1
|
Granata R, Leone S, Zhang X, Gesmundo I, Steenblock C, Cai R, Sha W, Ghigo E, Hare JM, Bornstein SR, Schally AV. Growth hormone-releasing hormone and its analogues in health and disease. Nat Rev Endocrinol 2025; 21:180-195. [PMID: 39537825 DOI: 10.1038/s41574-024-01052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Growth hormone-releasing hormone (GHRH) and its ability to stimulate the production and release of growth hormone from the pituitary were discovered more than four decades ago. Since then, this hormone has been studied extensively and research into its functions is still ongoing. GHRH has multifaceted roles beyond the originally identified functions that encompass a variety of direct extrapituitary effects. In this Review, we illustrate the different biological activities of GHRH, covering the effects of GHRH agonists and antagonists in physiological and pathological contexts, along with the underlying mechanisms. GHRH and GHRH analogues have been implicated in cell growth, wound healing, cell death, inflammation, immune functions, mood disorders, feeding behaviour, neuroprotection, diabetes mellitus and obesity, as well as cardiovascular, lung and neurodegenerative diseases and some cancers. The positive effects observed in preclinical models in vitro and in vivo strongly support the potential use of GHRH agonists and antagonists as clinical therapeutics.
Collapse
Affiliation(s)
- Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy.
| | - Sheila Leone
- Department of Pharmacy, Gabriele d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
| | - Iacopo Gesmundo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Renzhi Cai
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Veterans Affairs Medical Center, Endocrine, Polypeptide and Cancer Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine and Sylvester Comprehensive Cancer Center., Miami, FL, USA
| |
Collapse
|
2
|
Dulce RA, Hatzistergos KE, Kanashiro-Takeuchi RM, Takeuchi LM, Balkan W, Hare JM. Growth hormone-releasing hormone signaling and manifestations within the cardiovascular system. Rev Endocr Metab Disord 2025:10.1007/s11154-024-09939-0. [PMID: 39883351 DOI: 10.1007/s11154-024-09939-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/23/2024] [Indexed: 01/31/2025]
Abstract
Growth hormone (GH)-releasing hormone (GHRH), a hypothalamic peptide initially characterized for its role in GH regulation, has gained increasing attention due to its GH-independent action on peripheral physiology, including that of the cardiovascular system. While its effects on the peripheral vasculature are still under investigation, GHRH and synthetic agonists have exhibited remarkable receptor-mediated cardioprotective properties in preclinical models. GHRH and its analogs enhance myocardial function by improving contractility, reducing oxidative stress, inflammation, and offsetting pathological remodeling. Studies performed in small and large animal models have demonstrated the efficacy of these compounds in diverse cardiomyopathies, suggesting their potential as promising therapeutic agents. However, the clinical translation of GHRH synthetic analogs still faces challenges related to the route of administration and potential side effects mainly associated with activation of the GH/IGF-I axis. Despite these hurdles, the compelling evidence supporting their role in cardiac repair makes GHRH analogs attractive candidates for clinical testing in the treatment of various cardiac diseases.
Collapse
Affiliation(s)
- Raul A Dulce
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
| | - Konstantinos E Hatzistergos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Rosemeire M Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lauro M Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 N.W. 10th Avenue, Room 908, Miami, FL, 33136, USA.
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Schally AV, Cai R, Zhang X, Sha W, Wangpaichitr M. The development of growth hormone-releasing hormone analogs: Therapeutic advances in cancer, regenerative medicine, and metabolic disorders. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09929-2. [PMID: 39592529 DOI: 10.1007/s11154-024-09929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Growth Hormone-Releasing Hormone (GHRH) and its analogs have gained significant attention for their therapeutic potential across various domains, including oncology, regenerative medicine, and metabolic disorders. Originally recognized for its role in regulating growth hormone (GH) secretion, GHRH has since been discovered to exert broader physiological effects beyond the pituitary gland, with GHRH receptors identified in multiple extrahypothalamic tissues, including tumor cells. This review explores the development of both GHRH agonists and antagonists, focusing on their mechanisms of action, therapeutic applications, and future potential. GHRH agonists have shown promise in promoting tissue regeneration, improving cardiac function, and enhancing islet survival in diabetes. Meanwhile, GHRH antagonists, particularly those in the MIA and AVR series, demonstrate potent antitumor activity by inhibiting cancer cell proliferation and downregulating growth factor pathways, while also exhibiting anti-inflammatory properties. Preclinical studies in models of lung, prostate, breast, and gastrointestinal cancers indicate that GHRH analogs could offer a novel therapeutic approach with minimal toxicity. Additionally, GHRH antagonists are being investigated for their potential in treating neurodegenerative diseases and inflammatory conditions. This review highlights the versatility of GHRH analogs as a promising class of therapeutic agents, poised to impact multiple fields of medicine.
Collapse
Affiliation(s)
- Andrew V Schally
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- South FL VA Foundation for Research and Education, Miami, FL, USA
| | - Renzhi Cai
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
| | - Wei Sha
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Medhi Wangpaichitr
- Miami VA Healthcare System, Endocrine and Polypeptide Institute, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.
- Department of Surgery, Division of Thoracic Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- South FL VA Foundation for Research and Education, Miami, FL, USA.
| |
Collapse
|
4
|
Yu H, Peng H. Effects of GHRH and its analogues on the Vascular System. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09932-7. [PMID: 39570567 DOI: 10.1007/s11154-024-09932-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is a crucial endocrine hormone that exerts its biological effects by binding to specific receptors on the cell surface, known as GHRH receptors (GHRH-R). This binding activates downstream signaling pathways. In addition to promoting growth hormone secretion by the pituitary gland, GHRH also functions to maintain multisystem homeostasis by interacting with peripheral tissues that express GHRH-R. Due to the multiple roles of GHRH in body development and tissue repair, a variety of GHRH analogue peptides have been synthesized. Based on their effects on GHRH-R, these GHRH analogues can be classified as GHRH-R agonists and antagonists. Recently, the interaction of GHRH and its analogues with blood vessels, such as promoting angiogenesis and inhibiting vascular calcification (VC), has gained significant attention. This article reviews the effects of GHRH and its analogues on blood vessels.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China.
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| | - Huan Peng
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
- Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| |
Collapse
|
5
|
Cheng L, Zheng Q, Qiu K, Elmer Ker DF, Chen X, Yin Z. Mitochondrial destabilization in tendinopathy and potential therapeutic strategies. J Orthop Translat 2024; 49:49-61. [PMID: 39430132 PMCID: PMC11488423 DOI: 10.1016/j.jot.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 10/22/2024] Open
Abstract
Tendinopathy is a prevalent aging-related disorder characterized by pain, swelling, and impaired function, often resulting from micro-scarring and degeneration caused by overuse or trauma. Current interventions for tendinopathy have limited efficacy, highlighting the need for innovative therapies. Mitochondria play an underappreciated and yet crucial role in tenocytes function, including energy production, redox homeostasis, autophagy, and calcium regulation. Abnormalities in mitochondrial function may lead to cellular senescence. Within this context, this review provides an overview of the physiological functions of mitochondria in tendons and presents current insights into mitochondrial dysfunction in tendinopathy. It also proposes potential therapeutic strategies that focus on targeting mitochondrial health in tenocytes. These strategies include: (1) utilizing reactive oxygen species (ROS) scavengers to mitigate the detrimental effects of aberrant mitochondria, (2) employing mitochondria-protecting agents to reduce the production of dysfunctional mitochondria, and (3) supplementing with exogenous normal mitochondria. In conclusion, mitochondria-targeted therapies hold great promise for restoring mitochondrial function and improving outcomes in patients with tendinopathy. The translational potential of this article: Tendinopathy is challenging to treat effectively due to its poorly understood pathogenesis. This review thoroughly analyzes the role of mitochondria in tenocytes and proposes potential strategies for the mitochondrial treatment of tendinopathy. These findings establish a theoretical basis for future research and the clinical translation of mitochondrial therapy for tendinopathy.
Collapse
Affiliation(s)
- Linxiang Cheng
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Qiangqiang Zheng
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Kaijie Qiu
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Xiao Chen
- Department of Sports Medicine & Orthopedic Surgery, The Second Affiliated Hospital, And Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| | - Zi Yin
- Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, China
- State Key Laboratory of Transvascular Implantation Devices, Hangzhou, 310009, China
| |
Collapse
|
6
|
Liu Y, Fu R, Jia H, Yang K, Ren F, Zhou MS. GHRH and its analogues in central nervous system diseases. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09920-x. [PMID: 39470866 DOI: 10.1007/s11154-024-09920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Growth hormone-releasing hormone (GHRH) is primarily produced by the hypothalamus and stimulates the release of growth hormone (GH) in the anterior pituitary gland, which subsequently regulates the production of hepatic insulin-like growth factor-1 (IGF-1). GH and IGF-1 have potent effects on promoting cell proliferation, inhibiting cell apoptosis, as well as regulating cell metabolism. In central nerve system (CNS), GHRH/GH/IGF-1 promote brain development and growth, stimulate neuronal proliferation, and regulate neurotransmitter release, thereby participating in the regulation of various CNS physiological activities. In addition to hypothalamus-pituitary gland, GHRH and GHRH receptor (GHRH-R) are also expressed in other brain cells or tissues, such as endogenous neural stem cells (NSCs) and tumor cells. Alternations in GHRH/GH/IGF-1 axis are associated with various CNS diseases, for example, Alzheimer's disease, amyotrophic lateral sclerosis and emotional disorders manifest GHRH, GH or IGF-1 deficiency, and GH or IGF-1 supplementation exerts beneficial therapeutic effects on these diseases. CNS tumors, such as glioma, can express GHRH and GHRH-R, and activating this signaling pathway promotes tumor cell growth. The synthesized GHRH antagonists have shown to inhibit glioma cell growth and may hold promising as an adjuvant therapy for treating glioma. In addition, we have shown that GHRH agonist MR-409 can improve neurological sequelae after ischemic stroke by activating extrapituitary GHRH-R signaling and promoting endogenous NSCs-derived neuronal regeneration. This article reviews the involvement of GHRH/GH/IGF-1 in CNS diseases, and potential roles of GHRH agonists and antagonists in treating CNS diseases.
Collapse
Affiliation(s)
- Yueyang Liu
- Department of Pharmacology, Shenyang Medical College, Shenyang, 110034, China
| | - Rong Fu
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Hui Jia
- School of Traditional Chinese Medicine, Shenyang Medical College, Shenyang, 110034, China
| | - Kefan Yang
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, 110034, China.
| | - Ming-Sheng Zhou
- Science and Experiment Research Center & Shenyang Key Laboratory of Vascular Biology, Shenyang Medical College, Shenyang, 110034, China.
- Department of Physiology, Shenyang Medical College, Shenyang, 110034, China.
| |
Collapse
|
7
|
Siejka A, Lawnicka H, Fakir S, Barabutis N. Growth hormone - releasing hormone in the immune system. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09913-w. [PMID: 39370499 PMCID: PMC11973240 DOI: 10.1007/s11154-024-09913-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
GHRH is a neuropeptide associated with a diverse variety of activities in human physiology and immune responses. The present study reviews the latest information on the involvement of GHRH in the immune system and inflammation, suggesting that GHRH antagonists may deliver a new therapeutic possibility in disorders related to immune system dysfunction and inflammation.
Collapse
Affiliation(s)
- Agnieszka Siejka
- Department of Clinical Endocrinology, Medical University of Lodz, Lodz, Poland.
| | - Hanna Lawnicka
- Department of Immunoendocrinology, Medical University of Lodz, Lodz, Poland
| | - Saikat Fakir
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, 71201, USA
| |
Collapse
|
8
|
Webster KA. Translational Relevance of Advanced Age and Atherosclerosis in Preclinical Trials of Biotherapies for Peripheral Artery Disease. Genes (Basel) 2024; 15:135. [PMID: 38275616 PMCID: PMC10815340 DOI: 10.3390/genes15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.
Collapse
Affiliation(s)
- Keith A. Webster
- Vascular Biology Institute, University of Miami, Miami, FL 33146, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
9
|
Scavenging of reactive oxygen species can adjust the differentiation of tendon stem cells and progenitor cells and prevent ectopic calcification in tendinopathy. Acta Biomater 2022; 152:440-452. [PMID: 36108965 DOI: 10.1016/j.actbio.2022.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022]
Abstract
Tendinopathy is a common disorder that leads to pain and impaired quality of life. Recent studies revealed that osteogenic differentiation of tendon stem/progenitor cells (TSPCs) played an important role in the pathogenesis of tendon calcification and tendinopathy. In this study, we found that the growth hormone-releasing hormone agonist (GA) can prevent matrix degradation and osteogenic differentiation in TSPCs. As oxidative stress is a key factor in the osteogenic differentiation of TSPCs, we used bovine serum albumin/heparin nanoparticles (BHNPs), which have biocompatibility and drug loading capacity, to scavenge reactive oxygen species (ROS) and achieve sustained release of GA at the site of inflammation. The newly developed BHNPs@GA had a synergetic effect on reducing ROS production in TSPCs. In addition, BHNPs@GA effectively inhibited tendon calcification and promoted collagen formation in a rat model of tendinopathy. Focusing on the ROS underlying the differentiation and dedifferentiation of TSPCs, this work demonstrated that sustained release of GA targeting ROS and ectopic ossification is a practical therapeutic strategy for treating tendinopathy. STATEMENT OF SIGNIFICANCE: Osteogenic differentiation of tendon stem/progenitor cells (TSPCs) plays an important role in the pathogenesis of ectopic calcification in tendinopathy. In this study, we found that growth hormone-releasing hormone agonist (GA) can reduce reactive oxygen species (ROS) production and adjust TSPCs differentiation. Bovine serum albumin/heparin nanoparticles (BHNPs) were developed to encapsulate GA and achieve sustained release of GA at the site of inflammation. The developed compound, BHNPs@GA, with a synergistic effect of inhibiting ROS and thus, can effectively adjust TSPCs differentiation, inhibit tendon calcification, and promote collagen formation in tendinopathy. This study highlighted the role of ROS underlying the differentiation and dedifferentiation of TSPCs in tendinopathy, and findings may help to identify new therapeutic targets and develop novel strategy for treating tendinopathy.
Collapse
|
10
|
LI Z, LI Y. Effect of growth hormone releasing hormone on chondrocytes of osteoarthritis. Korean J Intern Med 2022; 37:222-229. [PMID: 31875669 PMCID: PMC8747918 DOI: 10.3904/kjim.2018.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/07/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND/AIMS To evaluate the effect and possible mechanism of growth hormone releasing hormone (GHRH) on chondrocytes of osteoarthritis (OA). METHODS Articular chondrocytes were cultured and the expression of GHRH receptor in chondrocytes was detected. Then recombinant adenovirus GHRH (Ad-GHRH) was transfected to one group of chondrocytes. The expression of collagen type II, matrix metalloproteinase 13 (MMP-13) and signal transducer and activator of transcription 3 (STAT3) in each experimental group was determined by Western blot. RESULTS The GHRH receptor was expressed in chondrocytes, and this provided a basis for further study of the role of GHRH in chondrocytes. Cell proliferation of the Ad-GHRH group was significantly higher than that of the OA group by CCK-8 assay. Compared with the OA-group, the protein expression of MMP‑13 was decreased in the Ad-GHRH group. Compared with the OA-group, the protein expression of collagen type II, phosphorylated STAT3 (P-STAT3) were increased in the Ad-GHRH group. CONCLUSION Our results show that the GHRH receptor is expressed in chondrocytes. GHRH can promote the proliferation of chondrocytes and the synthesis of type II collagen, and increase the extracellular matrix, which is achieved by phosphorylated STAT3 protein.
Collapse
Affiliation(s)
- Zhuoran LI
- Dalian Medical University, Dalian, China
| | - Yao LI
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
- Correspondence to Yao Li, Ph.D. Department of Physiology, Jinzhou Medical University, No 40, SongPo Street, Jinzhou 121000, China Tel: +86-135-9129-8092 Fax: +86-135-9129-8092 E-mail:
| |
Collapse
|
11
|
Agonistic analog of growth hormone-releasing hormone promotes neurofunctional recovery and neural regeneration in ischemic stroke. Proc Natl Acad Sci U S A 2021; 118:2109600118. [PMID: 34782465 DOI: 10.1073/pnas.2109600118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Ischemic stroke can induce neurogenesis. However, most stroke-generated newborn neurons cannot survive. It has been shown that MR-409, a potent synthetic agonistic analog of growth hormone-releasing hormone (GHRH), can protect against some life-threatening pathological conditions by promoting cell proliferation and survival. The present study shows that long-term treatment with MR-409 (5 or 10 μg/mouse/d) by subcutaneous (s.c.) injection significantly reduces the mortality, ischemic insult, and hippocampal atrophy, and improves neurological functional recovery in mice operated on for transient middle cerebral artery occlusion (tMCAO). Besides, MR-409 can stimulate endogenous neurogenesis and improve the tMCAO-induced loss of neuroplasticity. MR-409 also enhances the proliferation and inhibits apoptosis of neural stem cells treated with oxygen and glucose deprivation-reperfusion. The neuroprotective effects of MR-409 are closely related to the activation of AKT/CREB and BDNF/TrkB pathways. In conclusion, the present study demonstrates that GHRH agonist MR-409 has remarkable neuroprotective effects through enhancing endogenous neurogenesis in cerebral ischemic mice.
Collapse
|
12
|
Zhang C, Lin Y, Zhang K, Meng L, Hu X, Chen J, Zhu W, Yu H. GDF11 enhances therapeutic functions of mesenchymal stem cells for angiogenesis. Stem Cell Res Ther 2021; 12:456. [PMID: 34384486 PMCID: PMC8359078 DOI: 10.1186/s13287-021-02519-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/18/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The efficacy of stem cell therapy for ischemia repair has been limited by low cell retention rate. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family, which has multiple effects on development, physiology and diseases. The objective of the study is to investigate whether GDF11 could affect the efficacy of stem cell transplantation. METHODS We explored the effects of GDF11 on proangiogenic activities of mesenchymal stem cells (MSCs) for angiogenic therapy in vitro and in vivo. RESULTS Mouse bone marrow-derived MSCs were transduced with lentiviral vector to overexpress GDF11 (MSCGDF11). After exposed to hypoxia and serum deprivation for 48 h, MSCGDF11 were significantly better in viability than control MSCs (MSCvector). MSCGDF11 also had higher mobility and better angiogenic paracrine effects. The cytokine antibody array showed more angiogenic cytokines in the conditioned medium of MSCGDF11 than that of MSCvector, such as epidermal growth factor, platelet-derived growth factor-BB, placenta growth factor. When MSCs (1 × 106 cells in 50 μl) were injected into ischemic hindlimb of mice after femoral artery ligation, MSCGDF11 had higher retention rate in the muscle than control MSCs. Injection of MSCGDF11 resulted in better blood reperfusion and limb salvage than that of control MSCs after 14 days. Significantly more CD31+ endothelial cells and α-SMA + smooth muscle cells were detected in the ischemic muscles that received MSCGDF11. The effects of GDF11 were through activating TGF-β receptor and PI3K/Akt signaling pathway. CONCLUSION Our study demonstrated an essential role of GDF11 in promoting therapeutic functions of MSCs for ischemic diseases by enhancing MSC viability, mobility, and angiogenic paracrine functions.
Collapse
Affiliation(s)
- Chi Zhang
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Yinuo Lin
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Ke Zhang
- grid.13402.340000 0004 1759 700XDepartment of Obstetrics, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, 310006 Zhejiang Province China
| | - Luyang Meng
- grid.440280.aDepartment of Vascular Surgery, Hangzhou Third People’s Hospital, Hangzhou, 310009 Zhejiang Province China
| | - Xinyang Hu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Jinghai Chen
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Wei Zhu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| | - Hong Yu
- grid.13402.340000 0004 1759 700XDepartment of CardiologySecond Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China ,grid.13402.340000 0004 1759 700XCardiovascular Key Laboratory of Zhejiang Province, 88 Jiefang Rd, Hangzhou, 310009 Zhejiang Province People’s Republic of China
| |
Collapse
|
13
|
Xiang P, Jing W, Lin Y, Liu Q, Shen J, Hu X, Chen J, Cai R, Hare JM, Zhu W, Schally AV, Yu H. Improvement of cardiac and systemic function in old mice by agonist of growth hormone-releasing hormone. J Cell Physiol 2021; 236:8197-8207. [PMID: 34224586 DOI: 10.1002/jcp.30490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/01/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
Age-related diseases such as cardiovascular diseases portend disability, increase health expenditures, and cause late-life mortality. Synthetic agonists of growth hormone-releasing hormone (GHRH) exhibit several favorable effects on heart function and remodeling. Here we assessed whether GHRH agonist MR409 can modulate heart function and systemic parameters in old mice. Starting at the age of 15 months, mice were injected subcutaneously with MR409 (10 µg/day, n = 8) or vehicle (n = 7) daily for 6 months. Mice treated with MR409 showed improvements in exercise activity, cardiac function, survival rate, immune function, and hair growth in comparison with the controls. More stem cell colonies were grown out of the bone marrow recovered from the MR409-treated mice. Mitochondrial functions of cardiomyocytes (CMs) from the MR409-treated mice were also significantly improved with more mitochondrial fusion. Fewer β-gal positive cells were observed in endothelial cells after 10 passages with MR409. In Doxorubicin-treated H9C2 cardiomyocytes, cell senescence marker p21 and reactive oxygen species were significantly reduced after cultured with MR409. MR409 also improved cellular ATP production and oxygen consumption rate in Doxorubicin-treated H9C2 cells. Mitochondrial protein OPA1 long isoform was significantly increased after treatment with MR409. The effects of MR409 were mediated by GHRH receptor and protein kinase A (PKA). In short, GHRH agonist MR409 reversed the aging-associated changes with respect of heart function, mobility, hair growth, cellular energy production, and senescence biomarkers. The improvement of heart function may be related to a better mitochondrial functions through GHRH receptor/cAMP/PKA/OPA1 signaling pathway and relieved cardiac inflammation.
Collapse
Affiliation(s)
- Pingping Xiang
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wangwei Jing
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinuo Lin
- Department of Cardiology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Liu
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jian Shen
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyang Hu
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghai Chen
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Renzhi Cai
- Departments of Medicine and Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, USA
| | - Joshua M Hare
- Departments of Medicine and Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Wei Zhu
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Andrew V Schally
- Departments of Medicine and Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA.,Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, Florida, USA
| | - Hong Yu
- Cardiovascular Key Laboratory of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Zhang LL, Xiong YY, Yang YJ. The Vital Roles of Mesenchymal Stem Cells and the Derived Extracellular Vesicles in Promoting Angiogenesis After Acute Myocardial Infarction. Stem Cells Dev 2021; 30:561-577. [PMID: 33752473 DOI: 10.1089/scd.2021.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is an event of ischemic myocardial necrosis caused by acute coronary artery occlusion, which ultimately leads to a large loss of cardiomyocytes. The prerequisite of salvaging ischemic myocardium and improving cardiac function of patients is to provide adequate blood perfusion in the infarcted area. Apart from reperfusion therapy, it is also urgent and imperative to promote angiogenesis. Recently, growing evidence based on promising preclinical data indicates that mesenchymal stem cells (MSCs) can provide therapeutic effects on AMI by promoting angiogenesis. Extracellular vesicles (EVs), membrane-encapsulated vesicles with complex cargoes, including proteins, nucleic acids, and lipids, can be derived from MSCs and represent part of their functions, so EVs also possess the ability to promote angiogenesis. However, poor control of the survival and localization of MSCs hindered clinical transformation and made scientists start looking for new approaches based on MSCs. Identifying the role of MSCs and their derived EVs in promoting angiogenesis can provide a theoretical basis for improved MSC-based methods, and ultimately promote the clinical treatment of AMI. This review highlights potential proangiogenic mechanisms of transplanted MSCs and the derived EVs after AMI and summarizes the latest literature concerning the novel methods based on MSCs to maximize the angiogenesis capability.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Carresi C, Scicchitano M, Scarano F, Macrì R, Bosco F, Nucera S, Ruga S, Zito MC, Mollace R, Guarnieri L, Coppoletta AR, Gliozzi M, Musolino V, Maiuolo J, Palma E, Mollace V. The Potential Properties of Natural Compounds in Cardiac Stem Cell Activation: Their Role in Myocardial Regeneration. Nutrients 2021; 13:275. [PMID: 33477916 PMCID: PMC7833367 DOI: 10.3390/nu13010275] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs), which include congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, and many other cardiac disorders, cause about 30% of deaths globally; representing one of the main health problems worldwide. Among CVDs, ischemic heart diseases (IHDs) are one of the major causes of morbidity and mortality in the world. The onset of IHDs is essentially due to an unbalance between the metabolic demands of the myocardium and its supply of oxygen and nutrients, coupled with a low regenerative capacity of the heart, which leads to great cardiomyocyte (CM) loss; promoting heart failure (HF) and myocardial infarction (MI). To date, the first strategy recommended to avoid IHDs is prevention in order to reduce the underlying risk factors. In the management of IHDs, traditional therapeutic options are widely used to improve symptoms, attenuate adverse cardiac remodeling, and reduce early mortality rate. However, there are no available treatments that aim to improve cardiac performance by replacing the irreversible damaged cardiomyocytes (CMs). Currently, heart transplantation is the only treatment being carried out for irreversibly damaged CMs. Hence, the discovery of new therapeutic options seems to be necessary. Interestingly, recent experimental evidence suggests that regenerative stem cell medicine could be a useful therapeutic approach to counteract cardiac damage and promote tissue regeneration. To this end, researchers are tasked with answering one main question: how can myocardial regeneration be stimulated? In this regard, natural compounds from plant extracts seem to play a particularly promising role. The present review will summarize the recent advances in our knowledge of stem cell therapy in the management of CVDs; focusing on the main properties and potential mechanisms of natural compounds in stimulating and activating stem cells for myocardial regeneration.
Collapse
Affiliation(s)
- Cristina Carresi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Miriam Scicchitano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Federica Scarano
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Roberta Macrì
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Francesca Bosco
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Saverio Nucera
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Stefano Ruga
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Maria Caterina Zito
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Rocco Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Lorenza Guarnieri
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Anna Rita Coppoletta
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Micaela Gliozzi
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Vincenzo Musolino
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Jessica Maiuolo
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
| | - Ernesto Palma
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety & Health IRC-FSH, University Magna Graecia, 88100 Catanzaro, Italy; (F.S.); (R.M.); (F.B.); (S.N.); (S.R.); (M.C.Z.); (R.M.); (L.G.); (A.R.C.); (M.G.); (V.M.); (J.M.); (E.P.); (V.M.)
- Nutramed S.c.a.r.l., Complesso Ninì Barbieri, Roccelletta di Borgia, 88100 Catanzaro, Italy
| |
Collapse
|
16
|
Cell-modified bioprinted microspheres for vascular regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110896. [PMID: 32409053 DOI: 10.1016/j.msec.2020.110896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 03/21/2020] [Accepted: 03/21/2020] [Indexed: 01/28/2023]
Abstract
Cell therapy is a promising strategy in which living cells or cellular materials are delivered to treat a variety of diseases. Here, we developed an electrospray bioprinting method to rapidly generate cell-laden hydrogel microspheres, which limit the migration of the captured cells and provide an immunologically privileged microenvironment for cell survival in vivo. Currently, therapeutic angiogenesis aims to induce collateral vessel formation after limb ischemia. However, the clinical application of gene and cell therapy has been impeded by concerns regarding its inefficacy, as well as the associated risk of immunogenicity and oncogenicity. In this study, hydrogel microspheres encapsulating VEGF-overexpressing HEK293T cells showed good safety via subcutaneously injecting into male C57BL/6 mice. In addition, these cell-modified microspheres effectively promoted angiogenesis in a mouse hind-limb ischemia model. Therefore, we demonstrated the great therapeutic potential of this approach to induce angiogenesis in limb ischemia, indicating that bioprinting has a bright future in cell therapy.
Collapse
|
17
|
Signaling mechanisms of growth hormone-releasing hormone receptor in LPS-induced acute ocular inflammation. Proc Natl Acad Sci U S A 2020; 117:6067-6074. [PMID: 32123064 DOI: 10.1073/pnas.1904532117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ocular inflammation is a major cause of visual impairment attributed to dysregulation of the immune system. Previously, we have shown that the receptor for growth-hormone-releasing hormone (GHRH-R) affects multiple inflammatory processes. To clarify the pathological roles of GHRH-R in acute ocular inflammation, we investigated the inflammatory cascades mediated by this receptor. In human ciliary epithelial cells, the NF-κB subunit p65 was phosphorylated in response to stimulation with lipopolysaccharide (LPS), resulting in transcriptional up-regulation of GHRH-R. Bioinformatics analysis and coimmunoprecipitation showed that GHRH-R had a direct interaction with JAK2. JAK2, but not JAK1, JAK3, and TYK2, was elevated in ciliary body and iris after treatment with LPS in a rat model of endotoxin-induced uveitis. This elevation augmented the phosphorylation of STAT3 and production of proinflammatory factors, including IL-6, IL-17A, COX2, and iNOS. In explants of iris and ciliary body, the GHRH-R antagonist, MIA-602, suppressed phosphorylation of STAT3 and attenuated expression of downstream proinflammatory factors after LPS treatment. A similar suppression of STAT3 phosphorylation was observed in human ciliary epithelial cells. In vivo studies showed that blocking of the GHRH-R/JAK2/STAT3 axis with the JAK inhibitor Ruxolitinib alleviated partially the LPS-induced acute ocular inflammation by reducing inflammatory cells and protein leakage in the aqueous humor and by repressing expression of STAT3 target genes in rat ciliary body and iris and in human ciliary epithelial cells. Our findings indicate a functional role of the GHRH-R/JAK2/STAT3-signaling axis in acute anterior uveitis and suggest a therapeutic strategy based on treatment with antagonists targeting this signaling pathway.
Collapse
|
18
|
Li Z, Zhang N, Zhu L, Nan J, Shen J, Wang Z, Lin Y. Growth hormone-releasing hormone promotes therapeutic effects of peripheral blood endothelial progenitor cells in ischemic repair. J Endocrinol Invest 2020; 43:315-328. [PMID: 31506908 DOI: 10.1007/s40618-019-01109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/30/2019] [Indexed: 11/26/2022]
Abstract
PURPOSE In peripheral artery disease, blockage of the blood supply to the limbs leads to blood flow attenuation and tissue ischemia. We investigated whether growth hormone-releasing hormone (GHRH) could enhance the biological functions and therapeutic effects of endothelial progenitor cells (EPCs) derived from adult human peripheral blood (PB). METHODS EPCs were isolated from human PB (PB-EPCs) and cord blood and expanded in vitro. PB-EPCs incubated with or without GHRH were evaluated for proliferation, migration, and angiogenesis capacity and apoptosis rates under oxidative stress conditions. Activation of STAT3 and Akt pathways was evaluated using Western blot. A hind-limb ischemia (HLI) mouse model was used to study the efficacy of GHRH in improving EPC therapy in vivo. RESULTS GHRH enhanced the proliferation, migration, and angiogenesis capacity of PB-EPCs and reduced apoptosis under H2O2 stimulation. These beneficial effects were GHRH receptor-dependent and were paralleled by increased phosphorylation of STAT3 and Akt. Transplantation of GHRH-preconditioned EPCs into HLI model mice enhanced blood flow recovery by increasing vascular formation density and enhanced tissue regeneration at the lesion site. CONCLUSION Our studies demonstrate a novel role for GHRH in dramatically improving therapeutic angiogenesis in HLI by enhancing the biological functions of EPCs. These findings support additional studies to explore the full potential of GHRH in augmenting cell therapy for the management of ischemia.
Collapse
Affiliation(s)
- Z Li
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - N Zhang
- Research Institute of Experimental Neurobiology, Department of Neurology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - L Zhu
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - J Nan
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - J Shen
- Provincial Key Cardiovascular Research Laboratory, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Z Wang
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China
| | - Y Lin
- Wenzhou Municipal Key Cardiovascular Research Laboratory, Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
19
|
Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for Angiogenesis in Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:203-216. [PMID: 31964266 DOI: 10.1089/ten.teb.2019.0337] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Damage to skin tissue, which causes the disorder of the patient's body homeostasis, threatens the patient's life and increases the personal and social treatment burden. Angiogenesis, a key step in the wound healing process, provides sufficient oxygen and nutrients to the wound area. However, traditional clinical interventions are not enough to stabilize the formation of the vascular system to support wound healing. Due to the unique properties and multiple functions of nanomaterials, it has made a major breakthrough in the application of medicine. Nanomaterials provide a more effective treatment to hasten the angiogenesis and wound healing, by stimulating fundamental factors in the vascular regeneration phase. In the present review article, the basic stages and molecular mechanisms of angiogenesis are analyzed, and the types, applications, and prospects of nanomaterials used in angiogenesis are detailed. Impact statement Wound healing (especially chronic wounds) is currently a clinically important issue. The long-term nonhealing of chronic wounds often plagues patients, medical systems, and causes huge losses to the social economy. There is currently no effective method of treating chronic wounds in the clinic. Angiogenesis is an important step in wound healing. Nanomaterials had properties that are not found in conventional materials, and they have been extensively studied in angiogenesis. This review article provides readers with the molecular mechanisms of angiogenesis and the types and applications of angiogenic nanomaterials, hoping to bring inspiration to overcome chronic wounds.
Collapse
Affiliation(s)
- Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jingan Li
- Henan Key Laboratory of Advanced Magnesium Alloy, Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
21
|
Schally AV, Zhang X, Cai R, Hare JM, Granata R, Bartoli M. Actions and Potential Therapeutic Applications of Growth Hormone-Releasing Hormone Agonists. Endocrinology 2019; 160:1600-1612. [PMID: 31070727 DOI: 10.1210/en.2019-00111] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/03/2019] [Indexed: 11/19/2022]
Abstract
In this article, we briefly review the identification of GHRH, provide an abridged overview of GHRH antagonists, and focus on studies with GHRH agonists. Potent GHRH agonists of JI and MR class were synthesized and evaluated biologically. Besides the induction of the release of pituitary GH, GHRH analogs promote cell proliferation and exert stimulatory effects on various tissues, which express GHRH receptors (GHRH-Rs). A large body of work shows that GHRH agonists, such as MR-409, improve pancreatic β-cell proliferation and metabolic functions and facilitate engraftment of islets after transplantation in rodents. Accordingly, GHRH agonists offer a new therapeutic approach to treating diabetes. Various studies demonstrate that GHRH agonists promote repair of cardiac tissue, producing improvement of ejection fraction and reduction of infarct size in rats, reduction of infarct scar in swine, and attenuation of cardiac hypertrophy in mice, suggesting clinical applications. The presence of GHRH-Rs in ocular tissues and neuroprotective effects of GHRH analogs in experimental diabetic retinopathy indicates their possible therapeutic applications for eye diseases. Other effects of GHRH agonists, include acceleration of wound healing, activation of immune cells, and action on the central nervous system. As GHRH might function as a growth factor, we examined effects of GHRH agonists on tumors. In vitro, GHRH agonists stimulate growth of human cancer cells and upregulate GHRH-Rs. However, in vivo, GHRH agonists inhibit growth of human cancers xenografted into nude mice and downregulate pituitary and tumoral GHRH-Rs. Therapeutic applications of GHRH analogs are discussed. The development of GHRH analogs should lead to their clinical use.
Collapse
Affiliation(s)
- Andrew V Schally
- Veterans Affairs Medical Center, Miami, Florida
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Xianyang Zhang
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Renzhi Cai
- Veterans Affairs Medical Center, Miami, Florida
| | - Joshua M Hare
- Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
- Interdisciplinary Stem Cell Institute, Miller School of Medicine, University of Miami, Miami, Florida
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
22
|
Agonists of growth hormone-releasing hormone (GHRH) inhibit human experimental cancers in vivo by down-regulating receptors for GHRH. Proc Natl Acad Sci U S A 2018; 115:12028-12033. [PMID: 30373845 DOI: 10.1073/pnas.1813375115] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The effects of the growth hormone-releasing hormone (GHRH) agonist MR409 on various human cancer cells were investigated. In H446 small cell lung cancer (SCLC) and HCC827 and H460 (non-SCLC) cells, MR409 promoted cell viability, reduced cell apoptosis, and induced the production of cellular cAMP in vitro. Western blot analyses showed that treatment of cancer cells with MR409 up-regulated the expression of cyclins D1 and D2 and cyclin-dependent kinases 4 and 6, down-regulated p27kip1, and significantly increased the expression of the pituitary-type GHRH receptor (pGHRH-R) and its splice-variant (SV1). Hence, in vitro MR409 exerts agonistic action on lung cancer cells in contrast to GHRH antagonists. However, in vivo, MR409 inhibited growth of lung cancers xenografted into nude mice. MR409 given s.c. at 5 μg/day for 4 to 8 weeks significantly suppressed growth of HCC827, H460, and H446 tumors by 48.2%, 48.7%, and 65.6%, respectively. This inhibition of tumor growth by MR409 was accompanied by the down-regulation of the expression of pGHRH-R and SV1 in the pituitary gland and tumors. Tumor inhibitory effects of MR409 in vivo were also observed in other human cancers, including gastric, pancreatic, urothelial, prostatic, mammary, and colorectal. This inhibition of tumor growth parallel to the down-regulation of GHRH-Rs is similar and comparable to the suppression of sex hormone-dependent cancers after the down-regulation of receptors for luteinizing hormone-releasing hormone (LHRH) by LHRH agonists. Further oncological investigations with GHRH agonists are needed to elucidate the underlying mechanisms.
Collapse
|
23
|
Affiliation(s)
- Yao Xie
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Ye Fan
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.)
| | - Qingbo Xu
- From the Cardiovascular Division, King's College London BHF Centre, London, UK (Y.X., Q.X.); and Institute of Respiratory, Xinqiao Hospital, Third Military Medical University, Chongqing, China (Y.F.).
| |
Collapse
|
24
|
Shen J, Zhang N, Lin YN, Xiang P, Liu XB, Shan PF, Hu XY, Zhu W, Tang YL, Webster KA, Cai R, Schally AV, Wang J, Yu H. Regulation of Vascular Calcification by Growth Hormone-Releasing Hormone and Its Agonists. Circ Res 2018; 122:1395-1408. [PMID: 29618597 DOI: 10.1161/circresaha.117.312418] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE Vascular calcification (VC) is a marker of the severity of atherosclerotic disease. Hormones play important roles in regulating calcification; estrogen and parathyroid hormones exert opposing effects, the former alleviating VC and the latter exacerbating it. To date no treatment strategies have been developed to regulate clinical VC. OBJECTIVE The objective of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) and its agonist (GHRH-A) on the blocking of VC in a mouse model. METHODS AND RESULTS Young adult osteoprotegerin-deficient mice were given daily subcutaneous injections of GHRH-A (MR409) for 4 weeks. Significant reductions in calcification of the aortas of MR409-treated mice were paralleled by markedly lower alkaline phosphatase activity and a dramatic reduction in the expression of transcription factors, including the osteogenic marker gene Runx2 and its downstream factors, osteonectin and osteocalcin. The mechanism of action of GHRH-A was dissected in smooth muscle cells isolated from human and mouse aortas. Calcification of smooth muscle cells induced by osteogenic medium was inhibited in the presence of GHRH or MR409, as evidenced by reduced alkaline phosphatase activity and Runx2 expression. Inhibition of calcification by MR409 was partially reversed by MIA602, a GHRH antagonist, or a GHRH receptor-selective small interfering RNA. Treatment with MR409 induced elevated cytosolic cAMP and its target, protein kinase A which in turn blocked nicotinamide adenine dinucleotide phosphate oxidase activity and reduced production of reactive oxygen species, thus blocking the phosphorylation of nuclear factor κB (p65), a key intermediate in the ligand of receptor activator for nuclear factor-κ B-Runx2/alkaline phosphatase osteogenesis program. A protein kinase A-selective small interfering RNA or the chemical inhibitor H89 abolished these beneficial effects of MR409. CONCLUSIONS GHRH-A controls osteogenesis in smooth muscle cells by targeting cross talk between protein kinase A and nuclear factor κB (p65) and through the suppression of reactive oxygen species production that induces the Runx2 gene and alkaline phosphatase. Inflammation-mediated osteogenesis is thereby blocked. GHRH-A may represent a new pharmacological strategy to regulate VC.
Collapse
Affiliation(s)
- Jian Shen
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Ning Zhang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yi-Nuo Lin
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - PingPing Xiang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Xian-Bao Liu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | | | - Xin-Yang Hu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Wei Zhu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Yao-Liang Tang
- Vascular Biology Center, Georgia Regents University, Augusta (Y.-l.T.)
| | - Keith A Webster
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
| | - Renzhi Cai
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Andrew V Schally
- Department of Molecular and Cellular Pharmacology and the Vascular Biology Institute (K.A.W., R.C., A.V.S.)
- Divisions of Hematology/Oncology, Department of Medicine (R.C., A.V.S.)
- Miller School of Medicine, University of Miami, FL; and Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center, Miami, FL (R.C., A.V.S.)
| | - Jian'an Wang
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| | - Hong Yu
- From the Departments of Cardiology (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
- Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China (J.S., N.Z., Y.-N.L., P.P.X., X.-b.L., X.-y.H., W.Z., J.W., H.Y.)
| |
Collapse
|
25
|
Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 2018; 22:1428-1442. [PMID: 29392844 PMCID: PMC5824372 DOI: 10.1111/jcmm.13492] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/31/2017] [Indexed: 12/15/2022] Open
Abstract
Various diseases and toxic factors easily impair cellular and organic functions in mammals. Organ transplantation is used to rescue organ function, but is limited by scarce resources. Mesenchymal stem cell (MSC)-based therapy carries promising potential in regenerative medicine because of the self-renewal and multilineage potency of MSCs; however, MSCs may lose biological functions after isolation and cultivation for a long time in vitro. Moreover, after they are injected in vivo and migrate into the damaged tissues or organs, they encounter a harsh environment coupled with death signals due to the inadequate tensegrity structure between the cells and matrix. Preconditioning, genetic modification and optimization of MSC culture conditions are key strategies to improve MSC functions in vitro and in vivo, and all of these procedures will contribute to improving MSC transplantation efficacy in tissue engineering and regenerative medicine. Preconditioning with various physical, chemical and biological factors is possible to preserve the stemness of MSCs for further application in studies and clinical tests. In this review, we mainly focus on preconditioning and the corresponding mechanisms for improving MSC activities in vitro and in vivo; we provide a glimpse into the promotion of MSC-based cell therapy development for regenerative medicine. As a promising consequence, MSC transplantation can be applied for the treatment of some terminal diseases and can prolong the survival time of patients in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesState Key Laboratory for Diagnosis and Treatment of Infectious DiseasesSchool of MedicineFirst Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesState Key Laboratory for Diagnosis and Treatment of Infectious DiseasesSchool of MedicineFirst Affiliated HospitalZhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
26
|
Sobacchi C, Palagano E, Villa A, Menale C. Soluble Factors on Stage to Direct Mesenchymal Stem Cells Fate. Front Bioeng Biotechnol 2017; 5:32. [PMID: 28567372 PMCID: PMC5434159 DOI: 10.3389/fbioe.2017.00032] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stromal cells that are identified by in vitro plastic adherence, colony-forming capacity, expression of a panel of surface molecules, and ability to differentiate at least toward osteogenic, adipogenic, and chondrogenic lineages. They also produce trophic factors with immunomodulatory, proangiogenic, and antiapoptotic functions influencing the behavior of neighboring cells. On the other hand, a reciprocal regulation takes place; in fact, MSCs can be isolated from several tissues, and depending on the original microenvironment and the range of stimuli received from there, they can display differences in their essential characteristics. Here, we focus mainly on the bone tissue and how soluble factors, such as growth factors, cytokines, and hormones, present in this microenvironment can orchestrate bone marrow-derived MSCs fate. We also briefly describe the alteration of MSCs behavior in pathological settings such as hematological cancer, bone metastasis, and bone marrow failure syndromes. Overall, the possibility to modulate MSCs plasticity makes them an attractive tool for diverse applications of tissue regeneration in cell therapy. Therefore, the comprehensive understanding of the microenvironment characteristics and components better suited to obtain a specific MSCs response can be extremely useful for clinical use.
Collapse
Affiliation(s)
- Cristina Sobacchi
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Eleonora Palagano
- Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Anna Villa
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| | - Ciro Menale
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche (CNR), Milan Unit, Milan, Italy.,Human Genome Laboratory, Humanitas Clinical and Research Institute, Rozzano, Milan, Italy
| |
Collapse
|
27
|
Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive Oxygen Species Generation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2017; 37:e41-e52. [DOI: 10.1161/atvbaha.117.309228] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Witold N. Nowak
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Jiacheng Deng
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Xiong Z. Ruan
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| | - Qingbo Xu
- From the Cardiovascular Division, King’s BHF Centre, King’s College London, United Kingdom (W.N.N., J.D., Q.X.); Centre for Nephrology and Urology, Health Science Centre, Shenzhen University, China (X.Z.R.); and Centre for Nephrology, University College London, United Kingdom (X.Z.R.)
| |
Collapse
|
28
|
Hou J, Zhong T, Guo T, Miao C, Zhou C, Long H, Wu H, Zheng S, Wang L, Wang T. Apelin promotes mesenchymal stem cells survival and vascularization under hypoxic-ischemic condition in vitro involving the upregulation of vascular endothelial growth factor. Exp Mol Pathol 2017; 102:203-209. [PMID: 28161441 DOI: 10.1016/j.yexmp.2017.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/16/2016] [Accepted: 01/29/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) transplantation has been regarded as an optimal therapeutic approach for cardiovascular disease. However, the inferior survival and low vascularization potential of these cells in the local infarct site reduce the therapeutic efficacy. In this study, we investigated the influence of apelin on MSCs survival and vascularization under hypoxic-ischemic condition in vitro and explored the relevant mechanism. METHODS MSCs were obtained from C57BL/6 mice and cultured in vitro. Cells of the third passage were divided into MSCs and MSCs+apelin groups. In the MSCs+apelin group, MSCs were stimulated with apelin-13 (5μM). The two groups experienced exposure to hypoxia (1% O2) and serum deprivation for 24h, using normoxia (20% O2) as a negative control during the process. Human umbilical vein endothelial cells (HUVECs) were used and incubated with conditioned media from both groups to promote vascularization for another 6h. Vascular densities were assessed and relevant biomarkers were detected thereafter. RESULTS Compared with MSCs group, MSCs+apelin group presented more rapid growth. The proliferation rate was much higher. Cells apoptosis percentage was significantly declined both under normoxic and hypoxic conditions. Media produced from MSCs+apelin group triggered HUVECs to form a larger number of vascular branches on matrigel. The expression and secretion of vascular endothelial growth factor (VEGF) were significantly increased. CONCLUSION Apelin could effectively promote MSCs survival and vascularization under hypoxic-ischemic condition in vitro, and this procedure was associated with the upregulation of VEGF. This study provides a new perspective for exploring novel approaches to enhance MSCs survival and vascularization potential.
Collapse
Affiliation(s)
- Jingying Hou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tingting Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tianzhu Guo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Changqing Miao
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi 710061, China
| | - Changqing Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Huibao Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Hao Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Shaoxin Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China
| | - Lei Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China
| | - Tong Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Department of Emergency, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang Xi Road, Guangzhou, Guangdong 510120, China; Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, 107 Yanjiang Xi Road, Guangzhou, Guangdong, China.
| |
Collapse
|
29
|
Yu H, Lu K, Zhu J, Wang J. Stem cell therapy for ischemic heart diseases. Br Med Bull 2017; 121:135-154. [PMID: 28164211 DOI: 10.1093/bmb/ldw059] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Ischemic heart diseases, especially the myocardial infarction, is a major hazard problem to human health. Despite substantial advances in control of risk factors and therapies with drugs and interventions including bypass surgery and stent placement, the ischemic heart diseases usually result in heart failure (HF), which could aggravate social burden and increase the mortality rate. The current therapeutic methods to treat HF stay at delaying the disease progression without repair and regeneration of the damaged myocardium. While heart transplantation is the only effective therapy for end-stage patients, limited supply of donor heart makes it impossible to meet the substantial demand from patients with HF. Stem cell-based transplantation is one of the most promising treatment for the damaged myocardial tissue. SOURCES OF DATA Key recent published literatures and ClinicalTrials.gov. AREAS OF AGREEMENT Stem cell-based therapy is a promising strategy for the damaged myocardial tissue. Different kinds of stem cells have their advantages for treatment of Ischemic heart diseases. AREAS OF CONTROVERSY The efficacy and potency of cell therapies vary significantly from trial to trial; some clinical trials did not show benefit. Diverged effects of cell therapy could be affected by cell types, sources, delivery methods, dose and their mechanisms by which delivered cells exert their effects. GROWING POINTS Understanding the origin of the regenerated cardiomyocytes, exploring the therapeutic effects of stem cell-derived exosomes and using the cell reprogram technology to improve the efficacy of cell therapy for cardiovascular diseases. AREAS TIMELY FOR DEVELOPING RESEARCH Recently, stem cell-derived exosomes emerge as a critical player in paracrine mechanism of stem cell-based therapy. It is promising to exploit exosomes-based cell-free therapy for ischemic heart diseases in the future.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Kai Lu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China.,Department of Cardiology, The First People's Hospital of Huzhou, 158 Guangchanghou Road, Huzhou, Zhejiang Province, 313000, P.R. China
| | - Jinyun Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| | - Jian'an Wang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, 310009, P.R. China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang Province, 310009, P.R. China
| |
Collapse
|
30
|
Gan J, Ke X, Jiang J, Dong H, Yao Z, Lin Y, Lin W, Wu X, Yan S, Zhuang Y, Chu WK, Cai R, Zhang X, Cheung HS, Block NL, Pang CP, Schally AV, Zhang H. Growth hormone-releasing hormone receptor antagonists inhibit human gastric cancer through downregulation of PAK1-STAT3/NF-κB signaling. Proc Natl Acad Sci U S A 2016; 113:14745-14750. [PMID: 27930339 PMCID: PMC5187693 DOI: 10.1073/pnas.1618582114] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer (GC) ranks as the fourth most frequent in incidence and second in mortality among all cancers worldwide. The development of effective treatment approaches is an urgent requirement. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) have been found to be present in a variety of tumoral tissues and cell lines. Therefore the inhibition of GHRH-R was proposed as a promising approach for the treatment of these cancers. However, little is known about GHRH-R and the relevant therapy in human GC. By survival analyses of multiple cohorts of GC patients, we identified that increased GHRH-R in tumor specimens correlates with poor survival and is an independent predictor of patient prognosis. We next showed that MIA-602, a highly potent GHRH-R antagonist, effectively inhibited GC growth in cultured cells. Further, this inhibitory effect was verified in multiple models of human GC cell lines xenografted into nude mice. Mechanistically, GHRH-R antagonists target GHRH-R and down-regulate the p21-activated kinase 1 (PAK1)-mediated signal transducer and activator of transcription 3 (STAT3)/nuclear factor-κB (NF-κB) inflammatory pathway. Overall, our studies establish GHRH-R as a potential molecular target in human GC and suggest treatment with GHRH-R antagonist as a promising therapeutic intervention for this cancer.
Collapse
Affiliation(s)
- Jinfeng Gan
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiurong Ke
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Jiali Jiang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Hongmei Dong
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Zhimeng Yao
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Yusheng Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Wan Lin
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China
| | - Xiao Wu
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Shumei Yan
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yixuan Zhuang
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Renzhi Cai
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Xianyang Zhang
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Herman S Cheung
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146
| | - Norman L Block
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Chi Pui Pang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Joint Shantou International Eye Center, Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Andrew V Schally
- Endocrine, Polypeptide, and Cancer Institute, Veterans Affairs Medical Center, Miami, FL 33125;
- South Florida Veterans Affairs Foundation for Research and Education, Miami, FL 33125
- Division of Hematology and Oncology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Division of Endocrinology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Hao Zhang
- Cancer Research Center, Shantou University Medical College, Shantou 515041, China;
- Tumor Tissue Bank, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Department of Biotherapy, Affiliated Cancer Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
31
|
Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis. Stem Cells Int 2016; 2016:8737589. [PMID: 27774107 PMCID: PMC5059609 DOI: 10.1155/2016/8737589] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/19/2016] [Accepted: 07/03/2016] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues.
Collapse
|