1
|
Shah I, Molony D, Lefieux A, Crawford K, Piccinelli M, Sun H, Giddens D, Samady H, Veneziani A. Impact of the stent footprint on endothelial wall shear stress in patient-specific coronary arteries: A computational analysis from the SHEAR-STENT trial. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 266:108762. [PMID: 40245606 DOI: 10.1016/j.cmpb.2025.108762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND AND OBJECTIVE Wall shear stress (WSS) has been known to play a critical role in the development of several complications following coronary artery stenting, including in-stent restenosis and thrombosis. Computational fluid dynamics is often used to quantify the post-stenting WSS, which may potentially be used as a predictive metric. However, large-scale studies for WSS-based risk stratification often neglect the footprint of the stent due to reconstruction challenges. The primary objective of this study is to statistically evaluate the impact of the stent footprints (Xience and Resolute stents) on the computed endothelial WSS and quantitatively identify the relationship between these local hemodynamic alterations and the global properties of the vessel, such as curvature, on WSS. The ultimate goal is to evaluate whether and when it is worth including the footprint of the stent in an in-silico study to compute the WSS reliably. METHODS A previously developed semi-automated reconstruction approach for patient-specific coronaries was employed as a part of the SHEAR-STENT trial. A subset of patients was analyzed (N=30), and CFD simulations were performed with and without the stent to evaluate the impact of the stent footprint on WSS. Due to the computationally expensive nature of transient analyses, a sub-cohort of ten patients were used to assess the reliability of WSS obtained from steady computations as a surrogate for the time-averaged results. Global and local vessel curvature data were extracted for all cases and evaluated against stent-induced alterations in the WSS. The differences between the Xience and Resolute stent platforms were also examined to quantify each stent's unique WSS footprint. RESULTS Results from the surrogate analysis indicate that steady WSS serves as an excellent approximation of the time-averaged computations. The presence of either stent footprint causes a statistically significant decrease in the space-averaged WSS, and a significant increase in the endothelial regions exposed to very low WSS as well (<0.5 Pa). Negative correlations were observed between vessel curvature and WSS differences, indicating that macroscopic vessel characteristics play a more prominent role in determining endothelial WSS at higher curvature values. In our pool of cases, comparison of Xience and Resolute stents revealed that the Resolute platform seems to lead to lower space-averaged WSS and an increase in areas of very low WSS. CONCLUSION These results outline (1) the necessity of including the stent footprint for accurate in-silico WSS analysis; (2) the global features of stented arteries serving as the dominant determinant of WSS past a certain curvature threshold; and (3) the Xience stent resulting in a milder presence of hemodynamically unfavorable WSS regions compared to the Resolute stent.
Collapse
Affiliation(s)
- Imran Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Nerem Street NW, Atlanta, GA 30313, USA; Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA.
| | - David Molony
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA
| | - Adrien Lefieux
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA
| | - Kaylyn Crawford
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA
| | - Marina Piccinelli
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Hanyao Sun
- AU/UGA Medical Partnership, Medical College of Georgia, Prince Avenue, Athens, GA 30602, USA
| | - Don Giddens
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, 387 Nerem Street NW, Atlanta, GA 30313, USA; Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Habib Samady
- Georgia Heart Institute, Northeast Georgia Medical Center, 200 South Enota Drive, Gainseville, GA 30501, USA; Department of Medicine, Emory University School of Medicine, 100 Woodruff Circle, Atlanta, GA 30322, USA
| | - Alessandro Veneziani
- Department of Mathematics, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA; Department of Computer Science, Emory University, 400 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Yichi Y, Xiaomin Y, Jian S, Pengpai Z, Wei L, Rui Z, Mu C, Mingzhe Z, Yuli Y, Ting W, Qunshan W, Yigang L. Routine preoperative transthoracic echocardiography for predicting incomplete endothelialization of the watchman left atrial appendage occluder: A single-center five-year study. Int J Cardiol 2025:133385. [PMID: 40381918 DOI: 10.1016/j.ijcard.2025.133385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/02/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND & OBJECTIVES Incomplete endothelialization of the left atrial appendage(LAA) occluder potentially affects the long-term efficacy of stroke prevention in atrial fibrillation(AF) patients. This study aims to explore the value of routine preoperative transthoracic echocardiography(TTE) in predicting the endothelialization of Watchman LAA occluder. METHODS This single-center retrospective study included 437 AF patients who underwent the LAA closure with Watchman 2.5 occluder from January 2017 to December 2022. Cardiac CTA was performed 3-6 months after the procedure. Based on contrast infiltration into the LAA cavity, two groups were defined as follows: completely and incompletely endothelialized. The baseline and pre-procedural TTE parameters were analyzed. RESULTS The average age was 70.2 years old, with 208 females(47.6 %). The incompletely endothelialized group had an older age (71.4 ± 7.5 vs 69.8 ± 7.6,p = 0.053), a larger left atrial(LA) diameter (44.0 ± 5.9 vs 42.7 ± 6.1 mm,p = 0.045) and a lower left ventricular ejection fraction(LVEF%)(62.5 ± 7.5 vs 63.0 ± 5.4 %,p = 0.016) than the completely endothelialized group. Univariate analysis revealed that incomplete endothelialization was associated with persistent AF(OR:1.68;95 % CI:1.08-2.10;p = 0.021), a higher LA diameter(OR:1.04;95 % CI:1.00-1.07;p = 0.046), a higher left ventricular diastolic diameter(LVDD)(OR:1.05;95 % CI:1.00-1.10;p = 0.032),and the presence of mild mitral stenosis (mean pressure gradient <5 mmHg and mitral valve area > 1.5 cm2,OR:11.29;95 % CI:1.25-102.10;p = 0.031), while it was negatively correlated with mild left ventricular diastolic dysfunction (OR:0.49;95 % CI:0.26-0.94;p = 0.033). Multivariate analysis demonstrated that mild mitral stenosis(OR: 13.79;95 % CI:1.37-139.13;p = 0.026) was an independent predictor for incomplete endothelialization. CONCLUSION Preoperative TTE may predict the outcomes of endothelialization after left atrial appendage occlusion. Mild or severe mitral stenosis is an independent predictive factor for poor endothelial coverage.
Collapse
Affiliation(s)
- Yu Yichi
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Xiaomin
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sun Jian
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhang Pengpai
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wei
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhang Rui
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chen Mu
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhao Mingzhe
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yuli
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Ting
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Qunshan
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Yigang
- Department of Cardiology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Deng H, Eichmann A, Schwartz MA. Fluid Shear Stress-Regulated Vascular Remodeling: Past, Present, and Future. Arterioscler Thromb Vasc Biol 2025. [PMID: 40207366 DOI: 10.1161/atvbaha.125.322557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
The vascular system remodels throughout life to ensure adequate perfusion of tissues as they grow, regress, or change metabolic activity. Angiogenesis, the sprouting of new blood vessels to expand the capillary network, versus regression, in which endothelial cells die or migrate away to remove unneeded capillaries, controls capillary density. In addition, upstream arteries adjust their diameters to optimize blood flow to downstream vascular beds, which is controlled primarily by vascular endothelial cells sensing fluid shear stress (FSS) from blood flow. Changes in capillary density and small artery tone lead to changes in the resistance of the vascular bed, which leads to decreased or increased flow through the arteries that feed these small vessels. The resultant changes in FSS through these vessels then stimulate their inward or outward remodeling, respectively. This review summarizes our knowledge of endothelial FSS-dependent vascular remodeling, offering insights into potential therapeutic interventions. We first provide a historical overview, then discuss the concept of set point and mechanisms of low-FSS-mediated and high-FSS-mediated inward and outward remodeling. We then cover in vivo animal models, molecular mechanisms, and clinical implications. Understanding the mechanisms underlying physiological endothelial FSS-mediated vascular remodeling and their failure due to mutations or chronic inflammatory and metabolic stresses may lead to new therapeutic strategies to prevent or treat vascular diseases.
Collapse
Affiliation(s)
- Hanqiang Deng
- Yale Cardiovascular Research Center CT , Yale University School of Medicine, New Haven, CT.(H.D., A.E., M.A.S.)
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT. (H.D., A.E., M.A.S.)
| | - Anne Eichmann
- Yale Cardiovascular Research Center CT , Yale University School of Medicine, New Haven, CT.(H.D., A.E., M.A.S.)
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT. (H.D., A.E., M.A.S.)
| | - Martin A Schwartz
- Yale Cardiovascular Research Center CT , Yale University School of Medicine, New Haven, CT.(H.D., A.E., M.A.S.)
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT. (H.D., A.E., M.A.S.)
- Department of Cell Biology, Yale School of Medicine, New Haven, CT (M.A.S.)
- Department of Biomedical Engineering, Yale School of Engineering, New Haven, CT (M.A.S.)
| |
Collapse
|
4
|
Colombo A, Chiastra C, Gallo D, Loh PH, Dokos S, Zhang M, Keramati H, Carbonaro D, Migliavacca F, Ray T, Jepson N, Beier S. Advancements in Coronary Bifurcation Stenting Techniques: Insights From Computational and Bench Testing Studies. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70000. [PMID: 40087854 PMCID: PMC11909422 DOI: 10.1002/cnm.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/28/2024] [Accepted: 01/11/2025] [Indexed: 03/17/2025]
Abstract
Coronary bifurcation lesions present complex challenges in interventional cardiology, necessitating effective stenting techniques to achieve optimal results. This literature review comprehensively examines the application of computational and bench testing methods in coronary bifurcation stenting, offering insights into procedural aspects, stent design considerations, and patient-specific characteristics. Structural mechanics finite element analysis, computational fluid dynamics, and multi-objective optimization are valuable tools for evaluating stenting strategies, including provisional side branch stenting and two-stenting techniques. We highlight the impact of procedural factors, such as balloon positioning and rewiring techniques, and stent design features on the outcome of percutaneous coronary interventions with stents. We discuss the importance of patient-specific characteristics in deployment strategies, such as bifurcation angle and plaque properties. This understanding informs present and future research and clinical practice on bifurcation stenting. Computational simulations are a continuously maturing advance that has significantly enhanced stenting devices and techniques for coronary bifurcation lesions over the years. However, the accurate account of patient-specific vessel and lesion characteristics, both in terms of anatomical and accurate physiological behavior, and their large variation between patients, remains a significant challenge in the field. In this context, advancements in multi-objective optimization offer significant opportunities for refining stent design and procedural practices.
Collapse
Affiliation(s)
- Andrea Colombo
- Sydney Vascular Modelling Group, School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Claudio Chiastra
- PolitoBIOMed Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Diego Gallo
- PolitoBIOMed Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Poay Huan Loh
- Department of Cardiology, National University Heart CentreNational University Health SystemSingaporeSingapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Socrates Dokos
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Mingzi Zhang
- Sydney Vascular Modelling Group, School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Hamed Keramati
- Sydney Vascular Modelling Group, School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| | - Dario Carbonaro
- PolitoBIOMed Lab, Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTurinItaly
| | - Francesco Migliavacca
- Department of Chemistry, Material and Chemical EngineeringPolitecnico di MilanoMilanItaly
| | - Tapabrata Ray
- School of Engineering and TechnologyUniversity of New South WalesCanberraAustralian Capital TerritoryAustralia
| | - Nigel Jepson
- Prince of Wales Clinical School of MedicineUniversity of New South WalesSydneyNew South WalesAustralia
- Department of CardiologyPrince of Wales HospitalSydneyNew South WalesAustralia
| | - Susann Beier
- Sydney Vascular Modelling Group, School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
5
|
Wu W, Tanweer S, Tapia-Orihuela RKA, Munjal P, Trivedi YV, Zhao S, Zafar H, Darapaneni H, Dasari VS, Lee C, Bhat RR, Kassab GS, Chatzizisis YS. Hemodynamic microenvironment of coronary stent strut malapposition. Comput Biol Med 2025; 184:109378. [PMID: 39549532 DOI: 10.1016/j.compbiomed.2024.109378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/03/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
OBJECTIVE This study aims to investigate the micro-hemodynamic effects of strut malapposition in patient-specific stented coronary bifurcations. METHODS Using the mapping-back technique, three-dimensional reconstructions of clinical post-stenting artery bifurcations with strut malapposition were accurately generated from optical coherence tomography scans of 9 patients. Computational fluid dynamics (CFD) simulations were then conducted with these models to examine the impact of strut malapposition on various fluid dynamic parameters, including flow patterns, vorticity, strain rates, viscosity, and wall shear stress (WSS). For statistical analysis, virtually apposed models were created to evaluate WSS metrics. Additionally, follow-up data for 5 out of the 9 patients were reviewed to assess evidence of late thrombosis and restenosis. RESULTS Malapposed struts induce significant alterations in flow dynamics, including the formation of recirculation regions and the transition from laminar to disturbed flow. The local curvature of the lumen also affects the development of these recirculation regions. Our study demonstrates, for the first time, that the vorticity on the abluminal side of malapposed struts exhibits an opposite sign compared to the surrounding region. The strain rate around these struts shows a distinct transition, with high values at the stent surface that rapidly diminish within the strut-lumen gap. This transition is accompanied by an increase in viscosity within these regions. Furthermore, as the malapposition distance increases, strain rates on the malapposed struts increase while viscosity decreases. Significant differences in WSS metrics were observed between clinically malapposed and virtually apposed scenarios. In clinical follow-up cases, no evidence of thrombosis was found despite the complex micro-hemodynamics in these patients. CONCLUSION There is complex interplay between stent malapposition and hemodynamics within a patient-specific bifurcation. The significant impact of local lumen curvature on flow dynamics underscores the limitations of idealized artery models. Moreover, the absence of thrombosis in subsequent clinical follow-up cases suggests that additional factors, such as antiplatelet medication, may play a significant role in mitigating these risks.
Collapse
Affiliation(s)
- Wei Wu
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Sartaj Tanweer
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Ruben K A Tapia-Orihuela
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Parth Munjal
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Yash Vardhan Trivedi
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Shijia Zhao
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Hammad Zafar
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Haritha Darapaneni
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Vineeth S Dasari
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Changkye Lee
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Rakshita Ramesh Bhat
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA
| | - Ghassan S Kassab
- California Medical Innovation Institute, San Diego, CA, 92121, USA
| | - Yiannis S Chatzizisis
- Center for Digital Cardiovascular Innovations, Cardiovascular Division, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Pham J, Kong F, James DL, Feinstein JA, Marsden AL. Deforming Patient-Specific Models of Vascular Anatomies to Represent Stent Implantation via Extended Position Based Dynamics. Cardiovasc Eng Technol 2024; 15:760-774. [PMID: 39354259 DOI: 10.1007/s13239-024-00752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024]
Abstract
PURPOSE Angioplasty with stent placement is a widely used treatment strategy for patients with stenotic blood vessels. However, it is often challenging to predict the outcomes of this procedure for individual patients. Image-based computational fluid dynamics (CFD) is a powerful technique for making these predictions. To perform CFD analysis of a stented vessel, a virtual model of the vessel must first be created. This model is typically made by manipulating two-dimensional contours of the vessel in its pre-stent state to reflect its post-stent shape. However, improper contour-editing can cause invalid geometric artifacts in the resulting mesh that then distort the subsequent CFD predictions. To address this limitation, we have developed a novel shape-editing method that deforms surface meshes of stenosed vessels to create stented models. METHODS Our method uses physics-based simulations via Extended Position Based Dynamics to guide these deformations. We embed an inflating stent inside a vessel and apply collision-generated forces to deform the vessel and expand its cross-section. RESULTS We demonstrate that this technique is feasible and applicable for a wide range of vascular anatomies, while yielding clinically compatible results. We also illustrate the ability to parametrically vary the stented shape and create models allowing CFD analyses. CONCLUSION Our stenting method will help clinicians predict the hemodynamic results of stenting interventions and adapt treatments to achieve target outcomes for patients. It will also enable generation of synthetic data for data-intensive applications, such as machine learning, to support cardiovascular research endeavors.
Collapse
Affiliation(s)
- Jonathan Pham
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Fanwei Kong
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Doug L James
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jeffrey A Feinstein
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Alison L Marsden
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Moore E, Robson AJ, Crisp AR, Cockshell MP, Burzava ALS, Ganesan R, Robinson N, Al-Bataineh S, Nankivell V, Sandeman L, Tondl M, Benveniste G, Finnie JW, Psaltis PJ, Martocq L, Quadrelli A, Jarvis SP, Williams C, Ramage G, Rehman IU, Bursill CA, Simula T, Voelcker NH, Griesser HJ, Short RD, Bonder CS. Study of the Structure of Hyperbranched Polyglycerol Coatings and Their Antibiofouling and Antithrombotic Applications. Adv Healthc Mater 2024; 13:e2401545. [PMID: 38924692 DOI: 10.1002/adhm.202401545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising O─C─O repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.
Collapse
Affiliation(s)
- Eli Moore
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Alexander J Robson
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Amy R Crisp
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | - Michaelia P Cockshell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Anouck L S Burzava
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | | | - Victoria Nankivell
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Lauren Sandeman
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Markus Tondl
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
| | | | - John W Finnie
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Peter J Psaltis
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
- Department of Cardiology, Central Adelaide Local Health Network, Adelaide, South Australia, 5000, Australia
| | - Laurine Martocq
- School of Engineering, Lancaster University, Lancaster, LA1 4YW, UK
| | | | - Samuel P Jarvis
- Department of Physics, Lancaster University, Lancaster, LA1 4YB, UK
| | - Craig Williams
- Microbiology Department, Royal Lancaster Infirmary, Lancaster, LA1 4RP, UK
| | - Gordon Ramage
- Department of Nursing and Community Health, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Ihtesham U Rehman
- School of Medicine, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Christina A Bursill
- Vascular Research Centre, Heart and Vascular Program, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Tony Simula
- TekCyte Limited, Mawson Lakes, South Australia, 5095, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, 3168, Australia
| | - Hans J Griesser
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia, 5095, Australia
| | - Robert D Short
- Department of Chemistry, The University of Sheffield, Dainton Building, Brook Hill, Sheffield, S3 7HF, UK
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
8
|
Krzyżewski RM, Kliś KM, Kwinta BM, Stachura K, Popiela TJ, Brzegowy P, Łasocha B, Urbanik A, Grodzicki T, Milczarek O, Gąsowski J. The Influence of Embolization of Internal Carotid Artery Aneurysms on Arterial Tortuosity: A Prospective Cohort Study. J Vasc Interv Radiol 2024; 35:1340-1346.e3. [PMID: 38677411 DOI: 10.1016/j.jvir.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024] Open
Abstract
PURPOSE To measure changes in quantitative tortuosity descriptors of the internal carotid artery (ICA) after intracranial aneurysm embolization, and to determine possible factors associated with changes in tortuosity. MATERIALS AND METHODS An analysis of 52 patients with embolized intracranial aneurysms was performed. ICA tortuosity was assessed by digital subtraction angiograms obtained prior to the embolization and after the first follow-up examination. For each patient, tortuosity descriptors were calculated: relative length (RL), sum of angle metrics (SOAM), triangular index, product of angle distance (PAD), and inflection count metric (ICM). To represent changes in tortuosity for each descriptor, delta (Δ) value was defined as value of the descriptor prior to embolization minus value of the descriptor on follow-up examination. RESULTS In a median follow-up of 14 months, no statistically significant changes in tortuosity were observed on the nonembolized side. On the embolized side, SOAM (2.89 [SD ± 0.92] vs 2.38 [SD ± 0.94]; P < .001), PAD (5.01 [SD ± 1.83] vs 3.95 [SD ± 1.72]; P < .001), and ICM (12.18 [SD ± 4.55] vs 9.76 [SD ± 4.04]; P = .006) were significantly higher after embolization than before embolization. Median ΔRL (-0.02 [-0.045 to 0.002] vs -0.01 [-0.02 to 0.003]; P = .003), ΔPAD (0.84 [0.30-1.82] vs 0.10 [-0.001 to 1.10]; P < .001), and ΔICM (2.05 [0.42-3.50] vs 0.27 [0.02-2.16]; P = .004) were significantly higher on the embolized side. Tortuosity correlated with elapsed time after embolization. CONCLUSIONS Tortuosity of the ipsilateral ICA increased after intracranial aneurysm embolization.
Collapse
Affiliation(s)
- Roger M Krzyżewski
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Kornelia M Kliś
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland.
| | - Borys M Kwinta
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Krzysztof Stachura
- Department of Neurosurgery and Neurotraumatology, Jagiellonian University Medical College, Kraków, Poland
| | - Tadeusz J Popiela
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Brzegowy
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Bartłomiej Łasocha
- Department of Diagnostic Imaging, University Hospital in Kraków, Kraków, Poland
| | - Andrzej Urbanik
- Department of Radiology, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
| | - Olga Milczarek
- Department of Children's Neurosurgery, Jagiellonian University Medical College, Faculty of Medicine, Institute of Pediatrics, Kraków, Poland
| | - Jerzy Gąsowski
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
9
|
Ribaudo JG, He K, Madira S, Young ER, Martin C, Lu T, Sacks JM, Li X. Sutureless vascular anastomotic approaches and their potential impacts. Bioact Mater 2024; 38:73-94. [PMID: 38699240 PMCID: PMC11061647 DOI: 10.1016/j.bioactmat.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Sutureless anastomotic devices present several advantages over traditional suture anastomosis, including expanded global access to microvascular surgery, shorter operation and ischemic times, and reduced costs. However, their adaptation for arterial use remains a challenge. This review aims to provide a comprehensive overview of sutureless anastomotic approaches that are either FDA-approved or under investigation. These approaches include extraluminal couplers, intraluminal devices, and methods assisted by lasers or vacuums, with a particular emphasis on tissue adhesives. We analyze these devices for artery compatibility, material composition, potential for intimal damage, risks of thrombosis and restenosis, and complications arising from their deployment and maintenance. Additionally, we discuss the challenges faced in the development and clinical application of sutureless anastomotic techniques. Ideally, a sutureless anastomotic device or technique should eliminate the need for vessel eversion, mitigate thrombosis through either biodegradation or the release of antithrombotic drugs, and be easily deployable for broad use. The transformative potential of sutureless anastomotic approaches in microvascular surgery highlights the necessity for ongoing innovation to expand their applications and maximize their benefits.
Collapse
Affiliation(s)
- Joseph G. Ribaudo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| | - Kevin He
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| | - Sarah Madira
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| | - Emma R. Young
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| | - Cameron Martin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| | - Tingying Lu
- Department of Plastic Surgery, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
| | - Justin M. Sacks
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| | - Xiaowei Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University in St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Geale AT, Zayed H, Lamata P, Alastruey J, Clough RE. Treatment of common femoral artery steno-occlusive disease: a comprehensive review of anatomical and hemodynamic considerations. THE JOURNAL OF CARDIOVASCULAR SURGERY 2024; 65:313-323. [PMID: 38888577 DOI: 10.23736/s0021-9509.24.13073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Open surgical repair, often in the form of endarterectomy, is still the gold standard for steno-occlusive disease in the common femoral artery, despite the success of lower-risk endovascular alternatives in other peripheral arterial regions. Stenting in the common femoral artery is not widely adopted due to the proximity of the artery to the mobile hip joint, and the perceived risk this has on the stent structure due to kinking. The purpose of this review was to assess how hip movement contributes to the anatomical and biomechanical challenges proposed in the common femoral artery, and how these challenges impact the hemodynamics with both open surgical and endovascular stent treatments. The findings demonstrated that the common femoral artery is a fixed arterial segment which does not bend or twist as previously perceived. However, high degrees of bending and twisting are evident in the vessels directly proximal and distal to the common femoral artery. Mechanical testing suggests that the latest generation braided Nitinol stents could be well-suited to these challenges. Both endarterectomy and stenting provide good hemodynamic results regarding limb perfusion. However, other hemodynamic parameters, such as wall shear stress, may not be optimized with either modality, increasing the risk of chronic restenosis. As a high proportion of common femoral artery disease extends into the adjacent arterial segments, further research is warranted to ascertain the optimum hemodynamic stent configuration, as a lower-risk alternative to open surgery.
Collapse
Affiliation(s)
- Adam T Geale
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK -
| | - Hany Zayed
- Department of Vascular Surgery, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Pablo Lamata
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jordi Alastruey
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rachel E Clough
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
11
|
Mei J, Yan H, Zhao X, Yuan Y, Su H, Xue T, Jia Z. In-stent Restenosis After Stenting for Superior Mesenteric Artery Dissection Is Associated With Stent Landing Zone: From Clinical Prediction to Hemodynamic Mechanisms. J Endovasc Ther 2024:15266028241241494. [PMID: 38561992 DOI: 10.1177/15266028241241494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To identify risk factors for in-stent restenosis (ISR) in patients undergoing stent placement for superior mesenteric artery dissection (SMAD) and to determine the hemodynamic mechanism underlying ISR. METHODS For this retrospective study, patients with SMAD who had ISR after stent placement were included in the ISR group, and age- and sex-matched patients with SMAD who did not experience ISR after stent placement were included in the control group. Clinical, imaging, and hemodynamic data were assessed. Multivariable regression was used to identify independent ISR risk factors. Structural and fluid dynamics simulations were applied to determine the hemodynamic mechanism underlying the occurrence of ISR. RESULTS The study population included 26 patients with ISR and 26 control patients. Multivariate analysis demonstrated that stent-to-vascular (S/V) ratio (odds ratio [OR], 1.14; 95% confidence interval [CI]: 1.00-1.29; p=0.045), stent proximal position >10 mm away from the SMA root (OR, 108.67; 95% CI: 3.09-3816.42; p=0.010), and high oscillatory shear index (OSI) area (OR, 1.25; 95% CI: 1.02-1.52; p=0.029) were predictors of ISR. In structural and fluid dynamics simulations, a stent proximal position near the abdominal aorta (AA) or entering into the AA reduced the contact area between the proximal struts of the stent and the vascular wall, and alleviated the distal lumen overdilation. CONCLUSION The S/V ratio, stent proximal position away from the SMA root (>10 mm), and high OSI area are independent risk factors for ISR in patients with SMAD undergoing stent placement. Deploying the proximal end of the stent near the AA or entering into the AA appears to improve the hemodynamic environment in the SMA lumen and ultimately reduce the risk of ISR. CLINICAL IMPACT In-stent restenosis is an uncommon but potentially catastrophic complication after stent placement for the management of superior mesenteric artery dissection. This study identified risk factors for in-stent restenosis and demonstrated that, as long as the stent can fully cover the dissection range, deploying the proximal end of the stent near the abdominal aorta or less entering into the abdominal aorta may reduce the risk of in-stent restenosis in this patient population.
Collapse
Affiliation(s)
- Junhao Mei
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
| | - Hui Yan
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi Zhao
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Yuan Yuan
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Haobo Su
- Department of Interventional Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Tongqing Xue
- Department of Interventional Radiology, Huaian Hospital of Huai'an City, Huai'an, China
| | - Zhongzhi Jia
- Department of Interventional and Vascular Surgery, The Affiliated Changzhou Second People's Hospital, Nanjing Medical University, Changzhou, China
| |
Collapse
|
12
|
Beyene S, Tufaro V, Garg M, Gkargkoulas F, Calderon AT, Safi H, Waksman R, Windecker S, Torii R, Melaku GD, Bulant CA, Bourantas CV, Blanco PJ, Garcia-Garcia HM. Comparison of endothelial shear stress between ultrathin strut bioresorbable polymer drug-eluting stent vs durable-polymer drug-eluting stent post-stent implantation: An optical coherence tomography substudy from BIOFLOW II. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2024; 61:26-34. [PMID: 38042738 DOI: 10.1016/j.carrev.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND Recent clinical data indicate a different performance of biodegradable polymer (BP)-drug eluting stent (DES) compared to durable polymer (DP)-DES. Whether this can be explained by a beneficial impact of BP-DES stent design on the local hemodynamic forces distribution remains unclear. OBJECTIVES To compare endothelial shear stress (ESS) distribution after implantation of ultrathin (us) BP-DES and DP-DES and examine the association between ESS and neointimal thickness (NIT) distribution in the two devices at 9 months follow up. METHODS AND RESULTS We retrospectively identified patients from the BIOFLOW II trial that had undergone OCT imaging. OCT data were utilized to reconstruct the surface of the stented segment at baseline and 9 months follow-up, simulate blood flow, and measure ESS and NIT in the stented segment. The patients were divided into 3 groups depending on whether DP-DES (N = 8, n = 56,160 sectors), BP-DES with a stent diameter of >3 mm (strut thickness of 80 μm, N = 6, n = 36,504 sectors), or BP-DES with a stent diameter of ≤3 mm (strut thickness of 60 μm, N = 8, n = 50,040 sectors) were used for treatment. The ESS, and NIT distribution and the association of these two variables were estimated and compared among the 3 groups. RESULTS In the DP-DES group mean NIT was 0.18 ± 0.17 mm and ESS 1.68 ± 1.66 Pa; for the BP-DES ≤3 mm group the NIT was 0.17 ± 0.11 mm and ESS 1.49 ± 1.24 Pa and for the BP-DES >3 mm group 0.20 ± 0.23 mm and 1.42 ± 1.24 Pa respectively (p < 0.001 for both NIT and ESS comparisons across groups). A negative correlation between NIT and baseline ESS was found, the correlation coefficient for all the stented segments was -0.33, p < 0.001. CONCLUSION In this OCT sub-study of the BIOFLOW II trial, the NIT was statistically different between groups of patients treated with BP-DES and DP-DES. In addition, regions of low ESS were associated with increased NIT in all studied devices.
Collapse
Affiliation(s)
- Solomon Beyene
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Mohil Garg
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Fotis Gkargkoulas
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Andrea Teira Calderon
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Hannah Safi
- Department of Mechanical Engineering, University College London, London, UK
| | - Ron Waksman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Stephan Windecker
- Cardiology Department, Inselspital, Bern University, Bern, CH, Switzerland
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Gebremedhin D Melaku
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Carlos A Bulant
- National Scientific and Technical Research Council (CONICET) and Pladema Institute, National University of the Center, Tandil, Bs. As., Argentina
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK; Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, UK; Institute of Cardiovascular Sciences, University College London, London, UK
| | - Pablo J Blanco
- National Laboratory for Scientific Computing and National Institute of Science and Technology in Medicine Assisted by Scientific Computing, Petrópolis, Brazil
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA.
| |
Collapse
|
13
|
Zhang W, Shen Y, Liu Z, Gu N, Rong J, Deng C, Wang X, Deng Y, Ma S, Yang S, Chen L, Hu X, Zhao Y, Zhao R, Shi B. Morphological characteristics of in-stent restenosis with different degrees of area stenosis: an optical coherence tomography study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2024:10.1007/s10554-023-03017-3. [PMID: 38416297 DOI: 10.1007/s10554-023-03017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/20/2023] [Indexed: 02/29/2024]
Abstract
The morphological characteristics of in-stent restenosis (ISR) in relation to varying degrees of area stenosis have not been comprehensively examined. This study aimed to explore the tissue characteristics of patients experiencing ISR with different degrees of area stenosis through the utilization of optical coherence tomography (OCT). In total, 230 patients with ISR who underwent OCT were divided into the following three groups: area stenosis (AS) < 70% (n = 26); 70-80% (n = 119) and AS ≥ 80% (n = 85). Among the 230 patients, the clinical presentation as stable angina was 61.5% in AS < 70%, followed by 47.2% in 70% < AS ≤ 80%, and 31.8% in AS ≥ 80% (P = 0.010). The OCT findings showed that heterogeneous neointima, ISNA, LRP, neointima rupture, TCFA-like pattern, macrophage infiltration, red and white thrombus was more common with AS increased. Ordinal logistic regression analysis showed that higher AS was associated with previous dyslipidemia (odds ratio [OR], 4.754; 95% confidence interval [CI], 1.419-15.927, P = 0.011), neointimal rupture (OR: 3.640; 95% CI, 1.169-11.325, P = 0.026), red thrombus (OR: 4.482; 95% CI, 1.269-15.816, P = 0.020) and white thrombus (OR: 5.259; 95% CI, 1.660-16.659, P = 0.005). Patients with higher degrees of area stenosis in the context of ISR exhibited a greater number of discernible morphological characteristics as identified through OCT analysis. Furthermore, previous dyslipidemia, neointimal rupture, white thrombus and red thrombus were highly associated with and the progression of ISR lesions.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Youcheng Shen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Zhijiang Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Ning Gu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Jidong Rong
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Chancui Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Xi Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Yi Deng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Shuai Ma
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Shuangya Yang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Lei Chen
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Xingwei Hu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Ranzhun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Zunyi City, 563000, China.
| |
Collapse
|
14
|
Shi D, Kang Y, Jiang Z, Li X, Zhang H, Wang Q, Guo J, Jiang H, Luo Q, Ding J. Hybrid interpenetrating network of polyester coronary stent with tunable biodegradation and mechanical properties. Biomaterials 2024; 304:122411. [PMID: 38061184 DOI: 10.1016/j.biomaterials.2023.122411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/30/2023]
Abstract
Poly(l-lactide) (PLLA) is an important candidate raw material of the next-generation biodegradable stent for percutaneous coronary intervention, yet how to make a polyester stent with sufficient mechanical strength and relatively fast biodegradation gets to be a dilemma. Herein, we put forward a hybrid interpenetrating network (H-IPN) strategy to resolve this dilemma. As such, we synthesize a multi-functional biodegradable macromer of star-like poly(d,l-lactide-co-ɛ-caprolactone) with six acrylate end groups, and photoinitiate it, after mixing with linear PLLA homopolymer, to trigger the free radical polymerization. The resultant crosslinked polymer blend is different from the classic semi-interpenetrating network, and partial chemical crosslinking occurs between the linear polymer and the macromer network. Combined with the tube blow molding and the postprocessing laser cutting, we fabricate a semi-crosslinked-polyester biodegradable coronary stent composed of H-IPN, which includes a physical network of polyester spherulites and a chemical crosslinking network of copolyester macromers and a part of homopolymers. Compared with the currently main-stream PLLA stent in research, this H-IPN stent realizes a higher and more appropriate biodegradation rate while maintaining sufficient radial strength. A series of polymer chemistry, polymer physics, polymer processing, and in vitro and in vivo biological assessments of medical devices have been made to examine the H-IPN material. The interventional implanting of the H-IPN stent into aorta abdominalis of rabbits and the follow-ups to 12 months have confirmed the safety and effectiveness.
Collapse
Affiliation(s)
- Daokun Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yahong Kang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China; Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China
| | - Zailai Jiang
- Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China
| | - Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Hongyan Jiang
- Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China.
| | - Qiyi Luo
- Shanghai Key Laboratory of Interventional Medical Devices and Equipment, Shanghai MicroPort Medical Group Co., Ltd, Shanghai, 201203, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
15
|
Liu W, Wang X, Feng Y. Restoring endothelial function: shedding light on cardiovascular stent development. Biomater Sci 2023. [PMID: 37161519 DOI: 10.1039/d3bm00390f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Complete endothelialization is highly important for maintaining long-term patency and avoiding subsequent complications in implanting cardiovascular stents. It not only refers to endothelial cells (ECs) fully covering the inserted stents, but also includes the newly formed endothelium, which could exert physiological functions, such as anti-thrombosis and anti-stenosis. Clinical outcomes have indicated that endothelial dysfunction, especially the insufficiency of antithrombotic and barrier functions, is responsible for stent failure. Learning from vascular pathophysiology, endothelial dysfunction on stents is closely linked to the microenvironment of ECs. Evidence points to inflammatory responses, oxidative stress, altered hemodynamic shear stress, and impaired endothelial barrier affecting the normal growth of ECs, which are the four major causes of endothelial dysfunction. The related molecular mechanisms and efforts dedicated to improving the endothelial function are emphasized in this review. From the perspective of endothelial function, the design principles, advantages, and disadvantages behind current stents are introduced to enlighten the development of new-generation stents, aiming to offer new alternatives for restoring endothelial function.
Collapse
Affiliation(s)
- Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Weijin Road 92, Tianjin 300072, P. R. China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
16
|
Kumar S, Molony D, Khawaja S, Crawford K, Thompson EW, Hung O, Shah I, Navas-Simbana J, Ho A, Kumar A, Ko YA, Hosseini H, Lefieux A, Lee JM, Hahn JY, Chen SL, Otake H, Akasaka T, Shin ES, Koo BK, Stankovic G, Milasinovic D, Nam CW, Won KB, Escaned J, Erglis A, Murasato Y, Veneziani A, Samady H. Stent underexpansion is associated with high wall shear stress: a biomechanical analysis of the shear stent study. THE INTERNATIONAL JOURNAL OF CARDIOVASCULAR IMAGING 2023:10.1007/s10554-023-02838-6. [PMID: 37119348 DOI: 10.1007/s10554-023-02838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/15/2023] [Indexed: 05/01/2023]
Abstract
Coronary stent underexpansion is associated with restenosis and stent thrombosis. In clinical studies of atherosclerosis, high wall shear stress (WSS) has been associated with activation of prothrombotic pathways, upregulation of matrix metalloproteinases, and future myocardial infarction. We hypothesized that stent underexpansion is predictive of high WSS. WSS distribution was investigated in patients enrolled in the prospective randomized controlled study of angulated coronary arteries randomized to undergo percutaneous coronary intervention with R-ZES or X-EES. WSS was calculated from 3D reconstructions of arteries from intravascular ultrasound (IVUS) and angiography using computational fluid dynamics. A logistic regression model investigated the relationship between WSS and underexpansion and the relationship between underexpansion and stent platform. Mean age was 63±11, 78% were male, 35% had diabetes, mean pre-stent angulation was 36.7°±14.7°. Underexpansion was assessed in 83 patients (6,181 IVUS frames). Frames with stent underexpansion were significantly more likely to exhibit high WSS (> 2.5 Pa) compared to those without underexpansion with an OR of 2.197 (95% CI = [1.233-3.913], p = 0.008). There was no significant association between underexpansion and low WSS (< 1.0 Pa) and no significant differences in underexpansion between R-ZES and X-EES. In the Shear Stent randomized controlled study, underexpanded IVUS frames were more than twice as likely to be associated with high WSS than frames without underexpansion.
Collapse
Affiliation(s)
- Sonali Kumar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - David Molony
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Sameer Khawaja
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kaylyn Crawford
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Elizabeth W Thompson
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Olivia Hung
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Imran Shah
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Jessica Navas-Simbana
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arlen Ho
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Arnav Kumar
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hossein Hosseini
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adrien Lefieux
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joo-Yong Hahn
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Shao-Liang Chen
- Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hiromasa Otake
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan Medical Center, Ulsan, Republic of Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Goran Stankovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Dejan Milasinovic
- Department of Cardiology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Chang-Wook Nam
- Department of Medicine, Dongsan Medical Center, Keimyung University, Daegu, Republic of Korea
| | - Ki-Bum Won
- Department of Cardiology, Ulsan Medical Center, Ulsan, Republic of Korea
| | - Javier Escaned
- Department of Cardiology, Hospital Clínico San Carlos Madrid, Madrid, Spain
| | - Andrejs Erglis
- Pauls Stradins Clinical University Hospital, University of Latvia, Riga, Latvia
| | - Yoshinobu Murasato
- Department of Cardiology and Clinical Research Center, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Alessandro Veneziani
- Department of Mathematics and Computer Science, Emory University, Atlanta, GA, USA
| | - Habib Samady
- Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA, USA.
| |
Collapse
|
17
|
Yi MM, Do HP, Li YC, Wang R, Zhuang Z, Xu MM, Liu T, Shao TF, Ding LP, Ge WH. Ticagrelor versus Clopidogrel in the Dual Antiplatelet Regimen for Unruptured Intracranial Aneurysm Treated with Stent-Assisted Coil Embolization: A Single-Center Cohort Study. World Neurosurg 2023; 170:e755-e765. [PMID: 36442786 DOI: 10.1016/j.wneu.2022.11.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Dual antiplatelet therapy (DAPT) of aspirin plus clopidogrel is commonly used in patients with unruptured intracranial aneurysms treated with stent-assisted coil (SAC) embolization. However, the unpredictable clopidogrel efficacy of the 5%-55% nonresponders limits its use. Ticagrelor, as a potential alternative of clopidogrel, is an antiplatelet agent with low resistance rates but uncertain efficacy and safety in these patients. METHODS A single-center cohort study was performed to compare the efficacy and safety of ticagrelor with clopidogrel in the DAPT regimen in patients with unruptured intracranial aneurysms and treated with SAC. The patients with clopidogrel resistance identified as inadequate adenosine diphosphate inhibition rate determined by thromboelastography were treated with ticagrelor instead, and both drugs achieved adequate suppression of platelet aggregation when stents were implanted. The occurrence of major adverse cardiovascular and cerebrovascular events (MACCE) and bleeding events was recorded through 6 months follow-up. RESULTS Data from 86 patients with 99 unruptured intracranial aneurysms and treated by SAC with clopidogrel were compared with those from 108 patients with 111 aneurysms and treated with ticagrelor. Neither the baseline characteristics nor the incidence of the MACCE or bleeding events differed between the groups. Ticagrelor exerted significantly higher adenosine diphosphate inhibition rate than that of the clopidogrel. Multivariable logistic regression analysis showed that the incidence of MACCE was related to hematocrit and fibrinogen levels. CONCLUSIONS Ticagrelor seemed to be as effective and safe as clopidogrel for SAC in unruptured intracranial aneurysms. Hematocrit and fibrinogen levels were independent risk factors for the incidence of MACCE.
Collapse
Affiliation(s)
- Man-Man Yi
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China; Nanjing Clinical Pharmacy Center, Nanjing, China
| | - Hong Phuoc Do
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China; Nanjing Clinical Pharmacy Center, Nanjing, China
| | - Yi-Chen Li
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Department of Pharmacy, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China; Nanjing Clinical Pharmacy Center, Nanjing, China
| | - Rong Wang
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China
| | - Zong Zhuang
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China
| | - Man-Man Xu
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China
| | - Tao Liu
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; Department of Neurosurgery, the Drum Tower Hospital Affiliated to the Medical School of Nanjing University, Nanjing, China
| | - Teng-Fei Shao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Nanjing Clinical Pharmacy Center, Nanjing, China
| | - Lan-Ping Ding
- Nanjing Clinical Pharmacy Center, Nanjing, China; Department of Pharmacy, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-Hong Ge
- Nanjing Drum Tower Hospital, China Pharmaceutical University, Nanjing, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Nanjing Clinical Pharmacy Center, Nanjing, China.
| |
Collapse
|
18
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
19
|
Erdogan E, Bajaj R, Lansky A, Mathur A, Baumbach A, Bourantas CV. Intravascular Imaging for Guiding In-Stent Restenosis and Stent Thrombosis Therapy. J Am Heart Assoc 2022; 11:e026492. [PMID: 36326067 PMCID: PMC9750080 DOI: 10.1161/jaha.122.026492] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Advances in stent technology and the design of endovascular devices with thinner struts, anti-inflammatory and antithrombotic polymers, and better drug kinetics have enhanced the safety and efficacy of the second-generation drug-eluting stents and broadened their use in the therapy of high-risk patients and complex anatomies. However, despite these developments, in-stent restenosis and stent thrombosis remain the Achilles' heel of percutaneous coronary intervention, with their cumulative incidence reaching up to 10% at 5 years following percutaneous coronary intervention. The treatment of stent failure poses challenges and is associated with a worse prognosis than conventional percutaneous coronary intervention. Several studies have recently highlighted the value of intravascular imaging in identifying causes of stent failure, underscored its role in treatment planning, and registries have shown that its use may be associated with better clinical outcomes. The present review aims to summarize the evidence in the field; it discusses the value of intravascular imaging in identifying the mechanisms of in-stent restenosis and stent thrombosis in assessing the morphological characteristics of neointima tissue that appears to determine long-term outcomes in evaluating procedural results, and presents the findings of studies supporting its value in guiding therapy in stent failure.
Collapse
Affiliation(s)
- Emrah Erdogan
- Department of Cardiology, Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- Centre for Cardiovascular Medicine and DevicesWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Department of Cardiology, Faculty of MedicineYuzuncu Yil UniversityVanTurkey
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- Centre for Cardiovascular Medicine and DevicesWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
| | - Alexandra Lansky
- Centre for Cardiovascular Medicine and DevicesWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Yale University School of MedicineNew HavenCT
| | - Anthony Mathur
- Department of Cardiology, Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- Centre for Cardiovascular Medicine and DevicesWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- Centre for Cardiovascular Medicine and DevicesWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Yale University School of MedicineNew HavenCT
| | - Christos V. Bourantas
- Department of Cardiology, Barts Heart CentreBarts Health NHS TrustLondonUnited Kingdom
- Centre for Cardiovascular Medicine and DevicesWilliam Harvey Research Institute, Queen Mary University of LondonUnited Kingdom
- Institute of Cardiovascular SciencesUniversity College LondonLondonUnited Kingdom
| |
Collapse
|
20
|
Jimenez-Quevedo P, Bernardo E, Del Trigo M, Otsuki S, Nombela-Franco L, Brugaletta S, Ortega-Pozi A, Herrera R, Salinas P, Nuñez-Gil I, Mejía-Rentería H, Alfonso F, Fernandez-Perez C, Fernandez-Ortiz A, Macaya C, Escaned J, Sabate M, Gonzalo N. Vascular Injury After Stenting - Insights of Systemic Mechanisms of Vascular Repair. Circ J 2022; 86:966-974. [PMID: 34853277 DOI: 10.1253/circj.cj-21-0649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The role of circulating progenitor cells (CPC) in vascular repair following everolimus-eluting stent (EES) implantation is largely unknown. The aim of the study was to investigate the relationship between temporal variation in CPC levels following EES implantation and the degree of peri-procedural vascular damage, and stent healing, as measured by optical coherence tomography (OCT). METHODS AND RESULTS CPC populations (CD133+/KDR+/CD45low) included patients with stable coronary artery disease undergoing stent implantation, and were evaluated using a flow cytometry technique both at baseline and at 1 week. OCT evaluation was performed immediately post-implantation to quantify the stent-related injury and at a 9-month follow up to assess the mid-term vascular response. Twenty patients (mean age 66±9 years; 80% male) with EES-treated stenoses (n=24) were included in this study. Vascular injury score was associated with the 1-week increase of CD133+/KDR+/CD45low (β 0.28 [95% CI 0.15; 0.41]; P<0.001) and with maximum neointimal thickness at a 9-month follow up (β 0.008 [95% CI 0.0004; 0.002]; P=0.04). Inverse relationships between numbers of uncoated and apposed struts for the 9-month and the 1-week delta values of CD133+/KDR+/CD45low (β -12.53 [95% CI -22.17; -2.90]; P=0.011), were also found. CONCLUSIONS The extent of vessel wall injury influences early changes in the levels of CPC and had an effect on mid-term vascular healing after EES implantation. Early CPC mobilisation was associated with mid-term strut coverage.
Collapse
Affiliation(s)
| | | | | | - Shuji Otsuki
- University Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | | | - Salvatore Brugaletta
- University Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | | | | | | | | | | | | | | | | | | | | | - Manel Sabate
- University Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)
| | | |
Collapse
|
21
|
Xu X, Huang F, Shi X, Liu R, Han Y, Li M, Wang F, Yang Q, Zhu W, Ye R, Liu X. Optical Coherence Tomography Evaluation of Carotid Artery Stenosis and Stenting in Patients With Previous Cervical Radiotherapy. Front Neurosci 2022; 16:861511. [PMID: 35573285 PMCID: PMC9095735 DOI: 10.3389/fnins.2022.861511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives Cervical radiotherapy can lead to accelerated carotid artery stenosis, increased incidence of stroke, and a higher rate of in-stent restenosis in irradiated patients. Our objective was to reveal the morphological characteristics of radiation-induced carotid stenosis (RICS) and the stent–vessel interactions in patients with previous cervical radiotherapy by optical coherence tomography (OCT). Materials and Methods Between November 2017 and March 2019, five patients with a history of cervical radiotherapy were diagnosed with severe carotid artery stenosis and underwent carotid artery stenting (CAS). OCT was conducted before and immediately after the carotid stent implantation. Two patients received OCT evaluation of carotid stenting at 6- or 13-month follow-up. Results The tumor types indicating cervical radiotherapy were nasopharyngeal carcinoma (n = 3), cervical esophageal carcinoma (n = 1), and cervical lymphoma (n = 1). The median interval from the radiotherapy to the diagnosis of RICS was 8 years (range 4–36 years). Lesion characteristics of RICS were detected with heterogeneous signal-rich tissue, dissection, and advanced atherosclerosis upon OCT evaluation. Post-interventional OCT revealed 18.2–57.1% tissue protrusion and 3.3–13.8% stent strut malapposition. Follow-up OCT detected homogeneous signal-rich neointima and signal-poor regions around stent struts. In the patient with high rates of tissue protrusion and stent strut malapposition, the 6-month neointima burden reached 48.9% and microvessels were detected. Conclusion The morphological features of RICS were heterogeneous, including heterogeneous signal-rich tissue, dissection, and advanced atherosclerosis. Stenting was successful in all 5 patients with severe RICS. One patient, with high rates of tissue protrusion and stent strut malapposition immediately after stenting, received in-stent neointimal hyperplasia at a 6-month follow-up.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feihong Huang
- Department of Neurology, The First School of Clinical Medicine, Jinling Hospital, Southern Medical University, Nanjing, China
- Department of Neurology, Guilin People’s Hospital, Guilin, China
| | - Xuan Shi
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rui Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yunfei Han
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Min Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Fang Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Qingwen Yang
- Department of Neurology, Jinling Hospital, Southeast University School of Medicine, Nanjing, China
| | - Wusheng Zhu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ruidong Ye
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- *Correspondence: Ruidong Ye,
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
- Division of Life Sciences and Medicine, Stroke Center & Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China (USTC), University of Science and Technology of China, Hefei, China
- Xinfeng Liu,
| |
Collapse
|
22
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
23
|
Starodumov IO, Sokolov SY, Alexandrov DV, Zubarev AY, Bessonov IS, Chestukhin VV, Blyakhman FA. Modelling of hemodynamics in bifurcation lesions of coronary arteries before and after myocardial revascularization. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200303. [PMID: 34974725 DOI: 10.1098/rsta.2020.0303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/16/2021] [Indexed: 06/14/2023]
Abstract
Modelling of patient-specific hemodynamics for a clinical case of severe coronary artery disease with the bifurcation stenosis was carried out with allowance for standard angiographic data obtained before and after successfully performed myocardial revascularization by stenting of two arteries. Based on a non-Newtonian fluid model and an original algorithm for fluid dynamics computation operated with a limited amount of initial data, key characteristics of blood flow were determined to analyse the features of coronary disease and the consequences of its treatment. The results of hemodynamic modelling near bifurcation sites are presented with an emphasis on physical, physiological and clinical phenomena to demonstrate the feasibility of the proposed approach. The main limitations and ways to minimize them are the subjects of discussion as well. This article is part of the theme issue 'Transport phenomena in complex systems (part 2)'.
Collapse
Affiliation(s)
- Ilya O Starodumov
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| | - Sergey Yu Sokolov
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| | - Dmitri V Alexandrov
- Department of Theoretical and Mathematical Physics, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, Ekaterinburg 620000, Russian Federation
| | - Andrey Yu Zubarev
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
| | - Ivan S Bessonov
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 625026, Russian Federation
| | - Vasily V Chestukhin
- Sklifosovsky Research Institute of Emergency Care, Moscow 129090, Russian Federation
| | - Felix A Blyakhman
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620000, Russian Federation
- Ural State Medical University, Ekaterinburg 620028, Russian Federation
| |
Collapse
|
24
|
Chiastra C, Mazzi V, Lodi Rizzini M, Calò K, Corti A, Acquasanta A, De Nisco G, Belliggiano D, Cerrato E, Gallo D, Morbiducci U. Coronary Artery Stenting Affects Wall Shear Stress Topological Skeleton. J Biomech Eng 2022; 144:1131202. [PMID: 35015058 DOI: 10.1115/1.4053503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 01/09/2023]
Abstract
Despite the important advancements in the stent technology for the treatment of diseased coronary arteries, major complications still affect the post-operative long-term outcome. The stent-induced flow disturbances, and especially the altered wall shear stress (WSS) profile at the strut level, play an important role in the pathophysiological mechanisms leading to stent thrombosis (ST) and in-stent restenosis (ISR). In this context, the analysis of the WSS topological skeleton is gaining more and more interest by extending the current understanding of the association between local hemodynamics and vascular diseases. The present study aims to analyze the impact that a deployed coronary stent has on the WSS topological skeleton. Computational fluid dynamics simulations were performed in three stented human coronary artery geometries reconstructed from clinical images. The selected cases presented stents with different designs (i.e., two contemporary drug eluting stents and one bioresorbable scaffold) and included regions with stent malapposition or overlapping. A recently proposed Eulerian-based approach was applied to analyze the WSS topological skeleton features. The results highlighted that the presence of single or multiple stents within a coronary artery markedly impacts the WSS topological skeleton. In particular, repetitive patterns of WSS divergence were observed at the luminal surface, highlighting a WSS contraction action proximal to the struts and a WSS expansion action distal to the struts. This WSS action pattern was independent from the stent design. In conclusions, these findings could contribute to a deeper understanding of the hemodynamic-driven processes underlying ST and ISR.
Collapse
Affiliation(s)
- Claudio Chiastra
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Valentina Mazzi
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Lodi Rizzini
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Karol Calò
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Alessandro Acquasanta
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giuseppe De Nisco
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Davide Belliggiano
- Cardiology Division, San Luigi Gonzaga University Hospital, Orbassano, Turin, Italy
| | - Enrico Cerrato
- Interventional Cardiology Unit, San Luigi Gonzaga University Hospital, Orbassano, and Rivoli Infermi Hospital, Rivoli, Turin, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
25
|
Semi-Automatic Reconstruction of Patient-Specific Stented Coronaries based on Data Assimilation and Computer Aided Design. Cardiovasc Eng Technol 2022; 13:517-534. [PMID: 34993928 DOI: 10.1007/s13239-021-00570-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/26/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE The interplay between geometry and hemodynamics is a significant factor in the development of cardiovascular diseases. This is particularly true for stented coronary arteries. To elucidate this factor, an accurate patient-specific analysis requires the reconstruction of the geometry following the stent deployment for a computational fluid dynamics (CFD) investigation. The image-based reconstruction is troublesome for the different possible positions of the stent struts in the lumen and the coronary wall. However, the accurate inclusion of the stent footprint in the hemodynamic analysis is critical for detecting abnormal stress conditions and flow disturbances, particularly for thick struts like in bioresorbable scaffolds. Here, we present a novel reconstruction methodology that relies on Data Assimilation and Computer Aided Design. METHODS The combination of the geometrical model of the undeployed stent and image-based data assimilated by a variational approach allows the highly automated reconstruction of the skeleton of the stent. A novel approach based on computational mechanics defines the map between the intravascular frame of reference (called L-view) and the 3D geometry retrieved from angiographies. Finally, the volumetric expansion of the stent skeleton needs to be self-intersection free for the successive CFD studies; this is obtained by using implicit representations based on the definition of Nef-polyhedra. RESULTS We assessed our approach on a vessel phantom, with less than 10% difference (properly measured) vs. a customized manual (and longer) procedure previously published, yet with a significant higher level of automation and a shorter turnaround time. Computational hemodynamics results were even closer. We tested the approach on two patient-specific cases as well. CONCLUSIONS The method presented here has a high level of automation and excellent accuracy performances, so it can be used for larger studies involving patient-specific geometries.
Collapse
|
26
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
27
|
Colombo M, Corti A, McGinty S, Migliavacca F, Chiastra C. Fluid dynamics and mass transport in lower limb vessels: Effects on restenosis. MODELING OF MASS TRANSPORT PROCESSES IN BIOLOGICAL MEDIA 2022:215-258. [DOI: 10.1016/b978-0-323-85740-6.00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
28
|
Current status and outlook of biodegradable metals in neuroscience and their potential applications as cerebral vascular stent materials. Bioact Mater 2021; 11:140-153. [PMID: 34938919 PMCID: PMC8665265 DOI: 10.1016/j.bioactmat.2021.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/01/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past two decades, biodegradable metals (BMs) have emerged as promising materials to fabricate temporary biomedical devices, with the purpose of avoiding potential side effects of permanent implants. In this review, we first surveyed the current status of BMs in neuroscience, and briefly summarized the representative stents for treating vascular stenosis. Then, inspired by the convincing clinical evidence on the in vivo safety of Mg alloys as cardiovascular stents, we analyzed the possibility of producing biodegradable cerebrovascular Mg alloy stents for treating ischemic stroke. For these novel applications, some key factors should also be considered in designing BM brain stents, including the anatomic features of the cerebral vasculature, hemodynamic influences, neuro-cytocompatibility and selection of alloying elements. This work may provide insights into the future design and fabrication of BM neurological devices, especially for brain stents. The current status of the application of biodegradable metals (BM) in neuroscience was presented. We analyzed the possibility of producing biodegradable cerebrovascular Mg alloy stents for ischemic stroke treatment. Key factors in designing BM brain stents were discussed. This work may provide insights into the future design and fabrication of BM neurological devices, especially for brain stents.
Collapse
|
29
|
Toong DWY, Ng JCK, Cui F, Leo HL, Zhong L, Lian SS, Venkatraman S, Tan LP, Huang YY, Ang HY. Nanoparticles-reinforced poly-l-lactic acid composite materials as bioresorbable scaffold candidates for coronary stents: Insights from mechanical and finite element analysis. J Mech Behav Biomed Mater 2021; 125:104977. [PMID: 34814078 DOI: 10.1016/j.jmbbm.2021.104977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
Current generation of bioresorbable coronary scaffolds (BRS) posed thrombogenicity and deployment issues owing to its thick struts and overall profile. To this end, we hypothesize that the use of nanocomposite materials is able to provide improved material properties and sufficient radial strength for the intended application even at reduced strut thickness. The nanocomposite formulations of tantalum dioxide (Ta2O5), L-lactide functionalized (LA)-Ta2O5, hydroxyapatite (HA) and LA-HA with poly-l-lactic acid (PLLA) were evaluated in this study. Results showed that tensile modulus and strength were enhanced with non-functionalized nanofillers up until 15 wt% loading, whereas ductility was compromised. On the other hand, functionalized nanofillers/PLLA exhibited improved nanofiller dispersion which resulted higher tensile modulus, strength, and ductility. Selected nanocomposite formulations were evaluated using finite element analysis (FEA) of a stent with varying strut thickness (80, 100 and 150 μm). FEA data has shown that nanocomposite BRS with thinner struts (80-100 μm) made with 15 wt% LA-Ta2O5/PLLA and 10 wt% LA-HA/PLLA have increased radial strength, stiffness and reduced recoil compared to PLLA BRS at 150 μm. The reduced strut thickness can potentially mitigate issues such as scaffold thrombosis and promote re-endothelialisation of the vessel.
Collapse
Affiliation(s)
- Daniel Wee Yee Toong
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
| | - Jaryl Chen Koon Ng
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| | - Fangsen Cui
- Institute of High Performance Computing, A*STAR, 1 Fusionopolis way, 138632, Singapore
| | - Hwa Liang Leo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| | - Liang Zhong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore
| | - Shaoliang Shawn Lian
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore
| | - Subbu Venkatraman
- Department of Material Science Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Lay Poh Tan
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore
| | - Ying Ying Huang
- School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, 639798, Singapore.
| | - Hui Ying Ang
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, 169609, Singapore; Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 117583, Singapore; Duke-NUS Medical School, 8 College Road, 169857, Singapore.
| |
Collapse
|
30
|
Loukas VS, Karanasiou GS, Pleouras D, Kyriakidis S, Sakellarios AI, Semertzioglou A, Michalis LK, Fotiadis DI. Investigation of Drug Eluting Stents performance in human atherosclerotic artery through in silico modeling. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5433-5436. [PMID: 34892355 DOI: 10.1109/embc46164.2021.9629895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease associated with heart attack and stroke. It causes the growth of atherosclerotic plaques inside the arterial vessels, which in turn results to the reduction of the blood flow to the different organs. Drug-Eluting Stents (DES) are mesh-like wires, carrying pharmaceutical coating, designed to dilate and support the arterial vessel, restore blood flow and through the controlled local drug delivery inhibit neo-intimal thickening. In silico modeling is an efficient method of accurately predicting and assessing the performance of the stenting procedure. The present in silico study investigates the performance of two different stents (Bare Metal Stent, Drug-Eluting Stent) in a patient-specific coronary artery and assesses the effect of stent coating, considering that the same procedural approach is followed by the interventional cardiologist. The results demonstrate that even if small differences are obtained in the two models, the incorporation of the stent coatings (in DES) does not significantly affect the outcomes of the stent deployment, the stresses and strains in the scaffold and the arterial tissue. Nevertheless, it is suggested that regarding the DES expansion, higher pressure should be applied at the inner surface of the stent.
Collapse
|
31
|
Gamage PT, Dong P, Lee J, Gharaibeh Y, Zimin VN, Dallan LAP, Bezerra HG, Wilson DL, Gu L. Hemodynamic alternations following stent deployment and post-dilation in a heavily calcified coronary artery: In silico and ex-vivo approaches. Comput Biol Med 2021; 139:104962. [PMID: 34715552 DOI: 10.1016/j.compbiomed.2021.104962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023]
Abstract
In this work, hemodynamic alterations in a patient-specific, heavily calcified coronary artery following stent deployment and post-dilations are quantified using in silico and ex-vivo approaches. Three-dimensional artery models were reconstructed from OCT images. Stent deployment and post-dilation with various inflation pressures were performed through both the finite element method (FEM) and ex vivo experiments. Results from FEM agreed very well with the ex-vivo measurements, interms of lumen areas, stent underexpansion, and strut malapposition. In addition, computational fluid dynamics (CFD) simulations were performed to delineate the hemodynamic alterations after stent deployment and post-dilations. A pressure time history at the inlet and a lumped parameter model (LPM) at the outlet were adopted to mimic the aortic pressure and the distal arterial tree, respectively. The pressure drop across the lesion, pertaining to the clinical measure of instantaneous wave-free flow ratio (iFR), was investigated. Results have shown that post-dilations are necessary for the lumen gain as well as the hemodynamic restoration towards hemostasis. Malapposed struts induced much higher shear rate, flow disturbances and lower time-averaged wall shear stress (TAWSS) around struts. Post-dilations mitigated the strut malapposition, and thus the shear rate. Moreover, stenting induced larger area of low TAWSS (<0.4 Pa) and lager volume of high shear rate (>2000 s-1), indicating higher risks of in-stent restenosis (ISR) and stent thrombosis (ST), respectively. Oscillatory shear index (OSI) and relative residence time (RRT) indicated the wall regions more prone to ISR are located near the malapposed stent struts.
Collapse
Affiliation(s)
- Peshala T Gamage
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA
| | - Pengfei Dong
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| | - Juhwan Lee
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yazan Gharaibeh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Vladislav N Zimin
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Luis A P Dallan
- Cardiovascular Imaging Core Laboratory, Harrington Heart & Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Hiram G Bezerra
- Interventional Cardiology Center, Heart and Vascular Institute, The University of South Florida, Tampa, FL, 33606, USA
| | - David L Wilson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Linxia Gu
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, 32901, USA.
| |
Collapse
|
32
|
Saito A, Dai Z, Ono M, Kanie T, Takaoka Y, Mizuno A, Komiyama N, Asano T. The relationship between coronary stent strut thickness and the incidences of clinical outcomes after drug-eluting stent implantation: A systematic review and meta-regression analysis. Catheter Cardiovasc Interv 2021; 99:575-582. [PMID: 34420248 DOI: 10.1002/ccd.29922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/17/2021] [Accepted: 08/06/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Drug-eluting stents (DESs) have been developed with thinner stent struts, and more biocompatible polymers and anti-proliferative drugs to improve the clinical performance. However, it remains unclear whether thinner struts are associated with favorable short- and long-term clinical outcomes such as target lesion revascularization (TLR), periprocedural myocardial infarction (PMI), and stent thrombosis (ST). METHODS We searched MEDLINE, Embase and other online sources for randomized controlled trials (RCTs) comparing clinical outcomes between a DES and other stent(s), with independent clinical event adjudication. We investigated stent-related events (TLR, PMI, and ST) in 5 years. Each outcome was analyzed with random-effects meta-regression model against strut thickness, then adjusted for DES generation and patient and lesion characteristics. RESULTS We identified 49 RCTs enrolling 97,465 patients, of which strut thickness ranged from 60 to 140 μm. Incidences of 1-year TLR, PMI, and early ST were reduced with thinner stent struts, when adjusted for stent generation (adjusted relative risk [RR] per 10 μm increase 1.12 [95% CI 1.04-1.21], 1.15 [95% CI 1.05-1.26], and 1.15 [95% CI 1.06-1.25], respectively). Strut thickness was not independently associated with incidences of 5-year TLR, late and very late ST. In addition, early DESs contributed to a higher incidence of very late ST (adjusted RR 2.97 [95% CI 1.36-6.50]). CONCLUSIONS In this meta-regression analysis, a thinner strut thickness was associated with reduced incidences of early stent-related adverse events (1-year TLR, PMI, and early ST), but not with later events (5-year TLR, late ST, and very late ST).
Collapse
Affiliation(s)
- Akira Saito
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| | - Zhehao Dai
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Ono
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan.,Department of Cardiology, National University of Ireland, Galway (NUIG), Galway, Ireland.,Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Takayoshi Kanie
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| | - Yoshimitsu Takaoka
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| | - Atsushi Mizuno
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan.,The Penn Medicine Nudge Unit, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nobuyuki Komiyama
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| | - Taku Asano
- Department of Cardiovascular Medicine, St. Luke's International Hospital, St. Luke's International University, Tokyo, Japan
| |
Collapse
|
33
|
Uncovered non-apposed side-branch struts in a bifurcation lesion: a nidus for late stent thrombosis. Hellenic J Cardiol 2021; 63:96-98. [PMID: 34271217 DOI: 10.1016/j.hjc.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/29/2021] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
|
34
|
Torii R, Tenekecioglu E, Katagiri Y, Chichareon P, Sotomi Y, Dijkstra J, Asano T, Modolo R, Takahashi K, Jonker H, van Geuns R, Onuma Y, Pekkan K, Bourantas CV, Serruys PW. The impact of plaque type on strut embedment/protrusion and shear stress distribution in bioresorbable scaffold. Eur Heart J Cardiovasc Imaging 2021; 21:454-462. [PMID: 31215995 DOI: 10.1093/ehjci/jez155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/17/2019] [Accepted: 05/22/2019] [Indexed: 11/13/2022] Open
Abstract
AIMS Scaffold design and plaque characteristics influence implantation outcomes and local flow dynamics in treated coronary segments. Our aim is to assess the impact of strut embedment/protrusion of bioresorbable scaffold on local shear stress distribution in different atherosclerotic plaque types. METHODS AND RESULTS Fifteen Absorb everolimus-eluting Bioresorbable Vascular Scaffolds were implanted in human epicardial coronary arteries. Optical coherence tomography (OCT) was performed post-scaffold implantation and strut embedment/protrusion were analysed using a dedicated software. OCT data were fused with angiography to reconstruct 3D coronary anatomy. Blood flow simulation was performed and wall shear stress (WSS) was estimated in each scaffolded surface and the relationship between strut embedment/protrusion and WSS was evaluated. There were 9083 struts analysed. Ninety-seven percent of the struts (n = 8840) were well-apposed and 243 (3%) were malapposed. At cross-section level (n = 1289), strut embedment was significantly increased in fibroatheromatous plaques (76 ± 48 µm) and decreased in fibrocalcific plaques (35 ± 52 µm). Compatible with strut embedment, WSS was significantly higher in lipid-rich fibroatheromatous plaques (1.50 ± 0.81 Pa), whereas significantly decreased in fibrocalcified plaques (1.05 ± 0.91 Pa). After categorization of WSS as low (<1.0 Pa) and normal/high WSS (≥1.0 Pa), the percent of low WSS in the plaque subgroups were 30.1%, 31.1%, 25.4%, and 36.2% for non-diseased vessel wall, fibrous plaque, fibroatheromatous plaque, and fibrocalcific plaque, respectively (P-overall < 0.001). CONCLUSION The composition of the underlying plaque influences strut embedment which seems to have effect on WSS. The struts deeply embedded in lipid-rich fibroatheromas plaques resulted in higher WSS compared with the other plaque types.
Collapse
Affiliation(s)
- Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Yuki Katagiri
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Ply Chichareon
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Yohei Sotomi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Taku Asano
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Rodrigo Modolo
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Kuniaki Takahashi
- Department of Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Robert van Geuns
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koc University, Istanbul, Turkey
| | - Christos V Bourantas
- Institute of Cardiovascular Science, University College London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK
| | - Patrick W Serruys
- Department of Interventional Cardiology, Erasmus University Medical Center, Thoraxcenter, Rotterdam, The Netherlands.,Imperial College, London, UK
| |
Collapse
|
35
|
Shi YN, Liu LP, Deng CF, Zhao TJ, Shi Z, Yan JY, Gong YZ, Liao DF, Qin L. Celastrol ameliorates vascular neointimal hyperplasia through Wnt5a-involved autophagy. Int J Biol Sci 2021; 17:2561-2575. [PMID: 34326694 PMCID: PMC8315023 DOI: 10.7150/ijbs.58715] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Neointimal hyperplasia caused by the excessive proliferation of vascular smooth muscle cells (VSMCs) is the pathological basis of restenosis. However, there are few effective strategies to prevent restenosis. Celastrol, a pentacyclic triterpene, has been recently documented to be beneficial to certain cardiovascular diseases. Based on its significant effect on autophagy, we proposed that celastrol could attenuate restenosis through enhancing autophagy of VSMCs. In the present study, we found that celastrol effectively inhibited the intimal hyperplasia and hyperproliferation of VSMCs by inducing autophagy. It was revealed that autophagy promoted by celastrol could induce the lysosomal degradation of c-MYC, which might be a possible mechanism contributing to the reduction of VSMCs proliferation. The Wnt5a/PKC/mTOR signaling pathway was found to be an underlying mechanism for celastrol to induce autophagy and inhibit the VSMCs proliferation. These observations indicate that celastrol may be a novel drug with a great potential to prevent restenosis.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Cells, Cultured
- Disease Models, Animal
- Femoral Artery/injuries
- Humans
- Hyperplasia/metabolism
- Hyperplasia/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Neointima
- Pentacyclic Triterpenes/pharmacology
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Wnt-5a Protein/metabolism
- Wound Healing/drug effects
Collapse
Affiliation(s)
- Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le-Ping Liu
- Institue of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chang-Feng Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tan-Jun Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhe Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jian-Ye Yan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yong-Zhen Gong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
36
|
A multi-objective optimization of stent geometries. J Biomech 2021; 125:110575. [PMID: 34186293 DOI: 10.1016/j.jbiomech.2021.110575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/06/2021] [Accepted: 06/08/2021] [Indexed: 11/22/2022]
Abstract
Stents are scaffolding cardiovascular implants used to restore blood flow in narrowed arteries. However, the presence of the stent alters local blood flow and shear stresses on the surrounding arterial wall, which can cause adverse tissue responses and increase the risk of adverse outcomes. There is a need for optimization of stent designs for hemodynamic performance. We used multi-objective optimization to identify ideal combinations of design variables by assessing potential trade-offs based on common hemodynamic indices associated with clinical risk and mechanical performance of the stents. We studied seven design variables including strut cross-section, strut dimension, strut angle, cell alignment, cell height, connector type and connector arrangement. Optimization objectives were the percentage of vessel area exposed to adversely low time averaged WSS (TAWSS) and adversely high Wall Shear Stress (WSS) assessed using computational fluid dynamics modeling, as well as radial stiffness of the stent using FEA simulation. Two multi-objective optimization algorithms were used and compared to iteratively predict ideal designs. Out of 50 designs, three best designs with respect to each of the three objectives, and two designs in regard to overall performance were identified.
Collapse
|
37
|
Colombo M, He Y, Corti A, Gallo D, Ninno F, Casarin S, Rozowsky JM, Migliavacca F, Berceli S, Chiastra C. In-Stent Restenosis Progression in Human Superficial Femoral Arteries: Dynamics of Lumen Remodeling and Impact of Local Hemodynamics. Ann Biomed Eng 2021; 49:2349-2364. [PMID: 33928465 PMCID: PMC8455500 DOI: 10.1007/s10439-021-02776-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention. Patient-specific computational fluid dynamics simulations were performed at each follow-up to relate wall shear stress (WSS) based descriptors with lumen remodeling. The largest lumen remodeling was found in the first post-operative month, with slight regional-specific differences (larger inward remodeling in the fringe segments, p < 0.05). Focal re-narrowing frequently occurred after 6 months. Slight differences in the lumen area change emerged between long and short stents, and between segments upstream and downstream from stent overlapping portions, at specific time intervals. Abnormal patterns of multidirectional WSS were associated with lumen remodeling within 1-year post-intervention. This longitudinal study gave important insights into the dynamics of ISR and the impact of hemodynamics on ISR progression in human SFAs.
Collapse
Affiliation(s)
- Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yong He
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Federica Ninno
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
- Department of Medical Physics and Biomedical Engineering, University College of London, London, UK
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - Jared M Rozowsky
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Scott Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA
- Malcom Randall VAMC, Gainesville, FL, USA
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
38
|
Buccheri S, Sarno G, Erlinge D, Renlund H, Lagerqvist B, Grimfjärd P, Witt N, Yndigegn T, Fröbert O, Persson J, Böhm F, James SK. Clinical outcomes with unselected use of an ultrathin-strut sirolimus-eluting stent: a report from the Swedish Coronary Angiography and Angioplasty Registry (SCAAR). EUROINTERVENTION 2021; 16:1413-1421. [PMID: 33016880 PMCID: PMC9724977 DOI: 10.4244/eij-d-20-00429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The aim of this study was to assess the real-world clinical performance of a sirolimus-eluting ultrathin-strut drug-eluting stent (DES) (Orsiro) in a large nationwide cohort of patients undergoing percutaneous coronary intervention (PCI). METHODS AND RESULTS From the Swedish Coronary Angiography and Angioplasty Registry, the two-year outcomes of 4,561 patients implanted with Orsiro (Orsiro group) and 69,570 receiving other newer-generation DES (n-DES group) were analysed. The rate of definite stent thrombosis was low in both groups (0.67% and 0.83% for Orsiro and n-DES, respectively; adjusted hazard ratio [HR] 0.90, 95% confidence interval [CI]: 0.55-1.46, p-value 0.66). Restenosis was also infrequent (1.5% vs 2.0% with Orsiro and n-DES, adjusted HR 0.81, 95% CI: 0.63-1.03, p-value=0.09). The risk of target lesion revascularisation by PCI was lower in the Orsiro group (1.6% vs 2.3%, adjusted HR 0.75, 95% CI: 0.60-0.94, p-value=0.013). All-cause mortality and myocardial infarction did not show a statistically significant difference between the two groups (mortality of 7.5% in both groups, adjusted HR 0.99, 95% CI: 0.72-1.35, p-value=0.94; 6.0% vs 5.2% for myocardial infarction, adjusted HR 1.19, 95% CI: 1.00-1.43, p-value=0.06). CONCLUSIONS In a nationwide scenario, the use of a sirolimus-eluting ultrathin-strut DES portended favourable clinical outcomes.
Collapse
Affiliation(s)
- Sergio Buccheri
- Department of Medical Sciences, Cardiology and Uppsala Clinical Research Center, Uppsala University, Dag Hammarskjölds Väg 38, 75185 Uppsala, Sweden
| | - Giovanna Sarno
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - David Erlinge
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik Renlund
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Bo Lagerqvist
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Per Grimfjärd
- Department of Cardiology, Västerås Hospital, Västerås, Sweden
| | - Nils Witt
- Department of Clinical Science and Education, Karolinska Institutet, Unit of Cardiology, Stockholm, Sweden
| | - Troels Yndigegn
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| | - Ole Fröbert
- Department of Cardiology, Faculty of Health, Örebro University, Örebro, Sweden
| | - Jonas Persson
- Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Felix Böhm
- Coronary Artery Disease Area, Heart and Vascular Theme, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Stefan K. James
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
39
|
Affiliation(s)
- Antonio Colombo
- Humanitas Clinical and Research Center, IRCCS, Via Alessandro Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Antonio Mangieri
- Invasive Cardiology Unit, Humanitas Clinical and Research Center, IRCCS, Rozzano, Milan, Italy,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| |
Collapse
|
40
|
Impact of Malapposed and Overlapping Stents on Hemodynamics: A 2D Parametric Computational Fluid Dynamics Study. MATHEMATICS 2021. [DOI: 10.3390/math9080795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Despite significant progress, malapposed or overlapped stents are a complication that affects daily percutaneous coronary intervention (PCI) procedures. These malapposed stents affect blood flow and create a micro re-circulatory environment. These disturbances are often associated with a change in Wall Shear Stress (WSS), Time-averaged WSS (TAWSS), relative residence time (RRT) and oscillatory character of WSS and disrupt the delicate balance of vascular biology, providing a possible source of thrombosis and restenosis. In this study, 2D axisymmetric parametric computational fluid dynamics (CFD) simulations were performed to systematically analyze the hemodynamic effects of malapposition and stent overlap for two types of stents (drug-eluting stent and a bioresorbable stent). The results of the modeling are mainly analyzed using streamlines, TAWSS, oscillatory shear index (OSI) and RRT. The risks of restenosis and thrombus are evaluated according to commonly accepted thresholds for TAWSS and OSI. The small malapposition distances (MD) cause both low TAWSS and high OSI, which are potential adverse outcomes. The region of low OSI decrease with MD. Overlap configurations produce areas with low WSS and high OSI. The affected lengths are relatively insensitive to the overlap distance. The effects of strut size are even more sensitive and adverse for overlap configurations compared to a well-applied stent.
Collapse
|
41
|
Wang X, Fang F, Ni Y, Yu H, Ma J, Deng L, Li C, Shen Y, Liu X. The Combined Contribution of Vascular Endothelial Cell Migration and Adhesion to Stent Re-endothelialization. Front Cell Dev Biol 2021; 9:641382. [PMID: 33748131 PMCID: PMC7969796 DOI: 10.3389/fcell.2021.641382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary stent placement inevitably causes mechanical damage to the endothelium, leading to endothelial denudation and in-stent restenosis (ISR). Re-endothelialization depends mainly on the migration of vascular endothelial cells (VECs) adjacent to the damaged intima, as well as the mobilization and adhesion of circulating VECs. To evaluate the combined contribution of VEC migration and adhesion to re-endothelialization under flow and the influence of stent, in vitro models were constructed to simulate various endothelial denudation scales (2 mm/5 mm/10 mm) and stent deployment depths (flat/groove/bulge). Our results showed that (1) in 2 mm flat/groove/bulge models, both VEC migration and adhesion combined completed the percentage of endothelial recovery about 27, 16, and 12%, and migration accounted for about 21, 15, and 7%, respectively. It was suggested that the flat and groove models were in favor of VEC migration. (2) With the augmentation of the injury scales (5 and 10 mm), the contribution of circulating VEC adhesion on endothelial repair increased. Taken together, endothelial restoration mainly depended on the migration of adjacent VECs when the injury scale was 2 mm. The adhered cells contributed to re-endothelialization in an injury scale-dependent way. This study is helpful to provide new enlightenment for surface modification of cardiovascular implants.
Collapse
Affiliation(s)
- Xiaoli Wang
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Fei Fang
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yinghao Ni
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hongchi Yu
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jia Ma
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Li Deng
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Chunli Li
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Yang Shen
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Xiaoheng Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Institute of Biomedical Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Wu H, Zhou X, Gong H, Ni Z, Xu Q. Perivascular tissue stem cells are crucial players in vascular disease. Free Radic Biol Med 2021; 165:324-333. [PMID: 33556462 DOI: 10.1016/j.freeradbiomed.2021.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Perivascular tissue including adipose layer and adventitia have been considered to play pivotal roles in vascular development and disease progression. Recent studies showed that abundant stem/progenitorcells (SPCs) are present in perivascular tissues. These SPCs exhibit capability to proliferate and differentiate into specific terminal cells. Adult perivascular SPCs are quiescent in normal condition, once activated by specific molecules (e.g., cytokines), they migrate toward the lumen side where they differentiate into both smooth muscle cells (SMCs) and endothelial cells (ECs), thus promoting intima hyperplasia or endothelial regeneration. In addition, perivascular SPCs can also regulate vascular diseases via other ways including but not limited to paracrine effects, matrix protein modulation and microvessel formation. Perivascular SPCs have also been shown to possess therapeutic potentials due to the capability to differentiate into vascular cells and regenerate vascular structures. This review summarizes current knowledge on resident SPCs features and discusses the potential benefits of SPCs therapy in vascular diseases.
Collapse
Affiliation(s)
- Hong Wu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Xuhao Zhou
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Hui Gong
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Zhichao Ni
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| | - Qingbo Xu
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, China.
| |
Collapse
|
43
|
Left Ventricular Assist Device Flow Pattern Analysis Using a Novel Model Incorporating Left Ventricular Pulsatility. ASAIO J 2021; 67:724-732. [DOI: 10.1097/mat.0000000000001341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
44
|
Baseline local hemodynamics as predictor of lumen remodeling at 1-year follow-up in stented superficial femoral arteries. Sci Rep 2021; 11:1613. [PMID: 33452294 PMCID: PMC7810829 DOI: 10.1038/s41598-020-80681-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 12/24/2020] [Indexed: 11/08/2022] Open
Abstract
In-stent restenosis (ISR) is the major drawback of superficial femoral artery (SFA) stenting. Abnormal hemodynamics after stent implantation seems to promote the development of ISR. Accordingly, this study aims to investigate the impact of local hemodynamics on lumen remodeling in human stented SFA lesions. Ten SFA models were reconstructed at 1-week and 1-year follow-up from computed tomography images. Patient-specific computational fluid dynamics simulations were performed to relate the local hemodynamics at 1-week, expressed in terms of time-averaged wall shear stress (TAWSS), oscillatory shear index and relative residence time, with the lumen remodeling at 1-year, quantified as the change of lumen area between 1-week and 1-year. The TAWSS was negatively associated with the lumen area change (ρ = - 0.75, p = 0.013). The surface area exposed to low TAWSS was positively correlated with the lumen area change (ρ = 0.69, p = 0.026). No significant correlations were present between the other hemodynamic descriptors and lumen area change. The low TAWSS was the best predictive marker of lumen remodeling (positive predictive value of 44.8%). Moreover, stent length and overlapping were predictor of ISR at follow-up. Despite the limited number of analyzed lesions, the overall findings suggest an association between abnormal patterns of WSS after stenting and lumen remodeling.
Collapse
|
45
|
Tarrahi I, Colombo M, Hartman EMJ, Tovar Forero MN, Torii R, Chiastra C, Daemen J, Gijsen FJH. Impact of bioresorbable scaffold design characteristics on local haemodynamic forces: an ex vivo assessment with computational fluid dynamics simulations. EUROINTERVENTION 2020; 16:e930-e937. [PMID: 31951204 DOI: 10.4244/eij-d-19-00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIMS Bioresorbable scaffold (BRS) regions exposed to flow recirculation, low time-averaged wall shear stress (TAWSS) and high oscillatory shear index (OSI) develop increased neointima tissue. We investigated haemodynamic features in four different BRSs. METHODS AND RESULTS Fantom (strut height [SH] = 125 µm), Fantom Encore (SH = 98 µm), Absorb (SH = 157 µm) and Magmaris (SH = 150 µm) BRSs were deployed in phantom tubes and imaged with microCT. Both 2D and 3D geometrical scaffold models were reconstructed. Computational fluid dynamics (CFD) simulation was performed to compute TAWSS and OSI. Thicker struts had larger recirculation zones and lower TAWSS in 2D. Absorb had the largest recirculation zone and the lowest TAWSS (240 µm and -0.18 Pa), followed by Magmaris (170 µm and -0.15 Pa), Fantom (140 µm and -0.14 Pa) and Fantom Encore (100 µm and -0.13 Pa). Besides strut size, stent design played a dominant role in 3D. The highest percentage area adverse TAWSS (<0.5 Pa) and OSI (>0.2) were found for Fantom (56% and 30%) and Absorb (53% and 33%), followed by Fantom Encore (30% and 25%) and Magmaris (25% and 20%). Magmaris had the smallest areas due to a small footprint and rounded struts. CONCLUSIONS Due to stent design, both Fantom Encore and Magmaris showed smaller TAWSS and OSI than Fantom and Absorb. This study quantifies which scaffold features are most important to reduce long-term restenosis.
Collapse
Affiliation(s)
- Imane Tarrahi
- Department of Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Comparison of overexpansion capabilities and thrombogenicity at the side branch ostia after implantation of four different drug eluting stents. Sci Rep 2020; 10:20791. [PMID: 33247219 PMCID: PMC7695862 DOI: 10.1038/s41598-020-75836-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/24/2020] [Indexed: 01/15/2023] Open
Abstract
Interventions in bifurcation lesions often requires aggressive overexpansion of stent diameter in the setting of long tapering vessel segment. Overhanging struts in front of the side branch (SB) ostium are thought to act as a focal point for thrombi formation and consequently possible stent thrombosis. This study aimed to evaluate the overexpansion capabilities and thrombogenicity at the SB ostia after implantation of four latest generation drug-eluting stents (DES) in an in-vitro bifurcation model. Four clinically available modern DES were utilized: one bifurcation dedicated DES (Bioss LIM C) and three conventional DES (Ultimaster, Xience Sierra, Biomime). All devices were implanted in bifurcation models with proximal optimization ensuring expansion before perfusing with porcine blood. Optical coherence tomography (OCT), immunofluorescence (IF) and scanning electron microscope analysis were done to determine thrombogenicity and polymer coating integrity at the over-expanded part of the stents. Computational fluid dynamics (CFD) was performed to study the flow disruption. OCT (p = 0.113) and IF analysis (p = 0.007) demonstrated lowest thrombus area at SB ostia in bifurcation dedicated DES with favorable biomechanical properties compared to conventional DES. The bifurcated DES also resulted in reduced area of high shear rate and maximum shear rate in the CFD analysis. This study demonstrated numerical differences in terms of mechanical properties and acute thrombogenicity at SB ostia between tested devices.
Collapse
|
47
|
Kim HS, Kang J, Hwang D, Han JK, Yang HM, Kang HJ, Koo BK, Kim SY, Park KH, Rha SW, Shin WY, Lim HS, Park K, Park KW. Durable Polymer Versus Biodegradable Polymer Drug-Eluting Stents After Percutaneous Coronary Intervention in Patients with Acute Coronary Syndrome: The HOST-REDUCE-POLYTECH-ACS Trial. Circulation 2020; 143:1081-1091. [PMID: 33205662 DOI: 10.1161/circulationaha.120.051700] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Large-scale randomized comparison of drug-eluting stents (DES) based on durable polymer versus biodegradable polymer technology is currently insufficient in patients with acute coronary syndrome (ACS). The present study aimed to prove the noninferiority of the durable polymer DES (DP-DES) compared with the biodegradable polymer DES (BP-DES) in such patients. METHODS The HOST-REDUCE-POLYTECH-ACS (Harmonizing Optimal Strategy for Treatment of Coronary Artery Diseases-Comparison of Reduction of Prasugrel Dose or Polymer Technology in ACS Patients) trial is an investigator-initiated, randomized, open-label, adjudicator-blinded, multicenter, noninferiority trial comparing the efficacy and safety of DP-DES and BP-DES in patients with ACS. The primary end point was a patient-oriented composite outcome (a composite of all-cause death, nonfatal myocardial infarction, and any repeat revascularization) at 12 months. The key secondary end point was device-oriented composite outcome (a composite of cardiac death, target-vessel myocardial infarction, or target lesion revascularization) at 12 months. RESULTS A total of 3413 patients were randomized to receive the DP-DES (1713 patients) and BP-DES (1700 patients). At 12 months, patient-oriented composite outcome occurred in 5.2% in the DP-DES group and 6.4% in the BP-DES group (absolute risk difference, -1.2%; Pnoninferiority<0.001). The key secondary end point, device-oriented composite outcome, occurred less frequently in the DP-DES group (DP-DES vs BP-DES, 2.6% vs 3.9%; hazard ratio, 0.67 [95% CI, 0.46-0.98]; P=0.038), mostly because of a reduction in target lesion revascularization. The rate of spontaneous nonfatal myocardial infarction and stent thrombosis were extremely low, with no significant difference between the 2 groups (0.6% versus 0.8%; P=0.513 and 0.1% versus 0.4%; P=0.174, respectively). CONCLUSIONS In ACS patients receiving percutaneous coronary intervention, DP-DES was noninferior to BP-DES with regard to patient-oriented composite outcomes at 12 months after index percutaneous coronary intervention. Registration: URL: https://wwwclinicaltrials.gov; Unique identifier: NCT02193971.
Collapse
Affiliation(s)
- Hyo-Soo Kim
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | - Jeehoon Kang
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | - Doyeon Hwang
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | - Jung-Kyu Han
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | - Han-Mo Yang
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | - Hyun-Jae Kang
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | - Bon-Kwon Koo
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | | | - Keun-Ho Park
- Chosun University Hospital, Gwangju, Korea (K-H.P.)
| | | | - Won-Yong Shin
- Soon Chun Hyang University Cheonan Hospital, Cheonan, Korea (W-Y.S.)
| | - Hong-Seok Lim
- Ajou University School of Medicine, Suwon, Korea (H-S.L.)
| | | | - Kyung Woo Park
- Seoul National University Hospital, Korea (H-S.K., J.K., D.H., J-K.H., H-M.Y., H-J.K., B-K.K., K.W.P.)
| | | |
Collapse
|
48
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The current article will review recently published clinical studies that evaluate very thin or ultrathin-strut drug-eluting stents (DES), focusing on major randomized clinical trials in broad patient populations. RECENT FINDINGS Multiple randomized trials recently assessed the clinical performance of novel very thin to ultrathin-strut DES. Most randomized trials established noninferiority of the novel device. To date, only one major randomized clinical trial (i.e., BIOFLOW V) showed superiority of an ultrathin-strut biodegradable polymer-coated sirolimus-eluting stent over a very thin-strut durable polymer-coated everolimus-eluting stent in a relatively broad patient population. There are signals that the same ultrathin-strut biodegradable polymer-coated sirolimus-eluting stent may improve clinical outcome in specific patient populations. For example, in the randomized BIOSTEMI trial, 1-year superiority of the ultrathin-strut DES was found in patients presenting with an acute ST-segment elevation myocardial infarction. Yet, substudies of large randomized trials that assessed patients with small-vessel treatment showed equivocal results. SUMMARY Although two randomized trials showed advantages for ultrathin-strut DES, other clinical trials provided no significant evidence that ultrathin-strut DES improve clinical outcome. The question whether ultrathin-strut DES may reduce the repeat revascularization risk following implantation in small vessels is a matter of further debate and future research.
Collapse
|
50
|
Kilic Y, Safi H, Bajaj R, Serruys PW, Kitslaar P, Ramasamy A, Tufaro V, Onuma Y, Mathur A, Torii R, Baumbach A, Bourantas CV. The Evolution of Data Fusion Methodologies Developed to Reconstruct Coronary Artery Geometry From Intravascular Imaging and Coronary Angiography Data: A Comprehensive Review. Front Cardiovasc Med 2020; 7:33. [PMID: 32296713 PMCID: PMC7136420 DOI: 10.3389/fcvm.2020.00033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/01/2022] Open
Abstract
Understanding the mechanisms that regulate atherosclerotic plaque formation and evolution is a crucial step for developing treatment strategies that will prevent plaque progression and reduce cardiovascular events. Advances in signal processing and the miniaturization of medical devices have enabled the design of multimodality intravascular imaging catheters that allow complete and detailed assessment of plaque morphology and biology. However, a significant limitation of these novel imaging catheters is that they provide two-dimensional (2D) visualization of the lumen and vessel wall and thus they cannot portray vessel geometry and 3D lesion architecture. To address this limitation computer-based methodologies and user-friendly software have been developed. These are able to off-line process and fuse intravascular imaging data with X-ray or computed tomography coronary angiography (CTCA) to reconstruct coronary artery anatomy. The aim of this review article is to summarize the evolution in the field of coronary artery modeling; we thus present the first methodologies that were developed to model vessel geometry, highlight the modifications introduced in revised methods to overcome the limitations of the first approaches and discuss the challenges that need to be addressed, so these techniques can have broad application in clinical practice and research.
Collapse
Affiliation(s)
- Yakup Kilic
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Retesh Bajaj
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Pieter Kitslaar
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Vincenzo Tufaro
- Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, United Kingdom.,Institute of Cardiovascular Sciences, University College London, London, United Kingdom.,Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| |
Collapse
|