1
|
Zhang Y, Zhou C, Ye Z, Liu M, He P, Yang S, Zhang Y, Gan X, Qin X. Serum 25-Hydroxyvitamin D, Genetic Susceptibility, and Abdominal Aortic Aneurysm Risk. J Clin Endocrinol Metab 2025; 110:1989-1996. [PMID: 39364894 DOI: 10.1210/clinem/dgae692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/14/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
CONTEXT The association of serum 25-hydroxyvitamin D [25(OH)D] and genetic polymorphisms of the vitamin D receptor (VDR), and the vitamin D binding protein (VDBP) with incident abdominal aortic aneurysm (AAA) remains uncertain. OBJECTIVE To investigate whether serum 25(OH)D, genetic polymorphisms of VDR and VDBP, genetic susceptibility to AAA, and the interactions among these factors influence the risk of incident AAA. METHODS This retrospective UK Biobank cohort study included 447 529 participants without a diagnosis of prevalent aortic aneurysm or aortic dissection at baseline. Association between serum 25(OH)D concentration and incident AAA was assessed. RESULTS During a median follow-up of 12.5 years, 2042 participants developed incident AAA. A significant inverse association between serum 25(OH)D and incident AAA was observed (per SD increment, hazard ratio [HR], 0.92; 95% CI, 0.88-0.96), which was particularly pronounced in older individuals and those without diabetes (both P for interaction < .05). Compared to participants with serum 25(OH)D ≥ 50 nmol/L, those with serum 25(OH)D between 25 and < 50 nmol/L and those with < 25 nmol/L exhibited a significant higher risk of incident AAA. In the 371 621 participants with genetics assessment, individuals carrying AA alleles of ApaI single nucleotide polymorphism had significantly increased risk of incident AAA compared to those carrying CC alleles (HR, 1.16; 95% CI, 1.02-1.32). The inverse association between serum 25(OH)D and incident AAA was stronger in individuals with intermediate or high genetic risk for AAA (P for interaction = .048). CONCLUSION There was a significant inverse association between serum 25(OH)D and AAA incidence, particularly among individuals with higher genetic risk for AAA, older age, and without diabetics.
Collapse
Affiliation(s)
- Yanjun Zhang
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Chun Zhou
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Ziliang Ye
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Mengyi Liu
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Panpan He
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Sisi Yang
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Yuanyuan Zhang
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Xiaoqin Gan
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, National Clinical Research Center for Kidney Disease, State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Guangdong Provincial Key Laboratory of Renal Failure Research, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
2
|
Li Z, Li C, Shao Y, Ran H, Shi H, Zhou R, Liu X, Wu Q, Zhang C. Identification of Biomarkers Associated with Oxidative Stress in Aortic Dissection Based on Bulk Transcriptome Analyses. Int J Gen Med 2024; 17:5633-5650. [PMID: 39628979 PMCID: PMC11611705 DOI: 10.2147/ijgm.s478146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose The aim of this study is to investigate the underlying molecular mechanism of oxidative stress (OS) involved in aortic dissection (AD). Methods Datasets of AD and OS-related genes were obtained from the Gene Expression Omnibus (GEO) and the GeneCards database, respectively. Differential expression analysis and weighted gene correlation network analysis (WGCNA) were employed to screen genes. After enrichment analysis, a protein-protein interaction (PPI) network was constructed, and machine learning algorithms were used to determine signature genes. Comprehensive bioinformatics analyses on the signature genes were executed, and a clinical prediction model was established and evaluated. External datasets, in vitro experiment, and Mendelian randomization (MR) analysis were applied to validation. Results We identified CCL2, ITGB4, MYC, SOCS3, SPP1 and TEK as OS-related signature genes in AD. The area under the ROC curve of all the signature genes was greater than 0.75. The clinical prediction model based on the signature genes showed satisfactory diagnostic efficacy in both training and validation cohorts. In validation cohort and in vitro experiment, CCL2, MYC, SPP1 and TEK were further validated. However, the MR results showed no causal association between the expression of the signature genes and AD. Conclusion This study demonstrated that OS participates in and affects the progression of AD. Six biomarkers associated with OS could be perceived as crucial targets for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zhenghao Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Changying Li
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yue Shao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haoyu Ran
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haoming Shi
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ruiqin Zhou
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuanyu Liu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
3
|
Amirsardari Z, Khalili A, Behnoush AH, Agahi S, Amirsardari F, Kohansal E, Sadeghipour P. Bridging the gap: Navigating the impact of dietary supplements on abdominal aortic aneurysm progression- A systematic review. PLoS One 2024; 19:e0305265. [PMID: 38923975 PMCID: PMC11207180 DOI: 10.1371/journal.pone.0305265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Vitamins D, E, A, B, C, and Omega-3 play crucial roles in modulating inflammatory and oxidative stress pathways, both implicated in abdominal aortic aneurysm (AAA) development. Recent research has explored the potential impact of dietary supplements on AAA progression. The systematic review aims to assess interventional studies investigating the effects of various dietary supplements on the development and severity of abdominal aortic aneurysms. METHOD A systematic search using relevant keywords related to abdominal aortic aneurysm and dietary supplements was conducted across four databases (PubMed, Embase, Scopus, and Web of Science). Quality assessment for animal studies employed SYRCLE and the Cochrane Collaboration Risk of Bias Tool for randomized control trials. The study protocol is registered in PROSPERO under the registry code CRD42023455958. RESULTS Supplementation with Omega-3, Vitamins A, C, D, E, and the Vitamin B family exhibited positive effects in AAA progression. These supplements contributed to a reduction in AAA diameter, elastin degradation, inflammatory responses, and reactive oxygen species. Additional supplements such as Zinc, methionine, and phytoestrogen also played roles in mitigating AAA progression. CONCLUSION The findings of this study underscore the potential role of dietary supplements in the progression of AAA. Predominantly based on animal studies, the results indicate that these supplements can limit AAA progression, primarily evidenced by their ability to mitigate inflammatory processes and oxidative stress pathways.
Collapse
Affiliation(s)
- Zahra Amirsardari
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Asal Khalili
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sadaf Agahi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Amirsardari
- School of Nursing and Midwifery, Lorestan University of Medical Sciences, Lorestan, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parham Sadeghipour
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Thanigaimani S, Neale RE, Waterhouse M, Moxon JV, Yeap BB, Norman PE, Flicker L, Hankey GJ, Jenkins J, Quigley F, Clarke MW, Golledge J. Association of serum vitamin D with diagnosis and growth of abdominal aortic aneurysm. JVS Vasc Sci 2024; 5:100208. [PMID: 39219591 PMCID: PMC11362639 DOI: 10.1016/j.jvssci.2024.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/14/2024] [Indexed: 09/04/2024] Open
Abstract
Objective We examined the associations between 25-hydroxy vitamin D (25(OH)D3) concentration and the diagnosis and growth of abdominal aortic aneurysm (AAA). Methods AAA cases and healthy controls were recruited from vascular centers or the community. A subset of participants with AAA were monitored by repeat ultrasound examination to assess AAA growth. Serum 25(OH)D3 concentration was measured using a validated mass spectrometry method and categorized into guideline-recommended cut-points after deseasonalization. The associations between deseasonalized 25(OH)D3 concentration and AAA diagnosis and growth were examined using logistic regression and linear mixed effects modeling. Results A total of 4673 participants consisting of 873 (455 controls and 418 cases) from Queensland and 3800 (3588 controls and 212 cases) from Western Australia were recruited. For every 1 standard deviation increase in 25(OH)D3 concentration, odds of AAA diagnosis was significantly reduced in both Queensland (adjusted odds ratio: 0.81; 95% confidence interval [CI]: 0.69-0.95; P = .009) and Western Australia (adjusted odds ratio: 0.80; 95% CI: 0.68-0.94; P = .005) cohorts. A subset of 310 eligible participants with small AAA from both regions were followed for a median of 4.2 (interquartile range: 2.0-5.8) years. Compared with vitamin D sufficient participants (50 to ˂75 nmol/L), annual mean AAA growth was significantly greater in those with higher vitamin D (≥75 nmol/L) (adjusted mean difference: 0.1 mm/y, 95% CI: 0.1-0.2; P < .001). Conclusions High 25(OH)D3 concentration was paradoxically associated with a lower likelihood of AAA diagnosis and faster AAA growth. Further research is needed to resolve these conflicting findings.
Collapse
Affiliation(s)
- Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Rachel E. Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Public Health, University of Queensland, Brisbane, QLD, Australia
| | - Mary Waterhouse
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Joseph V. Moxon
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Bu B. Yeap
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA, Australia
| | - Paul E. Norman
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Leon Flicker
- Medical School, University of Western Australia, Perth, WA, Australia
| | - Graeme J. Hankey
- Medical School, University of Western Australia, Perth, WA, Australia
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
| | - Jason Jenkins
- Department of Vascular Surgery, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - Michael W. Clarke
- Metabolomics Australia, Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA, Australia
- School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
- Department of Vascular and Endovascular Surgery, Townsville University Hospital, Townsville, QLD, Australia
| |
Collapse
|
5
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Li H, Ruan Y, Liu C, Fan X, Yao Y, Dai Y, Song Y, Jiang D, Sun N, Jiao G, Chen Z, Fan S, Meng F, Yang H, Zhang Y, Li Z. VDR promotes pancreatic cancer progression in vivo by activating CCL20-mediated M2 polarization of tumor associated macrophage. Cell Commun Signal 2024; 22:224. [PMID: 38600588 PMCID: PMC11005177 DOI: 10.1186/s12964-024-01578-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 03/20/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Activation of VDR pathway was a promising anti-tumor therapy strategy. However, numerous clinical studies have demonstrated the effect of activating VDR is limited, which indicates that VDR plays a complex role in vivos. METHODS We analyzed the TCGA database to examine the association between VDR expression and immune cell infiltration in pancreatic adenocarcinoma (PAAD). Western blot, ELISA, ChIP, and dual-luciferase reporter assays were performed to determine the mechanism of VDR regulating CCL20. Migration assay and immunofluorescence were used to investigate the role of CCL20 in M2 macrophage polarization and recruitment. We employed multiplexed immunohistochemical staining and mouse models to validate the correlation of VDR on macrophages infiltration in PAAD. Flow cytometry analysis of M2/M1 ratio in subcutaneous graft tumors. RESULTS VDR is extensively expressed in PAAD, and patients with elevated VDR levels exhibited a significantly reduced overall survival. VDR expression in PAAD tissues was associated with increased M2 macrophages infiltration. PAAD cells overexpressing VDR promote macrophages polarization towards M2 phenotype and recruitment in vitro and vivo. Mechanistically, VDR binds to the CCL20 promoter and up-regulates its transcription. The effects of polarization and recruitment on macrophages can be rescued by blocking CCL20. Finally, the relationship between VDR and M2 macrophages infiltration was evaluated using clinical cohort and subcutaneous graft tumors. A positive correlation was demonstrated between VDR/CCL20/CD163 in PAAD tissues and mouse models. CONCLUSION High expression of VDR in PAAD promotes M2 macrophage polarization and recruitment through the secretion of CCL20, which activates tumor progression. This finding suggests that the combination of anti-macrophage therapy may improve the efficacy of VDR activation therapy in PAAD.
Collapse
Affiliation(s)
- Hengzhen Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuli Ruan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chao Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
| | - Xiaona Fan
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China
- Heilongjiang Province Key Laboratory of molecular Oncology, Harbin, China
| | - Yisheng Dai
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yushuai Song
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dan Jiang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ning Sun
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangtao Jiao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Zhuo Chen
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shiheng Fan
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Fanfei Meng
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis and Therapy, Shenzhen, China
| | - Huike Yang
- Department of Anatomy, Harbin Medical University, Harbin, China.
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
- Heilongjiang Province Key Laboratory of Tumor Immunology, Harbin, China.
| | - Zhiwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
7
|
de Macêdo LP, de Castro Tavares R, Torres Braga M, Dos Santos LM, Donato G, Lima Júnior FASD, de Macêdo RP, Ugulino Netto A, Franke K, Vansant Oliveira Eugênio P, Batista Cezar-Junior A, Vilela Faquini I, Júnior Silva JL, de Carvalho Júnior EV, Almeida NS, Bandeira E Farias FA, Moraes Valença M, Rocha Cirne Azevedo-Filho H. The relationship between the level of vitamin D and ruptured intracranial aneurysms among patients with high sun exposure. Sci Rep 2024; 14:3555. [PMID: 38347057 PMCID: PMC10861505 DOI: 10.1038/s41598-024-53676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/03/2024] [Indexed: 02/15/2024] Open
Abstract
Non-traumatic subarachnoid hemorrhage (SAH) accounts for 3-5% of acute strokes. Intracranial aneurysm is the most common cause of non-traumatic SAH. Vitamin D influences the cardiovascular system, including the formation and rupture of cerebral aneurysms. To evaluate the serum vitamin D level in patients living in the tropical zone who suffered aneurysmal subarachnoid hemorrhage and its correlation with demographic and neurological characteristics. This is an analytical cross-sectional study to assess the serum level of vitamin D in a study population of 99 patients treated and diagnosed with aSAH in a public hospital in Recife-PE over a period of 12 months. In the study sample, composed of individuals with high sun exposure due to the lifestyle they lead in a tropical region, we observed hypovitaminosis D (85.9%), with a median of 19.9 ng/ml, although the majority of individuals are skin with high concentration of melanin (Fitzpatrick skin type IV and V). In addition, rates of sun exposure are high to all patients (Solar Index 9.03 P50). Most individuals were female (79.8%); there was no statistical difference in solar exposure/solar index between genders. As for the neurological repercussions, there was no statistical relevance in the clinical prognostic scales evaluated. As the sample was composed mainly of individuals whose economic activity is agriculture, the values of solar index found are vastly higher than those of other studies conducted in high latitude regions. In line with the literature review, some aspects were raised with the objective of justifying such findings that go from the base of the poor diet of these individuals, the increase of melanin in the skin and genetic alterations that directs us to possible mechanisms of natural photoprotection to high sun exposure. Thus, we had a vast majority (85%) of hypovitaminosis D, which in fact makes us wonder if there is any influence of calcitriol on vitamin D receptors in vascular walls and in the cardiovascular system as a whole, which influence bleeding events of this nature. As for the neurological repercussions, measured using assessment scales (Glasgow coma scale, WFNS scale, Hunt-Hess and Fisher's tomographic scale) there was no significant difference in the results. As it is only a descriptive study, the causal relationship of the facts cannot be established. However, in a population exposed to high sun exposure and affected by aneurysmal SAH, there is a significant rate of hypovitaminosis D, which supports the hypothesis that vitamin D plays a role in vascular pathologies, such as cerebral aneurysms and SAH.
Collapse
Affiliation(s)
- Lívio Pereira de Macêdo
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil.
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
- , Recife, Brasil.
| | | | | | | | - Glaudir Donato
- Medical Student, Centro de Ciências Médicas, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | | | | | - Kauê Franke
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Igor Vilela Faquini
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Nivaldo S Almeida
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
| | | | | | - Hildo Rocha Cirne Azevedo-Filho
- Department of Neurosurgery, Hospital da Restauração, Recife, Pernambuco, Brazil
- Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
8
|
Zendehdel A, Shakarami A, Moghadam ES. Physiological Evidence and Therapeutic Outcomes of Vitamin D on Cardiovascular Diseases. Curr Cardiol Rev 2024; 20:CCR-EPUB-137511. [PMID: 38243935 PMCID: PMC11071673 DOI: 10.2174/011573403x263417231107110618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/28/2023] [Indexed: 01/22/2024] Open
Abstract
Vitamin D hormone is an important regulator of various physiological functions, and its deficiency is characterized by an imbalance in parathyroid hormone and calcium homeostasis. The role of vitamin D in cardiovascular physiology is well demonstrated in animal and humanbased studies. In this context, hyperlipidemia, increased atherogenic plaques, cardiac inflammation, hypertension, myocarditis, myocardial infarction, and heart failure are some of the commonest known conditions connected with vitamin D deficiency. Supplementation of vitamin D is recommended to achieve normal serum vitamin D concentrations, nonetheless, in clinical trials often seen discrepancies concerning the supplementation effects and effectiveness. This review summarizes the data on the role of vitamin D in cardiovascular health along with some recent clinical findings regarding the effects of vitamin D supplementation.
Collapse
Affiliation(s)
- Abolfazl Zendehdel
- Department of Geriatric Medicine, Ziaeian Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Shakarami
- Department of Cardiology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
9
|
Genomic or Non-Genomic? A Question about the Pleiotropic Roles of Vitamin D in Inflammatory-Based Diseases. Nutrients 2023; 15:nu15030767. [PMID: 36771473 PMCID: PMC9920355 DOI: 10.3390/nu15030767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Vitamin D (vit D) is widely known for its role in calcium metabolism and its importance for the bone system. However, various studies have revealed a myriad of extra-skeletal functions, including cell differentiation and proliferation, antibacterial, antioxidant, immunomodulatory, and anti-inflammatory properties in various cells and tissues. Vit D mediates its function via regulation of gene expression by binding to its receptor (VDR) which is expressed in almost all cells within the body. This review summarizes the pleiotropic effects of vit D, emphasizing its anti-inflammatory effect on different organ systems. It also provides a comprehensive overview of the genetic and epigenetic effects of vit D and VDR on the expression of genes pertaining to immunity and anti-inflammation. We speculate that in the context of inflammation, vit D and its receptor VDR might fulfill their roles as gene regulators through not only direct gene regulation but also through epigenetic mechanisms.
Collapse
|
10
|
Picatoste B, Cerro-Pardo I, Blanco-Colio LM, Martín-Ventura JL. Protection of diabetes in aortic abdominal aneurysm: Are antidiabetics the real effectors? Front Cardiovasc Med 2023; 10:1112430. [PMID: 37034348 PMCID: PMC10076877 DOI: 10.3389/fcvm.2023.1112430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Aortic aneurysms, including abdominal aortic aneurysms (AAAs), is the second most prevalent aortic disease and represents an important cause of death worldwide. AAA is a permanent dilation of the aorta on its infrarenal portion, pathologically associated with oxidative stress, proteolysis, vascular smooth muscle cell loss, immune-inflammation, and extracellular matrix remodeling and degradation. Most epidemiological studies have shown a potential protective role of diabetes mellitus (DM) on the prevalence and incidence of AAA. The effect of DM on AAA might be explained mainly by two factors: hyperglycemia [or other DM-related factors such as insulin resistance (IR)] and/or by the effect of prescribed DM drugs, which may have a direct or indirect effect on the formation and progression of AAAs. However, recent studies further support that the protective role of DM in AAA may be attributable to antidiabetic therapies (i.e.: metformin or SGLT-2 inhibitors). This review summarizes current literature on the relationship between DM and the incidence, progression, and rupture of AAAs, and discusses the potential cellular and molecular pathways that may be involved in its vascular effects. Besides, we provide a summary of current antidiabetic therapies which use could be beneficial for AAA.
Collapse
Affiliation(s)
- Belén Picatoste
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- Biomedicine Department, Alfonso X El Sabio University, Madrid, Spain
- Correspondence: Belén Picatoste ,
| | - Isabel Cerro-Pardo
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Luis M. Blanco-Colio
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Jose L. Martín-Ventura
- Laboratory of Vascular Pathology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBERCV, Madrid, Spain
- Medicine Department, Autonoma University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Establishment of a meta-analysis based novel aortic dissection mouse model. Sci Rep 2022; 12:21434. [PMID: 36509789 PMCID: PMC9744727 DOI: 10.1038/s41598-022-25369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Aortic dissection (AD) is a life-threatening disease and the detailed mechanism remains unclear. Thus, proper animal models are urgently required to better understand its pathogenesis. Our current study aims to establish a reliable, time and cost-effective mouse AD model. To conduct the meta-analysis, we searched PubMed for related studies up to 2021 and statistical analysis was conducted using Review Manager 5.4. For the animal experiment, 6-week-old male ApoE-/- mice were given β-aminopropionitrile (BAPN) at a concentration of 1 g/L for 3 weeks before being infused with saline, 1000 ng/kg/min or 2500 ng/kg/min angiotensin II (AngII) via osmotic mini pumps for 2 or 4 weeks. To determine the presence of AD, we performed B-ultrasonography, hematoxylin and eosin (H&E) staining, and van Gieson staining. The result of the meta-analysis showed that the use of BAPN and more than 2000 ng/kg/min AngII can increase the rate of AD formation, whereas administrating Ang II for more than 28 days has no significant effect on the rate of AD formation when compared with the less than 14 days group. In the present study, mice treated with BAPN combined with 2500 ng/kg/min AngII for 2 weeks (12/20) had a significantly higher AD formation rate than mice treated with BAPN combined with 1000 ng/kg/min Ang II for 4 weeks (2/10), and had a similar model formation rate compared with the mice treated withβ-aminopropionitrile combined with 2500 ng/kg/min AngII for 4 weeks (6/10). There were 3 mice (3/10) and 6 mice (6/20) who died in the group treated with β-aminopropionitrile combined with 2500 ng/kg/min AngII for 4 weeks and 2 weeks respectively, and only one mouse (1/10) died in the group treated with β-aminopropionitrile combined with 1000 ng/kg/min AngII for 4 weeks. In 6-week-old male ApoE-/- mice that received with 1 g/L BAPN in the drinking water for 3 weeks along with 2500 ng/kg/min AngII infusion via osmotic mini pumps for 2 weeks, the highest model formation rate and relative lower cumulative mortality were noted.
Collapse
|
12
|
Jreije A, Medlej-Hashim M, Hajal J, Saliba Y, Chacar S, Fares N, Khouzami L. Calcitriol Supplementation Protects Against Apoptosis and Alleviates the Severity of Abdominal Aortic Aneurysm Induced by Angiotensin II and Anti-TGFβ. J Cardiovasc Transl Res 2022; 15:1340-1351. [PMID: 35445935 DOI: 10.1007/s12265-022-10254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/04/2022] [Indexed: 12/16/2022]
Abstract
The present study aims to assess the effect of vitamin D deficiency (VDD) and its supplementation on the severity of AAA in mice. AAA was induced by AngII and anti-TGF-β administration. Animals were divided into four groups: Sham, mice with AAA, mice with AAA, and VDD, and mice with AAA supplemented with calcitriol. Blood pressure, echocardiography, abdominal aortic tissues, and plasma samples were monitored for all groups. VDD was associated with enhanced activity of cleaved MMP-9 and elastin degradation and positively correlated with the severity of AAA. Calcitriol supplementation decreased the INFγ/IL-10 ratio and enhanced the Nrf2 pathway. Moreover, Cu/Zn-superoxide dismutase expression and catalase and neutral sphingomyelinase activity were exacerbated in AAA and VDD groups. Furthermore, calcitriol supplementation showed a significantly lower protein expression of caspase-8, caspase-3, Bid, and t-Bid, and prevented the apoptosis of VSMCs treated by AngII and anti-TGF-β. Calcitriol supplementation may alleviate AAA severity and could be of great interest in the clinical management of AAA. VDD enhances antioxidant enzymes activity and expression, whereas calcitriol supplementation alleviates AAA severity by re-activating Nrf2 and inhibiting apoptotic pathways.
Collapse
Affiliation(s)
- Afaf Jreije
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Myrna Medlej-Hashim
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Stephanie Chacar
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie Et Physiopathologie, Faculté de Médecine, Pôle Technologie Santé, Université Saint Joseph, Beirut, Lebanon.
| | - Lara Khouzami
- Cellular and Molecular Physiopathologies (CAMP) Laboratory, Faculty of Sciences II, Lebanese University, Fanar, Lebanon.
| |
Collapse
|
13
|
Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022; 9:1063683. [PMID: 36505348 PMCID: PMC9732037 DOI: 10.3389/fcvm.2022.1063683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high disability and mortality. Its susceptible risk factors include old age, being male, smoking, hypertension, and aortic atherosclerosis. With the improvement of screening techniques, AAA incidence and number of deaths caused by aneurysm rupture increase annually, attracting much clinical attention. Due to the lack of non-invasive treatment, early detection and development of novel treatment of AAA is an urgent clinical concern. The pathophysiology and progression of AAA are characterized by inflammatory destruction. The gut microbiota is an "invisible organ" that directly or indirectly affects the vascular wall inflammatory cell infiltration manifested with enhanced arterial wall gut microbiota and metabolites, which plays an important role in the formation and progression of AAA. As such, the gut microbiome may become an important risk factor for AAA. This review summarizes the direct and indirect effects of the gut microbiome on the pathogenesis of AAA and highlights the gut microbiome-mediated inflammatory responses and discoveries of relevant therapeutic targets that may help manage the development and rupture of AAA.
Collapse
Affiliation(s)
- Xuebin Ling
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Wei Jie
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Xue Qin
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Shuya Zhang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Kaijia Shi
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Tianfa Li
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Junli Guo
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Department of Cardiovascular Medicine of the First Affiliated Hospital, Hainan Medical University, Haikou, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| |
Collapse
|
14
|
Rihal V, Khan H, Kaur A, Singh TG. Vitamin D as therapeutic modulator in cerebrovascular diseases: a mechanistic perspectives. Crit Rev Food Sci Nutr 2022; 63:7772-7794. [PMID: 35285752 DOI: 10.1080/10408398.2022.2050349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitamin D deficiency has been linked to several major chronic diseases, such as cardiovascular and neurodegenerative diseases, diabetes, and cancer, linked to oxidative stress, inflammation, and aging. Vitamin D deficiency appears to be particularly harmful to the cardiovascular system, as it can cause endothelial dysfunctioning and vascular abnormalities through the modulation of various downstream mechanisms. As a result, new research indicates that therapeutic approaches targeting vitamin D inadequacies or its significant downstream effects, such as impaired autophagy, abnormal pro-inflammatory and pro-oxidant reactions, may delay the onset and severity of major cerebrovascular disorders such as stroke and neurologic malformations. Vitamin D modulates the various molecular pathways, i.e., Nitric Oxide, PI3K-Akt Pathway, cAMP pathway, NF-kB Pathway, Sirtuin 1, Nrf2, FOXO, in cerebrovascular disorder. The current review shows evidence for vitamin D's mitigating or slowing the progression of these cerebrovascular disorders, which are significant causes of disability and death worldwide.
Collapse
Affiliation(s)
- Vivek Rihal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
15
|
Sawada H, Lu HS, Cassis LA, Daugherty A. Twenty Years of Studying AngII (Angiotensin II)-Induced Abdominal Aortic Pathologies in Mice: Continuing Questions and Challenges to Provide Insight Into the Human Disease. Arterioscler Thromb Vasc Biol 2022; 42:277-288. [PMID: 35045728 PMCID: PMC8866209 DOI: 10.1161/atvbaha.121.317058] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AngII (angiotensin II) infusion in mice has been used to provide mechanistic insight into human abdominal aortic aneurysms for over 2 decades. This is a technically facile animal model that recapitulates multiple facets of the human disease. Although numerous publications have reported abdominal aortic aneurysms with AngII infusion in mice, there remain many fundamental unanswered questions such as uniformity of describing the pathological characteristics and which cell type is stimulated by AngII to promote abdominal aortic aneurysms. Extrapolation of the findings to provide insight into the human disease has been hindered by the preponderance of studies designed to determine the effects on initiation of abdominal aortic aneurysms, rather than a more clinically relevant scenario of determining efficacy on the established disease. The purpose of this review is to enhance understanding of AngII-induced abdominal aortic pathologies in mice, thereby providing greater insight into the human disease.
Collapse
Affiliation(s)
- Hisashi Sawada
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY,Saha Aortic Center, University of Kentucky, Lexington, KY,Department of Physiology, University of Kentucky, Lexington, KY
| |
Collapse
|
16
|
Imaging Techniques for Aortic Aneurysms and Dissections in Mice: Comparisons of Ex Vivo, In Situ, and Ultrasound Approaches. Biomolecules 2022; 12:biom12020339. [PMID: 35204838 PMCID: PMC8869425 DOI: 10.3390/biom12020339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 01/04/2023] Open
Abstract
Aortic aneurysms and dissections are life-threatening conditions that have a high risk for lethal bleeding and organ malperfusion. Many studies have investigated the molecular basis of these diseases using mouse models. In mice, ex vivo, in situ, and ultrasound imaging are major approaches to evaluate aortic diameters, a common parameter to determine the severity of aortic aneurysms. However, accurate evaluations of aortic dimensions by these imaging approaches could be challenging due to pathological features of aortic aneurysms. Currently, there is no standardized mode to assess aortic dissections in mice. It is important to understand the characteristics of each approach for reliable evaluation of aortic dilatations. In this review, we summarize imaging techniques used for aortic visualization in recent mouse studies and discuss their pros and cons. We also provide suggestions to facilitate the visualization of mouse aortas.
Collapse
|
17
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
18
|
Adamska-Tomaszewska D, Kocełak P, Owczarek AJ, Olszanecka-Glinianowicz M, Chudek J. Factors affecting vitamin D status in outpatients with abdominal aortic aneurysm and peripheral artery disease- a single centre study. Nutr Metab Cardiovasc Dis 2021; 31:3161-3166. [PMID: 34518086 DOI: 10.1016/j.numecd.2021.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/12/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Vitamin D (VD) deficiency is considered an important risk factor for the development of atherosclerosis and aortic aneurysms. The deficiency is claimed to enhance degeneration and remodeling of collagen and elastin fibers in the artery wall, leading to its weakening and progressive dilatation. This study aimed to assess vitamin D status, in outpatients with abdominal aneurysms (AAA) and peripheral artery disease (PAD) not treated with VD, and factors affecting serum 25-OH-D levels. METHODS AND RESULTS This cross-sectional study involved 59 outpatients with AAA and 150 with PAD. AAA was defined as local dilation of the aorta diameter >30 mm in imaging. None of the patients was prescribed VD containing medicines. Serum 25-OH, iPTH, phosphorus and calcium levels were assessed in all study participants. VD status was categorized according to commonly used cut-offs for serum 25-OH-D (<20 ng/mL - deficiency, <30 ng/mL -insufficiency). Serum 25-OH-D levels were similar in patient with AAA and PAD [1-3Q: 26.2 (18.8-37.6) vs 21.8 (15.9-31.4) ng/mL; p = 0.30], with deficiency noted in 25.4% with AAA and 41.8% with PAD (p < 0.05). Multiple regression analysis revealed that VD deficiency was explained by past stroke episodes [OR = 2.80 (95%CI: 1.22-6.41)]. Secondary hyperparathyroidism was diagnosed in 1.7% of patients with AAA and 1.9% with PAD. CONCLUSIONS The frequency of VD deficiency in outpatient with AAA is not greater than in those with PAD. Past stroke episode is associated with an increased occurrence of VD deficiency in both outpatients with AAA and PAD other than sun exposure and diet.
Collapse
Affiliation(s)
- Dagmara Adamska-Tomaszewska
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia in Katowice, Poland; Department of Paediatrics, Medical University of Silesia, Katowice, Poland.
| | - Piotr Kocełak
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia in Katowice, Poland
| | - Aleksander J Owczarek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Pathophysiology Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, The Medical University of Silesia in Katowice, Poland; Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
19
|
Herrero-Cervera A, Espinós-Estévez C, Martín-Vañó S, Taberner-Cortés A, Aguilar-Ballester M, Vinué Á, Piqueras L, Martínez-Hervás S, González-Navarro H. Dissecting Abdominal Aortic Aneurysm Is Aggravated by Genetic Inactivation of LIGHT (TNFSF14). Biomedicines 2021; 9:biomedicines9111518. [PMID: 34829747 PMCID: PMC8615201 DOI: 10.3390/biomedicines9111518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Abdominal aortic aneurysm (AAA), is a complex disorder characterized by vascular vessel wall remodeling. LIGHT (TNFSF14) is a proinflammatory cytokine associated with vascular disease. In the present study, the impact of genetic inactivation of Light was investigated in dissecting AAA induced by angiotensin II (AngII) in the Apolipoprotein E-deficient (Apoe−/−) mice. Studies in aortic human (ah) vascular smooth muscle cells (VSMC) to study potential translation to human pathology were also performed. AngII-treated Apoe−/−Light−/− mice displayed increased abdominal aorta maximum diameter and AAA severity compared with Apoe−/− mice. Notably, reduced smooth muscle α-actin+ area and Acta2 and Col1a1 gene expression were observed in AAA from Apoe−/−Light−/− mice, suggesting a loss of VSMC contractile phenotype compared with controls. Decreased Opn and augmented Sox9 expression, which are associated with detrimental and non-contractile osteochondrogenic VSMC phenotypes, were also seen in AngII-treated Apoe−/−Light−/− mouse AAA. Consistent with a role of LIGHT preserving VSMC contractile characteristics, LIGHT-treatment of ahVSMCs diminished the expression of SOX9 and of the pluripotency marker CKIT. These effects were partly mediated through lymphotoxin β receptor (LTβR) as the silencing of its gene ablated LIGHT effects on ahVSMCs. These studies suggest a protective role of LIGHT through mechanisms that prevent VSMC trans-differentiation in an LTβR-dependent manner.
Collapse
Affiliation(s)
- Andrea Herrero-Cervera
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | | | - Susana Martín-Vañó
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Alida Taberner-Cortés
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - María Aguilar-Ballester
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Ángela Vinué
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
| | - Laura Piqueras
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- Department of Pharmacology, University of Valencia, 46010 Valencia, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
| | - Sergio Martínez-Hervás
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Endocrinology and Nutrition Service, Clinic Hospital of Valencia, 46010 Valencia, Spain
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Herminia González-Navarro
- INCLIVA, Institute of Health Research, 46010 Valencia, Spain; (A.H.-C.); (S.M.-V.); (A.T.-C.); (M.A.-B.); (Á.V.); (L.P.); (S.M.-H.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain
- Biochemistry and Molecular Biology Department, University of Valencia, 46010 Valencia, Spain
- Correspondence: ; Tel.: +34-96-386-44-03; Fax: +34-96-398-78-60
| |
Collapse
|
20
|
Li H, Xu H, Wen H, Wang H, Zhao R, Sun Y, Bai C, Ping J, Song L, Luo M, Chen J. Lysyl hydroxylase 1 (LH1) deficiency promotes angiotensin II (Ang II)-induced dissecting abdominal aortic aneurysm. Theranostics 2021; 11:9587-9604. [PMID: 34646388 PMCID: PMC8490513 DOI: 10.7150/thno.65277] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 12/13/2022] Open
Abstract
Rationale: The progressive disruption of extracellular matrix (ECM) proteins, particularly early elastin fragmentation followed by abnormalities in collagen fibril organization, are key pathological processes that contribute to dissecting abdominal aortic aneurysm (AAA) pathogenesis. Lysyl hydroxylase 1 (LH1) is essential for type I/III collagen intermolecular crosslinking and stabilization. However, its function in dissecting AAA has not been explored. Here, we investigated whether LH1 is significantly implicated in dissecting AAA progression and therapeutic intervention. Methods and Results: Sixteen-week-old male LH1-deficient and wild-type (WT) mice on the C57Bl/6NCrl background were infused with angiotensin II (Ang II, 1000 ng/kg per minute) via subcutaneously implanted osmotic pumps for 4 weeks. Ang II increased LH1 levels in the abdominal aortas of WT mice, whereas mice lacking LH1 developed dissecting AAA. To evaluate the related mechanism, we performed whole-transcriptomic analysis, which demonstrated that LH1 deficiency aggravated gene transcription alterations; in particular, the expression of thrombospondin-1 was markedly upregulated in the aortas of LH1-deficient mice. Furthermore, targeting thrombospondin-1 with TAX2 strongly inhibited the proinflammatory process, matrix metalloproteinase (MMP) activity and vascular smooth muscle cells (VSMCs) apoptosis, ultimately decreasing the incidence of dissecting AAA. Restoration of LH1 protein expression in LH1-deficient mice by intraperitoneal injection of an adeno-associated virus normalized thrombospondin-1 levels, subsequently alleviating dissecting AAA formation and preserving aortic structure and function. Consistently, in human AAA specimens, decreased LH1 expression was associated with increased thrombospondin-1 levels. Conclusions: LH1 deficiency contributes to dissecting AAA pathogenesis, at least in part, by upregulating thrombospondin-1 expression, which subsequently enables proinflammatory processes, MMP activation and VSMCs apoptosis. Our study provides evidence that LH1 is a potential critical therapeutic target for AAA.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Haochen Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongyan Wen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Hongyue Wang
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ranxu Zhao
- Department of Pathology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yingying Sun
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Congxia Bai
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jiedan Ping
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Li Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China
| | - Jingzhou Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Fuwai Central-China Hospital, Central-China Branch of National Center for Cardiovascular Diseases, Zhengzhou 450046, China
| |
Collapse
|
21
|
Allosteric activation of PP2A inhibits experimental abdominal aortic aneurysm. Clin Sci (Lond) 2021; 135:2085-2097. [PMID: 34402501 DOI: 10.1042/cs20210315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
Although extremely important, the molecular mechanisms that govern aortic aneurysm (AA) formation and progression are still poorly understood. This deficit represents a critical roadblock toward the development of effective pharmaceutical therapies for the treatment of AA. While dysregulation of protein phosphatase 2A (PP2A) is thought to play a role in cardiovascular disease, its role in aortic aneurysm is unknown. The objective of the present study is to test the hypothesis that PP2A regulates abdominal aortic aneurysm (AAA) progression in a murine model. In an angiotensin II-induced AAA murine model, the PP2A inhibitor, LB-100, markedly accelerated AAA progression as demonstrated by increased abdominal aortic dilation and mortality. AAA progression was associated with elevated inflammation and extracellular matrix fragmentation, concomitant with increases in both metalloproteinase activity and reactive oxygen species production. Conversely, administration of a novel class of small molecule activators of PP2A (SMAPs) resulted in an antithetical effect. SMAPs effectively reduced AAA incidence along with the corresponding pathologies that were increased with LB-100 treatment. Mechanistically, modulation of PP2A activities in vivo functioned in part via alteration of the ERK1/2 and NFκB signaling pathways, known regulators of AAA progression. These studies, for the first time, demonstrate a role of PP2A in AAA etiology and demonstrate that PP2A activation may represent a novel strategy for the treatment of abdominal aortic aneurysms.
Collapse
|
22
|
Activation of the Constitutive Androstane Receptor Inhibits Leukocyte Adhesiveness to Dysfunctional Endothelium. Int J Mol Sci 2021; 22:ijms22179267. [PMID: 34502180 PMCID: PMC8431649 DOI: 10.3390/ijms22179267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR activation can affect this response and the underlying mechanisms involved. Under physiological flow conditions, TNFα-induced endothelial adhesion of human leukocyte cells was concentration-dependently inhibited by preincubation of human umbilical arterial endothelial cells with the selective human CAR ligand CITCO. CAR agonism also prevented TNFα induced VCAM-1 expression, as well as MCP-1/CCL-2 and RANTES/CCL-5 release in endothelial cells. Suppression of CAR expression with a small interfering RNA abrogated the inhibitory effects of CITCO on these responses. Furthermore, CITCO increased interaction of CAR with Retinoid X Receptor (RXR) and reduced TNFα-induced p38-MAPK/NF-κB activation. In vivo, using intravital microscopy in the mouse cremasteric microcirculation treatment with the selective mouse CAR ligand TCPOBOP inhibited TNFα-induced leukocyte rolling flux, adhesion, and emigration and decreased VCAM-1 in endothelium. These results reveal that CAR agonists can inhibit the initial inflammatory response that precedes the atherogenic process by targeting different steps in the leukocyte recruitment cascade. Therefore, CAR agonists may constitute a new therapeutic tool in controlling cardiovascular disease-associated inflammatory processes.
Collapse
|
23
|
Durante W, Behnammanesh G, Peyton KJ. Effects of Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and Arterial Remodeling. Int J Mol Sci 2021; 22:ijms22168786. [PMID: 34445519 PMCID: PMC8396183 DOI: 10.3390/ijms22168786] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in diabetes. Recent clinical studies indicate that sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in patients with diabetes. The mechanism underlying the beneficial effect of SGLT2 inhibitors is not completely clear but may involve direct actions on vascular cells. SGLT2 inhibitors increase the bioavailability of endothelium-derived nitric oxide and thereby restore endothelium-dependent vasodilation in diabetes. In addition, SGLT2 inhibitors favorably regulate the proliferation, migration, differentiation, survival, and senescence of endothelial cells (ECs). Moreover, they exert potent antioxidant and anti-inflammatory effects in ECs. SGLT2 inhibitors also inhibit the contraction of vascular smooth muscle cells and block the proliferation and migration of these cells. Furthermore, studies demonstrate that SGLT2 inhibitors prevent postangioplasty restenosis, maladaptive remodeling of the vasculature in pulmonary arterial hypertension, the formation of abdominal aortic aneurysms, and the acceleration of arterial stiffness in diabetes. However, the role of SGLT2 in mediating the vascular actions of these drugs remains to be established as important off-target effects of SGLT2 inhibitors have been identified. Future studies distinguishing drug- versus class-specific effects may optimize the selection of specific SGLT2 inhibitors in patients with distinct cardiovascular pathologies.
Collapse
|
24
|
Chen L, Holder R, Porter C, Shah Z. Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PLoS One 2021; 16:e0252816. [PMID: 34101754 PMCID: PMC8186764 DOI: 10.1371/journal.pone.0252816] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
The toxicity of doxorubicin to the cardiovascular system often limits its benefits and widespread use as chemotherapy. The mechanisms involved in doxorubicin-induced cardiovascular damage and possible protective interventions are not well-explored. Using human aortic endothelial cells, we show vitamin D3 strongly attenuates doxorubicin-induced senescence and cell cycle arrest. We further show the protective effects of vitamin D3 are mediated by the upregulation of IL-10 and FOXO3a expression through fine modulation of pAMPKα/SIRT1/FOXO3a complex activity. These results have great significance in finding a target for mitigating doxorubicin-induced cardiovascular toxicity.
Collapse
Affiliation(s)
- Lei Chen
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Rachel Holder
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Charles Porter
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Zubair Shah
- Department of Cardiovascular Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Wei S, Yuan X, Fan F, Guo XB, Guan S. The relationship between the level of vitamin D and ruptured intracranial aneurysms. Sci Rep 2021; 11:11881. [PMID: 34088910 PMCID: PMC8178395 DOI: 10.1038/s41598-021-90760-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/12/2021] [Indexed: 12/05/2022] Open
Abstract
The purpose of our research is to explore whether vitamin D levels were associated with the rupture of intracranial aneurysms. In this retrospective study, 105 patients diagnosed with ruptured intracranial aneurysms (RIAs) and 185 patients diagnosed with unruptured intracranial aneurysms (UIAs) at The First Affiliated Hospital of Zhengzhou University were recruited from September 2019 to September 2020. Patients’ demographic and clinical information, including vitamin D levels, were recorded and compared. Univariate analysis showed that patients with UIAs had higher vitamin D levels than RIAs (p = 0.019). In addition, there were significant differences in aneurysm location (p < 0.001), aspirin use (p = 0.001), and comorbid diabetes mellitus (p = 0.037) between patients with UIAs and RIAs. Binary logistic regression analysis showed that the level of vitamin D was independently associated with RIAs [odds ratio (OR) 0.960; 95% confidence intervals (CI), 0.926–0.996, p = 0.028].
Collapse
Affiliation(s)
- Sen Wei
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Fan
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xin-Bin Guo
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Sheng Guan
- Department of Neurointervention, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
26
|
Izzo M, Carrizzo A, Izzo C, Cappello E, Cecere D, Ciccarelli M, Iannece P, Damato A, Vecchione C, Pompeo F. Vitamin D: Not Just Bone Metabolism but a Key Player in Cardiovascular Diseases. Life (Basel) 2021; 11:life11050452. [PMID: 34070202 PMCID: PMC8158519 DOI: 10.3390/life11050452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/03/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Vitamin D is the first item of drug expenditure for the treatment of osteoporosis. Its deficiency is a condition that affects not only older individuals but also young people. Recently, the scientific community has focused its attention on the possible role of vitamin D in the development of several chronic diseases such as cardiovascular and metabolic diseases. This review aims to highlight the possible role of vitamin D in cardiovascular and metabolic diseases. In particular, here we examine (1) the role of vitamin D in diabetes mellitus, metabolic syndrome, and obesity, and its influence on insulin secretion; (2) its role in atherosclerosis, in which chronic vitamin D deficiency, lower than 20 ng/mL (50 nmol/L), has emerged among the new risk factors; (3) the role of vitamin D in essential hypertension, in which low plasma levels of vitamin D have been associated with both an increase in the prevalence of hypertension and diastolic hypertension; (4) the role of vitamin D in peripheral arteriopathies and aneurysmal pathology, reporting that patients with peripheral artery diseases had lower vitamin D values than non-suffering PAD controls; (5) the genetic and epigenetic role of vitamin D, highlighting its transcriptional regulation capacity; and (6) the role of vitamin D in cardiac remodeling and disease. Despite the many observational studies and meta-analyses supporting the critical role of vitamin D in cardiovascular physiopathology, clinical trials designed to evaluate the specific role of vitamin D in cardiovascular disease are scarce. The characterization of the importance of vitamin D as a marker of pathology should represent a future research challenge.
Collapse
Affiliation(s)
- Marcello Izzo
- Department of Mathematics for Technology, Medicine and Biosciences Research Center, University of Ferrara, 44121 Ferrara, Italy
- Specialist Medical Center-Via Cimitile, 80035 Nola, Italy
- Correspondence:
| | - Albino Carrizzo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Carmine Izzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Enrico Cappello
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Domenico Cecere
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Patrizia Iannece
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Antonio Damato
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| | - Carmine Vecchione
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Baronissi, Italy; (C.I.); (M.C.); (P.I.)
| | - Francesco Pompeo
- IRCCS Neuromed, 86077 Pozzilli, Italy; (A.C.); (E.C.); (D.C.); (A.D.); (C.V.); (F.P.)
| |
Collapse
|
27
|
Chemerin-9 Attenuates Experimental Abdominal Aortic Aneurysm Formation in ApoE -/- Mice. JOURNAL OF ONCOLOGY 2021; 2021:6629204. [PMID: 33953746 PMCID: PMC8068550 DOI: 10.1155/2021/6629204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/20/2021] [Accepted: 03/25/2021] [Indexed: 11/18/2022]
Abstract
Chronic inflammation plays an essential role in the pathogenesis of abdominal aortic aneurysm (AAA), a progressive segmental abdominal aortic dilation. Chemerin, a multifunctional adipocytokine, is mainly generated in the liver and adipose tissue. The combination of chemerin and chemokine-like receptor 1 (CMKLR1) has been demonstrated to promote the progression of atherosclerosis, arthritis diseases, and Crohn's disease. However, chemerin-9 acts as an analog of chemerin to exert an anti-inflammatory effect by binding to CMKLR1. Here, we first demonstrated that AAA exhibited higher levels of chemerin and CMKLR1 expression compared with the normal aortic tissues. Hence, we hypothesized that the chemerin/CMKLR1 axis might be involved in AAA progression. Moreover, we found that chemerin-9 treatment markedly suppressed inflammatory cell infiltration, neovascularization, and matrix metalloproteinase (MMP) expression, while increasing the elastic fibers and smooth muscle cells (SMCs) in Ang II-induced AAA in ApoE-/- mice. This demonstrated that chemerin-9 could inhibit AAA formation. Collectively, our findings indicate a potential mechanism underlying AAA progression and suggest that chemerin-9 can be used therapeutically.
Collapse
|
28
|
Vitamin D deficiency promotes large rupture-prone abdominal aortic aneurysms and cholecalciferol supplementation limits progression of aneurysms in a mouse model. Clin Sci (Lond) 2021; 134:2521-2534. [PMID: 32936248 PMCID: PMC7536319 DOI: 10.1042/cs20200980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022]
Abstract
Vitamin D deficiency has been associated with human abdominal aortic aneurysm (AAA); however, its role in AAA pathogenesis is unclear. The aim of the present study was to investigate the effect of vitamin D deficiency on AAA development and examine if administering cholecalciferol (CCF) could limit growth of established AAA within the angiotensin-II (AngII) infused apolipoprotein E-deficient mouse model. Mice were rendered vitamin D deficiency through dietary restriction and during AngII infusion developed larger AAAs as assessed by ultrasound and ex vivo morphometry that ruptured more commonly (48% vs. 19%; P=0.028) than controls. Vitamin D deficiency was associated with increased aortic expression of osteopontin and matrix metalloproteinase-2 and -9 than controls. CCF administration to mice with established aortic aneurysms limited AAA growth as assessed by ultrasound (P<0.001) and ex vivo morphometry (P=0.036) and reduced rupture rate (8% vs. 46%; P=0.031). This effect was associated with up-regulation of circulating and aortic sclerostin. Incubation of human aortic smooth muscle cells with 1,25-dihyroxyvitamin D3 (the active metabolite of vitamin D) for 48 h induced up-regulation of sclerostin (P<0.001) and changed the expression of a range of other genes important in extracellular matrix remodeling. The present study suggests that vitamin D deficiency promotes development of large rupture-prone aortic aneurysms in an experimental model. CCF administration limited both growth and rupture of established aneurysms. These effects of vitamin D appeared to be mediated via changes in genes involved in extracellular matrix remodeling, particularly sclerostin.
Collapse
|
29
|
Maas DA, Martens MB, Priovoulos N, Zuure WA, Homberg JR, Nait-Oumesmar B, Martens GJM. Key role for lipids in cognitive symptoms of schizophrenia. Transl Psychiatry 2020; 10:399. [PMID: 33184259 PMCID: PMC7665187 DOI: 10.1038/s41398-020-01084-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022] Open
Abstract
Schizophrenia (SZ) is a psychiatric disorder with a convoluted etiology that includes cognitive symptoms, which arise from among others a dysfunctional dorsolateral prefrontal cortex (dlPFC). In our search for the molecular underpinnings of the cognitive deficits in SZ, we here performed RNA sequencing of gray matter from the dlPFC of SZ patients and controls. We found that the differentially expressed RNAs were enriched for mRNAs involved in the Liver X Receptor/Retinoid X Receptor (LXR/RXR) lipid metabolism pathway. Components of the LXR/RXR pathway were upregulated in gray matter but not in white matter of SZ dlPFC. Intriguingly, an analysis for shared genetic etiology, using two SZ genome-wide association studies (GWASs) and GWAS data for 514 metabolites, revealed genetic overlap between SZ and acylcarnitines, VLDL lipids, and fatty acid metabolites, which are all linked to the LXR/RXR signaling pathway. Furthermore, analysis of structural T1-weighted magnetic resonance imaging in combination with cognitive behavioral data showed that the lipid content of dlPFC gray matter is lower in SZ patients than in controls and correlates with a tendency towards reduced accuracy in the dlPFC-dependent task-switching test. We conclude that aberrations in LXR/RXR-regulated lipid metabolism lead to a decreased lipid content in SZ dlPFC that correlates with reduced cognitive performance.
Collapse
Affiliation(s)
- Dorien A. Maas
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands ,Sorbonne Université, Paris Brain Institute – ICM, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France ,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Marijn B. Martens
- NeuroDrug Research Ltd, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Nikos Priovoulos
- grid.458380.20000 0004 0368 8664Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam-Zuidoost, 1105 BK Amsterdam, The Netherlands
| | - Wieteke A. Zuure
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Donders Centre for Medical Neuroscience, Radboud University Medical Center, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands
| | - Brahim Nait-Oumesmar
- Sorbonne Université, Paris Brain Institute – ICM, Inserm U1127, CNRS UMR 7225, Hôpital Pitié-Salpêtrière, Paris, France
| | - Gerard J. M. Martens
- grid.5590.90000000122931605Faculty of Science, Centre for Neuroscience, Department of Molecular Animal Physiology, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28, 6525 GA Nijmegen, The Netherlands ,NeuroDrug Research Ltd, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
30
|
Piqueras L, Sanz MJ. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox-signaling pathways. Free Radic Biol Med 2020; 157:38-54. [PMID: 32057992 DOI: 10.1016/j.freeradbiomed.2020.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
Inflammation and activation of the immune system are key molecular and cellular events in the pathogenesis of cardiovascular diseases, including atherosclerosis, hypertension-induced target-organ damage, and abdominal aortic aneurysm. Angiotensin II (Ang-II) is the main effector peptide hormone of the renin-angiotensin system. Beyond its role as a potent vasoconstrictor and regulator of blood pressure and fluid homeostasis, Ang-II is intimately involved in the development of vascular lesions in cardiovascular diseases through the activation of different immune cells. The migration of leukocytes from circulation to the arterial subendothelial space is a crucial immune response in lesion development that is mediated through a sequential and coordinated cascade of leukocyte-endothelial cell adhesive interactions involving an array of cell adhesion molecules present on target leukocytes and endothelial cells and the generation and release of chemoattractants that activate and guide leukocytes to sites of emigration. In this review, we outline the key events of Ang-II participation in the leukocyte recruitment cascade, the underlying mechanisms implicated, and the corresponding redox-signaling pathways. We also address the use of inhibitor drugs targeting the effects of Ang-II in the context of leukocyte infiltration in these cardiovascular pathologies, and examine the clinical data supporting the relevance of blocking Ang-II-induced vascular inflammation.
Collapse
Affiliation(s)
- Laura Piqueras
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; Institute of Health Research INCLIVA University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Spanish Ministry of Health, Madrid, Spain.
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; Institute of Health Research INCLIVA University Clinic Hospital of Valencia, Valencia, Spain; CIBERDEM-Spanish Biomedical Research Center in Diabetes and Associated Metabolic Disorders, Carlos III Health Institute, Spanish Ministry of Health, Madrid, Spain.
| |
Collapse
|
31
|
Tsai SH, Hsu LA, Tsai HY, Yeh YH, Lu CY, Chen PC, Wang JC, Chiu YL, Lin CY, Hsu YJ. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells. FASEB J 2020; 34:9498-9511. [PMID: 32463165 DOI: 10.1096/fj.201902550rrr] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is an enzyme that detoxifies aldehydes by converting them to carboxylic acids. ALDH2 deficiency is known to increase oxidative stress. Increased oxidative stress plays a pivotal role in abdominal aortic aneurysm (AAA) pathogenesis. Reactive oxygen species (ROS) promote degradation of the extracellular matrix (ECM) and vascular smooth muscle cell (VSMC) apoptosis. Reducing oxidative stress by an ALDH2 activator could have therapeutic potential for limiting AAA development. We hypothesized that ALDH2 deficiency could increase the risk for AAA by decreasing ROS elimination and that an ALDH2 activator could provide an alternative option for AAA treatment. The National Center for Biotechnology (NCBI) Gene Expression Omnibus (GEO) database was used. Human aortic smooth muscle cells (HASMCs) were used for the in vitro experiments. Gene-targeted ALDH2*2 KI knock-in mice on a C57BL/6J background and apolipoprotein E knockout (ApoE KO) mice were obtained. An animal model of AAA was constructed using osmotic minipumps to deliver 1000 ng/kg/min angiotensin II (AngII) for 28 days. Patients with AAA had significantly lower ALDH2 expression levels than normal subjects. ALDH2*2 KI mice were susceptible to AngII administration, exhibiting significantly increased AAA incidence rates and increased aortic diameters. Alda-1, an ALDH2 activator, reduced AngII-induced ROS production, NF-kB activation, and apoptosis in HASMCs. Alda-1 attenuated AngII-induced aneurysm formation and decreased aortic expansion in ApoE KO mice. We concluded that ALDH2 deficiency is associated with the development of AAAs in humans and a murine disease model. ALDH2 deficiency increases susceptibility to AngII-induced AAA formation by attenuating anti-ROS effects and increasing VSMC apoptosis and vascular inflammation. Alda-1 was shown to attenuate the progression of experimental AAA in a murine model.
Collapse
Affiliation(s)
- Shih-Hung Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Department of Physiology and Biophysics, Graduate Institute of Physiology, National Defense Medical Center, Taipei, Taiwan
| | - Lung-An Hsu
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Hsiao-Ya Tsai
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yung-Hsin Yeh
- Cardiovascular Department, Chang-Gung Memorial Hospital and School of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Cheng-Yo Lu
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Po-Chuan Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jen-Chun Wang
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan
| | - Chih-Yuan Lin
- Department of Surgery, Division of Cardiovascular surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Juei Hsu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
32
|
Sanz R, Mazzei L, Santino N, Ingrasia M, Manucha W. Vitamin D-mitochondria cross-talk could modulate the signaling pathway involved in hypertension development: a translational integrative overview. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2020; 32:144-155. [PMID: 32456803 DOI: 10.1016/j.arteri.2020.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/12/2020] [Accepted: 02/27/2020] [Indexed: 12/25/2022]
Abstract
Vitamin D deficiency is a worldwide pandemic and results in osteoporosis, hypertension, and other cardiovascular diseases. At the cellular level, it produces significant oxidative stress, inflammatory markers, and mitochondrial damage. There is increasing evidence about the role of vitamin D in the regulation of the renin-angiotensin-aldosterone system (RAAS). Moreover, there is evidence of involvement in cardiovascular complications, as well as in the immune system disorders. Vitamin D values below 25ng/mL are related to an increase in vascular tone mediated by smooth muscle contraction. Furthermore, it can produce direct effects on vascular smooth muscle cells, RAAS over-regulation, modulation of calcium metabolism, and secondary hyperparathyroidism. All this predisposes patients to develop hypertrophy of the left ventricle and vascular wall, causing hypertension. In this work, a review is presented of the main mechanisms involved in the development of hypertension due to vitamin D deficiency. Among them are the link established between the levels of extra-mitochondrial inorganic phosphate, its main regulatory hormones -such as vitamin D-, the cardiovascular system, reactive oxygen species, and mitochondrial metabolism. The role of the mitochondrial vitamin D receptor and the regulation of the respiratory chain could influence arterial remodelling since its activation would reduce oxidative damage and preserve cell life. However, there are aspects not yet understood about the intricate signalling network that appeared simple in experimental trials, but complex in clinical studies. In this way, the completion of new studies as VITAL, could clarify, and thus support or refute the possible benefits of vitamin D in hypertensive cardiovascular disease.
Collapse
Affiliation(s)
- Raúl Sanz
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina
| | - Luciana Mazzei
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina
| | - Nicolás Santino
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina
| | - Marco Ingrasia
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina.
| |
Collapse
|
33
|
Kim HA, Perrelli A, Ragni A, Retta F, De Silva TM, Sobey CG, Retta SF. Vitamin D Deficiency and the Risk of Cerebrovascular Disease. Antioxidants (Basel) 2020; 9:antiox9040327. [PMID: 32316584 PMCID: PMC7222411 DOI: 10.3390/antiox9040327] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vitamin D deficiency has been clearly linked to major chronic diseases associated with oxidative stress, inflammation, and aging, including cardiovascular and neurodegenerative diseases, diabetes, and cancer. In particular, the cardiovascular system appears to be highly sensitive to vitamin D deficiency, as this may result in endothelial dysfunction and vascular defects via multiple mechanisms. Accordingly, recent research developments have led to the proposal that pharmacological interventions targeting either vitamin D deficiency or its key downstream effects, including defective autophagy and abnormal pro-oxidant and pro-inflammatory responses, may be able to limit the onset and severity of major cerebrovascular diseases, such as stroke and cerebrovascular malformations. Here we review the available evidence supporting the role of vitamin D in preventing or limiting the development of these cerebrovascular diseases, which are leading causes of disability and death all over the world.
Collapse
Affiliation(s)
- Hyun Ah Kim
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
| | - Alberto Ragni
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - Francesca Retta
- Oncological Endocrinology Unit, Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy; (A.R.); (F.R.)
| | - T. Michael De Silva
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
| | - Christopher G. Sobey
- Department of Physiology, Anatomy & Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora 3086, Australia; (H.A.K.); (T.M.D.S.)
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton 3800, Australia
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy;
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, 10043 Torino, Italy
- Correspondence: (C.G.S.); (S.F.R.); Tel.: +61-3-94791316 (C.G.S.); +39-011-6706426 (S.F.R.)
| |
Collapse
|
34
|
Joukar F, Naghipour M, Hassanipour S, Salari A, Alizadeh A, Saeidi-Saedi H, Mansour-Ghanaei F. Association of Serum Levels of Vitamin D with Blood Pressure Status in Northern Iranian Population: The PERSIAN Guilan Cohort Study (PGCS). Int J Gen Med 2020; 13:99-104. [PMID: 32210606 PMCID: PMC7073441 DOI: 10.2147/ijgm.s244472] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 02/20/2020] [Indexed: 12/15/2022] Open
Abstract
Background Evidence in the last decades has indicated an association between vitamin D and cardiovascular risk factors including blood pressure. The present study aimed to determine whether serum 25-hydroxyvitamin D is independently associated with blood pressure in a large population-based study. Methods The study was based on subjects from PERSIAN Guilan Cohort Study (PGCS), a prospective, population-based cohort study in Guilan, Iran. In 9520 men and women, aged 35-70 years, serum 25-hydroxyvitamin D, systolic and diastolic blood pressure were measured. Multiple logistic and linear regression analyses were conducted with adjustments for demographic factors (age and gender), anthropometric characteristics (waist circumference and body mass index), lifestyle variables (physical activity, alcohol, and smoking consumption), and renal function (serum creatinine). Results Fully adjusted linear regression analyses revealed a weak but statistically significant negative association between serum 25-hydroxyvitamin D levels and systolic blood pressure (β = -0.02, 95% CI= -0.052 to -0.0001, P-value=0.04), whereas vitamin D status was not significantly associated with diastolic blood pressure (β = -0.01, 95% CI= -0.026 to 0.009, P-value=0.3). Serum 25-hydroxyvitamin D status showed no significant association with the presence of hypertension (OR 1.09, 95% CI=0.94 to 1.25 for the lowest (25OHD <12 ng/mL) versus the highest (25OHD ≥20 ng/mL) category). Conclusion Lower serum vitamin 25 (OH) D levels were associated with higher systolic blood pressure; however, it was not associated with diastolic blood pressure and presence of hypertension.
Collapse
Affiliation(s)
- Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.,GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Naghipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.,GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Department of Cardiology, Cardiovascular Diseases Research Center, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Alizadeh
- Caspian Digestive Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Hamid Saeidi-Saedi
- GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran.,GI Cancer Screening and Prevention Research Center, Guilan University of Medical Sciences, Rasht, Iran.,Caspian Digestive Disease Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
35
|
Xu ML, Yu XJ, Zhao JQ, Du Y, Xia WJ, Su Q, Du MM, Yang Q, Qi J, Li Y, Zhou SW, Zhu GQ, Li HB, Kang YM. Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicol Appl Pharmacol 2020; 394:114950. [PMID: 32147540 DOI: 10.1016/j.taap.2020.114950] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/21/2020] [Accepted: 03/04/2020] [Indexed: 02/07/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) plays crucial roles in central cardiovascular regulation. Increasing evidence in humans and rodents shows that vitamin D intake is important for achieving optimal cardiovascular function. The purpose of this study was to investigate whether calcitriol, an active form of vitamin D, improves autonomic and cardiovascular function in hypertensive rats and whether PVN oxidative stress and inflammation are involved in these beneficial effects. Male spontaneously hypertensive rats (SHR) and normotensive control Wistar Kyoto (WKY) rats were treated with either calcitriol (40 ng/day) or vehicle (0.11 μL/h) through chronic PVN infusion for 4 weeks. Blood pressure and heart rate were recorded continuously by radiotelemetry. PVN tissue, heart and plasma were collected for molecular and histological analysis. Compared to WKY rats, SHR exhibited increased systolic blood pressure, sympathetic drive, and cardiac hypertrophy and remodeling. These were associated with higher mRNA and protein expression levels of high mobility box 1 (HMGB1), receptor for advanced glycation end products (RAGE), toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB), proinflammatory cytokines, NADPH oxidase subunit in the PVN. In addition, increased norepinephrine in plasma, elevated reactive oxygen species levels and activation of microglia in the PVN were also observed in SHR. Chronic calcitriol treatment ameliorated these changes but not in WKY rats. Our results demonstrate that chronic infusion of calcitriol in the PVN ameliorates hypertensive responses, sympathoexcitation and retains cardiovascular function in SHR. Reduced inflammation and oxidative stress within the PVN are involved in these calcitriol-induced effects.
Collapse
Affiliation(s)
- Meng-Lu Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China; Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jian-Qiang Zhao
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Yan Du
- Department of Nephrology, the First Affiliated Hospital of Xi'an Medical University, Xi'an 710003, China
| | - Wen-Jie Xia
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Meng-Meng Du
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Qing Yang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jie Qi
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shao-Wen Zhou
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
36
|
Abstract
Abdominal aortic aneurysms (AAA) pose a considerable health burden and at present are only managed surgically since there is no proven pharmacotherapy that will retard their expansion or reduce the incidence of fatal rupture. This pathology shares several pathophysiological mechanisms with atherosclerosis, such as macrophage infiltration, inflammation, and degradation of extracellular matrix. Therefore, therapeutic targets proven effective in the treatment of atherosclerosis could also be considered for treatment of AAA. Different members of the nuclear receptor (NR) superfamily have been extensively studied as potential targets in the treatment of cardiovascular disease (CVD) and therefore might also be suited for AAA treatment. In this context, this review summarizes the role of different NRs in CVD, mostly atherosclerosis, and discusses in detail the current knowledge of their implications in AAA. From this overview it becomes apparent that NRs that were attributed a beneficial or adverse role in CVD have similar roles in AAA. Together, this overview provides compelling evidence to consider several NRs as attractive targets for future treatment of AAA.
Collapse
|
37
|
Morvaridzadeh M, Sepidarkish M, Fazelian S, Rahimlou M, Omidi A, Ardehali SH, Sanoobar M, Heshmati J. Effect of Calcium and Vitamin D Co-supplementation on Blood Pressure: A Systematic Review and Meta-Analysis. Clin Ther 2020; 42:e45-e63. [PMID: 32067744 DOI: 10.1016/j.clinthera.2020.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Vitamin D and calcium insufficiency has been related to elevated blood pressure (BP) and cardiovascular complications. This systematic review and meta-analysis investigates the effect of calcium and vitamin D co-supplementation on BP. METHODS A systematic search was conducted of electronic databases, including Web of Sciences, MEDLINE, Scopus, EMBASE, and the Cochrane Library, along with searches of gray literature and reference lists from included trials. There were no language restrictions, and the databases were searched from inception to October 2019. Randomized controlled trials, using calcium and vitamin D co-supplementation and reporting mean systolic BP and/or diastolic BP (DBP) with SDs, were included in the systematic review. Articles were evaluated independently by 2 researchers based on inclusion and exclusion criteria. A random effects model was conducted to synthesize the data. FINDINGS Eight trials were included in the meta-analysis. Meta-analysis of these 8 trials indicated a nonsignificant reduction in systolic BP in the calcium and vitamin D co-supplementation group compared with control (standardized mean difference, -0.23; 95% CI, -0.52 to 0.06). Conversely, there was a statistically significant decrease in DBP (standardized mean difference, -0.29; 95% CI, -0.55 to -0.02). Subgroup analysis suggested that young adults achieve a greater reduction in DBP than other age groups. IMPLICATIONS Calcium and vitamin D co-supplementation can modulate DBP and should be investigated more specifically in large, well-designed trials of hypertensive populations. (Clin Ther. 2020;42:XXX-XXX) © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehran Rahimlou
- Nutrition Department, Faculty of Paramedicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Amirhossein Omidi
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hossein Ardehali
- Department of Anesthesiology and Critical Care, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Sanoobar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
38
|
IKK Epsilon Deficiency Attenuates Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Mice by Inhibiting Inflammation, Oxidative Stress, and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3602824. [PMID: 32064021 PMCID: PMC6998751 DOI: 10.1155/2020/3602824] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/06/2019] [Accepted: 11/14/2019] [Indexed: 11/18/2022]
Abstract
Abdominal aortic aneurysm (AAA) is a vascular disorder that is considered a chronic inflammatory disease. However, the precise molecular mechanisms involved in AAA have not been fully elucidated. Recently, significant progress has been made in understanding the function and mechanism of action of inhibitor of kappa B kinase epsilon (IKKε) in inflammatory and metabolic diseases. The angiotensin II- (Ang II-) induced or pharmacological inhibitors were established to test the effects of IKKε on AAA in vivo. After mice were continuously stimulated with Ang II for 28 days, morphologically, we found that knockout of IKKε reduced AAA formation and drastically reduced maximal diameter and severity. We also observed a decrease in elastin degradation and medial destruction, which were independent of systolic blood pressure or plasma cholesterol concentrations. Western blot analyses and immunohistochemical staining were carried out to measure IKKε expression in AAA tissues and cell lines. AAA phenotype of mice was measured by ultrasound and biochemical indexes. In zymography, immunohistology staining, immunofluorescence staining, and reactive oxygen species (ROS) analysis, TUNEL assay was used to examine the effects of IKKε on AAA progression in AAA mice. IKKε deficiency significantly inhibited inflammatory macrophage infiltration, matrix metalloproteinase (MMP) activity, ROS production, and vascular smooth muscle cell (VSMC) apoptosis. We used primary mouse aortic VSMC isolated from apolipoprotein E (Apoe) -/- and Apoe-/-IKKε -/- mice. Mechanistically, IKKε deficiency blunted the activation of the ERK1/2 pathway. The IKKε inhibitor, amlexanox, has the same impact in AAA. Our results demonstrate a critical role of IKKε in AAA formation induced by Ang II in Apoe-/- mice. Targeting IKKε may constitute a novel therapeutic strategy to prevent AAA progression.
Collapse
|
39
|
Gan S, Pan Y, Mao J. miR-30a-GNG2 and miR-15b-ACSS2 Interaction Pairs May Be Potentially Crucial for Development of Abdominal Aortic Aneurysm by Influencing Inflammation. DNA Cell Biol 2019; 38:1540-1556. [PMID: 31730405 DOI: 10.1089/dna.2019.4994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Shujie Gan
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqin Pan
- Department of Nursing, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jieqi Mao
- Department of Vascular Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
40
|
Tingting T, Wenjing F, Qian Z, Hengquan W, Simin Z, Zhisheng J, Shunlin Q. The TGF-β pathway plays a key role in aortic aneurysms. Clin Chim Acta 2019; 501:222-228. [PMID: 31707165 DOI: 10.1016/j.cca.2019.10.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Aortic dissection and aortic aneurysms are currently among the most high-risk cardiovascular diseases due to their rapid onset and high mortality. Although aneurysm research has been extensive, the pathogenesis remains unknown. Studies have found that the TGF-β/Smad pathway and aneurysm formation appear linked. For example, the TGF-β signaling pathway was significantly activated in aneurysm development and aortic dissection. Aneurysms are not, however, mitigated following knockdown of TGF-β signaling pathway-related genes. Incidence and mortality rate of ruptured thoracic aneurysms increase with the down-regulation of the classical TGF-β signaling pathway. In this review, we summarize recent findings and evaluate the differential role of classical and non-classical TGF-β pathways on aortic aneurysm. It is postulated that the TGF-β signaling pathway is necessary to maintain vascular function, but over-activation will promote aneurysms whereas over-inhibition will lead to bypass pathway over-activation and promote aneurysm occurrence.
Collapse
Affiliation(s)
- Tang Tingting
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Fan Wenjing
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China; Emergency Department, The Second Affiliated Hospital, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zeng Qian
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Wan Hengquan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhao Simin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Jiang Zhisheng
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Qu Shunlin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
41
|
Vitamin D as A Protector of Arterial Health: Potential Role in Peripheral Arterial Disease Formation. Int J Mol Sci 2019; 20:ijms20194907. [PMID: 31623356 PMCID: PMC6801787 DOI: 10.3390/ijms20194907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerotic occlusive diseases and aneurysms that affect large and medium-sized arteries outside the cardiac and cerebral circulation are collectively known as peripheral arterial disease (PAD). With a rise in the rate of aging population worldwide, the number of people diagnosed with PAD is rapidly increasing. The micronutrient vitamin D is an important steroid hormone that acts on many crucial cellular mechanisms. Experimental studies suggest that optimal levels of vitamin D have beneficial effects on the heart and blood vessels; however, high vitamin D concentrations have been implicated in promoting vascular calcification and arterial stiffness. Observations from various clinical studies shows that deficiency of vitamin D has been associated with a greater risk of PAD. Epidemiological studies have often reported an inverse relation between circulating vitamin D status measured in terms of 25-hydroxivitamin D [25(OH)D] levels and increased cardiovascular disease risk; however, randomized controlled trials did not show a consistent positive effect of vitamin D supplementation on cardiovascular disease risk or events. Even though PAD shares all the major risk factors with cardiovascular diseases, the effect of vitamin D deficiency in PAD is not clear. Current evidence suggests a strong role of vitamin D in promoting genomic and epigenomic changes. This review summarises the current literature that supports the notion that vitamin D deficiency may promote PAD formation. A better understanding of underlying pathological mechanisms will open up new therapeutic possibilities which is the main unmet need in PAD management. Furthermore, epigenetic evidence shows that a more holistic approach towards PAD prevention that incorporates a healthy lifestyle, adequate exercise and optimal nutrition may be more effective in protecting the genome and maintaining a healthy vasculature.
Collapse
|
42
|
Lu HS, Schmidt AM, Hegele RA, Mackman N, Rader DJ, Weber C, Daugherty A. Reporting Sex and Sex Differences in Preclinical Studies. Arterioscler Thromb Vasc Biol 2019; 38:e171-e184. [PMID: 30354222 DOI: 10.1161/atvbaha.118.311717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hong S Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, New York University Langone Medical Center, New York, NY (A.M.S.)
| | - Robert A Hegele
- Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada (R.A.H.)
| | - Nigel Mackman
- Department of Medicine, University of North Carolina at Chapel Hill (N.M.)
| | - Daniel J Rader
- Department of Medicine (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.,Department of Genetics (D.J.R.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Christian Weber
- Department of Medicine, Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität, Munich, Germany (C.W.).,German Centre for Cardiovascular Research, Partner Site Munich Heart Alliance, Munich, Germany (C.W.)
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington (H.S.L., A.D.)
| |
Collapse
|
43
|
Indomethacin reduces rates of aortic dissection and rupture of the abdominal aorta by inhibiting monocyte/macrophage accumulation in a murine model. Sci Rep 2019; 9:10751. [PMID: 31341173 PMCID: PMC6656736 DOI: 10.1038/s41598-019-46673-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/01/2019] [Indexed: 12/16/2022] Open
Abstract
Aortic dissection is a life-threatening condition, which is characterised by separation of the constituent layers of the aortic wall. We have recently shown that monocyte/macrophage infiltration into the aortic wall is a pathogenic mechanism of the condition. In the present study, we investigated whether the anti-inflammatory agent, indomethacin, could inhibit monocyte/macrophage accumulation in the aortic wall and ensuing dissection. Indomethacin was administered (from 3 days prior with daily oral administration) to mice in which aortic dissection was induced using beta-aminopropionitrile (BAPN) and angiotensin II (Ang II) infusion (2 weeks). Indomethacin prevented death from abdominal aortic dissection and decreased incidence of aortic dissection by as high as 40%. Histological and flow cytometry analyses showed that indomethacin administration resulted in inhibition of monocyte transendothelial migration and monocyte/macrophage accumulation in the aortic wall. These results indicate that indomethacin administration reduces rate of onset of aortic dissection in a murine model of the condition.
Collapse
|
44
|
Ortega R, Collado A, Selles F, Gonzalez-Navarro H, Sanz MJ, Real JT, Piqueras L. SGLT-2 (Sodium-Glucose Cotransporter 2) Inhibition Reduces Ang II (Angiotensin II)-Induced Dissecting Abdominal Aortic Aneurysm in ApoE (Apolipoprotein E) Knockout Mice. Arterioscler Thromb Vasc Biol 2019; 39:1614-1628. [PMID: 31294626 DOI: 10.1161/atvbaha.119.312659] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a pathological condition of permanent vessel dilatation that predisposes to the potentially fatal consequence of aortic rupture. SGLT-2 (sodium-glucose cotransporter 2) inhibitors have emerged as powerful pharmacological tools for type 2 diabetes mellitus treatment. Beyond their glucose-lowering effects, recent studies have shown that SGLT-2 inhibitors reduce cardiovascular events and have beneficial effects on several vascular diseases such as atherosclerosis; however, the potential effects of SGLT-2 inhibition on AAA remain unknown. This study evaluates the effect of oral chronic treatment with empagliflozin-an SGLT-2 inhibitor-on dissecting AAA induced by Ang II (angiotensin II) infusion in apoE (apolipoprotein E)-/- mice. Approach and Results: Empagliflozin treatment significantly reduced the Ang II-induced increase in maximal suprarenal aortic diameter in apoE-/- mice independently of blood pressure effects. Immunohistochemistry analysis revealed that empagliflozin diminished Ang II-induced elastin degradation, neovessel formation, and macrophage infiltration at the AAA lesion. Furthermore, Ang II infusion resulted in a marked increase in the expression of chemokines (CCL-2 [chemokine (C-C motif) ligand 2] and CCL-5 [chemokine (C-C motif) ligand 5]), VEGF (vascular endothelial growth factor), and MMP (matrix metalloproteinase)-2 and MMP-9 in suprarenal aortic walls of apoE-/- mice, and all were reduced by empagliflozin cotreatment. Western blot analysis revealed that p38 MAPK (p38 mitogen-activated protein kinase) and NF-κB (nuclear factor-κB) activation was also reduced in the suprarenal aortas of apoE-/- mice cotreated with empagliflozin. Finally, in vitro studies in human aortic endothelial cells and macrophages showed that empagliflozin inhibited leukocyte-endothelial cell interactions and release of proinflammatory chemokines. CONCLUSIONS Pharmacological inhibition of SGLT-2 by empagliflozin inhibits AAA formation. SGLT-2 inhibition might represent a novel promising therapeutic strategy to prevent AAA progression.
Collapse
Affiliation(s)
- Rebeca Ortega
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.)
| | - Aida Collado
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.)
| | - Francisca Selles
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.)
| | - Herminia Gonzalez-Navarro
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| | - Maria-Jesus Sanz
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain (M.J.S., L.P.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| | - José T Real
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Spain (J.T.R.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| | - Laura Piqueras
- From the Institute of Health Research-INCLIVA, Valencia, Spain (R.O., A.C., F.S., H.G.-N., M.J.S., J.T.R., L.P.).,Department of Pharmacology, Faculty of Medicine, University of Valencia, Spain (M.J.S., L.P.).,CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research-ISCIII, Madrid, Spain (H.G.-N., M.J.S., J.T.R., L.P.)
| |
Collapse
|
45
|
Zhang Z, Zou G, Chen X, Lu W, Liu J, Zhai S, Qiao G. Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Mol Cells 2019; 42:218-227. [PMID: 30726659 PMCID: PMC6449717 DOI: 10.14348/molcells.2018.0162] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023] Open
Abstract
This study was designed to determine the effects of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) on vascular smooth muscle cell (VSMC) apoptosis and extracellular matrix (ECM) disruption in a murine abdominal aortic aneurysm (AAA) model. After injection of PVT1-silencing lentiviruses, AAA was induced in Apolipoprotein E-deficient (ApoE-/-) male mice by angiotensin II (Ang II) infusion for four weeks. After Ang II infusion, mouse serum levels of pro-inflammatory cytokines were analysed, and aortic tissues were isolated for histological, RNA, and protein analysis. Our results also showed that PVT1 expression was significantly upregulated in abdominal aortic tissues from AAA patients compared with that in controls. Additionally, Ang II treatment significantly increased PVT1 expression, both in cultured mouse VSMCs and in AAA murine abdominal aortic tissues. Of note, the effects of Ang II in facilitating cell apoptosis, increasing matrix metalloproteinase (MMP)-2 and MMP-9, reducing tissue inhibitor of MMP (TIMP)-1, and promoting switching from the contractile to synthetic phenotype in cultured VSMCs were enhanced by overexpression of PVT1 but attenuated by knockdown of PVT1. Furthermore, knockdown of PVT1 reversed Ang II-induced AAA-associated alterations in mice, as evidenced by attenuation of aortic diameter dilation, marked adventitial thickening, loss of elastin in the aorta, enhanced aortic cell apoptosis, elevated MMP-2 and MMP-9, reduced TIMP-1, and increased pro-inflammatory cytokines. In conclusion, our findings demonstrate that knockdown of lncRNA PVT1 suppresses VSMC apoptosis, ECM disruption, and serum pro-inflammatory cytokines in a murine Ang II-induced AAA model.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Angiotensin II/pharmacology
- Animals
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/pathology
- Apolipoproteins E/deficiency
- Apoptosis/drug effects
- Disease Models, Animal
- Extracellular Matrix/metabolism
- Gene Knockdown Techniques
- Humans
- Inflammation/pathology
- Mice
- Middle Aged
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Small Interfering/metabolism
Collapse
Affiliation(s)
- Zhidong Zhang
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Gangqiang Zou
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Xiaosan Chen
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Wei Lu
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Jianyang Liu
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Shuiting Zhai
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Vascular and Endovascular Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| | - Gang Qiao
- Department of Vascular and Endovascular Surgery, Henan Provincial People’s Hospital, Henan,
China
- Department of Aortic Surgery, Fuwai Central China Cardiovascular Hospital, Henan,
China
| |
Collapse
|
46
|
The deregulation of STIM1 and store operative calcium entry impaired aortic smooth muscle cells contractility in aortic medial degeneration. Biosci Rep 2019; 39:BSR20181504. [PMID: 30504131 PMCID: PMC6328863 DOI: 10.1042/bsr20181504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/14/2018] [Accepted: 11/27/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Microarray analysis of clinical aortic samples suggested a potential role for stromal interaction molecule 1 (STIM1) in the modulation of aortic medial degeneration (AMD), despite the uncertainty about STIM1 in normal aortic smooth muscle cells (ASMCs). Here, we aimed to explore changes in STIM1 expression in AMD, and the possible mechanisms. Methods: An AMD model was established using auto-delivery of angiotensin II (Ang II) into ApoE-/- mice. We assessed the effects of SKF96365, a STIM1 inhibitor, in AMD model and in vitro cultured ASMCs. Elastic van Gieson (EVG) staining was used to visualize elastic fiber injury. Mitochondria changes were viewed by TEM. Cytoplasmic calcium was quantified by measuring fluo-4 staining in a flow cytometer. Mechanical stretching device was used to mimic stretching that ASMCs experience in vivo Cell apoptosis was determined by using Annexin V/propidium iodide (PI) staining. The expression of STIM1, contractile related proteins (α-smooth muscle actin (α-SMA), myosin light chain (MLC)), endoplasmic reticulum (ER) stress-related proteins (CHOP, activating transcription factor 6 (ATF-6)) and smad2/3 were assessed by Western blotting, immunohistochemistry (IHC), and immunofluorescence (IF). Results: SKF96365 exacerbated aortic injury in the AMD model. SKF96365 reduced cytoplasmic calcium concentration in ASMCs, caused mitochondrial swelling, and elevated the expression of ATF-6 and CHOP. SKF96365 decreased the expression of MLC and α-SMA in ASMCs, causing them to be vulnerable to mechanical stretch. SKF96365 suppressed smad2/3 activation after treatment with transforming growth factor (TGF) β1 (TGFβ1). Conclusions: STIM1 is indispensable in ASMCs. Interfering with STIM1 exaggerated the AMD process by modulating the expression of contractile proteins, inducing ER stress in ASMCs.
Collapse
|
47
|
Petri MH, Thul S, Andonova T, Lindquist-Liljeqvist M, Jin H, Skenteris NT, Arnardottir H, Maegdefessel L, Caidahl K, Perretti M, Roy J, Bäck M. Resolution of Inflammation Through the Lipoxin and ALX/FPR2 Receptor Pathway Protects Against Abdominal Aortic Aneurysms. JACC Basic Transl Sci 2018; 3:719-727. [PMID: 30623131 PMCID: PMC6314955 DOI: 10.1016/j.jacbts.2018.08.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/31/2022]
Abstract
Specialized lipid mediators transduce the resolution of inflammation by means of the ALX/FPR2. Human AAA exhibited decreased ALX/FPR2 expression. Genetic disruption of the murine ALX/FPR2 ortholog exacerbated AAA and increased inflammation. The ALX/FPR2 agonist ATL induced pro-resolving signaling in bone marrow-derived murine cells. Pro-resolving signaling by means of the ALX/FPR2 receptor may decrease the progression of AAA.
An abdominal aortic aneurysm (AAA) is a progressive aortic dilation that may lead to rupture, which is usually lethal. This study identifies the state of failure in the resolution of inflammation by means of decreased expression of the pro-resolving receptor A lipoxin/formyl peptide receptor 2 (ALX/FPR2) in the adventitia of human AAA lesions. Mimicking this condition by genetic deletion of the murine ALX/FPR2 ortholog in hyperlipidemic mice exacerbated the aortic dilation induced by angiotensin II infusion, associated with decreased vascular collagen and increased inflammation. The authors also identified key roles of lipoxin formation through 12/15-lipoxygenase and neutrophil p38 mitogen-activated protein kinase. In conclusion, this study established pro-resolving signaling by means of the ALX/FPR2 receptor in aneurysms and vascular inflammation.
Collapse
Affiliation(s)
- Marcelo H Petri
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Silke Thul
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teodora Andonova
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Hong Jin
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | - Kenneth Caidahl
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mauro Perretti
- William Harvey Research Institute, Barts and London School of Medicine, Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Joy Roy
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Bäck
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden.,Theme Heart and Vessels, Division of Valvular and Coronary Disease, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
48
|
Wu CH, Mohammadmoradi S, Chen JZ, Sawada H, Daugherty A, Lu HS. Renin-Angiotensin System and Cardiovascular Functions. Arterioscler Thromb Vasc Biol 2018; 38:e108-e116. [PMID: 29950386 PMCID: PMC6039412 DOI: 10.1161/atvbaha.118.311282] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Chia-Hua Wu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Shayan Mohammadmoradi
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
| | - Jeff Z Chen
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hisashi Sawada
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.-H.W., S.M., J.Z.C., H.S., A.D., H.S.L.)
- Department of Pharmacology and Nutritional Sciences (C.-H.W., S.M., A.D., H.S.L.)
- Department of Physiology (J.Z.C., A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
49
|
Ríos-Navarro C, Hueso L, Miñana G, Núñez J, Ruiz-Saurí A, Sanz MJ, Cànoves J, Chorro FJ, Piqueras L, Bodí V. El suero de seno coronario tras un infarto de miocardio induce angiogénesis y reparación de la obstrucción microvascular. Implicación del factor inducible por hipoxia-1A. Rev Esp Cardiol 2018. [DOI: 10.1016/j.recesp.2017.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Lutsey PL, Rooney MR, Folsom AR, Michos ED, Alonso A, Tang W. Markers of vitamin D metabolism and incidence of clinically diagnosed abdominal aortic aneurysm: The Atherosclerosis Risk in Communities Study. Vasc Med 2018; 23:253-260. [PMID: 29400142 PMCID: PMC6190682 DOI: 10.1177/1358863x17751258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Little is known about whether markers of vitamin D metabolism are associated with the development of abdominal aortic aneurysm (AAA), though these markers have been linked to other cardiovascular diseases. We tested the hypotheses that risk of AAA is higher among individuals with low serum concentrations of 25-hydroxy vitamin D [25(OH)D], and among those with elevated concentrations of calcium, fibroblast growth factor 23 (FGF23), phosphorus, and parathyroid hormone (PTH) using data from a cohort of black and white individuals with long-term follow-up. Markers of vitamin D metabolism were measured using serum collected in 1990-1992 from ARIC study participants (mean ± SD age 56.9 ± 5.7 years, 43.2% male, 23.9% black). A total of 12,770 participants were followed until 2011 for incident AAA. Multivariable-adjusted Cox regression models were used. A total of 449 incident AAA events occurred over a median follow-up of 19.7 years. For the association between serum calcium and risk of incident AAA there was evidence of interaction by sex ( p-interaction 0.02). Among women, in the fully adjusted model, the hazard ratio (95% confidence interval) comparing the highest to lowest quartile was 2.43 (1.25-4.73), whereas in men it was 1.01 (0.72-1.43). Not associated with risk of incident AAA were 25(OH)D, FGF23, phosphorus, and PTH. In this large prospective cohort, there was little evidence that markers of vitamin D metabolism are associated with risk of incident AAA. The positive association of calcium with AAA among women may warrant further investigation and replication in other populations.
Collapse
Affiliation(s)
- Pamela L. Lutsey
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Mary R. Rooney
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Aaron R. Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Erin D. Michos
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Alvaro Alonso
- Ciccarone Center for the Prevention of Heart Disease and Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|