1
|
Grodecki K, Geers J, Kwiecinski J, Lin A, Slipczuk L, Slomka PJ, Dweck MR, Nerlekar N, Williams MC, Berman D, Marwick T, Newby DE, Dey D. Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis. Nat Rev Cardiol 2025; 22:443-455. [PMID: 39743563 DOI: 10.1038/s41569-024-01110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
Computed tomography coronary angiography provides a non-invasive evaluation of coronary artery disease that includes phenotyping of atherosclerotic plaques and the surrounding perivascular adipose tissue (PVAT). Image analysis techniques have been developed to quantify atherosclerotic plaque burden and morphology as well as the associated PVAT attenuation, and emerging radiomic approaches can add further contextual information. PVAT attenuation might provide a novel measure of vascular health that could be indicative of the pathogenetic processes implicated in atherosclerosis such as inflammation, fibrosis or increased vascularity. Bidirectional signalling between the coronary artery and adjacent PVAT has been hypothesized to contribute to coronary artery disease progression and provide a potential novel measure of the risk of future cardiovascular events. However, despite the development of more advanced radiomic and artificial intelligence-based algorithms, studies involving large datasets suggest that the measurement of PVAT attenuation contributes only modest additional predictive discrimination to standard cardiovascular risk scores. In this Review, we explore the pathobiology of coronary atherosclerotic plaques and PVAT, describe their phenotyping with computed tomography coronary angiography, and discuss potential future applications in clinical risk prediction and patient management.
Collapse
Affiliation(s)
- Kajetan Grodecki
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolien Geers
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
- Department of Cardiology, Centrum Voor Hart- en Vaatziekten (CHVZ), Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Andrew Lin
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
| | - Leandro Slipczuk
- Division of Cardiology, Montefiore Healthcare Network/Albert Einstein College of Medicine, New York, NY, USA
| | - Piotr J Slomka
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Nitesh Nerlekar
- Monash Victorian Heart Institute and Monash Health Heart, Monash University, Victorian Heart Hospital, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Daniel Berman
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA
| | - Thomas Marwick
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Department of Biomedical Sciences, and Department of Medicine, Cedars-Sinai Medical Center, Biomedical Imaging Research Institute, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Asada K, Saito Y, Takaoka H, Kitahara H, Kobayashi Y. Relation of Perivascular Adipose Tissues on Computed Tomography to Coronary Vasospasm. Rev Cardiovasc Med 2025; 26:26327. [PMID: 40026501 PMCID: PMC11868876 DOI: 10.31083/rcm26327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 03/05/2025] Open
Abstract
Background Coronary computed tomography angiography (CTA) can be used to quantitatively and qualitatively evaluate the characteristics of perivascular adipose tissue (PVAT), including PVAT volume and perivascular fat attenuation index (FAI). Moreover, PVAT volume and perivascular FAI on CTA are reportedly high in patients with vasospastic angina (VSA); however, previous investigations have focused on the patient rather than vessel-level analyses. Therefore, this study aimed to assess the relationship between coronary vasospasm and PVAT or FAI by using coronary CTA at the vessel level. Methods This retrospective study included 51 patients who underwent intracoronary acetylcholine (ACh) provocation testing for the VSA diagnosis and coronary CTA within a 6-month interval. A total of 125 coronary vessels were evaluated. PVAT and FAI on CTA were quantitatively evaluated. The primary interest of the present study was to determine the relationship between PVAT volume and FAI- and ACh-induced coronary vasospasms at the vessel level. Results Of the 51 patients, 24 (47.1%) had a positive ACh provocation test (VSA), with 40 of 125 (32.0%) vessels having ACh-induced vasospasm. Obstructive epicardial coronary artery disease was observed in 12 vessels (9.6%). No significant differences in PVAT volume or FAI were identified between vessels with and without ACh-induced vasospasms. Similarly, PVAT volume and FAI did not differ significantly in the individual major coronary arteries between patients with and without positive ACh provocation test results. In contrast, FAI was significantly higher in vessels with obstructive coronary artery disease than in those without. Conclusions In patients undergoing intracoronary ACh provocation tests and coronary CTA, no significant association was observed between ACh-induced coronary vasospasm and PVAT volume or FAI at the vessel level. However, FAI significantly increased in vessels with epicardial coronary disease.
Collapse
Affiliation(s)
- Kazunari Asada
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Yuichi Saito
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Hiroyuki Takaoka
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Hideki Kitahara
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 260-8677 Chiba, Japan
| |
Collapse
|
3
|
Adolf R, Krinke I, Datz J, Cassese S, Kastrati A, Joner M, Schunkert H, Wall W, Hadamitzky M, Engel LC. Specific calcium deposition on pre-procedural CCTA at the time of percutaneous coronary intervention predicts in-stent restenosis in symptomatic patients. J Cardiovasc Comput Tomogr 2025; 19:9-16. [PMID: 39433461 DOI: 10.1016/j.jcct.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024]
Abstract
PURPOSE To characterize preprocedural coronary atherosclerotic lesions derived from CCTA and assess their association with in-stent restenosis (ISR) after percutaneous coronary intervention (PCI). MATERIALS AND METHODS This retrospective cohort-study included patients who underwent CCTA for suspected coronary artery disease, subsequent index angiography including PCI and surveillance angiography within 6-8 months after the index procedure. We performed a plaque analysis of culprit lesions on CCTA using a dedicated plaque analysis software including assessment of the surrounding pericoronary fat attenuation index (FAI) and compared findings between lesions with and without ISR at surveillance angiography after stenting. RESULTS Overall 278 coronary lesions in 209 patients were included. Of these lesions, 43 (15.5 %) had ISR at surveillance angiography after stenting while 235 (84.5 %) did not. Likewise, plaque composition such as volume of calcification [129.8 mm3 (83.3-212.6) vs. 94.4 mm3 (60.4-160.5) p = 0.06] and lipid-rich and fibrous plaque volume [38.4 mm3 (19.4-71.2) vs. 38.0 mm3 (14.0-59.1), p = 0.11 and 50.4 mm3 (26.1-77.6) vs. 42.1 mm3 (31.1-60.3), p = 0.16] between lesion with and without ISR were not statistically significant. However lesions associated with ISR were more eccentric (n = 37, 86.0 % versus n = 159, 67,7 %; p = 0.03) and more frequently demonstrated calcified portions on opposite sides on the vessel wall on cross-sectional datasets (n = 24, 55.8 % versus n = 55, 23.4 %, p = 0.001). FAIlesion was significantly different in lesions with ISR as compared to those without ISR [-76.5 (-80.1 to -73.6) vs. -80.9 (-88.9 to -74.0), p = 0.02]. There was no difference with respect to FAIRCA between the two groups [-77.4 (-81.9 to -75.6) vs. -78.5 (-86.0 to -71.0), p = 0.41]. CONCLUSION Coronary lesions associated with ISR at surveillance angiography demonstrated differences in the arrangement of calcified portions as well as an increased lesion-specific pericoronary fat attenuation index at baseline CCTA. This latter finding suggests that perivascular inflammation at baseline may play a major role in the development of in-stent restenosis.
Collapse
Affiliation(s)
- Rafael Adolf
- Institut für Radiologie und Nuklearmedizin, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Insa Krinke
- Institut für Radiologie und Nuklearmedizin, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Janina Datz
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany; Institute for Computational Mechanics, Technical University of Munich, 85748 Garching b., München, Germany
| | - Salvatore Cassese
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Adnan Kastrati
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Michael Joner
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Heribert Schunkert
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Wolfgang Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching b., München, Germany
| | - Martin Hadamitzky
- Institut für Radiologie und Nuklearmedizin, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany
| | - Leif-Christopher Engel
- Klinik für Herz- und Kreislauferkrankungen, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Lazarettstrasse 36, 80636 Munich, Germany.
| |
Collapse
|
4
|
Xu F, Wang C, Tao Q, Zhang J, Zhao M, Shi S, Zhu M, Tang C, Zhang L, Zhou C, Hu C. Stent-specific fat attenuation index is associated with target vessel revascularization after PCI. Eur Radiol 2024; 34:823-832. [PMID: 37624413 DOI: 10.1007/s00330-023-10111-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 02/26/2023] [Accepted: 04/14/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVES To explore the clinical relevance of stent-specific perivascular fat attenuation index (FAI) in patients with stent implantation. METHODS A total of 162 consecutive patients who underwent coronary computed tomography angiography (CCTA) following stent implantation were retrospectively included. The stent-specific FAI at 2 cm adjacent to the stent edge was calculated. The endpoints were defined as target vessel revascularization (TVR) on the stented vessel after CCTA and readmission times due to chest pain after stent implantation. Binary logistic regression analysis for TVR and ordinal regression models were conducted to identify readmission times (0, 1, and ≥ 2) with generalized estimating equations on a per-stent basis. RESULTS On a per-stent basis, 9 stents (4.5%) experienced TVR after PCI at a median 30 months' follow-up duration. Stent-specific FAI differed significantly among subgroups of patients with stent implantation and different readmission times (p = 0.002); patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). Bifurcated stents (odds ratio [OR]: 11.192, p = 0.001) and stent-specific FAI (OR: 1.189, p = 0.04) were independently associated with TVR. With no readmission as a reference, stent-specific FAI (OR: 0.984, p = 0.007) was an independent predictor for hospital readmission times ≥ 2 (p = 0.003). CONCLUSION Non-invasive stent-specific FAI derived from CCTA was found to be associated with TVR, which was a promising imaging marker for functional assessment in patients who underwent stent implantation. CLINICAL RELEVANCE STATEMENT Noninvasive fat attenuation index adjacent to the stents edge derived from CCTA, an imaging marker reflecting the presence of inflammation acting on the neointimal tissue at the sites of coronary stenting, might be relevant clinically with target vessel revascularization. KEY POINTS • Non-invasive stent-specific FAI derived from CCTA was associated with TVR (OR: 1.189 [95% CI: 1.007-1.043], p = 0.04) in patients who underwent stent implantation. • Stent-specific FAI significantly differed among a subgroup of patients with chest pain after stent implantation and with different readmission times (p = 0.002); the patients with at least one readmission had higher stent-specific FAI than those without readmission (p < 0.001). • Non-invasive stent-specific FAI derived from CCTA could be used as an imaging maker for the functional assessment of patients following stent implantation.
Collapse
Affiliation(s)
- Feng Xu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Medical Imaging, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Chengcheng Wang
- Department of Medical Imaging, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Qing Tao
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jian Zhang
- Department of Medical Imaging, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Mingming Zhao
- Department of Medical Imaging, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Shiwei Shi
- Department of Medical Imaging, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Mengmeng Zhu
- Department of Medical Imaging, the Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, 223800, Jiangsu, China
| | - Chunxiang Tang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Changsheng Zhou
- Department of Radiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, Jiangsu, China.
| | - Chunhong Hu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
- Institute of Medical Imaging, Soochow University, Jiangsu Province, Suzhou, 215006, China.
| |
Collapse
|
5
|
Napoli G, Pergola V, Basile P, De Feo D, Bertrandino F, Baggiano A, Mushtaq S, Fusini L, Fazzari F, Carrabba N, Rabbat MG, Motta R, Ciccone MM, Pontone G, Guaricci AI. Epicardial and Pericoronary Adipose Tissue, Coronary Inflammation, and Acute Coronary Syndromes. J Clin Med 2023; 12:7212. [PMID: 38068263 PMCID: PMC10707039 DOI: 10.3390/jcm12237212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/22/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2025] Open
Abstract
Vascular inflammation is recognized as the primary trigger of acute coronary syndrome (ACS). However, current noninvasive methods are not capable of accurately detecting coronary inflammation. Epicardial adipose tissue (EAT) and pericoronary adipose tissue (PCAT), in addition to their role as an energy reserve system, have been found to contribute to the development and progression of coronary artery calcification, inflammation, and plaque vulnerability. They also participate in the vascular response during ischemia, sympathetic stimuli, and arrhythmia. As a result, the evaluation of EAT and PCAT using imaging techniques such as computed tomography (CT), cardiac magnetic resonance (CMR), and nuclear imaging has gained significant attention. PCAT-CT attenuation, which measures the average CT attenuation in Hounsfield units (HU) of the adipose tissue, reflects adipocyte differentiation/size and leukocyte infiltration. It is emerging as a marker of tissue inflammation and has shown prognostic value in coronary artery disease (CAD), being associated with plaque development, vulnerability, and rupture. In patients with acute myocardial infarction (AMI), an inflammatory pericoronary microenvironment promoted by dysfunctional EAT/PCAT has been demonstrated, and more recently, it has been associated with plaque rupture in non-ST-segment elevation myocardial infarction (NSTEMI). Endothelial dysfunction, known for its detrimental effects on coronary vessels and its association with plaque progression, is bidirectionally linked to PCAT. PCAT modulates the secretory profile of endothelial cells in response to inflammation and also plays a crucial role in regulating vascular tone in the coronary district. Consequently, dysregulated PCAT has been hypothesized to contribute to type 2 myocardial infarction with non-obstructive coronary arteries (MINOCA) and coronary vasculitis. Recently, quantitative measures of EAT derived from coronary CT angiography (CCTA) have been included in artificial intelligence (AI) models for cardiovascular risk stratification. These models have shown incremental utility in predicting major adverse cardiovascular events (MACEs) compared to plaque characteristics alone. Therefore, the analysis of PCAT and EAT, particularly through PCAT-CT attenuation, appears to be a safe, valuable, and sufficiently specific noninvasive method for accurately identifying coronary inflammation and subsequent high-risk plaque. These findings are supported by biopsy and in vivo evidence. Although speculative, these pieces of evidence open the door for a fascinating new strategy in cardiovascular risk stratification. The incorporation of PCAT and EAT analysis, mainly through PCAT-CT attenuation, could potentially lead to improved risk stratification and guide early targeted primary prevention and intensive secondary prevention in patients at higher risk of cardiac events.
Collapse
Affiliation(s)
- Gianluigi Napoli
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Valeria Pergola
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy;
| | - Paolo Basile
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Daniele De Feo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Fulvio Bertrandino
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Laura Fusini
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Fabio Fazzari
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Nazario Carrabba
- Department of Cardiothoracovascular Medicine, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy;
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA;
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Raffaella Motta
- Radiology Unit, University Hospital of Padova, 35128 Padua, Italy;
| | - Marco Matteo Ciccone
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (L.F.); (F.F.); (G.P.)
| | - Andrea Igoren Guaricci
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (G.N.); (P.B.); (D.D.F.); (F.B.); (M.M.C.)
| |
Collapse
|
6
|
Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, Matsuzawa Y, Mitsutake Y, Mitani Y, Murohara T, Noda T, Node K, Noguchi T, Suzuki H, Takahashi J, Tanabe Y, Tanaka A, Tanaka N, Teragawa H, Yasu T, Yoshimura M, Asaumi Y, Godo S, Ikenaga H, Imanaka T, Ishibashi K, Ishii M, Ishihara T, Matsuura Y, Miura H, Nakano Y, Ogawa T, Shiroto T, Soejima H, Takagi R, Tanaka A, Tanaka A, Taruya A, Tsuda E, Wakabayashi K, Yokoi K, Minamino T, Nakagawa Y, Sueda S, Shimokawa H, Ogawa H. JCS/CVIT/JCC 2023 guideline focused update on diagnosis and treatment of vasospastic angina (coronary spastic angina) and coronary microvascular dysfunction. J Cardiol 2023; 82:293-341. [PMID: 37597878 DOI: 10.1016/j.jjcc.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Affiliation(s)
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Japan
| | - Yasushi Matsuzawa
- Division of Cardiology, Yokohama City University Medical Center, Japan
| | - Yoshiaki Mitsutake
- Division of Cardiovascular Medicine, Kurume University School of Medicine, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Yasuhiko Tanabe
- Department of Cardiology, Niigata Prefectural Shibata Hospital, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Nobuhiro Tanaka
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center, Japan
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center, Japan
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Japan
| | - Takahiro Imanaka
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University, Japan
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University, Japan
| | | | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Japan
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Japan
| | - Yasuhiro Nakano
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Japan
| | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Japan
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Japan
| | | | - Ryu Takagi
- Department of Cardiovascular Medicine, JR Hiroshima Hospital, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Japan
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Japan
| | - Etsuko Tsuda
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center, Japan
| | - Kohei Wakabayashi
- Division of Cardiology, Cardiovascular Center, Showa University Koto-Toyosu Hospital, Japan
| | - Kensuke Yokoi
- Department of Cardiovascular Medicine, Saga University, Japan
| | - Toru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Japan
| | - Shozo Sueda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine, Japan
| | - Hiroaki Shimokawa
- Graduate School, International University of Health and Welfare, Japan
| | | |
Collapse
|
7
|
Nogic J, Kim J, Layland J, Cheng K, Dey D, Wong DT, Cameron JD, Brown AJ. Peri-Coronary Adipose Tissue Is a Predictor of Stent Failure in Patients Undergoing Percutaneous Coronary Intervention. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2023; 53:61-66. [PMID: 36863976 DOI: 10.1016/j.carrev.2023.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE Coronary inflammation is postulated as a driver of atherosclerosis and dysfunctional arterial healing which may trigger stent failure. Pericoronary adipose tissue (PCAT) attenuation, detected on computer tomography coronary angiography (CTCA), is an emerging non-invasive marker of coronary inflammation. This propensity matched study assessed the utility of both lesion specific (PCATLesion) and standardized PCAT attenuation as assessed in the proximal RCA (PCATRCA) as a predictor of stent failure in patients undergoing elective percutaneous coronary intervention. This is the first study to our knowledge that assesses the association of PCAT with stent failure. METHODS Patients undergoing CTCA assessment for coronary artery disease with subsequent stent insertion within 60 days and repeat coronary angiography for any clinical reason within 5 years were included in the study. Stent failure was defined as binary restenosis of >50 % on quantitative coronary angiography analysis or stent thrombosis. Both PCATLesion and PCATRCA was assessed utilizing semi-automated proprietary software on baseline CTCA. Patients with stent failure were propensity matched utilizing age, sex, cardiovascular risk factors and procedural characteristics. RESULTS One hundred and fifty-one patients met inclusion criteria. Of these, 26 (17.2 %) had study-defined failure. A significant difference in PCATLesion attenuation between patients with and without failure was observed (-79.0 ± 12.6 vs. -85.9 ± 10.3HU, p = 0.035). There was no significant difference in PCATRCA attenuation between the two groups (-79.5 ± 10.1 vs -81.0 ± 12.3HU, p = 0.50). Univariate regression analysis showed PCATLesion attenuation was independently associated with stent failure (OR 1.06, 95 % CI 1.01-1.12, P = 0.035). CONCLUSIONS Patients with stent failure exhibit significantly increased PCATLesion attenuation at baseline. These data suggest that baseline plaque inflammation may be an important driver for coronary stent failure.
Collapse
Affiliation(s)
- Jason Nogic
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia.
| | - Jiwon Kim
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia
| | - Jamie Layland
- Cardiology, Department of Medicine, Peninsula Health, Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Kevin Cheng
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Dennis T Wong
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia
| | - James D Cameron
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia
| | - Adam J Brown
- Monash Cardiovascular Research Centre, Monash University and MonashHeart, Monash Health, Melbourne, Australia
| |
Collapse
|
8
|
Nishimiya K, Takahashi J, Oyama K, Matsumoto Y, Yasuda S, Shimokawa H. Mechanisms of Coronary Artery Spasm. Eur Cardiol 2023; 18:e39. [PMID: 37456775 PMCID: PMC10345984 DOI: 10.15420/ecr.2022.55] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/22/2023] [Indexed: 07/18/2023] Open
Abstract
Recent clinical trials have highlighted that percutaneous coronary intervention in patients with stable angina provides limited additional benefits on top of optimal medical therapy. This has led to much more attention being paid to coronary vasomotion abnormalities regardless of obstructive or non-obstructive arterial segments. Coronary vasomotion is regulated by multiple mechanisms that include the endothelium, vascular smooth muscle cells (VSMCs), myocardial metabolic demand, autonomic nervous system and inflammation. Over the years, several animal models have been developed to explore the central mechanism of coronary artery spasm. This review summarises the landmark studies on the mechanisms of coronary vasospasm demonstrating the central role of Rho-kinase as a molecular switch of VSMC hypercontraction and the important role of coronary adventitial inflammation for Rho-kinase upregulation in VSMCs.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Kazuma Oyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
9
|
Hokimoto S, Kaikita K, Yasuda S, Tsujita K, Ishihara M, Matoba T, Matsuzawa Y, Mitsutake Y, Mitani Y, Murohara T, Noda T, Node K, Noguchi T, Suzuki H, Takahashi J, Tanabe Y, Tanaka A, Tanaka N, Teragawa H, Yasu T, Yoshimura M, Asaumi Y, Godo S, Ikenaga H, Imanaka T, Ishibashi K, Ishii M, Ishihara T, Matsuura Y, Miura H, Nakano Y, Ogawa T, Shiroto T, Soejima H, Takagi R, Tanaka A, Tanaka A, Taruya A, Tsuda E, Wakabayashi K, Yokoi K, Minamino T, Nakagawa Y, Sueda S, Shimokawa H, Ogawa H. JCS/CVIT/JCC 2023 Guideline Focused Update on Diagnosis and Treatment of Vasospastic Angina (Coronary Spastic Angina) and Coronary Microvascular Dysfunction. Circ J 2023; 87:879-936. [PMID: 36908169 DOI: 10.1253/circj.cj-22-0779] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
| | - Koichi Kaikita
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | - Masaharu Ishihara
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences
| | | | - Yoshiaki Mitsutake
- Division of Cardiovascular Medicine, Kurume University School of Medicine
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Takashi Noda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Suzuki
- Division of Cardiology, Department of Internal Medicine, Showa University Fujigaoka Hospital
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Yasuhiko Tanabe
- Department of Cardiology, Niigata Prefectural Shibata Hospital
| | - Atsushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Nobuhiro Tanaka
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Hiroki Teragawa
- Department of Cardiovascular Medicine, JR Hiroshima Hospital
| | - Takanori Yasu
- Department of Cardiovascular Medicine and Nephrology, Dokkyo Medical University Nikko Medical Center
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Yasuhide Asaumi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences
| | - Takahiro Imanaka
- Department of Cardiovascular and Renal Medicine, School of Medicine, Hyogo Medical University
| | - Kohei Ishibashi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Masanobu Ishii
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kumamoto University
| | | | - Yunosuke Matsuura
- Division of Cardiovascular Medicine and Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki
| | - Hiroyuki Miura
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | - Takayuki Ogawa
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine
| | - Takashi Shiroto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | | | - Ryu Takagi
- Division of Cardiology, Tokyo Medical University Hachioji Medical Center
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | | | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University
| | - Etsuko Tsuda
- Department of Pediatric Cardiology, National Cerebral and Cardiovascular Center
| | - Kohei Wakabayashi
- Division of Cardiology, Cardiovascular Center, Showa University Koto-Toyosu Hospital
| | - Kensuke Yokoi
- Department of Cardiovascular Medicine, Saga University
| | - Toru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Shozo Sueda
- Department of Cardiology, Pulmonology, Hypertension & Nephrology, Ehime University Graduate School of Medicine
| | | | | |
Collapse
|
10
|
Wang X, Diwu W, Guo J, Yan M, Ma W, Yang M, Bi L, Han Y. Enhancement of antibacterial properties and biocompatibility of Ti 6Al 4V by graphene oxide/strontium nanocomposite electrodepositing. Biochem Biophys Res Commun 2023; 665:35-44. [PMID: 37156051 DOI: 10.1016/j.bbrc.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Ti6Al4V is a widely used orthopedic implant material in clinics. Due to its poor antibacterial properties, surface modification is required to prevent peri-implantation infection. However, chemical linkers used for surface modification have generally been reported to have detrimental effects on cell growth. In this work, by optimizing parameters related to electrodeposition, a composite structural coating with graphene oxide (GO) compact films in the inner layer and 35 nm diameter strontium (Sr) nanoparticles in the outer layer was constructed on the surface of Ti6Al4V without using substance harmful to bone marrow mesenchymal stem cells (BMSCs) growth. The antibacterial properties of Ti6Al4V are enhanced by the controlled release of Sr ions and incomplete masking of the GO surface, showing excellent antibacterial activity against Staphylococcus aureus in bacterial culture assays. The biomimetic GO/Sr coating has a reduced roughness of the implant surface and a water contact angle of 44.1°, improving the adhesion, proliferation and differentiation of BMSCs. Observations of synovial tissue and fluid in the joint in an implantation model of rabbit knee also point to the superior anti-infective properties of the novel GO/Sr coating. In summary, the novel GO/Sr nanocomposite coating on the surface of Ti6Al4V effectively prevents surface colonization of Staphylococcus aureus and eliminates local infections in vitro and in vivo.
Collapse
Affiliation(s)
- Xing Wang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China; Department of Medical Identification, The Air Force Medical Center, Beijing, People's Republic of China
| | - Weilong Diwu
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Jianbin Guo
- Department of Joint Surgery, Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, People's Republic of China
| | - Ming Yan
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Wenrui Ma
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Min Yang
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China
| | - Long Bi
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China.
| | - Yisheng Han
- Department of Orthopedics, The First Affiliated Hospital of Air Force Military Medical University, People's Republic of China.
| |
Collapse
|
11
|
Park K, Kim S, Jo Y, Park J, Kim I, Hwang S, Lee Y, Kim SY, Seo J. Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications. Bioact Mater 2022; 25:555-568. [PMID: 37056251 PMCID: PMC10088055 DOI: 10.1016/j.bioactmat.2022.07.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/17/2022] [Indexed: 12/28/2022] Open
Abstract
Implantable biomedical devices require an anti-biofouling, mechanically robust, low friction surface for a prolonged lifespan and improved performance. However, there exist no methods that could provide uniform and effective coatings for medical devices with complex shapes and materials to prevent immune-related side effects and thrombosis when they encounter biological tissues. Here, we report a lubricant skin (L-skin), a coating method based on the application of thin layers of bio-adhesive and lubricant-swellable perfluoropolymer that impart anti-biofouling, frictionless, robust, and heat-mediated self-healing properties. We demonstrate biocompatible, mechanically robust, and sterilization-safe L-skin in applications of bioprinting, microfluidics, catheter, and long and narrow medical tubing. We envision that diverse applications of L-skin improve device longevity, as well as anti-biofouling attributes in biomedical devices with complex shapes and material compositions.
Collapse
Affiliation(s)
- Kijun Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Seunghoi Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Yejin Jo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jae Park
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inwoo Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Sooyoung Hwang
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeontaek Lee
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technologies, Seoul, 02792, Republic of Korea
| | - Jungmok Seo
- School of Electronic and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Corresponding author.
| |
Collapse
|
12
|
Godo S, Takahashi J, Yasuda S, Shimokawa H. Endothelium in Coronary Macrovascular and Microvascular Diseases. J Cardiovasc Pharmacol 2021; 78:S19-S29. [PMID: 34840261 PMCID: PMC8647695 DOI: 10.1097/fjc.0000000000001089] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 01/09/2023]
Abstract
ABSTRACT The endothelium plays a pivotal role in the regulation of vascular tone by synthesizing and liberating endothelium-derived relaxing factors inclusive of vasodilator prostaglandins (eg, prostacyclin), nitric oxide (NO), and endothelium-dependent hyperpolarization factors in a distinct blood vessel size-dependent manner. Large conduit arteries are predominantly regulated by NO and small resistance arteries by endothelium-dependent hyperpolarization factors. Accumulating evidence over the past few decades has demonstrated that endothelial dysfunction and coronary vasomotion abnormalities play crucial roles in the pathogenesis of various cardiovascular diseases. Structural and functional alterations of the coronary microvasculature have been coined as coronary microvascular dysfunction (CMD), which is highly prevalent and associated with adverse clinical outcomes in many clinical settings. The major mechanisms of coronary vasomotion abnormalities include enhanced coronary vasoconstrictive reactivity at epicardial and microvascular levels, impaired endothelium-dependent and endothelium-independent coronary vasodilator capacities, and elevated coronary microvascular resistance caused by structural factors. Recent experimental and clinical research has highlighted CMD as the systemic small artery disease beyond the heart, emerging modulators of vascular functions, novel insights into the pathogenesis of cardiovascular diseases associated with CMD, and potential therapeutic interventions to CMD with major clinical implications. In this article, we will summarize the current knowledge on the endothelial modulation of vascular tone and the pathogenesis of coronary macrovascular and microvascular diseases from bench to bedside, with a special emphasis placed on the mechanisms and clinical implications of CMD.
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; and
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; and
- Graduate School, International University of Health and Welfare, Narita, Japan
| |
Collapse
|
13
|
Kotanidis CP, Antoniades C. Perivascular fat imaging by computed tomography (CT): a virtual guide. Br J Pharmacol 2021; 178:4270-4290. [PMID: 34296764 PMCID: PMC8856184 DOI: 10.1111/bph.15634] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/04/2022] Open
Abstract
Imaging in medicine has been revolutionised by technological, computational and research advances over the past decades. Computed tomography (CT), in particular, has seen rapid evolution especially in the field of cardiovascular non-invasive imaging. It is being recognised as the first-line tool for the assessment of stable and unstable disease with diagnostic, prognostic and re-stratification potential. Vascular inflammation is a key component of the atherosclerotic process and has been shown to induce molecular, transcriptional and structural changes to perivascular adipose tissue (PVAT). Being a diverse structure itself, PVAT surrounds the human vessels and is characterised by a highly rich secretome, including, amongst others, adipokines, cytokines, gaseous messengers and miRNAs It is implicated in a bidirectional interplay with the adjacent vascular wall, affecting and being affected by aspects of its biology, mainly inflammation. In this review, we discuss the current status of cardiac CT in imaging vascular inflammation through PVAT phenotyping. LINKED ARTICLES: This article is part of a themed issue on Molecular imaging - visual themed issue. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.21/issuetoc.
Collapse
Affiliation(s)
- Christos P. Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
- Acute Vascular Imaging Centre, Investigational MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
14
|
Low-intensity pulsed ultrasound therapy suppresses coronary adventitial inflammatory changes and hyperconstricting responses after coronary stent implantation in pigs in vivo. PLoS One 2021; 16:e0257175. [PMID: 34516572 PMCID: PMC8437271 DOI: 10.1371/journal.pone.0257175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Backgrounds We demonstrated that coronary adventitial inflammation plays important roles in the pathogenesis of drug-eluting stent (DES)-induced coronary hyperconstricting responses in pigs in vivo. However, no therapy is yet available to treat coronary adventitial inflammation. We thus developed the low-intensity pulsed ultrasound (LIPUS) therapy that ameliorates myocardial ischemia by enhancing angiogenesis. Aims We aimed to examine whether our LIPUS therapy suppresses DES-induced coronary hyperconstricting responses in pigs in vivo, and if so, what mechanisms are involved. Methods Sixteen normal male pigs were randomly assigned to the LIPUS or the sham therapy groups after DES implantation into the left anterior descending (LAD) coronary artery. In the LIPUS group, LIPUS (32 cycles, 193 mW/cm2) was applied to the heart at 3 different levels (segments proximal and distal to the stent edges and middle of the stent) for 20 min at each level for every other day for 2 weeks. The sham therapy group was treated in the same manner but without LIPUS. At 4 weeks after stent implantation, we performed coronary angiography, followed by immunohistological analysis. Results Coronary vasoconstricting responses to serotonin in LAD at DES edges were significantly suppressed in the LIPUS group compared with the sham group. Furthermore, lymph transport speed in vivo was significantly faster in the LIPUS group than in the sham group. Histological analysis at DES edges showed that inflammatory changes and Rho-kinase activity were significantly suppressed in the LIPUS group, associated with eNOS up-regulation and enhanced lymph-angiogenesis. Conclusions These results suggest that our non-invasive LIPUS therapy is useful to treat coronary functional abnormalities caused by coronary adventitial inflammation, indicating its potential for the novel and safe therapeutic approach of coronary artery disease.
Collapse
|
15
|
Abstract
Targeting residual cardiovascular risk in primary and secondary prevention, would allow deployment of novel therapeutic agents, facilitating precision medicine. For example, lowering vascular inflammation is a promising strategy to reduce the residual inflammatory cardiovascular risk in patients already receiving optimal medical therapy, but prescribing novel anti-inflammatory treatments will be problematic due to the lack of specific companion diagnostic tests, to guide their targeted use in clinical practice. Currently available tests for the detection of coronary inflammation are either non-specific for the cardiovascular system (e.g. plasma biomarkers) or expensive and not readily available (e.g. hybrid positron emission tomography imaging). Recent technological advancements in coronary computed tomography angiography (CCTA) allow non-invasive detection of high-risk plaque features (positive remodelling, spotty calcification, low attenuation plaque, and napkin-ring sign) and help identify the vulnerable patient, but they provide only indirectly information about coronary inflammation. Perivascular fat attenuation index (FAI), a novel method for assessing coronary inflammation by analysing routine CCTA, captures changes in the perivascular adipose tissue composition driven by inflammatory signals coming from the inflamed coronary artery, by analysing the three-dimensional gradients of perivascular attenuation, followed by adjustments for technical, anatomical, and biological factors. By detecting vascular inflammation, perivascular FAI enhances cardiovascular risk discrimination which could aid more cost-effective deployment of novel therapeutic agents. In this article, we present the existing non-invasive modalities for the detection of coronary inflammation and provide a practical guide for their use in clinical practice.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | - Alexios S Antonopoulos
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK
| | | |
Collapse
|
16
|
Godo S, Suda A, Takahashi J, Yasuda S, Shimokawa H. Coronary Microvascular Dysfunction. Arterioscler Thromb Vasc Biol 2021; 41:1625-1637. [PMID: 33761763 DOI: 10.1161/atvbaha.121.316025] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shigeo Godo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Akira Suda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Satoshi Yasuda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan (S.G., A.S., J.T., S.Y., H.S.)
| | - Hiroaki Shimokawa
- Graduate School, International University of Health and Welfare, Narita, Japan (H.S.)
| |
Collapse
|
17
|
Chen X, Dang Y, Hu H, Ma S, Ma Y, Wang K, Liu T, Lu X, Hou Y. Pericoronary adipose tissue attenuation assessed by dual-layer spectral detector computed tomography is a sensitive imaging marker of high-risk plaques. Quant Imaging Med Surg 2021; 11:2093-2103. [PMID: 33936990 PMCID: PMC8047372 DOI: 10.21037/qims-20-860] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND The pericoronary fat attenuation index (FAI) derived from conventional polychromatic computed tomography (CT) can capture the presence of coronary inflammation. However, conventional polychromatic CT has limitations in material component differentiation, and spectral CT could have a better ability to discriminate tissue characteristics. Hence, this study sought to assess pericoronary adipose tissue (PCAT) attenuation using spectral CT and explore its association with atherosclerotic plaque characteristics. METHODS We enrolled 104 patients with coronary atherosclerosis who met the inclusion criteria and underwent coronary CT angiography with dual-layer spectral detector computed tomography (SDCT). Plaque anatomical characteristics were measured, and the PCAT attenuation was assessed by polychromatic images (CTpoly), virtual mono-energetic images at 40 keV (CT40 keV), the slope of spectral attenuation curve (λHU), and the effective atomic number (Zeff). The association of PCAT attenuation indicators with the presence of high-risk plaques was analyzed, along with the indicators' ability to identify high-risk plaques. RESULTS PCAT attenuation indicators around high-risk plaques were higher than those around non-high-risk plaques, especially CT40 keV [-153.76±24.97 (non-high-risk plaque) vs. -119.87±22.74 (high-risk plaque), P<0.001]. CT40 keV was a predictive factor of high-risk plaques, and high CT40 keV (≥-120.60 HU) could assist in the identification of high-risk plaques, with an area under the curve of 0.883 (95% CI: 0.83-0.94, P<0.05). CONCLUSIONS PCAT surrounding high-risk plaques showed higher attenuation; a finding that has been associated with coronary artery inflammation. The metrics derived from SDCT, especially CT40 keV, showed higher discriminatory power for detecting changes in PCAT attenuation than polychromatic CT. PCAT attenuation assessed by CT40 keV may provide a novel imaging marker of plaque vulnerability.
Collapse
Affiliation(s)
- Xujiao Chen
- Radiology Department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuxue Dang
- Radiology Department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hong Hu
- Radiology Department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shaowei Ma
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Ma
- Radiology Department, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kunhua Wang
- Radiology Department, People’s Hospital of Liaoning Province, Shenyang, China
| | - Ting Liu
- Radiology Department, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaomei Lu
- CT Clinical Science, Philips Healthcare, Shenyang, China
| | - Yang Hou
- Radiology Department, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Gunawardena T, Merinopoulos I, Wickramarachchi U, Vassiliou V, Eccleshall S. Endothelial Dysfunction and Coronary Vasoreactivity - A Review of the History, Physiology, Diagnostic Techniques, and Clinical Relevance. Curr Cardiol Rev 2021; 17:85-100. [PMID: 32552654 PMCID: PMC8142375 DOI: 10.2174/1573403x16666200618161942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/23/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
The fervency for advancement and evolution in percutaneous coronary intervention has revolutionised the treatment of coronary artery disease. Historically, the focus of the interventional cardiologist was directed at the restoration of luminal patency of the major epicardial coronary arteries, yet whilst this approach is evolving with much greater utilisation of physiological assessment, it often neglects consideration of the role of the coronary microcirculation, which has been shown to clearly influence prognosis. In this review, we explore the narrative of the coronary circulation as more than just a simple conduit for blood but an organ with functional significance. We review organisation and physiology of the coronary circulation, as well as the current methods and techniques used to examine it. We discuss the studies exploring coronary artery endothelial function, appreciating that coronary artery disease occurs on a spectrum of disorder and that percutaneous coronary intervention has a latent effect on the coronary circulation with long-term consequences. It is concluded that greater recognition of the coronary artery endothelium and mechanisms of the coronary circulation should further guide revascularisation strategies.
Collapse
Affiliation(s)
- Tharusha Gunawardena
- Address correspondence to this author at the Department of Cardiology, Norfolk and Norwich University Hospital, Colney Lane NR4 7UY, Norwich, England; E-mail:
| | | | | | | | | |
Collapse
|
19
|
Unraveling the Role of Epicardial Adipose Tissue in Coronary Artery Disease: Partners in Crime? Int J Mol Sci 2020; 21:ijms21228866. [PMID: 33238643 PMCID: PMC7700147 DOI: 10.3390/ijms21228866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
The role of epicardial adipose tissue (EAT) in the pathophysiology of coronary artery disease (CAD) remains unclear. The present systematic review aimed at compiling dysregulated proteins/genes from different studies to dissect the potential role of EAT in CAD pathophysiology. Exhaustive literature research was performed using the keywords "epicardial adipose tissue and coronary artery disease", to highlight a group of proteins that were consistently regulated among all studies. Reactome, a pathway analysis database, was used to clarify the function of the selected proteins and their intertwined association. SignalP/SecretomeP was used to clarify the endocrine function of the selected proteins. Overall, 1886 proteins/genes were identified from 44 eligible studies. The proteins were separated according to the control used in each study (EAT non-CAD or subcutaneous adipose tissue (SAT) CAD) and by their regulation (up- or downregulated). Using a Venn diagram, we selected the proteins that were upregulated and downregulated (identified as 27 and 19, respectively) in EAT CAD for both comparisons. The analysis of these proteins revealed the main pathways altered in the EAT and how they could communicate with the heart, potentially contributing to CAD development. In summary, in this study, the identified dysregulated proteins highlight the importance of inflammatory processes to modulate the local environment and the progression of CAD, by cellular and metabolic adaptations of epicardial fat that facilitate the formation and progression of atherogenesis of coronaries.
Collapse
|
20
|
Nishimiya K, Matsumoto Y, Shimokawa H. Recent Advances in Vascular Imaging. Arterioscler Thromb Vasc Biol 2020; 40:e313-e321. [PMID: 33054393 DOI: 10.1161/atvbaha.120.313609] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent advances in vascular imaging have enabled us to uncover the underlying mechanisms of vascular diseases both ex vivo and in vivo. In the past decade, efforts have been made to establish various methodologies for evaluation of atherosclerotic plaque progression and vascular inflammatory changes in addition to biomarkers and clinical manifestations. Several recent publications in Arteriosclerosis, Thrombosis, and Vascular Biology highlighted the essential roles of in vivo and ex vivo vascular imaging, including magnetic resonance image, computed tomography, positron emission tomography/scintigraphy, ultrasonography, intravascular ultrasound, and most recently, optical coherence tomography, all of which can be used in bench and clinical studies at relative ease. With new methods proposed in several landmark studies, these clinically available imaging modalities will be used in the near future. Moreover, future development of intravascular imaging modalities, such as optical coherence tomography-intravascular ultrasound, optical coherence tomography-near-infrared autofluorescence, polarized-sensitive optical coherence tomography, and micro-optical coherence tomography, are anticipated for better management of patients with cardiovascular disease. In this review article, we will overview recent advances in vascular imaging and ongoing works for future developments.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Kataoka T, Harada K, Tanaka A, Onishi T, Matsunaga S, Funakubo H, Harada K, Nagao T, Shinoda N, Marui N, Niwa K, Tashiro H, Hitora Y, Furusawa K, Ishii H, Amano T, Murohara T. Relationship between epicardial adipose tissue volume and coronary artery spasm. Int J Cardiol 2020; 324:8-12. [PMID: 33017629 DOI: 10.1016/j.ijcard.2020.09.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/15/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Epicardial adipose tissue (EAT) is considered to play a critical role in vascular endothelial function. Coronary artery spasm has been postulated to be a causal factor in vascular endothelial abnormalities and atherosclerosis. This study aimed to investigate the relationship between coronary artery spasm and EAT volume, total abdominal adipose tissue (AAT) area, and abdominal visceral adipose tissue (AVAT) area. METHOD Among patients undergoing coronary computed tomography (CT) to evaluate coronary artery disease, we identified 110 patients who did not have significant coronary artery stenosis and underwent a coronary spasm provocation test with cardiac catheterization. They were divided into two groups according to the results of the spasm provocation test: spasm-positive and spasm-negative. EAT volume, total AAT area, and AVAT area were evaluated using CT images. RESULTS Seventy-seven patients were included in the spasm-positive group and 33 patients in the spasm-negative group. There were no significant differences in baseline clinical characteristics between the two groups, except for the prevalence of current smoking (48% vs. 27%, p = 0.04). EAT volume was significantly higher in the spasm-positive group (108 ± 38 mL vs. 87 ± 34 mL, p = 0.007), while no significant difference was seen in total AAT area (280 ± 113 cm2 vs. 254 ± 128 cm2, p = 0.32) or AVAT area (112 ± 54 cm2 vs. 98 ± 55 cm2, p = 0.27). Multivariate logistic analysis indicated that EAT volume (per 10 cm3) (odds ratio, 1.198; 95% confidence interval, 1.035-1.388; p = 0.016) was a significant predictor of coronary artery spasm. CONCLUSION Our results suggest that EAT has a strong association with coronary artery spasm, while AAT may not.
Collapse
Affiliation(s)
- Takashi Kataoka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Ken Harada
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Akihito Tanaka
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Tomohiro Onishi
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan; Department of Cardiology, Aichi Medical University Hospital, Nagakute, Japan
| | - Shun Matsunaga
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Hiroshi Funakubo
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Kazuhiro Harada
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Tomoyuki Nagao
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | | | - Nobuyuki Marui
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan
| | - Kiyoshi Niwa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Tashiro
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Hitora
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Furusawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideki Ishii
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Cardiology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Tetsuya Amano
- Department of Cardiology, Chubu Rosai Hospital, Nagoya, Japan; Department of Cardiology, Aichi Medical University Hospital, Nagakute, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
22
|
Chae K, Jang WY, Park K, Lee J, Kim H, Lee K, Lee CK, Lee Y, Lee SH, Seo J. Antibacterial infection and immune-evasive coating for orthopedic implants. SCIENCE ADVANCES 2020; 6:6/44/eabb0025. [PMID: 33115733 PMCID: PMC7608784 DOI: 10.1126/sciadv.abb0025] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 09/08/2020] [Indexed: 05/22/2023]
Abstract
Bacterial infection and infection-induced immune response have been a life-threatening risk for patients having orthopedic implant surgeries. Conventional biomaterials are vulnerable to biocontamination, which causes bacterial invasion in wounded areas, leading to postoperative infection. Therefore, development of anti-infection and immune-evasive coating for orthopedic implants is urgently needed. Here, we developed an advanced surface modification technique for orthopedic implants termed lubricated orthopedic implant surface (LOIS), which was inspired by slippery surface of Nepenthes pitcher plant. LOIS presents a long-lasting, extreme liquid repellency against diverse liquids and biosubstances including cells, proteins, calcium, and bacteria. In addition, we confirmed mechanical durability against scratches and fixation force by simulating inevitable damages during surgical procedure ex vivo. The antibiofouling and anti-infection capability of LOIS were thoroughly investigated using an osteomyelitis femoral fracture model of rabbits. We envision that the LOIS with antibiofouling properties and mechanical durability is a step forward in infection-free orthopedic surgeries.
Collapse
Affiliation(s)
- Kyomin Chae
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Kijun Park
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinhyeok Lee
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Hyunchul Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyoungbun Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chang Kyu Lee
- Department of Laboratory Medicine, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Yeontaek Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Soon Hyuck Lee
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea.
| | - Jungmok Seo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
23
|
Qiu S, Sun J. lncRNA-MALAT1 expression in patients with coronary atherosclerosis and its predictive value for in-stent restenosis. Exp Ther Med 2020; 20:129. [PMID: 33082861 DOI: 10.3892/etm.2020.9258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 08/07/2020] [Indexed: 01/07/2023] Open
Abstract
This study was designed to investigate the long non-coding RNA (lncRNA)-metastasis associated lung adenocarcinoma transcript 1 (MALAT1) expression in patients with coronary atherosclerosis and its predictive value for in-stent restenosis. Ninety-five patients with coronary heart disease who came to our hospital for treatment and underwent stent implantation were selected as a research group (RG), and 95 volunteers undergoing physical examination who did not suffer from coronary heart disease during the same period were selected as a control group (CG). MALAT1 of subjects in both groups before and after treatment were detected by RT-qPCR, and N-terminal pro-brain natriuretic peptide (NT-proBNP), high sensitivity C-reactive protein (hs-CRP), lactate dehydrogenase (LDH), and creatine kinase isoenzyme (CK-MB) of them in the RG before treatment were detected. The level was evaluated and detected, and its correlation with MALAT1 was analyzed. Then, the predictive value of MALAT1 for in-stent restenosis in patients with coronary heart disease was analyzed. MALAT1 expression in patients with coronary heart disease was higher than that of normal subjects (P<0.05); after treatment, the expression levels of MALAT1, NT-proBNP, hs-CRP, LDH, and CK-MB in the serum of patients were significantly lower than those before treatment (P<0.05); MALAT1 expression was positively correlated with the expression levels of NT-proBNP, hs-CRP, LDH, and CK-MB (P<0.05). Receiver operating characteristic of MALAT1 for predicting in-stent restenosis in patients with coronary heart disease was over 0.8; the number of lesions, MALAT1, diabetes, NT-proBNP and hs-CRP were independent risk factors for in-stent restenosis. MALAT1 is highly expressed in the serum of patients with coronary heart disease, and it has high value in its diagnosis and the prediction of in-stent restenosis. It is also an independent risk factor for in-stent restenosis in patients with coronary heart disease.
Collapse
Affiliation(s)
- Shi Qiu
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| | - Jinhui Sun
- Department of Cardiovascular Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
24
|
From CT to artificial intelligence for complex assessment of plaque-associated risk. Int J Cardiovasc Imaging 2020; 36:2403-2427. [PMID: 32617720 DOI: 10.1007/s10554-020-01926-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The recent technological developments in the field of cardiac imaging have established coronary computed tomography angiography (CCTA) as a first-line diagnostic tool in patients with suspected coronary artery disease (CAD). CCTA offers robust information on the overall coronary circulation and luminal stenosis, also providing the ability to assess the composition, morphology, and vulnerability of atherosclerotic plaques. In addition, the perivascular adipose tissue (PVAT) has recently emerged as a marker of increased cardiovascular risk. The addition of PVAT quantification to standard CCTA imaging may provide the ability to extract information on local inflammation, for an individualized approach in coronary risk stratification. The development of image post-processing tools over the past several years allowed CCTA to provide a significant amount of data that can be incorporated into machine learning (ML) applications. ML algorithms that use radiomic features extracted from CCTA are still at an early stage. However, the recent development of artificial intelligence will probably bring major changes in the way we integrate clinical, biological, and imaging information, for a complex risk stratification and individualized therapeutic decision making in patients with CAD. This review aims to present the current evidence on the complex role of CCTA in the detection and quantification of vulnerable plaques and the associated coronary inflammation, also describing the most recent developments in the radiomics-based machine learning approach for complex assessment of plaque-associated risk.
Collapse
|
25
|
Queiroz M, Sena CM. Perivascular adipose tissue in age-related vascular disease. Ageing Res Rev 2020; 59:101040. [PMID: 32112889 DOI: 10.1016/j.arr.2020.101040] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/31/2020] [Accepted: 02/23/2020] [Indexed: 12/16/2022]
Abstract
Perivascular adipose tissue (PVAT), a crucial regulator of vascular homeostasis, is actively involved in vascular dysfunction during aging. PVAT releases various adipocytokines, chemokines and growth factors. In an endocrine and paracrine manner PVAT-derived factors regulate vascular signalling and inflammation modulating functions of adjacent layers of the vasculature. Pathophysiological conditions such as obesity, type 2 diabetes, vascular injury and aging can cause PVAT dysfunction, leading to vascular endothelial and smooth muscle cell dysfunctions. We and others have suggested that PVAT is involved in the inflammatory response of the vascular wall in diet induced obesity animal models leading to vascular dysfunction due to disappearance of the physiological anticontractile effect. Previous studies confirm a crucial role for pinpointed PVAT inflammation in promoting vascular oxidative stress and inflammation in aging, enhancing the risk for development of cardiovascular disease. In this review, we discuss several studies and mechanisms linking PVAT to age-related vascular diseases. An overview of the suggested roles played by PVAT in different disorders associated with the vasculature such as endothelial dysfunction, neointimal formation, aneurysm, vascular contractility and stiffness will be performed. PVAT may be considered a potential target for therapeutic intervention in age-related vascular disease.
Collapse
Affiliation(s)
- Marcelo Queiroz
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Portugal
| | - Cristina M Sena
- Institute of Physiology, iCBR, Faculty of Medicine, University of Coimbra, Portugal.
| |
Collapse
|
26
|
Abstract
Accumulating knowledge on the biology and function of the adipose tissue has led to a major shift in our understanding of its role in health and disease. The adipose tissue is now recognized as a crucial regulator of cardiovascular health, mediated by the secretion of several bioactive products, including adipocytokines, microvesicles and gaseous messengers, with a wide range of endocrine and paracrine effects on the cardiovascular system. The adipose tissue function and secretome are tightly controlled by complex homeostatic mechanisms and local cell-cell interactions, which can become dysregulated in obesity. Systemic or local inflammation and insulin resistance lead to a shift in the adipose tissue secretome from anti-inflammatory and anti-atherogenic towards a pro-inflammatory and pro-atherogenic profile. Moreover, the interplay between the adipose tissue and the cardiovascular system is bidirectional, with vascular-derived and heart-derived signals directly affecting adipose tissue biology. In this Review, we summarize the current knowledge of the biology and regional variability of adipose tissue in humans, deciphering the complex molecular mechanisms controlling the crosstalk between the adipose tissue and the cardiovascular system, and their possible clinical translation. In addition, we highlight the latest developments in adipose tissue imaging for cardiovascular risk stratification and discuss how therapeutic targeting of the adipose tissue can improve prevention and treatment of cardiovascular disease.
Collapse
|
27
|
Antonopoulos AS, Papanikolaou P, Tousoulis D. The Role of Perivascular Adipose Tissue in Microvascular Function and Coronary Atherosclerosis. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Perivascular Adipose Tissue and Coronary Atherosclerosis: from Biology to Imaging Phenotyping. Curr Atheroscler Rep 2019; 21:47. [PMID: 31741080 DOI: 10.1007/s11883-019-0817-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Perivascular adipose tissue (PVAT) has a complex, bidirectional relationship with the vascular wall. In disease states, PVAT secretes pro-inflammatory adipocytokines which may contribute to atherosclerosis. Recent evidence demonstrates that pericoronary adipose tissue (PCAT) may also function as a sensor of coronary inflammation. This review details PVAT biology and its clinical translation to current imaging phenotyping. RECENT FINDINGS PCAT attenuation derived from routine coronary computed tomography (CT) angiography is a novel noninvasive imaging biomarker of coronary inflammation. Pro-inflammatory cytokines released from the arterial wall diffuse directly into the surrounding PCAT and inhibit adipocyte lipid accumulation in a paracrine manner. This can be detected as an increased PCAT CT attenuation, a metric which associates with high-risk plaque features and independently predicts cardiac mortality. There is also evidence that PCAT attenuation relates to coronary plaque progression and is modified by systemic anti-inflammatory therapies. Due to its proximity to the coronary arteries, PCAT has emerged as an important fat depot in cardiovascular research. PCAT CT attenuation has the potential to improve cardiovascular risk stratification, and future clinical studies should examine its role in guiding targeted medical therapy.
Collapse
|
29
|
Arena C, Troiano G, Zhurakivska K, Nocini R, Lo Muzio L. Stomatitis And Everolimus: A Review Of Current Literature On 8,201 Patients. Onco Targets Ther 2019; 12:9669-9683. [PMID: 31814732 PMCID: PMC6862450 DOI: 10.2147/ott.s195121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background Oral toxicities, such as mucositis and stomatitis, are some of the most significant and unavoidable side effects associated with anticancer therapies. In past decades, research has focused on newer targeted agents with the aim of decreasing the rates of side effects on healthy cells. Unfortunately, even targeted anticancer therapies show significant rates of toxicity on healthy tissue. mTOR inhibitors display some adverse events, such as hyperglycemia, hyperlipidemia, hypophosphatemia, hematologic toxicities, and mucocutaneous eruption, but the most important are still stomatitis and skin rash, which are often dose-limiting side effects. Aim This review was performed to answer the question “What is the incidence of stomatitis in patients treated with everolimus?” Methods We conducted a systematic search on the PubMed and Medline online databases using a combination of MESH terms and free text: “everolimus” (MESH) AND “side effects” OR “toxicities” OR “adverse events”. Only studies fulfilling the following inclusion criteria were considered eligible for inclusion in this study: performed on human subjects, reporting on the use of everolimus (even if in combination with other drugs or ionizing radiation), written in the English language, and reporting the incidence of side effects. Results The analysis of literature revealed that the overall incidence of stomatitis after treatment with everolimus was 42.6% (3,493) and that of stomatitis grade G1/2 84.02% (2,935), while G3/4 was 15.97% (558). Conclusion Results of the analysis showed that the incidence of stomatitis of grade 1 or 2 is higher than grade 3 or 4. However, it must be taken into account that it is not possible to say if side effects are entirely due to everolimus therapy or combinations with other drugs.
Collapse
Affiliation(s)
- Claudia Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Riccardo Nocini
- Section of Otolaryngology, Department of Surgical Sciences, Dentistry, Gynecology, and Pediatrics, University of Verona, Verona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti, Italy
| |
Collapse
|
30
|
Abstract
Unstable coronary plaques that are prone to erosion and rupture are the major cause of acute coronary syndromes. Our expanding understanding of the biological mechanisms of coronary atherosclerosis and rapid technological advances in the field of medical imaging has established cardiac computed tomography as a first-line diagnostic test in the assessment of suspected coronary artery disease, and as a powerful method of detecting the vulnerable plaque and patient. Cardiac computed tomography can provide a noninvasive, yet comprehensive, qualitative and quantitative assessment of coronary plaque burden, detect distinct high-risk morphological plaque features, assess the hemodynamic significance of coronary lesions and quantify the coronary inflammatory burden by tracking the effects of arterial inflammation on the composition of the adjacent perivascular fat. Furthermore, advances in machine learning, computational fluid dynamic modeling, and the development of targeted contrast agents continue to expand the capabilities of cardiac computed tomography imaging. In our Review, we discuss the current role of cardiac computed tomography in the assessment of coronary atherosclerosis, highlighting its dual function as a clinical and research tool that provides a wealth of structural and functional information, with far-reaching diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Evangelos K. Oikonomou
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Henry W. West
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| | - Charalambos Antoniades
- From the Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
31
|
Detecting Coronary Inflammation With Perivascular Fat Attenuation Imaging. JACC Cardiovasc Imaging 2019; 12:2011-2014. [DOI: 10.1016/j.jcmg.2018.12.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/02/2023]
|
32
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
33
|
Affiliation(s)
- Elizabeth E Ha
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| | - Robert C Bauer
- From the Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
34
|
Ohyama K, Matsumoto Y, Takanami K, Ota H, Nishimiya K, Sugisawa J, Tsuchiya S, Amamizu H, Uzuka H, Suda A, Shindo T, Kikuchi Y, Hao K, Tsuburaya R, Takahashi J, Miyata S, Sakata Y, Takase K, Shimokawa H. Coronary Adventitial and Perivascular Adipose Tissue Inflammation in Patients With Vasospastic Angina. J Am Coll Cardiol 2019; 71:414-425. [PMID: 29389358 DOI: 10.1016/j.jacc.2017.11.046] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/22/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Recent studies suggested that perivascular components, such as perivascular adipose tissue (PVAT) and adventitial vasa vasorum (VV), play an important role as a source of various inflammatory mediators in cardiovascular disease. OBJECTIVES The authors tested their hypothesis that coronary artery spasm is associated with perivascular inflammation in patients with vasospastic angina (VSA) using 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). METHODS This study prospectively examined 27 consecutive VSA patients with acetylcholine-induced diffuse spasm in the left anterior descending artery (LAD) and 13 subjects with suspected angina but without organic coronary lesions or coronary spasm. Using CT coronary angiography and electrocardiogram-gated 18F-FDG PET/CT, coronary PVAT volume and coronary perivascular FDG uptake in the LAD were examined. In addition, adventitial VV formation in the LAD was examined with optical coherence tomography, and Rho-kinase activity was measured in circulating leukocytes. RESULTS Patient characteristics were comparable between the 2 groups. CT coronary angiography and ECG-gated 18F-FDG PET/CT showed that coronary PVAT volume and coronary perivascular FDG uptake significantly increased in the VSA group compared with the non-VSA group. Furthermore, optical coherence tomography showed that adventitial VV formation significantly increased in the VSA group compared with the non-VSA group, as did Rho-kinase activity. Importantly, during the follow-up period with medical treatment, both coronary perivascular FDG uptake and Rho-kinase activity significantly decreased in the VSA group. CONCLUSIONS These results provide the first evidence that coronary spasm is associated with inflammation of coronary adventitia and PVAT, where 18F-FDG PET/CT could be useful for disease activity assessment. (Morphological and Functional Change of Coronary Perivascular Adipose Tissue in Vasospastic Angina [ADIPO-VSA Trial]; UMIN000016675).
Collapse
Affiliation(s)
- Kazuma Ohyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kentaro Takanami
- Department of Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Ota
- Department of Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Sugisawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Tsuchiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirokazu Amamizu
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironori Uzuka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Suda
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoku Kikuchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kiyotaka Hao
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryuji Tsuburaya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Takahashi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiko Sakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takase
- Department of Radiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
35
|
Ohyama K, Matsumoto Y, Shimokawa H. Coronary Artery Spasm and Perivascular Adipose Tissue Inflammation: Insights From Translational Imaging Research. Eur Cardiol 2019; 14:6-9. [PMID: 31131030 PMCID: PMC6523051 DOI: 10.15420/ecr.2019.3.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Perivascular adipose tissue, which constitutes perivascular components along with the adventitial vasa vasorum, plays an important role as a source of various inflammatory mediators in cardiovascular disease. Inflammatory changes in the coronary adventitia are thought to be involved in the pathogenesis of coronary artery spasm and vasospastic angina. Recent advances in translational research using non-invasive imaging modalities, including 18F-fluorodeoxyglucose PET and cardiac CT, have enabled us to visualise perivascular inflammation in the pathogenesis of coronary artery spasm. These modality approaches appear to be clinically useful as a non-invasive tool for examining the presence and severity of vasospastic angina.
Collapse
Affiliation(s)
- Kazuma Ohyama
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|
36
|
Amamizu H, Matsumoto Y, Morosawa S, Ohyama K, Uzuka H, Hirano M, Nishimiya K, Gokon Y, Watanabe-Asaka T, Hayashi M, Miyata S, Kamei T, Kawai Y, Shimokawa H. Cardiac Lymphatic Dysfunction Causes Drug-Eluting Stent–Induced Coronary Hyperconstricting Responses in Pigs In Vivo. Arterioscler Thromb Vasc Biol 2019; 39:741-753. [DOI: 10.1161/atvbaha.119.312396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective—
We have previously demonstrated that coronary adventitial inflammation plays important roles in the pathogenesis of coronary vasomotion abnormalities, including drug-eluting stent (DES)–induced coronary hyperconstricting responses. Importantly, the adventitia also harbors lymphatic vessels, which may prevent inflammation by transporting extravasated fluid and inflammatory cells. We thus aimed to examine the roles of coronary adventitial lymphatic vessels in the pathogenesis of DES-induced coronary hyperconstricting responses in a porcine model in vivo.
Approach and Results—
We performed 2 experimental studies. In protocol 1, 15 pigs were divided into 3 groups with or without DES and with bare metal stent. Nonstented sites 20 mm apart from stent implantation also were examined. In the protocol 2, 12 pigs were divided into 2 groups with or without lymphatic vessels ligation followed by DES implantation at 2 weeks later (n=6 each). We performed coronary angiography 4 weeks after DES implantation, followed by immunohistological analysis. In protocol 1, the number and the caliber of lymphatic vessels were greater at only the DES edges after 4 more weeks. In protocol 2, coronary hyperconstricting responses were further enhanced in the lymphatic vessels ligation group associated with adventitial inflammation, Rho-kinase activation, and less adventitial lymphatic vessels formation. Importantly, there were significant correlations among these inflammation-related changes and enhanced coronary vasoconstricting responses.
Conclusions—
These results provide evidence that cardiac lymphatic vessel dysfunction plays important roles in the pathogenesis of coronary vasoconstrictive responses in pigs in vivo.
Collapse
Affiliation(s)
- Hirokazu Amamizu
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuharu Matsumoto
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Susumu Morosawa
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuma Ohyama
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironori Uzuka
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Michinori Hirano
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kensuke Nishimiya
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Gokon
- Department of Gastroenterological Surgery (Y.G., T.K.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomomi Watanabe-Asaka
- Division of Physiology, Tohoku Medical and Pharmaceutical University (T.W.-A., M. Hayashi, Y.K.), Sendai, Japan
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University (T.W.-A., M. Hayashi, Y.K.), Sendai, Japan
| | - Satoshi Miyata
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kamei
- Department of Gastroenterological Surgery (Y.G., T.K.), Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University (T.W.-A., M. Hayashi, Y.K.), Sendai, Japan
| | - Hiroaki Shimokawa
- From the Department of Cardiovascular Medicine (H.A., Y.M., S. Morosawa, K.O., H.U., M. Hirano, K.N., S. Miyata, H.S.), Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
37
|
Rodriguez-Granillo GA, Capunay C, Deviggiano A, De Zan M, Carrascosa P. Regional differences of fat depot attenuation using non-contrast, contrast-enhanced, and delayed-enhanced cardiac CT. Acta Radiol 2019; 60:459-467. [PMID: 30060671 DOI: 10.1177/0284185118787356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Regional fat density assessed by computed tomography (CT) has been suggested as a marker of perivascular adipose tissue inflammation. Dual energy CT (DECT) allows improved tissue characterization compared to conventional CT. PURPOSE To explore whether DECT might aid regional fat density discrimination. MATERIAL AND METHODS We included patients who had completed a non-enhanced cardiac CT scan, CT coronary angiography (CTCA), and a delayed enhancement CT. Attenuation levels (Hounsfield units [HU]) were assessed at the epicardial, paracardial, visceral, and subcutaneous fat. The number of coronary segments with disease (SIS) was calculated. RESULTS A total of 36 patients were included in the analysis. Twenty-six (72%) patients had evidence of obstructive disease at CCTA and 25 (69%) patients had evidence of previous myocardial infarction. At non-contrast CT, we did not identify significant attenuation differences between epicardial, paracardial, subcutaneous, and visceral fat depots (-110.8 ± 9 HU, vs. -113.7 ± 9 HU, vs. -114.7 ± 8 HU, vs. -113.8 ± 11 HU, P = 0.36). Significant attenuation differences were detected between fat depots at mid and low energy levels, both at CTCA and delayed-enhancement scans ( P < 0.05 for all). Epicardial fat showed the least negative attenuation, irrespective of the acquisition mode; epicardial fat evaluated at 40 keV was related to the SIS (r = 0.37, P = 0.03). CONCLUSIONS In this study, regional fat depots amenable to examination during thoracic CT scans have distinctive regional attenuation values. Furthermore, such differences were better displayed using contrast-enhanced monochromatic imaging at low energy levels.
Collapse
Affiliation(s)
| | - Carlos Capunay
- Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina
| | - Alejandro Deviggiano
- Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina
| | - Macarena De Zan
- Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina
| | - Patricia Carrascosa
- Department of Cardiovascular Imaging, Diagnóstico Maipú, Buenos Aires, Argentina
| |
Collapse
|
38
|
Antoniades C, Kotanidis CP, Berman DS. State-of-the-art review article. Atherosclerosis affecting fat: What can we learn by imaging perivascular adipose tissue? J Cardiovasc Comput Tomogr 2019; 13:288-296. [PMID: 30952610 PMCID: PMC6928589 DOI: 10.1016/j.jcct.2019.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 01/05/2023]
Abstract
Perivascular adipose tissue (PVAT) surrounding the human coronary arteries, secretes a wide range of adipocytokines affecting the biology of the adjacent vascular wall in a paracrine way. However, we have recently found that PVAT also behaves as a sensor of signals coming from the vascular wall, to which it reacts by changing its morphology and secretory profile. Indeed, vascular inflammation, a key feature of vascular disease pathogenesis, leads to the release of inflammatory signals that disseminate into local fat, inducing local lipolysis and inhibiting adipogenesis. This ability of PVAT to sense inflammatory signals from the vascular wall, can be used as a "thermometer" of the vascular wall, allowing for non-invasive detection of coronary inflammation. Vascular inflammation induces a shift of PVAT's composition from lipid to aqueous phase, resulting into increased computed tomography (CT) attenuation around the inflamed artery, forming a gradient with increasing attenuation closer to the inflamed coronary artery wall. These spatial changes in PVAT's attenuation are easily detected around culprit lesions during acute coronary syndromes. A new biomarker designed to captured these spatial changes in PVAT's attenuation around the human coronary arteries, the Fat Attenuation Index (FAI), has additional predictive value in stable patients for cardiac mortality and non-fatal heart attacks, above the prediction provided by the current state of the art that includes risk factors, calcium score and presence of high risk plaque features. The use of perivascular FAI in clinical practice may change the way we interpret cardiovascular CT angiography, as it is applicable to any coronary CT angiogram, and it offers dynamic information about the inflammatory burden of the coronary arteries, providing potential guidance for preventive measures and invasive treatments.
Collapse
Affiliation(s)
- Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| | - Christos P Kotanidis
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
39
|
Faight E, Verdelis K, Ahearn JM, Shields KJ. 3D MicroCT spatial and temporal characterization of thoracic aorta perivascular adipose tissue and plaque volumes in the ApoE-/- mouse model. Adipocyte 2018; 7:156-165. [PMID: 29956579 DOI: 10.1080/21623945.2018.1493900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Perivascular adipose tissue (PVAT) influences vascular function and pathology. We present a protocol using micro-computed tomography (microCT), a novel imaging technique typically used for hard biological tissue, to characterize the temporal and spatial development of aorta PVAT and luminal plaque soft tissue. Apolipoprotein E deficient (ApoE) and C57Bl/6J (control) mice were fed a high fat western diet up to 30 weeks. 3D microCT reconstructions were used to quantify: 1) vascular wall volume, a surrogate measure of remodeling, was greater in ApoE, 2) aorta PVAT volume was reduced in ApoE, 3) plaque volumes increased over time in ApoE, 4) plaque development co-localized with luminal ostia, origins of branching arteries, which traveled through areas of greatest PVAT volume, 5) qualitatively, the same arteries showed evidence of increased tortuosity in ApoE. This study reflects the potential of microCT analyses to assess vascular wall, PVAT and arterial trajectory modifications in relevant animal models. Abbreviations: PVAT: perivascular adipose tissue; ApoE: apolipoprotein E deficient mouse strain; Control: C57Bl/6J mouse strain; PTA: 0.3% phosphotungstic acid; microCT: micro-computed tomography; CV: cardiovascular; CVD: cardiovascular disease; IQR: interquartile range; PPARγ: peroxisome proliferator activated receptor - gamma; VV: vasa vasorum; 3D: three dimensional.
Collapse
Affiliation(s)
- Erin Faight
- Lupus Center of Excellence, Autoimmunity Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Kostas Verdelis
- Division of Endodontics at the Department of Restorative Dentistry and Comprehensive Care and the Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joseph M. Ahearn
- Lupus Center of Excellence, Autoimmunity Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| | - Kelly J. Shields
- Lupus Center of Excellence, Autoimmunity Institute, Department of Medicine, Allegheny Health Network, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Mancio J, Oikonomou EK, Antoniades C. Perivascular adipose tissue and coronary atherosclerosis. Heart 2018; 104:1654-1662. [PMID: 29853488 DOI: 10.1136/heartjnl-2017-312324] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 12/25/2022] Open
Abstract
Adipose tissue (AT) is no longer viewed as a passive, energy-storing depot, and a growing body of evidence supports the concept that both quantitative and qualitative aspects of AT are critical in determining an individual's cardiometabolic risk profile. Among all AT sites, perivascular AT (PVAT) has emerged as a depot with a distinctive biological significance in cardiovascular disease given its close anatomical proximity to the vasculature. Recent studies have suggested the presence of complex, bidirectional paracrine and vasocrine signalling pathways between the vascular wall and its PVAT, with far-reaching implications in cardiovascular diagnostics and therapeutics. In this review, we first discuss the biological role of PVAT in both cardiovascular health and disease, highlighting its dual pro-atherogenic and anti-atherogenic roles, as well as potential therapeutic targets in cardiovascular disease. We then review current evidence and promising new modalities on the non-invasive imaging of epicardial AT and PVAT. Specifically, we present how our expanding knowledge on the bidirectional interplay between the vascular wall and its PVAT can be translated into novel clinical diagnostics tools to assess coronary inflammation. To this end, we present the example of a new CT-based method that tracks spatial changes in PVAT phenotype to extract information about the inflammatory status of the adjacent vasculature, highlighting the numerous diagnostic and therapeutic opportunities that arise from our increased understanding of PVAT biology.
Collapse
Affiliation(s)
- Jennifer Mancio
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Evangelos K Oikonomou
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| | - Charalambos Antoniades
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Nishimiya K, Matsumoto Y, Shimokawa H. Viewpoint: Recent Advances in Intracoronary Imaging for Vasa Vasorum Visualisation. Eur Cardiol 2017; 12:121-123. [PMID: 30416583 DOI: 10.15420/ecr.2017:13:1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The coronary adventitia harbours the vasa vasorum (VV), which has a diameter of 50-300 µm and plays an important role as a network of nutrient blood vessels to the arterial wall. The VV is thought to be involved in the development of coronary atherosclerosis. Recent advances in the field of intracoronary imaging, including optical coherence tomography, have enabled us to visualise coronary VV in humans in vivo and increased the clinical relevance of the VV in patients with coronary artery disease.
Collapse
Affiliation(s)
- Kensuke Nishimiya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Yasuharu Matsumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine Sendai, Japan
| |
Collapse
|