1
|
Vinci P, Di Girolamo FG, Panizon E, Tosoni LM, Cerrato C, Pellicori F, Altamura N, Pirulli A, Zaccari M, Biasinutto C, Roni C, Fiotti N, Schincariol P, Mangogna A, Biolo G. Lipoprotein(a) as a Risk Factor for Cardiovascular Diseases: Pathophysiology and Treatment Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6721. [PMID: 37754581 PMCID: PMC10531345 DOI: 10.3390/ijerph20186721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023]
Abstract
Cardiovascular disease (CVD) is still a leading cause of morbidity and mortality, despite all the progress achieved as regards to both prevention and treatment. Having high levels of lipoprotein(a) [Lp(a)] is a risk factor for cardiovascular disease that operates independently. It can increase the risk of developing cardiovascular disease even when LDL cholesterol (LDL-C) levels are within the recommended range, which is referred to as residual cardiovascular risk. Lp(a) is an LDL-like particle present in human plasma, in which a large plasminogen-like glycoprotein, apolipoprotein(a) [Apo(a)], is covalently bound to Apo B100 via one disulfide bridge. Apo(a) contains one plasminogen-like kringle V structure, a variable number of plasminogen-like kringle IV structures (types 1-10), and one inactive protease region. There is a large inter-individual variation of plasma concentrations of Lp(a), mainly ascribable to genetic variants in the Lp(a) gene: in the general po-pulation, Lp(a) levels can range from <1 mg/dL to >1000 mg/dL. Concentrations also vary between different ethnicities. Lp(a) has been established as one of the risk factors that play an important role in the development of atherosclerotic plaque. Indeed, high concentrations of Lp(a) have been related to a greater risk of ischemic CVD, aortic valve stenosis, and heart failure. The threshold value has been set at 50 mg/dL, but the risk may increase already at levels above 30 mg/dL. Although there is a well-established and strong link between high Lp(a) levels and coronary as well as cerebrovascular disease, the evidence regarding incident peripheral arterial disease and carotid atherosclerosis is not as conclusive. Because lifestyle changes and standard lipid-lowering treatments, such as statins, niacin, and cholesteryl ester transfer protein inhibitors, are not highly effective in reducing Lp(a) levels, there is increased interest in developing new drugs that can address this issue. PCSK9 inhibitors seem to be capable of reducing Lp(a) levels by 25-30%. Mipomersen decreases Lp(a) levels by 25-40%, but its use is burdened with important side effects. At the current time, the most effective and tolerated treatment for patients with a high Lp(a) plasma level is apheresis, while antisense oligonucleotides, small interfering RNAs, and microRNAs, which reduce Lp(a) levels by targeting RNA molecules and regulating gene expression as well as protein production levels, are the most widely explored and promising perspectives. The aim of this review is to provide an update on the current state of the art with regard to Lp(a) pathophysiological mechanisms, focusing on the most effective strategies for lowering Lp(a), including new emerging alternative therapies. The purpose of this manuscript is to improve the management of hyperlipoproteinemia(a) in order to achieve better control of the residual cardiovascular risk, which remains unacceptably high.
Collapse
Affiliation(s)
- Pierandrea Vinci
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Filippo Giorgio Di Girolamo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Emiliano Panizon
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Letizia Maria Tosoni
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Carla Cerrato
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Federica Pellicori
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Nicola Altamura
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Alessia Pirulli
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Michele Zaccari
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Chiara Biasinutto
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Chiara Roni
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Nicola Fiotti
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| | - Paolo Schincariol
- SC Assistenza Farmaceutica, Cattinara Hospital, Azienda Sanitaria Universitaria Integrata di Trieste, 34149 Trieste, Italy; (C.B.); (C.R.); (P.S.)
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, I.R.C.C.S “Burlo Garofolo”, 34137 Trieste, Italy;
| | - Gianni Biolo
- Clinica Medica, Cattinara Hospital, Department of Medical Surgical and Health Science, University of Trieste, 34149 Trieste, Italy; (F.G.D.G.); (E.P.); (L.M.T.); (C.C.); (F.P.); (N.A.); (A.P.); (M.Z.); (N.F.); (G.B.)
| |
Collapse
|
2
|
Chauhan T, Mittal RD, Mittal B. Association of Common Single Nucleotide Polymorphisms of Candidate Genes with Gallstone Disease: A Meta-Analysis. Indian J Clin Biochem 2020; 35:290-311. [PMID: 32647408 PMCID: PMC7326838 DOI: 10.1007/s12291-019-00832-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/04/2019] [Indexed: 12/22/2022]
Abstract
Numerous studies have investigated the relationship between various candidate gene polymorphisms and gallbladder stone disease (GSD) across ethnic populations; however, the results are often inconsistent. This meta-analysis aims to comprehensively evaluate the influence of common ABCG8 T400K, ABCG8 D19H, ABCG8 C54Y, ApoB100 EcoRI, ApoB100 XbaI, ApoE HhaI, CETP TaqI, CYP7A1 Bsa, LRPAP1 I/D and TNF-α A308G polymorphisms on the risk of gallbladder stone disease. 33 Full-text articles with 9250 cases and 12,029 healthy controls (total 21,279 subjects) were analyzed using the RevMan software (V5.1) and the Comprehensive Meta-analysis software (Version 2.0, BIOSTAT, Englewood, NJ) a Random-effects model was applied. Begg's funnel plots, Fail-safe number, Egger's regression intercept and Begg and Mazumdar rank correlation tests were performed for the potential publication bias and sensitivity analysis. The studies were also sub-grouped into European and non-European groups to find out role of ethnicity, if any, on GSD risk. Studies included in quantitative synthesis were ABCG8 T400K rs4148217 (cases/controls, n = 671/1416) (4 studies), ABCG8 D19H rs11887534 (n = 1633/2306) (8 studies), ABCG8 C54Y rs4148211 (n = 445/1194) (3 studies), ApoB100 EcoRI rs1042031 (n = 503/390) (4 studies), ApoB100 XbaI rs693 (n = 1214/1389) (9 studies), ApoE HhaI rs429358 (n = 1335/1482) (12 studies), CETP TaqI rs708272 (n = 1038/1025) (5 studies), CYP7A1 Bsa rs3808607 (n = 565/514) (3 studies), LRPAP1 I/D rs11267919 (n = 849/900) (3 studies), TNF-α A308G rs1800629 (n = 997/1413) (3 studies). The combined results displayed significant association of ABCG8 D19H (GC + CC) [OR with 95%CI = 2.2(1.7-2.8); p < 0.00001], ABCG8 Y54C (GA + GG) [OR with 95%CI = 0.65(0.5-0.9); p = 0.01]. APOB100 EcoRI (GG vs. AA) [OR with 95%CI = 0.51(0.3-0.9); p = 0.05], (GG vs. GA) [OR with 95%CI = 0.6(0.4-0.9); p = 0.04], (GA + AA) [OR with 95%CI = 0.6(0.4-0.9); p = 0.006]. APOB Xba I (X- vs. X+) [OR with 95%CI = 0.53(0.3-0.8); p = 0.006. APOE Hha I (E4/E4 vs. E3/E3) [OR with 95%CI = 3.5(1.1-14.9); p = 0.04] and LRPAP1 I/D (ID + II) [OR with 95%CI = 1.27(1.0-1.6); p = 0.03] with the GSD risk. It was found that ABCG D19H was significantly associated with GSD in both European and Non-European populations. While APOB XbaI and LRPAP1 I/D markers were associated with gallstone disease only in Non- European population. Additionally, APOE HhaI and APOB 100 ECoRI were found to be associated with GSD only in European population. The results of quantitative synthesis suggest that the ABCG8 D19H polymorphism was associated with the increased risk of GSD in both European and Non-European populations, APOE Hha I and LRPAP1 I/D polymorphisms were associated with the increased risk of GSD in European and Non-European population respectively. However, no association was found in ABCG8 T400K, CETP Taq1, CYP7A1 Bsa and TNF-A308G polymorphisms with Gallstone Disease.
Collapse
Affiliation(s)
- Tripty Chauhan
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP India
| | - R. D. Mittal
- Department of Urology, SGPGIMS, Lucknow, UP India
| | - B. Mittal
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, UP India
| |
Collapse
|
3
|
Amaya-Montoya M, Pinzón-Cortés JA, Silva-Bermúdez LS, Ruiz-Manco D, Pérez-Matos MC, Jiménez-Mora MA, Mendivil CO. ApoE and apoC-III-defined HDL subtypes: a descriptive study of their lecithin cholesterol acyl transferase and cholesteryl ester transfer protein content and activity. Lipids Health Dis 2020; 19:106. [PMID: 32450892 PMCID: PMC7249299 DOI: 10.1186/s12944-020-01291-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/20/2020] [Indexed: 12/01/2022] Open
Abstract
Background The functionality of high-density lipoproteins (HDL) is a better cardiovascular risk predictor than HDL concentrations. One of the key elements of HDL functionality is its apolipoprotein composition. Lecithin-cholesterol acyl transferase (LCAT) and cholesterol-ester transfer protein (CETP) are enzymes involved in HDL-mediated reverse cholesterol transport. This study assessed the concentration and activity of LCAT and CETP in HDL subspecies defined by their content of apolipoproteins E (apoE) and C-III (apoC-III) in humans. Methods Eighteen adults (ten women and eight men, mean age 55.6, BMI 26.9 Kg/m2, HbA1c 5.4%) were studied. HDL from each participant were isolated and divided into four subspecies containing respectively: No apoE and no apoC-III (E-C-), apoE but not apoC-III (E + C-), apoC-III but no apoE (E-C+) and both apoE and apoC-III (E + C+). The concentration and enzymatic activity of LCAT and CETP were measured within each HDL subspecies using immunoenzymatic and fluorometric methods. Additionally, the size distribution of HDL in each apolipoprotein-defined fraction was determined using non-denaturing electrophoresis and anti-apoA-I western blotting. Results HDL without apoE or apoC-III was the predominant HDL subtype. The size distribution of HDL was very similar in all the four apolipoprotein-defined subtypes. LCAT was most abundant in E-C- HDL (3.58 mg/mL, 59.6% of plasma LCAT mass), while HDL with apoE or apoC-III had much less LCAT (19.8, 12.2 and 8.37% of plasma LCAT respectively for E + C-, E-C+ and E + C+). LCAT mass was lower in E + C- HDL relative to E-C- HDL, but LCAT activity was similar in both fractions, signaling a greater activity-to-mass ratio associated with the presence of apoE. Both CETP mass and CETP activity showed only slight variations across HDL subspecies. There was an inverse correlation between plasma LCAT activity and concentrations of both E-C+ pre-beta HDL (r = − 0.55, P = 0.017) and E-C- alpha 1 HDL (r = − 0.49, P = 0.041). Conversely, there was a direct correlation between plasma CETP activity and concentrations of E-C+ alpha 1 HDL (r = 0.52, P = 0.025). Conclusions The presence of apoE in small HDL is correlated with increased LCAT activity and esterification of plasma cholesterol. These results favor an interpretation that LCAT and apoE interact to enhance anti-atherogenic pathways of HDL.
Collapse
Affiliation(s)
- Mateo Amaya-Montoya
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia
| | - Jairo A Pinzón-Cortés
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia
| | - Lina S Silva-Bermúdez
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia
| | - Daniel Ruiz-Manco
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia
| | - Maria C Pérez-Matos
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia
| | - Mario A Jiménez-Mora
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia
| | - Carlos O Mendivil
- Universidad de los Andes Medical School, Carrera 7 # 116-05, Of. 413, Bogotá, Colombia. .,Department of Internal Medicine, Fundación Santa Fe de Bogotá, Section of Endocrinology, Carrera 7 No. 117 - 15, Bogotá, Colombia.
| |
Collapse
|
4
|
Abstract
Several new or emerging drugs for dyslipidemia owe their existence, in part, to human genetic evidence, such as observations in families with rare genetic disorders or in Mendelian randomization studies. Much effort has been directed to agents that reduce LDL (low-density lipoprotein) cholesterol, triglyceride, and Lp[a] (lipoprotein[a]), with some sustained programs on agents to raise HDL (high-density lipoprotein) cholesterol. Lomitapide, mipomersen, AAV8.TBG.hLDLR, inclisiran, bempedoic acid, and gemcabene primarily target LDL cholesterol. Alipogene tiparvovec, pradigastat, and volanesorsen primarily target elevated triglycerides, whereas evinacumab and IONIS-ANGPTL3-LRx target both LDL cholesterol and triglyceride. IONIS-APO(a)-LRx targets Lp(a).
Collapse
Affiliation(s)
- Robert A Hegele
- From the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Sotirios Tsimikas
- Sulpizio Cardiovascular Center, Vascular Medicine Program, University of California San Diego, La Jolla (S.T.)
| |
Collapse
|
5
|
Wu BJ, Li Y, Ong KL, Sun Y, Johns D, Barter PJ, Rye KA. The Cholesteryl Ester Transfer Protein Inhibitor, des-Fluoro-Anacetrapib, Prevents Vein Bypass-induced Neointimal Hyperplasia in New Zealand White Rabbits. Sci Rep 2019; 9:16183. [PMID: 31700015 PMCID: PMC6838195 DOI: 10.1038/s41598-019-52510-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/18/2019] [Indexed: 11/25/2022] Open
Abstract
Coronary artery bypass grafting is among the most commonly performed of all cardiovascular surgical procedures. However, graft failure due to stenosis reduces the long-term benefit of the intervention. This study asks if elevating plasma high density lipoprotein cholesterol (HDL-C) levels by inhibition of cholesteryl ester transfer protein (CETP) activity with des-fluoro-anacetrapib, an analog of the CETP inhibitor anacetrapib, prevents vein bypass-induced neointimal hyperplasia. NZW rabbits were placed on a normal chow diet or chow containing 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Bypass grafting of the jugular vein to the common carotid artery was performed 2 weeks after starting dietary des-fluoro-anacetrapib supplementation. The animals were euthanised 4 weeks post-bypass grafting. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma CETP activity by 89 ± 6.9%, increased plasma apolipoprotein A-I levels by 24 ± 5.5%, increased plasma HDL-C levels by 93 ± 26% and reduced intimal hyperplasia in the grafted vein by 38 ± 6.2%. Des-fluoro-anacetrapib treatment was also associated with decreased bypass grafting-induced endothelial expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), endothelial dysfunction, and smooth muscle cell (SMC) proliferation in the grafted vein. In conclusion, increasing HDL-C levels by inhibiting CETP activity is associated with inhibition of intimal hyperplasia in grafted veins, reduced inflammatory responses, improved endothelial function, and decreased SMC proliferation.
Collapse
Affiliation(s)
- Ben J Wu
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| | - Yue Li
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kwok-Leung Ong
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Yidan Sun
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Philip J Barter
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, School of Medical Sciences, The University of New South Wales Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
He Y, Kothari V, Bornfeldt KE. High-Density Lipoprotein Function in Cardiovascular Disease and Diabetes Mellitus. Arterioscler Thromb Vasc Biol 2019; 38:e10-e16. [PMID: 29367232 DOI: 10.1161/atvbaha.117.310222] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yi He
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Vishal Kothari
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle
| | - Karin E Bornfeldt
- From the Division of Metabolism, Endocrinology and Nutrition, Department of Medicine (Y.H., V.K., K.E.B.) and Department of Pathology (K.E.B.), University of Washington Medicine Diabetes Institute, University of Washington School of Medicine, Seattle.
| |
Collapse
|
7
|
Affiliation(s)
- Jacqueline S Dron
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Julieta Lazarte
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- From the Department of Biochemistry (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute (J.S.D., J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Medicine (J.L., R.A.H.), Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
Zhang H, de Aguiar Vallim TQ, Martel C. Translational and Therapeutic Approaches to the Understanding and Treatment of Dyslipidemia. Arterioscler Thromb Vasc Biol 2018; 36:e56-61. [PMID: 27335468 DOI: 10.1161/atvbaha.116.307808] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanrui Zhang
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Thomas Q de Aguiar Vallim
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | - Catherine Martel
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY (H.Z.); Division of Cardiology, School of Medicine, University of California Los Angeles (T.Q. de A. V.); and Department of Medicine, Montreal Heart Institute Research Center, Université de Montréal, Montreal, Quebec, Canada (C.M.).
| | | |
Collapse
|
9
|
Hao D, Yang Z, Gao T, Tian Z, Zhang L, Zhang S. Role of glycans in cholesteryl ester transfer protein revealed by molecular dynamics simulation. Proteins 2018; 86:882-891. [DOI: 10.1002/prot.25520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Dongxiao Hao
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhiwei Yang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Applied Chemistry, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Teng Gao
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Zhiqi Tian
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lei Zhang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| | - Shengli Zhang
- Department of Applied Physics, School of Science; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
10
|
New medications targeting triglyceride-rich lipoproteins: Can inhibition of ANGPTL3 or apoC-III reduce the residual cardiovascular risk? Atherosclerosis 2018; 272:27-32. [PMID: 29544086 DOI: 10.1016/j.atherosclerosis.2018.03.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/28/2018] [Accepted: 03/07/2018] [Indexed: 12/22/2022]
Abstract
Remarkably good results have been achieved in the treatment of atherosclerotic cardiovascular diseases (CVD) by using statin, ezetimibe, antihypertensive, antithrombotic, and PCSK9 inhibitor therapies and their proper combinations. However, despite this success, the remaining CVD risk is still high. To target this residual risk and to treat patients who are statin-intolerant or have an exceptionally high CVD risk for instance due to familial hypercholesterolemia (FH), new therapies are intensively sought. One pathway of drug development is targeting the circulating triglyceride-rich lipoproteins (TRL) and their lipolytic remnants, which, according to the current view, confer a major CVD risk. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are at present the central molecular targets for therapies designed to reduce TRL, and there are new drugs emerging that suppress their expression or inhibit the function of these two key proteins. The medications targeting these components are biological, either human monoclonal antibodies or antisense oligonucleotides. In this article, we briefly review the mechanisms of action of ANGPTL3 and apoC-III, the reasons why they have been considered promising targets of novel therapies for CVD, as well as the current status and the most important results of their clinical trials.
Collapse
|
11
|
Abstract
The picture of HDL cholesterol (HDL-C) as the "good" cholesterol has eroded. This is even more surprising because there exists strong evidence that HDL-C is associated with cardiovascular disease (CVD) in the general population as well as in patients with impairment of kidney function and/or progression of CKD. However, drugs that dramatically increase HDL-C have mostly failed to decrease CVD events. Furthermore, genetic studies took the same line, as genetic variants that have a pronounced influence on HDL-C concentrations did not show an association with cardiovascular risk. For many, this was not surprising, given that an HDL particle is highly complex and carries >80 proteins and several hundred lipid species. Simply measuring cholesterol might not reflect the variety of biologic effects of heterogeneous HDL particles. Therefore, functional studies and the involvement of HDL components in the reverse cholesterol transport, including the cholesterol efflux capacity, have become a further focus of study during recent years. As also observed for other aspects, CKD populations behave differently compared with non-CKD populations. Although clear disturbances have been observed for the "functionality" of HDL particles in patients with CKD, this did not necessarily translate into clear-cut associations with outcomes.
Collapse
Affiliation(s)
- Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
12
|
Christen T, Trompet S, Noordam R, Blauw LL, Gast KB, Rensen PCN, Willems van Dijk K, Rosendaal FR, de Mutsert R, Jukema JW. Mendelian randomization analysis of cholesteryl ester transfer protein and subclinical atherosclerosis: A population-based study. J Clin Lipidol 2017; 12:137-144.e1. [PMID: 29174438 DOI: 10.1016/j.jacl.2017.10.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 09/29/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Several trials to prevent cardiovascular disease by inhibiting cholesteryl ester transfer protein (CETP) have failed, except Randomized EValuation of the Effects of Anacetrapib through Lipid-modification. Thus far, it is unclear to what extent CETP is causally related to measures of atherosclerosis. OBJECTIVE The aim of the article was to study the causal relationship between genetically determined CETP concentration and carotid intima-media thickness (cIMT) in a population-based cohort study. METHODS In the Netherlands Epidemiology of Obesity study, participants were genotyped, and cIMT was measured by ultrasonography. We examined the relation between a weighted genetic risk score for CETP concentration, based on 3 single-nucleotide polymorphisms that have previously been shown to largely determine CETP concentration and cIMT using Mendelian randomization in the total population and in strata by sex, Framingham 10-year risk, (pre)diabetes, high-density lipoprotein cholesterol, triglycerides, and statin use. RESULTS We analyzed 5655 participants (56% women) with a mean age of 56 (range 44-66) years, body mass index of 26 (range 17-61) kg/m2, and serum CETP of 2.47 (range 0.68-5.33) μg/mL. There was no evidence for a causal relation between genetically determined CETP and cIMT in the total population, but associations were differently directed in men (16 μm per μg/mL increase in genetically determined CETP; 95% confidence interval: -8, 39) and women (-8 μm; -25, 9). Genetically determined CETP appeared to be associated with cIMT in normoglycemic men (26 μm; -1, 52) and in (pre)diabetic women (48 μm; -2, 98). CONCLUSION In this population-based study, there was no causal relation between genetically determined CETP concentration and cIMT in the total population although we observed directionally differing effects in men and women. Stratified results suggested associations in individuals with different cardiometabolic risk factor profiles, which require replication.
Collapse
Affiliation(s)
- Tim Christen
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| | - Stella Trompet
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Lisanne L Blauw
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Karin B Gast
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (LUMC), Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Frits R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | |
Collapse
|
13
|
Yamada K, Brousseau M, Honma W, Iimura A, Imase H, Iwaki Y, Kawanami T, LaSala D, Liang G, Mitani H, Nonomura K, Ohmori O, Pan M, Rigel DF, Umemura I, Yasoshima K, Zhu G, Mogi M. Discovery of a Novel Piperidine-Based Inhibitor of Cholesteryl Ester Transfer Protein (CETP) That Retains Activity in Hypertriglyceridemic Plasma. J Med Chem 2017; 60:8466-8481. [DOI: 10.1021/acs.jmedchem.7b00900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ken Yamada
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Margaret Brousseau
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Wataru Honma
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Akiko Iimura
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Hidetomo Imase
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Yuki Iwaki
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Toshio Kawanami
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Daniel LaSala
- Novartis Institutes for BioMedical Research, Novartis
Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, New Jersey 07936-1080, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Hironobu Mitani
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Kazuhiko Nonomura
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Osamu Ohmori
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Meihui Pan
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Dean F. Rigel
- Novartis Institutes for BioMedical Research, Novartis
Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, New Jersey 07936-1080, United States
| | - Ichiro Umemura
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Kayo Yasoshima
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Guoming Zhu
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Muneto Mogi
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Epidemiological and clinical studies link low levels of HDL cholesterol (HDL-C) with increased risk of atherosclerotic cardiovascular disease (CVD). However, genetic polymorphisms linked to HDL-C do not associate consistently with CVD risk, and randomized clinical studies of drugs that elevate HDL-C via different mechanisms failed to reduce CVD risk in statin-treated patients with established CVD. New metrics that capture HDL's proposed cardioprotective effects are therefore urgently needed. RECENT FINDINGS Recent studies demonstrate cholesterol efflux capacity (CEC) of serum HDL (serum depleted of cholesterol-rich atherogenic lipoproteins) is an independent and better predictor of incident and prevalent CVD risk than HDL-C. However, it remains unclear whether therapies that increase CEC are cardioprotective. Other key issues are the impact of HDL-targeted therapies on HDL particle size and concentration and the relationship of those changes to CEC and cardioprotection. SUMMARY It is time to end the clinical focus on HDL-C and to understand how HDL's function, protein composition and size contribute to CVD risk. It will also be important to link variations in function and size to HDL-targeted therapies. Developing new metrics for quantifying HDL function, based on better understanding HDL metabolism and macrophage CEC, is critical for achieving these goals.
Collapse
Affiliation(s)
- Graziella E. Ronsein
- Departamento de Bioquímica, Instituto de Química,
Universidade de São Paulo, Brazil
| | - Jay W. Heinecke
- Department of Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
15
|
Filippatos TD, Kei A, Elisaf MS. Anacetrapib, a New CETP Inhibitor: The New Tool for the Management of Dyslipidemias? Diseases 2017; 5:diseases5040021. [PMID: 28961179 PMCID: PMC5750532 DOI: 10.3390/diseases5040021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) inhibitors significantly increase serum high-density lipoprotein cholesterol (HDL) cholesterol levels and decrease low-density lipoprotein cholesterol (LDL) cholesterol concentration. However, three drugs of this class failed to show a decrease of cardiovascular events in high-risk patients. A new CETP inhibitor, anacetrapib, substantially increases HDL cholesterol and apolipoprotein (Apo) AI levels with a profound increase of large HDL2 particles, but also pre-β HDL particles, decreases LDL cholesterol levels mainly due to increased catabolism of LDL particles through LDL receptors, decreases lipoprotein a (Lp(a)) levels owing to a decreased Apo (a) production and, finally, decreases modestly triglyceride (TRG) levels due to increased lipolysis and increased receptor-mediated catabolism of TRG-rich particles. Interestingly, anacetrapib may be associated with a beneficial effect on carbohydrate homeostasis. Furthermore, the Randomized EValuation of the Effects of Anacetrapib Through Lipid-modification (REVEAL) trial showed that anacetrapib administration on top of statin treatment significantly reduces cardiovascular events in patients with atherosclerotic vascular disease without any significant increase of adverse events despite its long half-life. Thus, anacetrapib could be useful for the effective management of dyslipidemias in high-risk patients that do not attain their LDL cholesterol target or are statin intolerable, while its role in patients with increased Lp(a) levels remains to be established.
Collapse
Affiliation(s)
- Theodosios D Filippatos
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Anastazia Kei
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| | - Moses S Elisaf
- Department of Internal Medicine, School of Medicine, University of Ioannina, Ioannina 45110, Greece.
| |
Collapse
|
16
|
Yang Z, Cao Y, Hao D, Yuan X, Zhang L, Zhang S. Binding profiles of cholesterol ester transfer protein with current inhibitors: a look at mechanism and drawback. J Biomol Struct Dyn 2017; 36:2567-2580. [PMID: 28777919 DOI: 10.1080/07391102.2017.1363661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zhiwei Yang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
| | - Yang Cao
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Dongxiao Hao
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Lei Zhang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Shengli Zhang
- Department of Applied Physics, School of Science, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| |
Collapse
|
17
|
Wang Z, Niimi M, Ding Q, Liu Z, Wang L, Zhang J, Xu J, Fan J. Comparative studies of three cholesteryl ester transfer proteins and their interactions with known inhibitors. PLoS One 2017; 12:e0180772. [PMID: 28767652 PMCID: PMC5540280 DOI: 10.1371/journal.pone.0180772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022] Open
Abstract
Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates bidirectional transfers of cholesteryl esters and triglycerides between low-density lipoproteins and high-density lipoproteins (HDL). Because low levels of plasma CETP are associated with increased plasma HDL-cholesterol, therapeutic inhibition of CETP activity is considered an attractive strategy for elevating plasma HDL-cholesterol, thereby hoping to reduce the risk of cardiovascular disease. Interestingly, only a few laboratory animals, such as rabbits, guinea pigs, and hamsters, have plasma CETP activity, whereas mice and rats do not. It is not known whether all CETPs in these laboratory animals are functionally similar to human CETP. In the current study, we compared plasma CETP activity and characterized the plasma lipoprotein profiles of these animals. Furthermore, we studied the three CETP molecular structures, physicochemical characteristics, and binding properties with known CETP inhibitors in silico. Our results showed that rabbits exhibited higher CETP activity than guinea pigs and hamsters, while these animals had different lipoprotein profiles. CETP inhibitors can inhibit rabbit and hamster CETP activity in a similar manner to human CETP. Analysis of CETP molecules in silico revealed that rabbit and hamster CETP showed many features that are similar to human CETP. These results provide novel insights into understanding CETP functions and molecular properties.
Collapse
Affiliation(s)
- Ziyun Wang
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Manabu Niimi
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Qianzhi Ding
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Zhenming Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ling Wang
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
- Pre-Incubator for Innovative Drugs & Medicine, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jun Xu
- School of Pharmaceutical Sciences & Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Deparment of Pathology, Xi’an Medical University, Xi’an, China
- * E-mail:
| |
Collapse
|
18
|
Andreo U, de Jong YP, Scull MA, Xiao JW, Vercauteren K, Quirk C, Mommersteeg MC, Bergaya S, Menon A, Fisher EA, Rice CM. Analysis of Hepatitis C Virus Particle Heterogeneity in Immunodeficient Human Liver Chimeric fah-/- Mice. Cell Mol Gastroenterol Hepatol 2017; 4:405-417. [PMID: 28936471 PMCID: PMC5602752 DOI: 10.1016/j.jcmgh.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 07/10/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) is a leading cause of chronic liver diseases and the most common indication for liver transplantation in the United States. HCV particles in the blood of infected patients are characterized by heterogeneous buoyant densities, likely owing to HCV association with lipoproteins. However, clinical isolates are not infectious in vitro and the relative infectivity of the particles with respect to their buoyant density therefore cannot be determined, pointing to the need for better in vivo model systems. METHODS To analyze the evolution of the buoyant density of in vivo-derived infectious HCV particles over time, we infected immunodeficient human liver chimeric fumaryl acetoacetate hydrolase-/- mice with J6/JFH1 and performed ultracentrifugation of infectious mouse sera on isopicnic iodixanol gradients. We also evaluated the impact of a high sucrose diet, which has been shown to increase very-low-density lipoprotein secretion by the liver in rodents, on lipoprotein and HCV particle characteristics. RESULTS Similar to the severe combined immunodeficiency disease/Albumin-urokinase plasminogen activator human liver chimeric mouse model, density fractionation of infectious mouse serum showed higher infectivity in the low-density fractions early after infection. However, over the course of the infection, viral particle heterogeneity increased and the overall in vitro infectivity diminished without loss of the human liver graft over time. In mice provided with a sucrose-rich diet we observed a minor shift in HCV infectivity toward lower density that correlated with a redistribution of triglycerides and cholesterol among lipoproteins. CONCLUSIONS Our work indicates that the heterogeneity in buoyant density of infectious HCV particles evolves over the course of infection and can be influenced by diet.
Collapse
Key Words
- Alb-uPA, Albumin-urokinase plasminogen activator
- CETP, cholesterol ester transfer protein
- FAH, fumaryl acetoacetate hydrolase
- FNRG, absence of fumaryl acetoacetate hydrolase on a immunodeficient NOD Rag gamma IL2 deficient mouse background
- FPLC, fast-performance liquid chromatography
- HCV
- HCV, hepatitis C virus
- HCVcc, cell culture–derived hepatitis C virus
- HDL, high-density lipoprotein
- Human Liver Chimeric Mice
- LVP, lipoviroparticle
- Lipoprotein
- Mouse Model
- NRG, nod rag γ
- NTBC, nitisinone
- PBS, phosphate-buffered saline
- SCID, severe combined immunodeficiency disease
- VLDL, very low density lipoprotein
- apo, apolipoprotein
Collapse
Affiliation(s)
- Ursula Andreo
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Correspondence Address correspondence to: Ursula Andreo, PhD, Center for the Study of Hepatitis C, The Rockefeller University, 1230 York Avenue, Box 64, New York, New York 10065. fax: (212) 327-7048.Center for the Study of Hepatitis CThe Rockefeller University1230 York AvenueBox 64New YorkNew York 10065
| | - Ype P. de Jong
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
- Division of Gastroenterology and Hepatology, Center for the Study of Hepatitis C, Weill Cornell Medical College, New York, New York
| | - Margaret A. Scull
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Jing W. Xiao
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Koen Vercauteren
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | - Corrine Quirk
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| | | | - Sonia Bergaya
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Arjun Menon
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University Langone Medical Center, New York, New York
| | - Charles M. Rice
- Center for the Study of Hepatitis C, The Rockefeller University, New York, New York
| |
Collapse
|
19
|
Johnson KW, Shameer K, Glicksberg BS, Readhead B, Sengupta PP, Björkegren JLM, Kovacic JC, Dudley JT. Enabling Precision Cardiology Through Multiscale Biology and Systems Medicine. ACTA ACUST UNITED AC 2017; 2:311-327. [PMID: 30062151 PMCID: PMC6034501 DOI: 10.1016/j.jacbts.2016.11.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/20/2022]
Abstract
The traditional paradigm of cardiovascular disease research derives insight from large-scale, broadly inclusive clinical studies of well-characterized pathologies. These insights are then put into practice according to standardized clinical guidelines. However, stagnation in the development of new cardiovascular therapies and variability in therapeutic response implies that this paradigm is insufficient for reducing the cardiovascular disease burden. In this state-of-the-art review, we examine 3 interconnected ideas we put forth as key concepts for enabling a transition to precision cardiology: 1) precision characterization of cardiovascular disease with machine learning methods; 2) the application of network models of disease to embrace disease complexity; and 3) using insights from the previous 2 ideas to enable pharmacology and polypharmacology systems for more precise drug-to-patient matching and patient-disease stratification. We conclude by exploring the challenges of applying a precision approach to cardiology, which arise from a deficit of the required resources and infrastructure, and emerging evidence for the clinical effectiveness of this nascent approach.
Collapse
Affiliation(s)
- Kipp W Johnson
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Khader Shameer
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Benjamin S Glicksberg
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ben Readhead
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Partho P Sengupta
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Medical Biochemistry and Biophysics Vascular Biology Unit, Karolinska Institutet, Stockholm, Sweden
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joel T Dudley
- Institute for Next Generation Healthcare, Mount Sinai Health System, New York, New York.,Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
20
|
Brown AL, Brown JM. Anacetrapib-driven triglyceride lowering explained: the fortuitous role of CETP in the intravascular catabolism of triglyceride-rich lipoproteins. J Lipid Res 2017; 58:1031-1032. [PMID: 28432183 DOI: 10.1194/jlr.c077131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Amanda L Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland OH 44195
| |
Collapse
|
21
|
Abstract
INTRODUCTION Cardiovascular morbidity and mortality are of increasing concern, not only to patients but also to the health care profession and service providers. The preventative benefit of treatment of dyslipidaemia is unquestioned but there is a large, so far unmet need to improve clinical outcome. There are exciting new discoveries of targets that may translate into improved clinical outcome. Areas covered: This review highlights some new pathways in cholesterol and triglyceride metabolism and examines new targets, new drugs and new molecules. The review includes the results of recent trials of relatively new drugs that have shown benefit in cardiovascular endpoint outcomes, drugs that have been licenced without endpoint trials yet available and new drugs that have not yet been licenced but have produced exciting results in animal studies and some in early phase 2 human studies. Expert opinion: The new areas that have been discovered as the cause of dyslipidaemia have opened up a host of new targets for new drugs including antisense RNA's, microRNA's and human monoclonal antibodies. The plethora of new targets and new drugs has made it an extraordinarily exciting time in the development of therapeutics to combat atherosclerosis.
Collapse
Affiliation(s)
- Gerald H Tomkin
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| | - Daphne Owens
- a Diabetes Institute of Ireland , Beacon Clinic and Trinity College , Dublin 2 , Ireland
| |
Collapse
|
22
|
Millar JS, Lassman ME, Thomas T, Ramakrishnan R, Jumes P, Dunbar RL, deGoma EM, Baer AL, Karmally W, Donovan DS, Rafeek H, Wagner JA, Holleran S, Obunike J, Liu Y, Aoujil S, Standiford T, Gutstein DE, Ginsberg HN, Rader DJ, Reyes-Soffer G. Effects of CETP inhibition with anacetrapib on metabolism of VLDL-TG and plasma apolipoproteins C-II, C-III, and E. J Lipid Res 2017; 58:1214-1220. [PMID: 28314859 PMCID: PMC5454510 DOI: 10.1194/jlr.m074880] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/16/2017] [Indexed: 01/30/2023] Open
Abstract
Cholesteryl ester transfer protein (CETP) mediates the transfer of HDL cholesteryl esters for triglyceride (TG) in VLDL/LDL. CETP inhibition, with anacetrapib, increases HDL-cholesterol, reduces LDL-cholesterol, and lowers TG levels. This study describes the mechanisms responsible for TG lowering by examining the kinetics of VLDL-TG, apoC-II, apoC-III, and apoE. Mildly hypercholesterolemic subjects were randomized to either placebo (N = 10) or atorvastatin 20 mg/qd (N = 29) for 4 weeks (period 1) followed by 8 weeks of anacetrapib, 100 mg/qd (period 2). Following each period, subjects underwent stable isotope metabolic studies to determine the fractional catabolic rates (FCRs) and production rates (PRs) of VLDL-TG and plasma apoC-II, apoC-III, and apoE. Anacetrapib reduced the VLDL-TG pool on a statin background due to an increased VLDL-TG FCR (29%; P = 0.002). Despite an increased VLDL-TG FCR following anacetrapib monotherapy (41%; P = 0.11), the VLDL-TG pool was unchanged due to an increase in the VLDL-TG PR (39%; P = 0.014). apoC-II, apoC-III, and apoE pool sizes increased following anacetrapib; however, the mechanisms responsible for these changes differed by treatment group. Anacetrapib increased the VLDL-TG FCR by enhancing the lipolytic potential of VLDL, which lowered the VLDL-TG pool on atorvastatin background. There was no change in the VLDL-TG pool in subjects treated with anacetrapib monotherapy due to an accompanying increase in the VLDL-TG PR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Joseph Obunike
- New York City College of Technology, CUNY, Brooklyn, NY 11201
| | - Yang Liu
- Merck & Co., Inc., Kenilworth, NJ 07033
| | | | | | | | | | | | | |
Collapse
|
23
|
Wang LR, Hegele RA. Genetics for the Identification of Lipid Targets Beyond PCSK9. Can J Cardiol 2017; 33:334-342. [DOI: 10.1016/j.cjca.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 12/21/2022] Open
|
24
|
He H, Ghosh S, Yang H. Nanomedicines for dysfunctional macrophage-associated diseases. J Control Release 2017; 247:106-126. [PMID: 28057522 PMCID: PMC5360184 DOI: 10.1016/j.jconrel.2016.12.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Abstract
Macrophages play vital functions in host inflammatory reaction, tissue repair, homeostasis and immunity. Dysfunctional macrophages have significant pathophysiological impacts on diseases such as cancer, inflammatory diseases (rheumatoid arthritis and inflammatory bowel disease), metabolic diseases (atherosclerosis, diabetes and obesity) and major infections like human immunodeficiency virus infection. In view of this common etiology in these diseases, targeting the recruitment, activation and regulation of dysfunctional macrophages represents a promising therapeutic strategy. With the advancement of nanotechnology, development of nanomedicines to efficiently target dysfunctional macrophages can strengthen the effectiveness of therapeutics and improve clinical outcomes. This review discusses the specific roles of dysfunctional macrophages in various diseases and summarizes the latest advances in nanomedicine-based therapeutics and theranostics for treating diseases associated with dysfunctional macrophages.
Collapse
Affiliation(s)
- Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298, United States.
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23219, United States; Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, United States.
| |
Collapse
|
25
|
Hepatitis C virus and atherosclerosis: A legacy after virologic cure? Clin Res Hepatol Gastroenterol 2017; 41:25-30. [PMID: 27840032 DOI: 10.1016/j.clinre.2016.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a major pathogen with approximately 3% of the world's population (over 170 million) infected. Epidemiological studies have shown HCV is associated with an increased risk of cardiovascular and cerebrovascular mortality as well as peripheral arterial disease. This is despite HCV inducing an ostensibly favourable lipid profile with accompanying low classical risk score for atherosclerosis (AS). We discuss possible factors involved in the aetiopathogenesis of atherosclerosis in chronic HCV and hypothesise that an important mechanism underlying the development of AS is the presence of circulating low-density immune complexes that induce an inflammatory response. We suggest that HCV particles may be inducing an antibody response to lipoproteins present in the lipoviral particles and sub-viral particles - a concept similar to the more general 'autoantibody' response to modified LDL. After virologic cure some AS risk factors will recede but an increase in serum cholesterol could result in progression of early atherosclerotic lesions, leaving a legacy from persistent HCV infection that has clinical and therapeutic implications.
Collapse
|
26
|
Wacker BK, Dronadula N, Zhang J, Dichek DA. Local Vascular Gene Therapy With Apolipoprotein A-I to Promote Regression of Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 37:316-327. [PMID: 27932352 DOI: 10.1161/atvbaha.116.308258] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/28/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Gene therapy, delivered directly to the blood vessel wall, could potentially prevent atherosclerotic lesion growth and promote atherosclerosis regression. Previously, we reported that a helper-dependent adenoviral (HDAd) vector expressing apolipoprotein A-I (apoA-I) in carotid endothelium of fat-fed rabbits reduced early (4 weeks) atherosclerotic lesion growth. Here, we tested whether the same HDAd-delivered to the existing carotid atherosclerotic lesions-could promote regression. APPROACH AND RESULTS Rabbits (n=26) were fed a high-fat diet for 7 months, then treated with bilateral carotid gene transfer. One carotid was infused with an HDAd expressing apoA-I (HDAdApoAI) and the other with a control nonexpressing HDAd (HDAdNull). The side with HDAdApoAI was randomized. Rabbits were then switched to regular chow, lowering their plasma cholesterols by over 70%. ApoA-I mRNA and protein were detected in HDAdApoAI-transduced arteries. After 7 weeks of gene therapy, compared with HDAdNull-treated arteries in the same rabbits, HDAdApoAI-treated arteries had significantly less vascular cell adhesion molecule-1 expression (28%; P=0.04) along with modest but statistically insignificant trends toward decreased intimal lesion volume, lipid and macrophage content, and intercellular adhesion molecule-1 expression (9%-21%; P=0.1-0.4). Post hoc subgroup analysis of rabbits with small-to-moderate-sized lesions (n=20) showed that HDAdApoAI caused large reductions in lesion volume, lipid content, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 expression (30%-50%; P≤0.04 for all). Macrophage content was reduced by 30% (P=0.06). There was a significant interaction (P=0.02) between lesion size and treatment efficacy. CONCLUSIONS Even when administered on a background of aggressive lowering of plasma cholesterol, local HDAdApoAI vascular gene therapy may promote rapid regression of small-to-moderate-sized atherosclerotic lesions.
Collapse
Affiliation(s)
- Bradley K Wacker
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Nagadhara Dronadula
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Jingwan Zhang
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - David A Dichek
- From the Department of Medicine, University of Washington School of Medicine, Seattle.
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW We provide an overview of orally administered lipid-lowering therapies under development. RECENT FINDINGS Recent data support statins for intermediate risk primary prevention, and ezetimibe for high-risk secondary prevention. Novel agents in development include bempedoic acid and gemcabene, and work continues on one remaining cholesteryl ester transfer protein inhibitor, anacetrapib, to determine whether this class can reduce cardiovascular risk. Selective peroxisome proliferator-activated receptor modulators such as K-877 are under study to determine whether they have an advantage over older fibrates. Diacylglycerol transferase inhibitors such as pradigastat appear to have potent triglyceride-lowering effects, even for patients with familial chylomicronemia syndrome. Finally, novel ω-3 preparations are available with significant triglyceride lowering, although their role in therapy remains unclear. SUMMARY Statins will remain the backbone of lipid-lowering therapy, although several novel oral agents are promising. The common theme across drugs in development is the demonstration of good lipid-lowering effect, although lacking cardiovascular outcomes data, which will likely be necessary before any of them, can be recommended or approved for widespread use.
Collapse
Affiliation(s)
- Steven E Gryn
- Department of Medicine, Schulich School of Medicine and Dentistry, London Health Sciences Centre-University Hospital, Western University, London, Ontario, Canada
| | | |
Collapse
|
28
|
Kaul S, Xu H, Zabalawi M, Maruko E, Fulp BE, Bluemn T, Brzoza-Lewis KL, Gerelus M, Weerasekera R, Kallinger R, James R, Zhang YS, Thomas MJ, Sorci-Thomas MG. Lipid-Free Apolipoprotein A-I Reduces Progression of Atherosclerosis by Mobilizing Microdomain Cholesterol and Attenuating the Number of CD131 Expressing Cells: Monitoring Cholesterol Homeostasis Using the Cellular Ester to Total Cholesterol Ratio. J Am Heart Assoc 2016; 5:JAHA.116.004401. [PMID: 27821400 PMCID: PMC5210328 DOI: 10.1161/jaha.116.004401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disorder whose development is inversely correlated with high-density lipoprotein concentration. Current therapies involve pharmaceuticals that significantly elevate plasma high-density lipoprotein cholesterol concentrations. Our studies were conducted to investigate the effects of low-dose lipid-free apolipoprotein A-I (apoA-I) on chronic inflammation. The aims of these studies were to determine how subcutaneously injected lipid-free apoA-I reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without sustained elevations in plasma high-density lipoprotein cholesterol concentrations. METHODS AND RESULTS Ldlr-/- and Ldlr-/- apoA-I-/- mice were fed a Western diet for a total of 12 weeks. After 6 weeks, a subset of mice from each group received subcutaneous injections of 200 μg of lipid-free human apoA-I 3 times a week, while the other subset received 200 μg of albumin, as a control. Mice treated with lipid-free apoA-I showed a decrease in cholesterol deposition and immune cell retention in the aortic root compared with albumin-treated mice, regardless of genotype. This reduction in atherosclerosis appeared to be directly related to a decrease in the number of CD131 expressing cells and the esterified cholesterol to total cholesterol content in several immune cell compartments. In addition, apoA-I treatment altered microdomain cholesterol composition that shifted CD131, the common β subunit of the interleukin 3 receptor, from lipid raft to nonraft fractions of the plasma membrane. CONCLUSIONS ApoA-I treatment reduced lipid and immune cell accumulation within the aortic root by systemically reducing microdomain cholesterol content in immune cells. These data suggest that lipid-free apoA-I mediates beneficial effects through attenuation of immune cell lipid raft cholesterol content, which affects numerous types of signal transduction pathways that rely on microdomain integrity for assembly and activation.
Collapse
Affiliation(s)
- Sushma Kaul
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Manal Zabalawi
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elisa Maruko
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian E Fulp
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Theresa Bluemn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Kristina L Brzoza-Lewis
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mark Gerelus
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Rachel Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Roland James
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Yi Sherry Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
29
|
Baumgartner C, Brandl J, Münch G, Ungerer M. Rabbit models to study atherosclerosis and its complications – Transgenic vascular protein expression in vivo. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:131-41. [DOI: 10.1016/j.pbiomolbio.2016.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/01/2016] [Indexed: 12/30/2022]
|
30
|
Abstract
PURPOSE OF REVIEW Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. RECENT FINDINGS Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1, APOC3, LDLR, APOA5, and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. SUMMARY Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.
Collapse
Affiliation(s)
- Jacqueline S. Dron
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A - 1151 Richmond Street North, London, ON N6A 5B7 Canada
| | - Robert A. Hegele
- Departments of Medicine and Biochemistry, and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, 4288A - 1151 Richmond Street North, London, ON N6A 5B7 Canada
| |
Collapse
|
31
|
Barter PJ, Rye KA. Scavenger receptor class B1 — a target to reduce CHD risk? Nat Rev Cardiol 2016; 13:249-50. [DOI: 10.1038/nrcardio.2016.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|