, PPARγ, LXRα, ABCA1, and ABCG1 were detected in macrophages from CGI-58 Tg/ApoE-/- mice compared to CGI-58 WT/ApoE-/- counterparts, which were accompanied by elevated macrophage cholesterol efflux toward HDL and Apo A1. Nevertheless, serum levels of TNF-α and IL-6 were reduced by macrophage-specific CGI-58 overexpression. Finally, bone marrow (BM) transplantation experiments further revealed that ApoE-/- mice reconstituted with Mac-CGI-58 Tg BM cells (ApoE-/-Tg-BM chimera) displayed a significant reduction of atherosclerosis lesions compared with control mice reconstituted with Mac-CGI-58 WT BM cells (ApoE-/-/WT-BM chimera). Collectively, these data strongly suggest that CGI-58 overexpression in macrophages may protect against atherosclerosis development in mice.
Collapse
|
19
|
Favari E, Chroni A, Tietge UJF, Zanotti I, Escolà-Gil JC, Bernini F. Cholesterol efflux and reverse cholesterol transport. Handb Exp Pharmacol 2015; 224:181-206. [PMID: 25522988 DOI: 10.1007/978-3-319-09665-0_4] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Both alterations of lipid/lipoprotein metabolism and inflammatory events contribute to the formation of the atherosclerotic plaque, characterized by the accumulation of abnormal amounts of cholesterol and macrophages in the artery wall. Reverse cholesterol transport (RCT) may counteract the pathogenic events leading to the formation and development of atheroma, by promoting the high-density lipoprotein (HDL)-mediated removal of cholesterol from the artery wall. Recent in vivo studies established the inverse relationship between RCT efficiency and atherosclerotic cardiovascular diseases (CVD), thus suggesting that the promotion of this process may represent a novel strategy to reduce atherosclerotic plaque burden and subsequent cardiovascular events. HDL plays a primary role in all stages of RCT: (1) cholesterol efflux, where these lipoproteins remove excess cholesterol from cells; (2) lipoprotein remodeling, where HDL undergo structural modifications with possible impact on their function; and (3) hepatic lipid uptake, where HDL releases cholesterol to the liver, for the final excretion into bile and feces. Although the inverse association between HDL plasma levels and CVD risk has been postulated for years, recently this concept has been challenged by studies reporting that HDL antiatherogenic functions may be independent of their plasma levels. Therefore, assessment of HDL function, evaluated as the capacity to promote cell cholesterol efflux may offer a better prediction of CVD than HDL levels alone. Consistent with this idea, it has been recently demonstrated that the evaluation of serum cholesterol efflux capacity (CEC) is a predictor of atherosclerosis extent in humans.
Collapse
Affiliation(s)
- Elda Favari
- Department of Pharmacy, University of Parma, Parco Area delle Scienze 27/A, 43124, Parma, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Zhang H, Temel RE, Martel C. Cholesterol and lipoprotein metabolism: Early Career Committee contribution. Arterioscler Thromb Vasc Biol 2014; 34:1791-4. [PMID: 25142876 DOI: 10.1161/atvbaha.114.304267] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hanrui Zhang
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Ryan E Temel
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.)
| | - Catherine Martel
- From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (H.Z.); Department of Pharmacology and Nutritional Sciences, Saha Cardiovascular Research Center, University of Kentucky, Lexington (R.E.T.); and Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada (C.M.)
| |
Collapse
|
21
|
Blanchard C, Moreau F, Cariou B, Le May C. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion]. Med Sci (Paris) 2014; 30:896-901. [PMID: 25311025 DOI: 10.1051/medsci/20143010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.
Collapse
Affiliation(s)
- Claire Blanchard
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| | - François Moreau
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| | - Bertrand Cariou
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| | - Cédric Le May
- IRS-UN, institut du thorax, unité Inserm UMR 1087/CNRS UMR 6291, 8, quai Moncousu, 44007 Nantes Cedex 1, France
| |
Collapse
|
22
|
Altemus JB, Patel SB, Sehayek E. Liver-specific induction of Abcg5 and Abcg8 stimulates reverse cholesterol transport in response to ezetimibe treatment. Metabolism 2014; 63:1334-41. [PMID: 25060694 DOI: 10.1016/j.metabol.2014.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/02/2014] [Accepted: 06/17/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Previous studies have shown ezetimibe treatment results in a 2-6-fold increase in reverse cholesterol transport (RCT). However, recent sterol balance studies question the role of biliary sterol secretion in RCT, and challenge the hypothesis that ezetimibe increases RCT through decreased absorption of biliary cholesterol in the intestine. We set out to determine whether ezetimibe may increase RCT by mechanisms that are independent of its well-established inhibition of intestinal cholesterol absorption. METHODS C57BL/6J, Npc1l1-KO, and/or Abcg8-KO mice were fed a chow diet with or without ezetimibe and fecal [(14)C]-neutral and [(14)C]-acidic sterols were measured to examine macrophage-to-feces RCT. We measured the expression of RCT related genes in the liver and jejunum in these mice. To confirm our significant gene expression findings, we utilized primary human hepatocytes cultured with or without a glucuronated metabolite of ezetimibe. RESULTS Our studies revealed that treatment with ezetimibe was associated with increased expression of hepatic Abcg5 and Abcg8. Ezetimibe did not directly affect expression in the liver, but this expression was due to the inhibition of intestinal cholesterol absorption. This conclusion was supported by the absence of an ABCG5/ABCG8 expression response to treatment with an ezetimibe metabolite in primary human hepatocytes. Finally, we found that the ezetimibe-dependent stimulation of RCT was attenuated in the absence of Abcg8. CONCLUSIONS Our study is the first to demonstrate ezetimibe treatment cooperatively stimulated macrophage-to-feces RCT by indirectly increasing liver Abcg5/Abcg8 expression in addition to its known suppression of intestinal cholesterol absorption.
Collapse
Affiliation(s)
- Jessica B Altemus
- Genomic Medicine Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Shailendra B Patel
- Division of Endocrinology, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Division of Endocrinology, Metabolism and Clinical Nutrition, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ephraim Sehayek
- Genomic Medicine Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
23
|
Uto-Kondo H, Ayaori M, Sotherden GM, Nakaya K, Sasaki M, Yogo M, Komatsu T, Takiguchi S, Yakushiji E, Ogura M, Nishida T, Endo Y, Ikewaki K. Ezetimibe enhances macrophage reverse cholesterol transport in hamsters: contribution of hepato-biliary pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1247-55. [PMID: 24989153 DOI: 10.1016/j.bbalip.2014.05.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 11/15/2022]
Abstract
Reverse cholesterol transport (RCT) is pivotal in the return of excess cholesterol from peripheral tissues to the liver for excretion in bile and eventually feces. RCT from macrophages is a critical anti-atherogenicity mechanism of HDL. As the cholesterol absorption inhibitor ezetimibe promoted RCT in mice, which lack cholesterol ester transfer protein (CETP), we investigated its effects in hamsters, which have CETP. A high-cholesterol diet (HC) increased cholesterol levels throughout lipoprotein fractions and ezetimibe markedly reduced VLDL/LDL cholesterol levels under both normal chow (NC) and HC. However, ezetimibe did not affect and reduced HDL-cholesterol levels under NC and HC, respectively. Intraperitoneal injection of (3)H-cholesterol pre-labeled macrophages in an in vivo RCT assay increased tracer accumulation in the liver but reduced it in bile under HC, and these changes were completely cancelled by ezetimibe. Under both NC and HC, ezetimibe reduced tracer levels in the liver but increased them in feces, indicating promotion of RCT in vivo. We performed a RCT assay using hamsters subjected to bile duct ligation (BDL) to clarify whether a transintestinal cholesterol efflux (TICE) pathway contributes to ezetimibe's enhancement of RCT. BDL markedly inhibited macrophage-derived (3)H-cholesterol excretion to feces and cancelled ezetimibe's stimulatory effect on RCT, suggesting that biliary cholesterol excretion is a major contributor in RCT promotion by ezetimibe but the contribution of the TICE pathway is minimal. In conclusions, ezetimibe exerts an additive anti-atherogenic property by enhancing RCT in hamsters. Our findings suggest that this property is independent of the TICE pathway.
Collapse
Affiliation(s)
- Harumi Uto-Kondo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Ayaori
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan.
| | - Grace Megumi Sotherden
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Kazuhiro Nakaya
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makoto Sasaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Makiko Yogo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Komatsu
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Takiguchi
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Emi Yakushiji
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Masatsune Ogura
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Takafumi Nishida
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Yasuhiro Endo
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Katsunori Ikewaki
- Division of Anti-aging and Vascular Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
24
|
Dikkers A, Annema W, de Boer JF, Iqbal J, Hussain MM, Tietge UJF. Differential impact of hepatic deficiency and total body inhibition of MTP on cholesterol metabolism and RCT in mice. J Lipid Res 2014; 55:816-25. [PMID: 24511105 DOI: 10.1194/jlr.m042986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp(-/-)) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp(-/-) mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp(-/-) mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.
Collapse
Affiliation(s)
- Arne Dikkers
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
25
|
Qin L, Yang YB, Yang YX, Gong YZ, Li XL, Li GY, Luo HD, Xie XJ, Zheng XL, Liao DF. Inhibition of Smooth Muscle Cell Proliferation by Ezetimibe via the Cyclin D1-MAPK Pathway. J Pharmacol Sci 2014; 125:283-91. [DOI: 10.1254/jphs.13239fp] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
26
|
Davidson MH, Voogt J, Luchoomun J, Decaris J, Killion S, Boban D, Glass A, Mohammad H, Lu Y, Villegas D, Neese R, Hellerstein M, Neff D, Musliner T, Tomassini JE, Turner S. Inhibition of intestinal cholesterol absorption with ezetimibe increases components of reverse cholesterol transport in humans. Atherosclerosis 2013; 230:322-9. [DOI: 10.1016/j.atherosclerosis.2013.08.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 01/19/2023]
|