1
|
Wang Y, Lei K, Zhao L, Zhang Y. Clinical glycoproteomics: methods and diseases. MedComm (Beijing) 2024; 5:e760. [PMID: 39372389 PMCID: PMC11450256 DOI: 10.1002/mco2.760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Glycoproteins, representing a significant proportion of posttranslational products, play pivotal roles in various biological processes, such as signal transduction and immune response. Abnormal glycosylation may lead to structural and functional changes of glycoprotein, which is closely related to the occurrence and development of various diseases. Consequently, exploring protein glycosylation can shed light on the mechanisms behind disease manifestation and pave the way for innovative diagnostic and therapeutic strategies. Nonetheless, the study of clinical glycoproteomics is fraught with challenges due to the low abundance and intricate structures of glycosylation. Recent advancements in mass spectrometry-based clinical glycoproteomics have improved our ability to identify abnormal glycoproteins in clinical samples. In this review, we aim to provide a comprehensive overview of the foundational principles and recent advancements in clinical glycoproteomic methodologies and applications. Furthermore, we discussed the typical characteristics, underlying functions, and mechanisms of glycoproteins in various diseases, such as brain diseases, cardiovascular diseases, cancers, kidney diseases, and metabolic diseases. Additionally, we highlighted potential avenues for future development in clinical glycoproteomics. These insights provided in this review will enhance the comprehension of clinical glycoproteomic methods and diseases and promote the elucidation of pathogenesis and the discovery of novel diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yujia Wang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Kaixin Lei
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Lijun Zhao
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| | - Yong Zhang
- Department of General Practice Ward/International Medical Center WardGeneral Practice Medical Center and Institutes for Systems GeneticsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
2
|
Jiang H, Nechipurenko DY, Panteleev MA, Xu K, Qiao J. Redox regulation of platelet function and thrombosis. J Thromb Haemost 2024; 22:1550-1557. [PMID: 38460839 DOI: 10.1016/j.jtha.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/11/2024]
Abstract
Platelets are well-known players in several cardiovascular diseases such as atherosclerosis and venous thrombosis. There is increasing evidence demonstrating that reactive oxygen species (ROS) are generated within activated platelets. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major source of ROS generation in platelets. Ligand binding to platelet receptor glycoprotein (GP) VI stimulates intracellular ROS generation consisting of a spleen tyrosine kinase-independent production involving NOX activation and a following spleen tyrosine kinase-dependent generation. In addition to GPVI, stimulation of platelet thrombin receptors (protease-activated receptors [PARs]) can also trigger NOX-derived ROS production. Our recent study found that mitochondria-derived ROS production can be induced by engagement of thrombin receptors but not by GPVI, indicating that mitochondria are another source of PAR-dependent ROS generation apart from NOX. However, mitochondria are not involved in GPVI-dependent ROS generation. Once generated, the intracellular ROS are also involved in modulating platelet function and thrombus formation; therefore, the site-specific targeting of ROS production or clearance of excess ROS within platelets is a potential intervention and treatment option for thrombotic events. In this review, we will summarize the signaling pathways involving regulation of platelet ROS production and their role in platelet function and thrombosis, with a focus on GPVI- and PAR-dependent platelet responses.
Collapse
Affiliation(s)
- Huimin Jiang
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Dmitry Yu Nechipurenko
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail A Panteleev
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Science, Moscow, Russia; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, China.
| |
Collapse
|
3
|
Jooss NJ, Smith CW, Slater A, Montague SJ, Di Y, O'Shea C, Thomas MR, Henskens YMC, Heemskerk JWM, Watson SP, Poulter NS. Anti-GPVI nanobody blocks collagen- and atherosclerotic plaque-induced GPVI clustering, signaling, and thrombus formation. J Thromb Haemost 2022; 20:2617-2631. [PMID: 35894121 PMCID: PMC9804350 DOI: 10.1111/jth.15836] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND The collagen receptor glycoprotein VI (GPVI) is an attractive antiplatelet target due to its critical role in thrombosis but minor involvement in hemostasis. OBJECTIVE To investigate GPVI receptor involvement in platelet activation by collagen-I and atherosclerotic plaque using novel blocking and non-blocking anti-GPVI nanobodies (Nbs). METHODS Nb effects on GPVI-mediated signaling and function were assessed by western blot and whole blood thrombus formation under flow. GPVI clustering was visualized in thrombi using fluorescently labeled Nb28. RESULTS Under arterial shear, inhibitory Nb2 blocks thrombus formation and platelet activation on collagen and plaque, but only reduces adhesion on plaque. In contrast, adhesion on collagen, but not plaque, is decreased by blocking integrin α2β1. Adhesion on plaque is maintained despite inhibition of integrins αvβ3, α5β1, α6β1, and αIIbβ3. Only combined αIIbβ3 and α2β1 blockade inhibits adhesion and thrombus formation to the same extent as Nb2 alone. Nb2 prevents GPVI signaling, with loss of Syk, Lat, and PLCɣ2 phosphorylation, especially to plaque stimulation. Non-blocking fluorescently labeled Nb28 reveals distinct GPVI distribution patterns on collagen and plaque, with GPVI clustering clearly apparent on collagen fibers and less frequent on plaque. Clustering on collagen fibers is lost in the presence of Nb2. CONCLUSIONS This work emphasizes the critical difference in GPVI-mediated platelet activation by plaque and collagen; it highlights the importance of GPVI clustering for downstream signaling and thrombus formation. Labeled Nb28 is a novel tool for providing mechanistic insight into this process and the data suggest Nb2 warrants further investigation as a potential anti-thrombotic agent.
Collapse
Affiliation(s)
- Natalie J. Jooss
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
| | - Christopher W. Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Samantha J. Montague
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Ying Di
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Mark R. Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Department of CardiologyUniversity Hospitals BirminghamBirminghamUK
| | - Yvonne M. C. Henskens
- Central Diagnostic LaboratoryMaastricht University Medical CentreMaastrichtthe Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM)Maastricht UniversityMaastrichtthe Netherlands
- Synapse Research Institute MaastrichtMaastrichtthe Netherlands
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsUK
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamMidlandsUK
| |
Collapse
|
4
|
Modulation of Glycoprotein VI and Its Downstream Signaling Pathways as an Antiplatelet Target. Int J Mol Sci 2022; 23:ijms23179882. [PMID: 36077280 PMCID: PMC9456422 DOI: 10.3390/ijms23179882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Antiplatelet therapy aims to reduce the risk of thrombotic events while maintaining hemostasis. A promising current approach is the inhibition of platelet glycoprotein GPVI-mediated adhesion pathways; pathways that do not involve coagulation. GPVI is a signaling receptor integral for collagen-induced platelet activation and participates in the thrombus consolidation process, being a suitable target for thrombosis prevention. Considering this, the blocking or antibody-mediated depletion of GPVI is a promising antiplatelet therapy for the effective and safe treatment of thrombotic diseases without a significant risk of bleeding and impaired hemostatic plug formation. This review describes the current knowledge concerning pharmaceutical approaches to platelet GPVI modulation and its downstream signaling pathways in this context.
Collapse
|
5
|
Sun S, Qiao B, Han Y, Wang B, Wei S, Chen Y. Posttranslational modifications of platelet adhesion receptors. Pharmacol Res 2022; 183:106413. [PMID: 36007773 DOI: 10.1016/j.phrs.2022.106413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
Platelets play a key role in normal hemostasis, whereas pathological platelet adhesion is involved in various cardiovascular events. The underlying cause in cardiovascular events involves plaque rupture leading to subsequent platelet adhesion, activation, release, and eventual thrombosis. Traditional antithrombotic drugs often target the signal transduction process of platelet adhesion receptors by influencing the synthesis of some key molecules, and their effects are limited. Posttranslational modifications (PTMs) of platelet adhesion receptors increase the functional diversity of the receptors and affect platelet physiological and pathological processes. Antithrombotic drugs targeting PTMs of platelet adhesion receptors may represent a new therapeutic idea. In this review, various PTMs, including phosphorylation, glycosylation, ubiquitination, nitrosylation, methylation, lipidation, and proteolysis, of three platelet adhesion receptors, glycoprotein Ib-IX-V (GPIb-IX-V), glycoprotein VI (GPVI), and integrin αIIbβ3, are reviewed. It is important to comprehensively understand the PTMs process of platelet adhesion receptors.
Collapse
Affiliation(s)
- Shukun Sun
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bao Qiao
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yu Han
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Bailu Wang
- Clinical Trial Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shujian Wei
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Yuguo Chen
- Department of Emergency and Chest Pain Center, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
6
|
Jiang W, Glaeser JD, Salehi K, Kaneda G, Mathkar P, Wagner A, Ho R, Sheyn D. Single-cell atlas unveils cellular heterogeneity and novel markers in human neonatal and adult intervertebral discs. iScience 2022; 25:104504. [PMID: 35754733 PMCID: PMC9213722 DOI: 10.1016/j.isci.2022.104504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/03/2022] [Accepted: 05/26/2022] [Indexed: 11/19/2022] Open
Abstract
The origin, composition, distribution, and function of cells in the human intervertebral disc (IVD) have not been fully understood. Here, cell atlases of both human neonatal and adult IVDs have been generated and further assessed by gene ontology pathway enrichment, pseudo-time trajectory, histology, and immunofluorescence. Comparison of cell atlases revealed the presence of two subpopulations of notochordal cells (NCs) and their associated markers in both the neonatal and adult IVDs. Developmental trajectories predicted 7 different cell states that describe the developmental process from neonatal to adult cells in IVD and analyzed the NC’s role in the IVD development. A high heterogeneity and gradual transition of annulus fibrosus cells (AFCs) in the neonatal IVD was detected and their potential relevance in IVD development assessed. Collectively, comparing single-cell atlases between neonatal and adult IVDs delineates the landscape of IVD cell biology and may help discover novel therapeutic targets for IVD degeneration. Compared scRNA-seq between human neonatal and adult IVD Identified two notochordal cell populations in adults and their novel markers Notochordal cells preserved their identity and functions into adulthood Unveiled heterogeneity of nucleus pulposus and annulus fibrosus cells in human IVD
Collapse
Affiliation(s)
- Wensen Jiang
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Juliane D. Glaeser
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Khosrowdad Salehi
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Giselle Kaneda
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pranav Mathkar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anton Wagner
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for Neural Sciences and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dmitriy Sheyn
- Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Corresponding author
| |
Collapse
|
7
|
Itoi S, Takahashi N, Saito H, Miyata Y, Su MT, Kezuka D, Itagaki F, Endo S, Fujii H, Harigae H, Sakamoto Y, Takai T. Myeloid immune checkpoint ILT3/LILRB4/gp49B can co-tether fibronectin with integrin on macrophages. Int Immunol 2022; 34:435-444. [PMID: 35689642 DOI: 10.1093/intimm/dxac023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/08/2022] [Indexed: 12/16/2022] Open
Abstract
LILRB4 (B4, also known as ILT3/CD85k) is an immune checkpoint of myeloid-lineage cells, albeit its mode of function remains obscure. Our recent identification of a common ligand for both human B4 and its murine ortholog gp49B as the fibronectin (FN) N-terminal 30-kDa domain poses the question of how B4/gp49B regulate cellular activity upon recognition of FN in the plasma and/or the extracellular matrix. Since FN in the extracellular matrix is tethered by FN-binding integrins, we hypothesized that B4/gp49B would tether FN in cooperation with integrins on the cell surface, thus they should be in close vicinity to integrins spatially. This scenario suggests a mode of function of B4/gp49B by which the FN-induced signal is regulated. FN pull-down complex was found to contain gp49B and integrin β1 in bone marrow-derived macrophages. The confocal fluorescent signals of the three molecules on the intrinsically FN-tethering macrophages were correlated to each other. When FN-poor macrophages adhered to culture plate, the gp49-integrin β1 signal correlation increased at the focal adhesion, supporting the notion that gp49B and integrin β1 become spatially closer to each other there. While adherence of RAW264.7 and THP-1 cells to immobilized FN induced phosphorylation of spleen tyrosine kinase, whose level was augmented under B4/gp49B deficiency. Thus, we concluded that B4/gp49B can co-tether fibronectin in cooperation with integrin in the cis configuration on the same cell, forming a B4/gp49B-FN-integrin triplet as a regulatory unit of focal adhesion-dependent proinflammatory signal in macrophages.
Collapse
Affiliation(s)
- So Itoi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naoyuki Takahashi
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Haruka Saito
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Yusuke Miyata
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Mei-Tzu Su
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Dai Kezuka
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Fumika Itagaki
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shota Endo
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Hiroshi Fujii
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hideo Harigae
- Department of Hematology and Rheumatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yuzuru Sakamoto
- Department of Human Science, Faculty of Liberal Arts, Tohoku Gakuin University, Sendai 981-3193, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
8
|
Stegner D, Göb V, Krenzlin V, Beck S, Hemmen K, Schuhmann MK, Schörg BF, Hackenbroch C, May F, Burkard P, Pinnecker J, Zernecke A, Rosenberger P, Greinacher A, Pichler BJ, Heinze KG, Stoll G, Nieswandt B. Foudroyant cerebral venous (sinus) thrombosis triggered through CLEC-2 and GPIIb/IIIa dependent platelet activation. NATURE CARDIOVASCULAR RESEARCH 2022; 1:132-141. [PMID: 39195988 PMCID: PMC11358028 DOI: 10.1038/s44161-021-00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/22/2021] [Indexed: 08/29/2024]
Abstract
Cerebral venous (sinus) thrombosis (CVT) is an unusual manifestation of venous thrombosis causing severe neurological impairment and seizures1,2. Molecular mechanisms underlying CVT, potentially involving pathological platelet activation, are unknown. Here we show that antibody-(INU1-fab)-induced cooperative signaling of two platelet receptors, C-type lectin-like receptor-2 (CLEC-2) and GPIIb/IIIa, triggers within minutes a CVT-like thrombotic syndrome in mice, characterized by tonic-myoclonic seizures, platelet consumption and death. Brain autopsy showed thrombi mainly in the cortical venules, but no intracranial hemorrhages or edema formation. Transcranial intravital microscopy revealed rapidly progressing thrombosis in the superior sagittal sinus, a main site of CVT in humans. Interfering with CLEC-2 signaling or inhibition of GPIIb/IIIa completely blocked platelet activation and CVT. Blocking GPIIb/IIIa after onset of neurological symptoms protected mice from platelet consumption, CVT and death, which was not seen after treatment with heparin. These results point to aberrant platelet activation as a major trigger of CVT and potential target for treatment.
Collapse
Affiliation(s)
- David Stegner
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Vanessa Göb
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Viola Krenzlin
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sarah Beck
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | | | - Barbara F Schörg
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christian Hackenbroch
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Frauke May
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- CSL Behring Innovation GmbH, Marburg, Germany
| | - Philipp Burkard
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Jürgen Pinnecker
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Tübingen, Germany
| | - Andreas Greinacher
- Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) 'Image-Guided and Functionally Instructed Tumor Therapies', Eberhard Karls University Tübingen, Tübingen, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany.
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
9
|
Mehta AR, Kefela A, Toste C, Sweet D. Real-World Use of Fostamatinib in Patients with Immune Thrombocytopenia and Thrombotic Risk. Acta Haematol 2021; 145:221-228. [PMID: 34913873 DOI: 10.1159/000520438] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Patients with immune thrombocytopenia (ITP) are at increased risk for bleeding and are paradoxically at increased risk for thrombosis. Many patients with ITP have underlying cardiovascular (CV) disease and/or other thrombotic risk factors for which considerable attention to selecting a therapeutic agent to manage ITP is needed. Fostamatinib, a spleen tyrosine kinase inhibitor, may reduce the risk of thrombosis while not interfering with hemostasis. We present a case series of 5 patients with ITP who had significant CV histories; each had at least 2 thrombotic risk factors. After unsuccessful management of ITP with other treatments, fostamatinib was initiated, was observed to be tolerable, and provided a durable platelet response without associated thromboembolic events. Fostamatinib may be the treatment of choice for patients with ITP in whom use of prothrombotic treatments should be avoided and/or continued use of antiplatelet or anticoagulant medication is needed.
Collapse
Affiliation(s)
- Amit R Mehta
- Premier Hematology and Tele-Oncology Center, PLLC, Cary, North Carolina, USA
- Duke Regional Hospital, Durham, North Carolina, USA
| | - Aron Kefela
- Northwest Georgia Oncology Centers, Athens, Georgia, USA
| | | | - Donald Sweet
- AMITA Health Medical Group, Chicago, Illinois, USA
- Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Jadoui S, Le Chapelain O, Ollivier V, Mostefa-Kara A, Di Meglio L, Dupont S, Gros A, Nomenjanahary MS, Desilles JP, Mazighi M, Nieswandt B, Loyau S, Jandrot-Perrus M, Mangin PH, Ho-Tin-Noé B. Glenzocimab does not impact glycoprotein VI-dependent inflammatory haemostasis. Haematologica 2021; 106:2000-2003. [PMID: 33375772 PMCID: PMC8252939 DOI: 10.3324/haematol.2020.270439] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Angèle Gros
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris
| | | | - Jean-Philippe Desilles
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France; Rothschild Foundation Hospital, Paris, France. Department of Interventional Neuroradiology
| | - Mikaël Mazighi
- Université de Paris, LVTS, Inserm U1148, F-75018 Paris, France; Rothschild Foundation Hospital, Paris, France. Department of Interventional Neuroradiology
| | - Bernhard Nieswandt
- University Hospital Würzburg, Rudolf Virchow Center for Experimental Biomedicine, Würzburg
| | | | | | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, F-67065 Strasbourg, France
| | | |
Collapse
|
11
|
Cooper N, Altomare I, Thomas MR, Nicolson PLR, Watson SP, Markovtsov V, Todd LK, Masuda E, Bussel JB. Assessment of thrombotic risk during long-term treatment of immune thrombocytopenia with fostamatinib. Ther Adv Hematol 2021; 12:20406207211010875. [PMID: 33995988 PMCID: PMC8111531 DOI: 10.1177/20406207211010875] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Patients with immune thrombocytopenia (ITP) are at risk of bleeding and, paradoxically, thromboembolic events (TEEs), irrespective of thrombocytopenia. The risk of thrombosis is increased by advanced age, obesity, and prothrombotic comorbidities: cancer, hyperlipidemia, diabetes, hypertension, coronary artery disease, and chronic kidney disease, among others. Certain ITP treatments further increase the risk of TEE, especially splenectomy and thrombopoietin receptor agonists. Spleen tyrosine kinase (SYK) is a key signaling molecule common to thromboembolic and hemostatic (in addition to inflammatory) pathways. Fostamatinib is an orally administered SYK inhibitor approved in the USA and Europe for treatment of chronic ITP in adults. Methods: The phase III and extension studies included heavily pretreated patients with long-standing ITP, many of whom had risk factors for thrombosis prior to initiating fostamatinib. This report describes long-term safety and efficacy of fostamatinib in 146 patients with up to 5 years of treatment, a total of 229 patient-years, and assesses the incidence of thromboembolic events (by standardized MedDRA query). Results: Platelet counts ⩾50,000/µL were achieved in 54% of patients and the safety profile was as described in the phase III clinical studies with no new toxicities observed over the 5 years of follow-up. The only TEE occurred in one patient (0.7%, or 0.44/100 patient-years), who experienced a mild transient ischemic attack. This is a much lower rate than might be expected in ITP patients. Conclusion: This report demonstrates durable efficacy and a very low incidence of TEE in patients receiving long-term treatment of ITP with the SYK inhibitor fostamatinib. ClinicalTrials.gov identifiers: NCT02076399, NCT02076412, and NCT02077192.
Collapse
Affiliation(s)
- Nichola Cooper
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, UK
| | - Ivy Altomare
- Duke University School of Medicine, Durham, NC, USA
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vadim Markovtsov
- Department of Research and Discovery, Rigel Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Leslie K Todd
- Department of Research and Discovery, Rigel Pharmaceuticals Inc., South San Francisco, CA, USA
| | - Esteban Masuda
- Department of Research and Discovery, Rigel Pharmaceuticals Inc., South San Francisco, CA, USA
| | - James B Bussel
- Department of Pediatrics, Division of Hematology, Weill Medical College of Cornell University, 115 East 67th Street, New York, NY 10065, USA
| |
Collapse
|
12
|
Haemmig S, Gheinani AH, Zaromytidou M, Siasos G, Coskun AU, Cormier MA, Gross DA, Wara AKMK, Antoniadis A, Sun X, Sukhova GK, Welt F, Andreou I, Whatling C, Gan LM, Wikström J, Edelman ER, Libby P, Stone PH, Feinberg MW. Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans. Arterioscler Thromb Vasc Biol 2021; 41:1487-1503. [PMID: 33567868 PMCID: PMC7990701 DOI: 10.1161/atvbaha.121.315896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Stefan Haemmig
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ali Hashemi Gheinani
- Department of Surgery, Urological Diseases Research Center, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Marina Zaromytidou
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Gerasimos Siasos
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ahmet Umit Coskun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michelle A. Cormier
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - David A. Gross
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - AKM Khyrul Wara
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Antonios Antoniadis
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinghui Sun
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina K. Sukhova
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Fred Welt
- University of Utah Health Sciences Center, Salt Lake City, Utah, USA
| | - Ioannis Andreou
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Carl Whatling
- Bioscience Cardiovascular/Early Clinical Development/Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Li-Ming Gan
- Bioscience Cardiovascular/Early Clinical Development/Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Johannes Wikström
- Bioscience Cardiovascular/Early Clinical Development/Translational Science and Experimental Medicine, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Elazer R. Edelman
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Libby
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter H. Stone
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark W. Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Shumaker S, Khatri B, Shouse S, Seo D, Kang S, Kuenzel W, Kong B. Identification of SNPs Associated with Stress Response Traits within High Stress and Low Stress Lines of Japanese Quail. Genes (Basel) 2021; 12:genes12030405. [PMID: 33809122 PMCID: PMC8000459 DOI: 10.3390/genes12030405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023] Open
Abstract
Mitigation of stress is of great importance in poultry production, as chronic stress can affect the efficiency of production traits. Selective breeding with a focus on stress responses can be used to combat the effects of stress. To better understand the genetic mechanisms driving differences in stress responses of a selectively bred population of Japanese quail, we performed genomic resequencing on 24 birds from High Stress (HS) and Low Stress (LS) lines of Japanese quail using Illumina HiSeq 2 × 150 bp paired end read technology in order to analyze Single Nucleotide Polymorphisms (SNPs) within the genome of each line. SNPs are common mutations that can lead to genotypic and phenotypic variations in animals. Following alignment of the sequencing data to the quail genome, 6,364,907 SNPs were found across both lines of quail. 10,364 of these SNPs occurred in coding regions, from which 2886 unique, non-synonymous SNPs with a SNP% ≥ 0.90 and a read depth ≥ 10 were identified. Using Ingenuity Pathway Analysis, we identified genes affected by SNPs in pathways tied to immune responses, DNA repair, and neurological signaling. Our findings support the idea that the SNPs found within HS and LS lines of quail could direct the observed changes in phenotype.
Collapse
Affiliation(s)
- Steven Shumaker
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Bhuwan Khatri
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA;
| | - Stephanie Shouse
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Dongwon Seo
- Department of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea;
| | - Seong Kang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Wayne Kuenzel
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
| | - Byungwhi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA; (S.S.); (S.S.); (S.K.); (W.K.)
- Correspondence:
| |
Collapse
|
14
|
Vara D, Mailer RK, Tarafdar A, Wolska N, Heestermans M, Konrath S, Spaeth M, Renné T, Schröder K, Pula G. NADPH Oxidases Are Required for Full Platelet Activation In Vitro and Thrombosis In Vivo but Dispensable for Plasma Coagulation and Hemostasis. Arterioscler Thromb Vasc Biol 2021; 41:683-697. [PMID: 33267663 PMCID: PMC7837688 DOI: 10.1161/atvbaha.120.315565] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1-/-/NOX2-/-/NOX4-/-), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP-a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride-driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. CONCLUSIONS This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.
Collapse
Affiliation(s)
- Dina Vara
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, United Kingdom (D.V.)
| | - Reiner K. Mailer
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Anuradha Tarafdar
- Cancer Research UK Manchester Institute, University of Manchester (A.T.)
| | - Nina Wolska
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Marco Heestermans
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Manuela Spaeth
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| | - Katrin Schröder
- Institute of Cardiovascular Physiology, Goethe-University, Frankfurt, Germany (M.S., K.S.)
| | - Giordano Pula
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (R.K.M., N.W., M.H., S.K., T.R., G.P.)
| |
Collapse
|
15
|
Fernández DI, Kuijpers MJE, Heemskerk JWM. Platelet calcium signaling by G-protein coupled and ITAM-linked receptors regulating anoctamin-6 and procoagulant activity. Platelets 2020; 32:863-871. [PMID: 33356720 DOI: 10.1080/09537104.2020.1859103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Most agonists stimulate platelet Ca2+ rises via G-protein coupled receptors (GPCRs) or ITAM-linked receptors (ILRs). Well studied are the GPCRs stimulated by the soluble agonists thrombin (PAR1, PAR4), ADP (P2Y1, P2Y12), and thromboxane A2 (TP), signaling via phospholipase (PLC)β isoforms. The platelet ILRs glycoprotein VI (GPVI), C-type lectin-like receptor 2 (CLEC2), and FcγRIIa are stimulated by adhesive ligands or antibody complexes and signal via tyrosine protein kinases and PLCγ isoforms. Marked differences exist between the GPCR- and ILR-induced Ca2+ signaling in: (i) dependency of tyrosine phosphorylation; (ii) oscillatory versus continued Ca2+ rises by mobilization from the endoplasmic reticulum; and (iii) smaller or larger role of extracellular Ca2+ entry via STIM1/ORAI1. Co-stimulation of both types of receptors, especially by thrombin (PAR1/4) and collagen (GPVI), leads to a highly enforced Ca2+ rise, involving mitochondrial Ca2+ release, which activates the ion and phospholipid channel, anoctamin-6. This highly Ca2+-dependent process causes swelling, ballooning, and phosphatidylserine expression, establishing a unique platelet population swinging between vital and necrotic (procoagulant 'zombie' platelets). Additionally, the high Ca2+ status of procoagulant platelets induces a set of additional events: (i) Ca2+ dependent cleavage of signaling proteins and receptors via calpain and ADAM isoforms; (ii) microvesiculation; (iii) enhanced coagulation factor binding; and (iv) fibrin-coat formation involving transglutaminases. Given the additive roles of GPCR and ILR in Ca2+ signal generation, high-throughput screening of biomolecules or small molecules based on Ca2+ flux measurements provides a promising way to find new inhibitors interfering with prolonged high Ca2+, phosphatidylserine expression, and hence platelet procoagulant activity.
Collapse
Affiliation(s)
- Delia I Fernández
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Harbi MH, Smith CW, Nicolson PLR, Watson SP, Thomas MR. Novel antiplatelet strategies targeting GPVI, CLEC-2 and tyrosine kinases. Platelets 2020; 32:29-41. [PMID: 33307909 DOI: 10.1080/09537104.2020.1849600] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antiplatelet medications comprise the cornerstone of treatment for diseases that involve arterial thrombosis, including acute coronary syndromes (ACS), stroke and peripheral arterial disease. However, antiplatelet medications may cause bleeding and, furthermore, thrombotic events may still recur despite treatment. The interaction of collagen with GPVI receptors on the surface of platelets has been identified as one of the major players in the pathophysiology of arterial thrombosis that occurs following atherosclerotic plaque rupture. Promisingly, GPVI deficiency in humans appears to have a minimal impact on bleeding. These findings together suggest that targeting platelet GPVI may provide a novel treatment strategy that provides additional antithrombotic efficacy with minimal disruption of normal hemostasis compared to conventional antiplatelet medications. CLEC-2 is gaining interest as a therapeutic target for a variety of thrombo-inflammatory disorders including deep vein thrombosis (DVT) with treatment also predicted to cause minimal disruption to hemostasis. GPVI and CLEC-2 signal through Src, Syk and Tec family tyrosine kinases, providing additional strategies for inhibiting both receptors. In this review, we summarize the evidence regarding GPVI and CLEC-2 and strategies for inhibiting these receptors to inhibit platelet recruitment and activation in thrombotic diseases.
Collapse
Affiliation(s)
- Maan H Harbi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust , Birmingham, UK.,Sandwell and West Birmingham NHS Trust , Birmingham, UK
| |
Collapse
|
17
|
ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int J Mol Sci 2020; 21:ijms21144866. [PMID: 32660144 PMCID: PMC7402354 DOI: 10.3390/ijms21144866] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022] Open
Abstract
Reactive oxygen species (ROS) and mitochondria play a pivotal role in regulating platelet functions. Platelet activation determines a drastic change in redox balance and in platelet metabolism. Indeed, several signaling pathways have been demonstrated to induce ROS production by NAPDH oxidase (NOX) and mitochondria, upon platelet activation. Platelet-derived ROS, in turn, boost further ROS production and consequent platelet activation, adhesion and recruitment in an auto-amplifying loop. This vicious circle results in a platelet procoagulant phenotype and apoptosis, both accounting for the high thrombotic risk in oxidative stress-related diseases. This review sought to elucidate molecular mechanisms underlying ROS production upon platelet activation and the effects of an altered redox balance on platelet function, focusing on the main advances that have been made in platelet redox biology. Furthermore, given the increasing interest in this field, we also describe the up-to-date methods for detecting platelets, ROS and the platelet bioenergetic profile, which have been proposed as potential disease biomarkers.
Collapse
|
18
|
Durrant TN, Hers I. PI3K inhibitors in thrombosis and cardiovascular disease. Clin Transl Med 2020; 9:8. [PMID: 32002690 PMCID: PMC6992830 DOI: 10.1186/s40169-020-0261-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases that regulate important intracellular signalling and vesicle trafficking events via the generation of 3-phosphoinositides. Comprising eight core isoforms across three classes, the PI3K family displays broad expression and function throughout mammalian tissues, and the (patho)physiological roles of these enzymes in the cardiovascular system present the PI3Ks as potential therapeutic targets in settings such as thrombosis, atherosclerosis and heart failure. This review will discuss the PI3K enzymes and their roles in cardiovascular physiology and disease, with a particular focus on platelet function and thrombosis. The current progress and future potential of targeting the PI3K enzymes for therapeutic benefit in cardiovascular disease will be considered, while the challenges of developing drugs against these master cellular regulators will be discussed.
Collapse
Affiliation(s)
- Tom N Durrant
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Ingeborg Hers
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
19
|
Tscharre M, Michelson AD, Gremmel T. Novel Antiplatelet Agents in Cardiovascular Disease. J Cardiovasc Pharmacol Ther 2020; 25:191-200. [DOI: 10.1177/1074248419899314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Antiplatelet therapy reduces atherothrombotic risk and has therefore become a cornerstone in the treatment of cardiovascular disease. Aspirin, adenosine diphosphate P2Y12 receptor antagonists, glycoprotein IIb/IIIa inhibitors, and the thrombin receptor blocker vorapaxar are effective antiplatelet agents but significantly increase the risk of bleeding. Moreover, atherothrombotic events still impair the prognosis of many patients with cardiovascular disease despite established antiplatelet therapy. Over the last years, advances in the understanding of thrombus formation and hemostasis led to the discovery of various new receptors and signaling pathways of platelet activation. As a consequence, many new antiplatelet agents with high antithrombotic efficacy and supposedly only moderate effects on regular hemostasis have been developed and yielded promising results in preclinical and early clinical studies. Although their long journey from animal studies to randomized clinical trials and finally administration in daily clinical routine has just begun, some of the new agents may in the future become meaningful additions to the pharmacological armamentarium in cardiovascular disease.
Collapse
Affiliation(s)
- Maximilian Tscharre
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Thomas Gremmel
- Department of Internal Medicine, Cardiology and Nephrology, Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria
- Institute of Vascular Medicine and Cardiac Electrophysiology, Karl Landsteiner Society, St Poelten, Austria
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Vögtle T, Baig AA, Volz J, Duchow TB, Pleines I, Dütting S, Nitschke L, Watson SP, Nieswandt B. Critical redundant functions of the adapters Grb2 and Gads in platelet (hem)ITAM signaling in mice. Platelets 2020; 31:801-811. [DOI: 10.1080/09537104.2019.1709633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ayesha A. Baig
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Julia Volz
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Timothy B. Duchow
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Irina Pleines
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Sebastian Dütting
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Lars Nitschke
- Department of Biology, Division of Genetics, University of Erlangen, Erlangen, Germany
| | - Stephen P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, UK
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Feedback Regulation of Syk by Protein Kinase C in Human Platelets. Int J Mol Sci 2019; 21:ijms21010176. [PMID: 31881809 PMCID: PMC6981976 DOI: 10.3390/ijms21010176] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 02/08/2023] Open
Abstract
The spleen tyrosine kinase (Syk) is essential for immunoreceptor tyrosine-based activation motif (ITAM)-dependent platelet activation, and it is stimulated by Src-family kinase (SFK)-/Syk-mediated phosphorylation of Y352 (interdomain-B) and Y525/526 (kinase domain). Additional sites for Syk phosphorylation and protein interactions are known but remain elusive. Since Syk S297 phosphorylation (interdomain-B) was detected in platelets, we hypothesized that this phosphorylation site regulates Syk activity via protein kinase C (PKC)-and cyclic adenosine monophosphate (cAMP)-dependent pathways. ADP, the GPVI-agonist convulxin, and the GPIbα-agonist echicetin beads (EB) were used to stimulate human platelets with/without effectors. Platelet aggregation and intracellular messengers were analyzed, along with phosphoproteins, by immunoblotting using phosphosite-specific antibodies or phos-tags. ADP, convulxin, and EB upregulated Syk S297 phosphorylation, which was inhibited by iloprost (cAMP pathway). Convulxin-stimulated Syk S297 phosphorylation was stoichiometric, transient, abolished by the PKC inhibitor GF109203X, and mimicked by the PKC activator PDBu. Convulxin/EB stimulated Syk S297, Y352, and Y525/526 phosphorylation, which was inhibited by SFK and Syk inhibitors. GFX and iloprost inhibited convulxin/EB-induced Syk S297 phosphorylation but enhanced Syk tyrosine (Y352/Y525/526) and substrate (linker adaptor for T cells (LAT), phospholipase γ2 (PLC γ2)) phosphorylation. GFX enhanced convulxin/EB-increases of inositol monophosphate/Ca2+. ITAM-activated Syk stimulates PKC-dependent Syk S297 phosphorylation, which is reduced by SFK/Syk/PKC inhibition and cAMP. Inhibition of Syk S297 phosphorylation coincides with enhanced Syk activation, suggesting that S297 phosphorylation represents a mechanism for feedback inhibition in human platelets.
Collapse
|
22
|
Makhoul S, Trabold K, Gambaryan S, Tenzer S, Pillitteri D, Walter U, Jurk K. cAMP- and cGMP-elevating agents inhibit GPIbα-mediated aggregation but not GPIbα-stimulated Syk activation in human platelets. Cell Commun Signal 2019; 17:122. [PMID: 31519182 PMCID: PMC6743169 DOI: 10.1186/s12964-019-0428-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/29/2019] [Indexed: 12/29/2022] Open
Abstract
Background The glycoprotein (GP) Ib-IX-V complex is a unique platelet plasma membrane receptor, which is essential for platelet adhesion and thrombus formation. GPIbα, part of the GPIb-IX-V complex, has several physiological ligands such as von Willebrand factor (vWF), thrombospondin and distinct coagulation factors, which trigger platelet activation. Despite having an important role, intracellular GPIb-IX-V signaling and its regulation by other pathways are not well defined. Our aim was to establish the intracellular signaling response of selective GPIbα activation in human platelets, in particular the role of the tyrosine kinase Syk and its regulation by cAMP/PKA and cGMP/PKG pathways, respectively. We addressed this using echicetin beads (EB), which selectively bind to GPIbα and induce platelet aggregation. Methods Purified echicetin from snake Echis carinatus venom was validated by mass spectrometry. Washed human platelets were incubated with EB, in the presence or absence of echicetin monomers (EM), Src family kinase (SFK) inhibitors, Syk inhibitors and the cAMP- and cGMP-elevating agents iloprost and riociguat, respectively. Platelet aggregation was analyzed by light transmission aggregometry, protein phosphorylation by immunoblotting. Intracellular messengers inositolmonophosphate (InsP1) and Ca2+i were measured by ELISA and Fluo-3 AM/FACS, respectively. Results EB-induced platelet aggregation was dependent on integrin αIIbβ3 and secondary mediators ADP and TxA2, and was antagonized by EM. EB stimulated Syk tyrosine phosphorylation at Y352, which was SFK-dependent and Syk-independent, whereas Y525/526 phosphorylation was SFK-dependent and partially Syk-dependent. Furthermore, phosphorylation of both Syk Y352 and Y525/526 was completely integrin αIIbβ3-independent but, in the case of Y525/526, was partially ADP/TxA2-dependent. Syk activation, observed as Y352/ Y525/Y526 phosphorylation, led to the phosphorylation of direct substrates (LAT Y191, PLCγ2 Y759) and additional targets (Akt S473). PKA/PKG pathways inhibited EB-induced platelet aggregation and Akt phosphorylation but, surprisingly, enhanced Syk and LAT/PLCγ2 tyrosine phosphorylation. A similar PKA/PKG effect was confirmed with convulxin−/GPVI-stimulated platelets. EB-induced InsP1 accumulation/InsP3 production and Ca2+-release were Syk-dependent, but only partially inhibited by PKA/PKG pathways. Conclusion EB and EM are specific agonists and antagonists, respectively, of GPIbα-mediated Syk activation leading to platelet aggregation. The cAMP/PKA and cGMP/PKG pathways do not inhibit but enhance GPIbα−/GPVI-initiated, SFK-dependent Syk activation, but strongly inhibit further downstream responses including aggregation. These data establish an important intracellular regulatory network induced by GPIbα. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0428-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stephanie Makhoul
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Katharina Trabold
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.,Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Stefan Tenzer
- Core Facility for Mass Spectrometry, Institute for Immunology, University Medical Center Mainz, Mainz, Germany
| | | | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
23
|
Targeting Platelet GPVI Plus rt-PA Administration but Not α2β1-Mediated Collagen Binding Protects against Ischemic Brain Damage in Mice. Int J Mol Sci 2019; 20:ijms20082019. [PMID: 31022936 PMCID: PMC6515069 DOI: 10.3390/ijms20082019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 11/16/2022] Open
Abstract
Platelet collagen interactions at sites of vascular injuries predominantly involve glycoprotein VI (GPVI) and the integrin α2β1. Both proteins are primarily expressed on platelets and megakaryocytes whereas GPVI expression is also shown on endothelial and integrin α2β1 expression on epithelial cells. We recently showed that depletion of GPVI improves stroke outcome without increasing the risk of cerebral hemorrhage. Genetic variants associated with higher platelet surface integrin α2 (ITGA2) receptor levels have frequently been found to correlate with an increased risk of ischemic stroke in patients. However until now, no preclinical stroke study has addressed whether platelet integrin α2β1 contributes to the pathophysiology of ischemia/reperfusion (I/R) injury. Focal cerebral ischemia was induced in C57BL/6 and Itga2-/- mice by a 60 min transient middle cerebral artery occlusion (tMCAO). Additionally, wild-type animals were pretreated with anti-GPVI antibody (JAQ1) or Fab fragments of a function blocking antibody against integrin α2β1 (LEN/B). In anti-GPVI treated animals, intravenous (IV) recombinant tissue plasminogen activator (rt-PA) treatment was applied immediately prior to reperfusion. Stroke outcome, including infarct size and neurological scoring was determined on day 1 after tMCAO. We demonstrate that targeting the integrin α2β1 (pharmacologic; genetic) did neither reduce stroke size nor improve functional outcome on day 1 after tMCAO. In contrast, depletion of platelet GPVI prior to stroke was safe and effective, even when combined with rt-PA treatment. Our results underscore that GPVI, but not ITGA2, is a promising and safe target in the setting of ischemic stroke.
Collapse
|
24
|
Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11:125. [PMID: 30305116 PMCID: PMC6180572 DOI: 10.1186/s13045-018-0669-2] [Citation(s) in RCA: 415] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
The interaction of tumor cells with platelets is a prerequisite for successful hematogenous metastatic dissemination. Upon tumor cell arrival in the blood, tumor cells immediately activate platelets to form a permissive microenvironment. Platelets protect tumor cells from shear forces and assault of NK cells, recruit myeloid cells by secretion of chemokines, and mediate an arrest of the tumor cell platelet embolus at the vascular wall. Subsequently, platelet-derived growth factors confer a mesenchymal-like phenotype to tumor cells and open the capillary endothelium to expedite extravasation in distant organs. Finally, platelet-secreted growth factors stimulate tumor cell proliferation to micrometastatic foci. This review provides a synopsis on the current literature on platelet-mediated effects in cancer metastasis and particularly focuses on platelet adhesion receptors and their role in metastasis. Immunoreceptor tyrosine-based activation motif (ITAM) and hemi ITAM (hemITAM) comprising receptors, especially, glycoprotein VI (GPVI), FcγRIIa, and C-type lectin-like-2 receptor (CLEC-2) are turned in the spotlight since several new mechanisms and contributions to metastasis have been attributed to this family of platelet receptors in the last years.
Collapse
|
25
|
Knowles RB, Warner TD. Anti-platelet drugs and their necessary interaction with endothelial mediators and platelet cyclic nucleotides for therapeutic efficacy. Pharmacol Ther 2018; 193:83-90. [PMID: 30081048 PMCID: PMC6325790 DOI: 10.1016/j.pharmthera.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For many millions of patients at secondary risk of coronary thrombosis pharmaceutical protection is supplied by dual anti-platelet therapy. Despite substantial therapeutic developments over the last decade recurrent thrombotic events occur, highlighting the need for further optimisation of therapies. Importantly, but often ignored, anti-platelet drugs interact with cyclic nucleotide systems in platelets and these are the same systems that mediate key endogenous pathways of platelet regulation, notably those dependent upon the vascular endothelium. The aim of this review is to highlight interactions between the anti-platelet drugs, aspirin and P2Y12 receptor antagonists and endogenous pathways of platelet regulation at the level of cyclic nucleotides. These considerations are key to concepts such as anti-platelet drug resistance and individualized anti-platelet therapy which cannot be understood by study of platelets in isolation from the circulatory environment. We also explore novel and emerging therapies that focus on preserving haemostasis and how the concepts outlined in this review could be exploited therapeutically to improve anti-thrombotic efficacy whilst reducing bleeding risk.
Collapse
Affiliation(s)
- Rebecca B Knowles
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Timothy D Warner
- The Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
26
|
Yeung J, Li W, Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol Rev 2018; 70:526-548. [PMID: 29925522 PMCID: PMC6013590 DOI: 10.1124/pr.117.014530] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Platelets are essential for clotting in the blood and maintenance of normal hemostasis. Under pathologic conditions such as atherosclerosis, vascular injury often results in hyperactive platelet activation, resulting in occlusive thrombus formation, myocardial infarction, and stroke. Recent work in the field has elucidated a number of platelet functions unique from that of maintaining hemostasis, including regulation of tumor growth and metastasis, inflammation, infection, and immune response. Traditional therapeutic targets for inhibiting platelet activation have primarily been limited to cyclooxygenase-1, integrin αIIbβ3, and the P2Y12 receptor. Recently identified signaling pathways regulating platelet function have made it possible to develop novel approaches for pharmacological intervention in the blood to limit platelet reactivity. In this review, we cover the newly discovered roles for platelets as well as their role in hemostasis and thrombosis. These new roles for platelets lend importance to the development of new therapies targeted to the platelet. Additionally, we highlight the promising receptor and enzymatic targets that may further decrease platelet activation and help to address the myriad of pathologic conditions now known to involve platelets without significant effects on hemostasis.
Collapse
Affiliation(s)
- Jennifer Yeung
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Wenjie Li
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| | - Michael Holinstat
- Departments of Pharmacology (J.Y., W.L., M.H.) and Internal Medicine, Division of Cardiovascular Medicine (M.H.), University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
27
|
Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol 2018; 14:126-130. [PMID: 28888895 PMCID: PMC5596263 DOI: 10.1016/j.redox.2017.08.021] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) are generated within activated platelets and play an important role in regulating platelet responses to collagen and collagen-mediated thrombus formation. As a major collagen receptor, platelet-specific glycoprotein (GP)VI is a member of the immunoglobulin (Ig) superfamily, with two extracellular Ig domains, a mucin domain, a transmembrane domain and a cytoplasmic tail. GPVI forms a functional complex with the Fc receptor γ-chain (FcRγ) that, following receptor dimerization, signals via an intracellular immunoreceptor tyrosine-based activation motif (ITAM), leading to rapid activation of Src family kinase signaling pathways. Our previous studies demonstrated that an unpaired thiol in the cytoplasmic tail of GPVI undergoes rapid oxidation to form GPVI homodimers in response to ligand binding, indicating an oxidative submembranous environment in platelets after GPVI stimulation. Using a redox-sensitive fluorescent dye (H2DCF-DA) in a flow cytometric assay to measure changes in intracellular ROS, we showed generation of ROS downstream of GPVI consists of two distinct phases: an initial Syk-independent burst followed by additional Syk-dependent generation. In this review, we will discuss recent findings on the regulation of platelet function by ROS, focusing on GPVI-dependent platelet activation and thrombus formation.
Collapse
Affiliation(s)
- Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| | - Jane F Arthur
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China; Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China; Key Laboratory of Bone Marrow Stem Cell, Xuzhou, Jiangsu Province, China.
| |
Collapse
|
28
|
Jamasbi J, Ayabe K, Goto S, Nieswandt B, Peter K, Siess W. Platelet receptors as therapeutic targets: Past, present and future. Thromb Haemost 2017; 117:1249-1257. [DOI: 10.1160/th16-12-0911] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/08/2017] [Indexed: 01/08/2023]
Abstract
SummaryAnti-platelet drugs reduce arterial thrombosis after plaque rupture and erosion, prevent stent thrombosis and are used to prevent and treat myocardial infarction and ischaemic stroke. Some of them may also be helpful in treating less frequent diseases such as thrombotic thrombocytopenic purpura. The present concise review aims to cover current and future developments of anti-platelet drugs interfering with the interaction of von Willebrand factor (VWF) with glycoprotein (GP) Ibα, and directed against GPVI, GPIIb/IIIa (integrin αIIbβ3), the thrombin receptor PAR-1, and the ADP receptor P2Y12. The high expectations of having novel antiplatelet drugs which selectively inhibit arterial thrombosis without interfering with normal haemostasis could possibly be met in the near future.
Collapse
|
29
|
Haining EJ, Matthews AL, Noy PJ, Romanska HM, Harris HJ, Pike J, Morowski M, Gavin RL, Yang J, Milhiet PE, Berditchevski F, Nieswandt B, Poulter NS, Watson SP, Tomlinson MG. Tetraspanin Tspan9 regulates platelet collagen receptor GPVI lateral diffusion and activation. Platelets 2017; 28:629-642. [PMID: 28032533 PMCID: PMC5706974 DOI: 10.1080/09537104.2016.1254175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022]
Abstract
The tetraspanins are a superfamily of four-transmembrane proteins, which regulate the trafficking, lateral diffusion and clustering of the transmembrane proteins with which they interact. We have previously shown that tetraspanin Tspan9 is expressed on platelets. Here we have characterised gene-trap mice lacking Tspan9. The mice were viable with normal platelet numbers and size. Tspan9-deficient platelets were specifically defective in aggregation and secretion induced by the platelet collagen receptor GPVI, despite normal surface GPVI expression levels. A GPVI activation defect was suggested by partially impaired GPVI-induced protein tyrosine phosphorylation. In mechanistic experiments, Tspan9 and GPVI co-immunoprecipitated and co-localised, but super-resolution imaging revealed no defects in collagen-induced GPVI clustering on Tspan9-deficient platelets. However, single particle tracking using total internal reflection fluorescence microscopy showed that GPVI lateral diffusion was reduced by approximately 50% in the absence of Tspan9. Therefore, Tspan9 plays a fine-tuning role in platelet activation by regulating GPVI membrane dynamics.
Collapse
Affiliation(s)
- Elizabeth J. Haining
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandra L. Matthews
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Peter J. Noy
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | | | - Helen J. Harris
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jeremy Pike
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
- PSIBS Doctoral Training Centre, School of Chemistry, University of Birmingham, Birmingham, UK
| | - Martina Morowski
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Rebecca L. Gavin
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Jing Yang
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Pierre-Emmanuel Milhiet
- INSERM U1054, CNRS, UMR 5048, Centre de Biochimie Structurale, Montpellier University, France
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Bernhard Nieswandt
- Department of Experimental Biomedicine, University Hospital, University of Würzburg, Würzburg, Germany
| | - Natalie S. Poulter
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Steve P. Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Michael G. Tomlinson
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Xu XR, Carrim N, Neves MAD, McKeown T, Stratton TW, Coelho RMP, Lei X, Chen P, Xu J, Dai X, Li BX, Ni H. Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J 2016; 14:29. [PMID: 27766055 PMCID: PMC5056500 DOI: 10.1186/s12959-016-0100-6] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Platelets are central mediators of thrombosis and hemostasis. At the site of vascular injury, platelet accumulation (i.e. adhesion and aggregation) constitutes the first wave of hemostasis. Blood coagulation, initiated by the coagulation cascades, is the second wave of thrombin generation and enhance phosphatidylserine exposure, can markedly potentiate cell-based thrombin generation and enhance blood coagulation. Recently, deposition of plasma fibronectin and other proteins onto the injured vessel wall has been identified as a new "protein wave of hemostasis" that occurs prior to platelet accumulation (i.e. the classical first wave of hemostasis). These three waves of hemostasis, in the event of atherosclerotic plaque rupture, may turn pathogenic, and cause uncontrolled vessel occlusion and thrombotic disorders (e.g. heart attack and stroke). Current anti-platelet therapies have significantly reduced cardiovascular mortality, however, on-treatment thrombotic events, thrombocytopenia, and bleeding complications are still major concerns that continue to motivate innovation and drive therapeutic advances. Emerging evidence has brought platelet adhesion molecules back into the spotlight as targets for the development of novel anti-thrombotic agents. These potential antiplatelet targets mainly include the platelet receptors glycoprotein (GP) Ib-IX-V complex, β3 integrins (αIIb subunit and PSI domain of β3 subunit) and GPVI. Numerous efforts have been made aiming to balance the efficacy of inhibiting thrombosis without compromising hemostasis. This mini-review will update the mechanisms of thrombosis and the current state of antiplatelet therapies, and will focus on platelet adhesion molecules and the novel anti-thrombotic therapies that target them.
Collapse
Affiliation(s)
- Xiaohong Ruby Xu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong People’s Republic of China
| | - Naadiya Carrim
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Miguel Antonio Dias Neves
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Thomas McKeown
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Tyler W. Stratton
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Rodrigo Matos Pinto Coelho
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Xi Lei
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
| | - Jianhua Xu
- CCOA Therapeutics Inc, Toronto, ON Canada
| | - Xiangrong Dai
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
| | - Benjamin Xiaoyi Li
- Lee’s Pharmaceutical holdings limited, Shatin Hong Kong, China
- Zhaoke Pharmaceutical co. limited, Hefei, Anhui China
- Hong Kong University of Science and technology, Hong Kong, China
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON Canada
- Canadian Blood Services, Toronto, ON Canada
- CCOA Therapeutics Inc, Toronto, ON Canada
- Department of Medicine and Department of Physiology, University of Toronto, Toronto, ON Canada
| |
Collapse
|
31
|
van Eeuwijk JM, Stegner D, Lamb DJ, Kraft P, Beck S, Thielmann I, Kiefer F, Walzog B, Stoll G, Nieswandt B. The Novel Oral Syk Inhibitor, Bl1002494, Protects Mice From Arterial Thrombosis and Thromboinflammatory Brain Infarction. Arterioscler Thromb Vasc Biol 2016; 36:1247-53. [DOI: 10.1161/atvbaha.115.306883] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 04/07/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Judith M.M. van Eeuwijk
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - David Stegner
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - David J. Lamb
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Peter Kraft
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Sarah Beck
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Ina Thielmann
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Friedemann Kiefer
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Barbara Walzog
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Guido Stoll
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| | - Bernhard Nieswandt
- From the Department of Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.) and Department of Neurology (P.K., G.S.), University Hospital Würzburg and Rudolf Virchow Center for Experimental Biomedicine (J.M.M.v.E., D.S., S.B., I.T., B.N.), University of Würzburg, Würzburg, Germany; Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riß, Germany (D.J.L.); Mammalian Cell Signaling Laboratory, Department of Vascular Cell Biology, Max Planck Institute
| |
Collapse
|
32
|
Synthesis and evaluation of dual antiplatelet activity of bispidine derivatives of N-substituted pyroglutamic acids. Eur J Med Chem 2016; 110:1-12. [PMID: 26807542 DOI: 10.1016/j.ejmech.2016.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/23/2022]
Abstract
N-aralkylpyroglutamides of substituted bispidine were prepared and evaluated for their ability to inhibit collagen induced platelet aggregation, both in vivo and in vitro. Some compounds showed high anti-platelet efficacy (in vitro) of which six inhibited both collagen as well as U46619 induced platelet aggregation with concentration dependent anti-platelet efficacy through dual mechanism. In particular, the compound 4j offered significant protection against collagen epinephrine induced pulmonary thromboembolism as well as ferric chloride induced arterial thrombosis, without affecting bleeding tendency in mice. Therefore, the present study suggests that the compound 4j displays a remarkable antithrombotic efficacy much better than aspirin and clopidogrel.
Collapse
|
33
|
Westrick R, Fredman G. Platelets: Context-Dependent Vascular Protectors or Mediators of Disease. Arterioscler Thromb Vasc Biol 2015; 35:e25-9. [PMID: 26109740 DOI: 10.1161/atvbaha.115.305898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Randal Westrick
- From the Department of Biological Sciences, Oakland University, Rochester, MI (R.W.); and Department of Medicine, Columbia University, New York, NY (G.F.)
| | - Gabrielle Fredman
- From the Department of Biological Sciences, Oakland University, Rochester, MI (R.W.); and Department of Medicine, Columbia University, New York, NY (G.F.).
| | | |
Collapse
|
34
|
|
35
|
Metharom P, Berndt MC, Baker RI, Andrews RK. Current state and novel approaches of antiplatelet therapy. Arterioscler Thromb Vasc Biol 2015; 35:1327-38. [PMID: 25838432 DOI: 10.1161/atvbaha.114.303413] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/19/2015] [Indexed: 01/22/2023]
Abstract
An unresolved problem with clinical use of antiplatelet therapy is that a significant number of individuals either still get thrombosis or run the risk of life-threatening bleeding. Antiplatelet drugs are widely used clinically, either chronically for people at risk of athero/thrombotic disease or to prevent thrombus formation during surgery. However, a subpopulation may be resistant to standard doses, while the platelet targets of these drugs are also critical for the normal hemostatic function of platelets. In this review, we will briefly examine current antiplatelet therapy and existing targets while focusing on new potential approaches for antiplatelet therapy and improved monitoring of effects on platelet reactivity in individuals, ultimately to improve antithrombosis with minimal bleeding. Primary platelet adhesion-signaling receptors, glycoprotein (GP)Ib-IX-V and GPVI, that bind von Willebrand factor/collagen and other prothrombotic factors are not targeted by drugs in clinical use, but they are of particular interest because of their key role in thrombus formation at pathological shear.
Collapse
Affiliation(s)
- Pat Metharom
- From the Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia (P.M., M.C.B); Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Western Australia, Australia (R.I.B.); and Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia (R.K.A.)
| | - Michael C Berndt
- From the Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia (P.M., M.C.B); Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Western Australia, Australia (R.I.B.); and Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia (R.K.A.).
| | - Ross I Baker
- From the Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia (P.M., M.C.B); Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Western Australia, Australia (R.I.B.); and Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia (R.K.A.)
| | - Robert K Andrews
- From the Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia (P.M., M.C.B); Western Australian Centre for Thrombosis and Haemostasis, Murdoch University, Perth, Western Australia, Australia (R.I.B.); and Australian Centre for Blood Diseases, Department of Clinical Haematology, Monash University, Melbourne, Victoria, Australia (R.K.A.)
| |
Collapse
|
36
|
Targeted downregulation of platelet CLEC-2 occurs through Syk-independent internalization. Blood 2015; 125:4069-77. [PMID: 25795918 DOI: 10.1182/blood-2014-11-611905] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/13/2015] [Indexed: 12/16/2022] Open
Abstract
Platelet aggregation at sites of vascular injury is not only essential for hemostasis, but may also cause acute ischemic disease states such as myocardial infarction or stroke. The hemi-immunoreceptor tyrosine-based activation motif-containing C-type lectinlike receptor 2 (CLEC-2) mediates powerful platelet activation through a Src- and spleen tyrosine kinase (Syk)-dependent tyrosine phosphorylation cascade. Thereby, CLEC-2 not only contributes to thrombus formation and stabilization but also plays a central role in blood-lymphatic vessel development, tumor metastasis, and prevention of inflammatory bleeding, making it a potential pharmacologic target to modulate these processes. We have previously shown that injection of the anti-CLEC-2 antibody, INU1, results in virtually complete immunodepletion of platelet CLEC-2 in mice, which is, however, preceded by a severe transient thrombocytopenia thereby limiting its potential therapeutic use. The mechanisms underlying this targeted CLEC-2 downregulation have remained elusive. Here, we show that INU1-induced CLEC-2 immunodepletion occurs through Src-family kinase-dependent receptor internalization in vitro and in vivo, presumably followed by intracellular degradation. In mice with platelet-specific Syk deficiency, INU1-induced CLEC-2 internalization/degradation was fully preserved whereas the associated thrombocytopenia was largely prevented. These results show for the first time that CLEC-2 can be downregulated from the platelet surface through internalization in vitro and in vivo and that this can be mechanistically uncoupled from the associated antibody-induced thrombocytopenia.
Collapse
|
37
|
van Geffen JP, Kleinegris MC, Verdoold R, Baaten CCFMJ, Cosemans JMEM, Clemetson KJ, Ten Cate H, Roest M, de Laat B, Heemskerk JWM. Normal platelet activation profile in patients with peripheral arterial disease on aspirin. Thromb Res 2015; 135:513-20. [PMID: 25600441 DOI: 10.1016/j.thromres.2014.12.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/22/2014] [Accepted: 12/30/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Peripheral arterial disease (PAD) is a progressive vascular disease associated with a high risk of cardiovascular morbidity and death. Antithrombotic prevention is usually applied by prescribing the antiplatelet agent aspirin. However, in patients with PAD aspirin fails to provide protection against myocardial infarction and death, only reducing the risk of ischemic stroke. Platelets may play a role in disease development, but this has not been tested by proper mechanistic studies. In the present study, we performed a systematic evaluation of platelet reactivity in whole blood from patients with PAD using two high-throughput assays, i.e. multi-agonist testing of platelet activation by flow cytometry and multi-parameter testing of thrombus formation on spotted microarrays. METHODS Blood was obtained from 40 patients (38 on aspirin) with PAD in majority class IIa/IIb and from 40 age-matched control subjects. Whole-blood flow cytometry and multiparameter thrombus formation under high-shear flow conditions were determined using recently developed and validated assays. RESULTS Flow cytometry of whole blood samples from aspirin-treated patients demonstrated unchanged high platelet responsiveness towards ADP, slightly elevated responsiveness after glycoprotein VI stimulation, and decreased responsiveness after PAR1 thrombin receptor stimulation, compared to the control subjects. Most parameters of thrombus formation under flow were similarly high for the patient and control groups. However, in vitro aspirin treatment caused a marked reduction in thrombus formation, especially on collagen surfaces. When compared per subject, markers of ADP- and collagen-induced integrin activation (flow cytometry) strongly correlated with parameters of collagen-dependent thrombus formation under flow, indicative of a common, subject-dependent regulation of both processes. CONCLUSION Despite of the use of aspirin, most platelet activation properties were in the normal range in whole-blood from class II PAD patients. These data underline the need for more effective antithrombotic pharmacoprotection in PAD.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marie-Claire Kleinegris
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Remco Verdoold
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Constance C F M J Baaten
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith M E M Cosemans
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kenneth J Clemetson
- Department of Haematology, Inselspital, University of Bern, CH-3010 Bern, Switzerland
| | - Hugo Ten Cate
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Mark Roest
- Department of Clinical Chemistry and Haematology, University Medical Centre, Utrecht The Netherlands; Synapse B.V., Maastricht University, Maastricht, The Netherlands
| | - Bas de Laat
- Synapse B.V., Maastricht University, Maastricht, The Netherlands
| | - Johan W M Heemskerk
- Departments of Biochemistry and Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|