1
|
Sakuma I. Changes in Gut Microbiota After Statin Administration: A New Candidate Mechanism for Statin-Associated New-Onset Type 2 Diabetes. Arterioscler Thromb Vasc Biol 2024; 44:488-490. [PMID: 38152889 DOI: 10.1161/atvbaha.123.320401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Affiliation(s)
- Ichiro Sakuma
- Caress Sapporo Hokko Memorial Clinic, Hokkaido, Japan
| |
Collapse
|
2
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
3
|
Abstract
Randomized trials suggest moderate-intensity statins increase type 2 diabetes risk by around 11% with a potential further 12% moving to high-intensity statins, such that high intensity may increase risk by 20% or more relative to placebo. These data translate into one extra diabetes case per 100-200 statin recipients over 5 years, with ∼10-fold greater benefits on major vascular outcomes. The underlying mechanisms for diabetes harm are not clear but could include modest weight gain (noted in randomized trials), or, speculatively, beta cell harm. Concordant genetic studies link HMG CoA Reductase inhibition to diabetes risk and weight gain. Patients should be warned about a slight diabetes risk when prescribed statin and told that modest lifestyle improvements can i) nullify diabetes risk, and ii) improve cardiovascular risks beyond statins. Doctors should also measure glycemia status post statin commencement, most commonly with HbA1c, and tailor lifestyle advice and care dependent on the results.
Collapse
Affiliation(s)
- Naveed Sattar
- School of Cardiovascular and Metabolic Health, University of Glasgow, BHF Glasgow Cardiovascular Research Centre, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
4
|
Monoclonal Antibodies, Gene Silencing and Gene Editing (CRISPR) Therapies for the Treatment of Hyperlipidemia-The Future Is Here. Pharmaceutics 2023; 15:pharmaceutics15020459. [PMID: 36839781 PMCID: PMC9963609 DOI: 10.3390/pharmaceutics15020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/31/2023] Open
Abstract
Hyperlipidemia is a significant risk factor for atherosclerotic cardiovascular disease. Undertreatment of elevated lipids persists despite existing therapies. Here, we provide an update on monoclonal antibodies, gene silencing therapies, and gene editing techniques for the management of hyperlipidemia. The current era of cutting-edge pharmaceuticals targeting low density lipoprotein cholesterol, PCSK9, lipoprotein (a), angiopoietin-like 3, and apolipoprotein C3 are reviewed. We outline what is known, studies in progress, and futuristic goals. This review of available and upcoming biotechnological lipid therapies is presented for clinicians managing patients with familial hyperlipidemia, statin intolerance, hypertriglyceridemia, or elevated lipoprotein (a) levels.
Collapse
|
5
|
Yang W, Cai X, Lin C, Lv F, Zhu X, Han X, Ji L. Reduction of C-reactive protein, low-density lipoprotein cholesterol, and its relationship with cardiovascular events of different lipid-lowering therapies: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2022; 101:e30563. [PMID: 36123891 PMCID: PMC9478215 DOI: 10.1097/md.0000000000030563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To evaluate the reductions of C-reactive protein (CRP) and low-density lipoprotein cholesterol (LDL-C) in different lipid-lowering drugs, and to assess the relationships between the reductions of CRP, LDL-C, and cardiovascular (CV) events. METHODS We searched MEDLINE, EMBASE, and Cochrane CENTRAL up to September 1, 2021. Randomized controlled trials (RCTs) comparing statins, proprotein convertase subtilisin/kexin type 9 monoclonal antibodies (PCSK9-mAbs), or ezetimibe against placebo with a treatment duration of at least 4 weeks and data on the effects of cholesterol-lowering interventions on LDL-C and CRP were included in this meta-analysis. The weighted mean difference (WMD) and 95% confidence interval (CI) were calculated. RESULTS Compared with placebo treatment, statins and ezetimibe treatments resulted in a significant decrease in LDL-C level (statins: WMD -47.94 mg/dL, 95% CI -51.21 to -44.67 mg/dL; ezetimibe: WMD -22.84 mg/dL, 95% CI -26.76 to -18.92 mg/dL) and CRP level (statins: WMD -0.67 mg/L, 95% CI -0.90 to -0.45 mg/dL; ezetimibe: -0.64 mg/L, 95% CI -1.07 to -0.21 mg/dL). Compared with placebo treatment, treatment with PCSK9-mAbs resulted in significant decrease in LDL-C level (WMD -54.24 mg/dL, 95% CI -59.77 to -48.70 mg/dL), while the concentration of CRP did not decrease significantly. Meta-regression analysis showed no significant association between change in CRP level and change in LDL-C level. Subgroup comparisons suggested that treatment with PCSK9-mAbs showed a greater reduction in LDL-C level when compared with the statins group and ezetimibe group, while the risks of CV death, myocardial infarction (MI), and stroke showed no significant differences. CONCLUSION Based on the current study, our results suggested that statins, ezetimibe, and PCSK9-mAbs are effective in reducing LDL-C levels. Treatment with statins and ezetimibe also demonstrated a significant effect on CRP. The traditional lipid-lowering strategy including statin and ezetimibe showed similar benefit on CV outcomes compared with the PCSK9-mAbs treatment.
Collapse
Affiliation(s)
- Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xingyun Zhu
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People’s Hospital, Beijing, China
- * Correspondence: Linong Ji, Department of Endocrinology and Metabolism, Peking University People’s Hospital, No. 81 Xizhimen South Street, Xicheng District, Beijing, China (e-mail: ; )
| |
Collapse
|
6
|
Zhang J, Wang X, Tian W, Wang T, Jia J, Lai R, Wang T, Zhang Z, Song L, Ju J, Xu H. The effect of various types and doses of statins on C-reactive protein levels in patients with dyslipidemia or coronary heart disease: A systematic review and network meta-analysis. Front Cardiovasc Med 2022; 9:936817. [PMID: 35966518 PMCID: PMC9363636 DOI: 10.3389/fcvm.2022.936817] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Objective The objective of this study was to measure the efficacy of various types and dosages of statins on C-reactive protein (CRP) levels in patients with dyslipidemia or coronary heart disease. Methods Randomized controlled trials were searched from PubMed, Embase, Cochrane Library, OpenGray, and ClinicalTrials.gov. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for data extraction and synthesis. The pairwise meta-analysis compared statins and controls using a random-effects model, and a network meta-analysis compared the types and dosages of statins using the Bayesian random-effects model. The PROSPERO registration number is CRD42021242067. Results The study included 37 randomized controlled trials with 17,410 participants and 20 interventions. According to the pairwise meta-analysis, statins significantly decreased CRP levels compared to controls (weighted mean difference [WMD] = −0.97, 95% confidence interval [CI] [−1.31, −0.64], P < 0.0001). In the network meta-analysis, simvastatin 40 mg/day appeared to be the best strategy for lowering CRP (Rank P = 0.18, WMD = −4.07, 95% CI = [−6.52, −1.77]). The same was true for the high-sensitivity CRP, non-acute coronary syndrome (ACS), <12 months duration, and clear measurement subgroups. In the CRP subgroup (rank P = 0.79, WMD = −1.23, 95% CI = [−2.48, −0.08]) and ≥12-month duration subgroup (Rank P = 0.40, WMD = −2.13, 95% CI = [−4.24, −0.13]), atorvastatin 80 mg/day was most likely to be the best. There were no significant differences in the dyslipidemia and ACS subgroups (P > 0.05). Node-splitting analysis showed no significant inconsistency (P > 0.05), except for the coronary heart disease subgroup. Conclusion Statins reduced serum CRP levels in patients with dyslipidemia or coronary heart disease. Simvastatin 40 mg/day might be the most effective therapy, and atorvastatin 80 mg/day showed the best long-term effect. This study provides a reference for choosing statin therapy based on LDL-C and CRP levels.
Collapse
Affiliation(s)
- Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wende Tian
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongxin Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jundi Jia
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zihao Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianqing Ju
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Xu
| |
Collapse
|
7
|
Pencina KM, Pencina MJ, Dufresne L, Holmes M, Thanassoulis G, Sniderman AD. An adverse lipoprotein phenotype-hypertriglyceridaemic hyperapolipoprotein B-and the long-term risk of type 2 diabetes: a prospective, longitudinal, observational cohort study. THE LANCET. HEALTHY LONGEVITY 2022; 3:e339-e346. [PMID: 36098309 DOI: 10.1016/s2666-7568(22)00079-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND This study examines the risk of new-onset diabetes in patients with hypertriglyceridaemic hyperapolipoprotein B (high triglycerides, high apolipoprotein B [apoB], low LDL cholesterol to apoB ratio, and low HDL cholesterol). The aim was to establish whether this lipoprotein phenotype identified a substantial group at high risk of developing diabetes over the next 20 years. METHODS In this prospective, longitudinal, observational cohort study, we used data from the Framingham Offspring cohort (recruited in Framingham, MA, USA). Participants were aged 40-69 years and free of diabetes and cardiovascular disease at a baseline examination done between April, 1987, and November, 1991, and were followed up until March, 2014. Cox proportional hazards regression with hierarchical adjustment for age and sex, waist circumference, and fasting blood glucose were used to model the relationship between each lipid marker and incident diabetes, as well as the relationship between hypertriglyceridaemic hyperapoB (defined as values greater than sample medians of triglycerides and apoB, and less than medians of HDL cholesterol and LDL cholesterol to apoB ratio) and incident diabetes. FINDINGS Of 3446 individuals aged 40-69 years who completed baseline examination, 2515 participants were eligible and included in all analyses. During median 21·1 years (IQR 11·1-23·1) of follow-up, 402 (16·0%) individuals developed diabetes. Age (p=0·032), waist circumference (p<0·0001), fasting blood glucose (p<0·0001), and natural logarithm-transformed triglycerides (p<0·0001) were associated with new-onset diabetes, as were apoB (p=0·0016), LDL cholesterol to apoB ratio (p=0·0018), and HDL cholesterol (p=0·0016) when added to this model. The age and sex-adjusted incidence of diabetes in the hypertriglyceridaemic hyperapoB group was 32·4% (95% CI 27·8-37·7) versus 5·5% (3·5-8·6) in the optimal lipid phenotype group and 15·5% (13·5-17·7) in the mixed lipid phenotype group. The fully adjusted hazard ratio, including glucose and waist circumference, for individuals with hypertriglyceridaemic hyperapoB was 3·30 (95% CI 2·06-5·30; p=0·0008) and for mixed lipid phenotype was 2·17 (1·38-3·40; p<0·0001) compared with those with the optimal lipid phenotype. INTERPRETATION Our findings suggest that individuals with hypertriglyceridaemic hyperapoB are at high risk of new-onset diabetes and might benefit from intensive measures to prevent diabetes. The association between this phenotype and incident diabetes is consistent with a pro-diabetic effect due to increased clearance of apoB particles from plasma, which could injure pancreatic islet cells. This mechanism might explain the increased risk of diabetes with statin therapy. FUNDING Doggone Foundation.
Collapse
Affiliation(s)
- Karol M Pencina
- Section on Men's Health, Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Pencina
- Duke University School of Medicine, Biostatistics and Bioinformatics, Duke Clinical Research Institute, Durham, NC, USA
| | - Line Dufresne
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Michael Holmes
- MRC Population Health Research Unit at the University of Oxford, Oxford, UK; Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - George Thanassoulis
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada
| | - Allan D Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
8
|
Ringoringo HP. The Role of Atorvastatin in Management of Eruptive Xanthoma on a Boy: A Case Report. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Eruptive xanthoma is a benign skin lesion caused by the accumulation of cholesterol and triglycerides in the skin's dermis. Xanthoma can be an early clinical manifestation of systemic diseases such as dyslipidemia, cardiovascular disease, diabetes mellitus. Clinical presentation varies from asymptomatic skin lesions to intense pruritus and tenderness.
Aim: This study aims that oral atorvastatin is effective in treating a child with eruptive xanthoma.
Case report: A three-year-old boy with an 8.4 kg body weight and 82.5 cm height came to the hospital with the chief complaint of small yellowish-white papules and nodes, discrete, 2-5 mm in size, painless on pressing, itchy, scattered, mainly in the lower extremity around the buttocks. On laboratory examination, Hb 11.5 g/dL, leukocyte 9,900/ul, platelet 413,000/uL, blood glucose 66 mg/dL. Further evaluation revealed total cholesterol 814 mg/dL, LDL 970 mg/dL, HDL 341 mg/dl, triglycerides 621 mg/dL; there is no evidence of familial hypercholesterolemia. The diagnosis is eruptive xanthoma. After starting treatment with atorvastatin 0.2 mg/kg body weight/day in one dose for six months, his cutaneous lesions gradually subsided and significantly decreased cholesterol, LDL, HDL, and triglyceride levels. Conclusion: Early therapy with atorvastatin will reduce the morbidity and mortality of eruptive xanthoma.
Collapse
|
9
|
Tombling BJ, Zhang Y, Huang YH, Craik DJ, Wang CK. The emerging landscape of peptide-based inhibitors of PCSK9. Atherosclerosis 2021; 330:52-60. [PMID: 34246818 DOI: 10.1016/j.atherosclerosis.2021.06.903] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/13/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a clinically validated target for treating cardiovascular disease (CVD) due to its involvement in cholesterol metabolism. Although approved monoclonal antibodies (alirocumab and evolocumab) that inhibit PCSK9 function are very effective in lowering cholesterol, their limitations, including high treatment costs, have so far prohibited widespread use. Accordingly, there is great interest in alternative drug modalities to antibodies. Like antibodies, peptides are valuable therapeutics due to their high target potency and specificity. Furthermore, being smaller than antibodies means they have access to more drug administration options, are less likely to induce adverse immunogenic responses, and are better suited to affordable production. This review surveys the current peptide-based landscape aimed towards PCSK9 inhibition, covering pre-clinical to patented drug candidates and comparing them to current cholesterol lowering therapeutics. Classes of peptides reported to be inhibitors include nature-inspired disulfide-rich peptides, combinatorially derived cyclic peptides, and peptidomimetics. Their functional activities have been validated in biophysical and cellular assays, and in some cases pre-clinical mouse models. Recent efforts report peptides with potent sub-nanomolar binding affinities to PCSK9, which highlights their potential to achieve antibody-like potency. Studies are beginning to address pharmacokinetic properties of PCSK9-targeting peptides in more detail. We conclude by highlighting opportunities to investigate their biological effects in pre-clinical models of cardiovascular disease. The anticipation concerning the PCSK9-targeting peptide landscape is accelerating and it seems likely that a peptide-based therapeutic for treating PCSK9-mediated hypercholesterolemia may be clinically available in the near future.
Collapse
Affiliation(s)
- Benjamin J Tombling
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yuhui Zhang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Qld, 4072, Australia.
| |
Collapse
|
10
|
Holmes MV, Richardson TG, Ference BA, Davies NM, Davey Smith G. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nat Rev Cardiol 2021; 18:435-453. [PMID: 33707768 DOI: 10.1038/s41569-020-00493-1] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 01/30/2023]
Abstract
Drug development in cardiovascular disease is stagnating, with lack of efficacy and adverse effects being barriers to innovation. Human genetics can provide compelling evidence of causation through approaches such as Mendelian randomization, with genetic support for causation increasing the probability of a clinical trial succeeding. Mendelian randomization applied to quantitative traits can identify risk factors for disease that are both causal and amenable to therapeutic modification. However, important differences exist between genetic investigations of a biomarker (such as HDL cholesterol) and a drug target aimed at modifying the same biomarker of interest (such as cholesteryl ester transfer protein), with implications for the methodology, interpretation and application of Mendelian randomization to drug development. Differences include the comparative nature of the genetic architecture - that is, biomarkers are typically polygenic, whereas protein drug targets are influenced by either cis-acting or trans-acting genetic variants - and the potential for drug targets to show disease associations that might differ from those of the biomarker that they are intended to modify (target-mediated pleiotropy). In this Review, we compare and contrast the use of Mendelian randomization to evaluate potential drug targets versus quantitative traits. We explain how genetic epidemiological studies can be used to assess the aetiological roles of biomarkers in disease and to prioritize drug targets, including designing their evaluation in clinical trials.
Collapse
Affiliation(s)
- Michael V Holmes
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford, UK.
| | - Tom G Richardson
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Brian A Ference
- Centre for Naturally Randomised Trials, University of Cambridge, Cambridge, UK
| | - Neil M Davies
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Affiliation(s)
- Albert Youngwoo Jang
- Division of Cardiovascular Disease, Gachon University Gil Hospital and Gachon Cardiovascular Research Institute
| | - Soo Lim
- Department of Internal Medicine, Seoul National University College of Medicine and Seoul National University Bundang Hospital
| | - Sang-Ho Jo
- Cardiovascular Center, Hallym University Sacred Heart Hospital
| | - Seung Hwan Han
- Division of Cardiovascular Disease, Gachon University Gil Hospital and Gachon Cardiovascular Research Institute
| | - Kwang Kon Koh
- Division of Cardiovascular Disease, Gachon University Gil Hospital and Gachon Cardiovascular Research Institute
| |
Collapse
|
12
|
Yu D, Liao JK. Emerging views of statin pleiotropy and cholesterol lowering. Cardiovasc Res 2021; 118:413-423. [PMID: 33533892 PMCID: PMC8803071 DOI: 10.1093/cvr/cvab032] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 11/23/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Over the past four decades, no class of drugs has had more impact on cardiovascular health than the HMC-CoA reductase inhibitors or statins. Developed as potent lipid-lowering agents, statins were later shown to reduce morbidity and mortality of patients who are at risk for cardiovascular disease. However, retrospective analyses of some of these clinical trials have uncovered some aspects of their clinical benefits that may be additional to their lipid-lowering effects. Such "pleiotropic" effects of statins garnered intense interest and debate over its contribution to cardiovascular risk reduction. This review will provide a brief background of statin pleiotropy, assess the available clinical evidence for and against their non-lipid-lowering benefits, and propose future research directions in this field.
Collapse
Affiliation(s)
- Dongbo Yu
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA.,Department of Cardiovascular Care, ThedaCare Regional Medical Center, Appleton, WI, USA
| | - James K Liao
- Section of Cardiology, Department of Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|
13
|
Wu C, Daugherty A, Lu HS. Updates on Approaches for Studying Atherosclerosis. Arterioscler Thromb Vasc Biol 2020; 39:e108-e117. [PMID: 30917052 DOI: 10.1161/atvbaha.119.312001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Congqing Wu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| | - Hong S Lu
- From the Saha Cardiovascular Research Center (C.W., A.D., H.S.L.), University of Kentucky, Lexington.,Department of Physiology (A.D., H.S.L.), University of Kentucky, Lexington
| |
Collapse
|
14
|
Smit RAJ, Trompet S, Leong A, Goodarzi MO, Postmus I, Warren H, Theusch E, Barnes MR, Arsenault BJ, Li X, Feng Q, Chasman DI, Cupples LA, Hitman GA, Krauss RM, Psaty BM, Rotter JI, Cessie SL, Stein CM, Jukema JW. Statin-induced LDL cholesterol response and type 2 diabetes: a bidirectional two-sample Mendelian randomization study. THE PHARMACOGENOMICS JOURNAL 2019; 20:462-470. [PMID: 31801993 PMCID: PMC7260089 DOI: 10.1038/s41397-019-0125-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023]
Abstract
It remains unclear whether the increased risk of new-onset type 2 diabetes (T2D) seen in statin users is due to low LDL-C concentrations, or due to the statin-induced proportional change in LDL-C. In addition, genetic instruments have not been proposed before to examine whether liability to T2D might cause greater proportional statin-induced LDL-C lowering. Using summary level statistics from the Genomic Investigation of Statin Therapy (GIST, nmax=40,914) and DIAGRAM (nmax=159,208) consortia, we found a positive genetic correlation between LDL-C statin response and T2D using LD score regression (rgenetic=0.36, s.e.=0.13). However, mendelian randomization analyses did not provide support for statin response having a causal effect on T2D risk (OR 1.00 (95%CI: 0.97, 1.03) per 10% increase in statin response), nor that liability to T2D has a causal effect on statin-induced LDL-C response (0.20% increase in response (95%CI: −0.40, 0.80) per doubling of odds of liability to T2D). Although we found no evidence to suggest that proportional statin response influences T2D risk, a definitive assessment should be made in populations comprised exclusively of statin-users, as the presence of non-statin users in the DIAGRAM dataset may have substantially diluted our effect estimate.
Collapse
Affiliation(s)
- Roelof A J Smit
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands. .,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Stella Trompet
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Aaron Leong
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.,Harvard Medical School, Boston, MA, 02115, USA
| | - Mark O Goodarzi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Iris Postmus
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Helen Warren
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK.,National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Elizabeth Theusch
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK.,National Institute for Health Research, Barts Cardiovascular Biomedical Research Center, Barts and The London School of Medicine, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Benoit J Arsenault
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Xiaohui Li
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - QiPing Feng
- Department of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Daniel I Chasman
- Harvard Medical School, Boston, MA, 02115, USA.,Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, 02215, USA
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.,NHLBI Framingham Heart Study, Framingham, MA, 01702, USA
| | - Graham A Hitman
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ronald M Krauss
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA, 94609, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, WA, 98101, USA.,Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA.,The Institute for Translational Genomics and Population Sciences, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Saskia le Cessie
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.,Section of Medical Statistics, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - C Michael Stein
- Department of Medicine, Vanderbilt University, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
15
|
Bowden J, Holmes MV. Meta-analysis and Mendelian randomization: A review. Res Synth Methods 2019; 10:486-496. [PMID: 30861319 PMCID: PMC6973275 DOI: 10.1002/jrsm.1346] [Citation(s) in RCA: 951] [Impact Index Per Article: 158.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022]
Abstract
Mendelian randomization (MR) uses genetic variants as instrumental variables to infer whether a risk factor causally affects a health outcome. Meta-analysis has been used historically in MR to combine results from separate epidemiological studies, with each study using a small but select group of genetic variants. In recent years, it has been used to combine genome-wide association study (GWAS) summary data for large numbers of genetic variants. Heterogeneity among the causal estimates obtained from multiple genetic variants points to a possible violation of the necessary instrumental variable assumptions. In this article, we provide a basic introduction to MR and the instrumental variable theory that it relies upon. We then describe how random effects models, meta-regression, and robust regression are being used to test and adjust for heterogeneity in order to improve the rigor of the MR approach.
Collapse
Affiliation(s)
- Jack Bowden
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Michael V. Holmes
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
- Medical Research Council Population Health Research UnitUniversity of OxfordOxfordUK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- National Institute for Health Research Oxford Biomedical Research CentreOxford University HospitalOxfordUK
| |
Collapse
|
16
|
Shojaei S, Koleini N, Samiei E, Aghaei M, Cole LK, Alizadeh J, Islam MI, Vosoughi A, Albokashy M, Butterfield Y, Marzban H, Xu F, Thliveris J, Kardami E, Hatch GM, Eftekharpour E, Akbari M, Hombach‐Klonisch S, Klonisch T, Ghavami S. Simvastatin increases temozolomide‐induced cell death by targeting the fusion of autophagosomes and lysosomes. FEBS J 2019; 287:1005-1034. [DOI: 10.1111/febs.15069] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 07/13/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shahla Shojaei
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Navid Koleini
- Institute of Cardiovascular Sciences St‐Boniface Hospital Albrechtsen Research Centre Winnipeg Canada
- Department of Physiology and Pathophysiology Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Ehsan Samiei
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Mahmoud Aghaei
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Department of Clinical Biochemistry School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Laura K. Cole
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Md Imamul Islam
- Regenerative Medicine Program Spinal Cord Research Centre Department of Physiology and Pathophysiology University of Manitoba Winnipeg Canada
| | - Amir‐reza Vosoughi
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Mohammed Albokashy
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Yaron Butterfield
- Genome Sciences Centre BC Cancer Vancouver Canada
- Patient Advocate and Research Committee Brain Tumour Foundation of Canada Ottawa Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Fred Xu
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - James Thliveris
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Elissavet Kardami
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Institute of Cardiovascular Sciences St‐Boniface Hospital Albrechtsen Research Centre Winnipeg Canada
| | - Grant M. Hatch
- Department of Pharmacology & Therapeutics, Center for Research and Treatment of Atherosclerosis Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program Spinal Cord Research Centre Department of Physiology and Pathophysiology University of Manitoba Winnipeg Canada
| | - Mohsen Akbari
- Laboratory for Innovation in Microengineering (LiME) Department of Mechanical Engineering University of Victoria Canada
- Center for Biomedical Research University of Victoria Canada
- Center for Advanced Materials and Related Technology (CAMTEC) University of Victoria Canada
| | - Sabine Hombach‐Klonisch
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute in Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Canada
- Research Institute in Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg Canada
- Biology of Breathing Children Hospital Research Institute of Manitoba Max Rady College of Medicine Rady Faculty of Health Sciences Winnipeg Canada
- Health Policy Research Center Institute of Health Shiraz University of Medical Sciences Iran
| |
Collapse
|
17
|
Human Lupus Plasma Pro-Atherogenic Effects on Cultured Macrophages Are Not Mitigated by Statin Therapy: A Mechanistic LAPS Substudy. ACTA ACUST UNITED AC 2019; 55:medicina55090514. [PMID: 31438615 PMCID: PMC6780986 DOI: 10.3390/medicina55090514] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/23/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Atherosclerotic cardiovascular disease (CVD) remains a major cause of morbidity and mortality in persons with systemic lupus erythematosus (SLE, lupus). Atherosclerosis, which involves interplay between cholesterol metabolism and cellular inflammatory pathways, is primarily treated with statins since statins have lipid-lowering and anti-inflammatory properties. The Lupus Atherosclerosis Prevention Study (LAPS) was designed to investigate the efficacy of statins against CVD in SLE patients. LAPS demonstrated that 2 years of atorvastatin administration did not reduce atherosclerosis progression in lupus patients. In this LAPs substudy, we use cultured macrophages to explore the atherogenic properties of plasma from LAPS subjects to explain the mechanistic rationale for the inability of statins to reduce CVD in lupus. Materials and Methods: THP-1 differentiated macrophages were treated for 18 h with 10% SLE patient plasma obtained pre- and post-atorvastatin therapy or placebo. Gene expression of the following cholesterol transport genes was measured by qRT-PCR. For efflux—ATP binding cassette transporter (ABC)A1 and ABCG1, 27-hydroxylase, peroxisome proliferator-activated receptor (PPAR)γ, and liver X receptor (LXR)α; and for influx—cluster of differentiation 36 (CD36) and scavenger receptor (ScR)A1. Results: Macrophages exposed to plasma from both statin-treated and placebo-treated groups showed a significant decrease in cholesterol efflux proteins ATP binding cassette (ABC) transporters A1 and ABCG1, an increase in 27-hydroxylase, an increase in the LDL receptor and a decrease in intracellular free cholesterol. No change in influx receptors ScRA1 and CD36, nor nuclear proteins LXRα and PPARγ was observed. Conclusions: Statins do not normalize pro-atherogenic changes induced by lupus and these changes continue to worsen over time. This study provides mechanistic insight into LAPS findings by demonstrating that statins are overall ineffective in altering the balance of cholesterol transport gene expression in human macrophages. Furthermore, our study suggests that statins as a CVD treatment may not be useful in attenuating lipid overload in the SLE environment.
Collapse
|
18
|
Paseban M, Butler AE, Sahebkar A. Mechanisms of statin‐induced new‐onset diabetes. J Cell Physiol 2019; 234:12551-12561. [DOI: 10.1002/jcp.28123] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/20/2018] [Indexed: 08/30/2023]
Abstract
AbstractStatins, with their lipid‐lowering properties, are a first‐line therapy for the prevention of cardiovascular diseases. Recent evidence, however, suggests that statins can increase the risk of new‐onset diabetes (NOD). The molecular mechanisms of statin‐induced NOD are not precisely known, although some pathophysiologic mechanisms have been suggested. Specific to the beta cell, these mechanisms include alterations in insulin secretion, changes in ion channels, modulation of signaling pathways, and inflammation/oxidative stress. Outwith the beta cell, other suggested mechanisms involve adipocytes, including alterations in adipocyte differentiation and modulation of leptin and adiponectin, and genetic and epigenetic mechanisms, including alterations in microRNA. The evidence supporting these and other mechanisms will be discussed. Greater understanding of the underlying mechanisms linking the onset of diabetes to statin therapy is essential and clinically relevant, as it may enable novel preventative or therapeutic approaches to be instituted and guide the production of a new generation of statins lacking this side effect.
Collapse
Affiliation(s)
- Maryam Paseban
- Department of Physiology Faculty of Medicine, Mashhad University of Medical Sciences Mashhad Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
19
|
Ruscica M, Tokgözoğlu L, Corsini A, Sirtori CR. PCSK9 inhibition and inflammation: A narrative review. Atherosclerosis 2019; 288:146-155. [PMID: 31404822 DOI: 10.1016/j.atherosclerosis.2019.07.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality despite excellent pharmacological and revascularization approaches. Low-density lipoproteins (LDL) are undoubtedly the most significant biochemical variables associated with atheroma, however, compelling data identify inflammation as critical for the maintenance of the atherosclerotic process, underlying some of the most feared vascular complications. Although its causal role is questionable, high-sensitivity C-reactive protein (hs-CRP) represents a major biomarker of inflammation and associated risk in CVD. While statin-associated reduced risk may be related to the lowering of both LDL-C and hs-CRP, PCSK9 inhibitors leading to dramatic LDL-C reductions do no alter hs-CRP levels. On the other hand, hs-CRP levels identify groups of patients with a high risk of CV disease achieving better ASCVD prevention in response to PCSK9 inhibition. In the FOURIER study, even in patients with extremely low levels of LDL-C, there was a stepwise risk increment according to the values of hs-CRP: +9% (<1 mg/L), +10.8% (1-3 mg/L) and +13.1% (>3 mg/L). Likewise, in the SPIRE-1 and -2 studies, bococizumab patients with hs-CRP> 3 mg/L had a 60% greater risk of future CV events. Most of the patients enrolled in the PCSK9 trials were on maximally tolerated statin therapy at baseline, and an elevated hs-CRP may reflect residual inflammatory risk after standard LDL-C lowering therapy. Moreover, data on changes in inflammation markers in carriers of PCSK9 loss-of-function mutations are scanty and not conclusive, thus, evidence from the effects of anti-inflammatory molecules on PCSK9 levels might help unravel this hitherto complex tangle.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.
| | - Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University, Ankara, Turkey
| | - Alberto Corsini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milan, Italy
| | - Cesare R Sirtori
- Centro Dislipidemie, A.S.S.T. Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
20
|
Almeida SO, Budoff M. Effect of statins on atherosclerotic plaque. Trends Cardiovasc Med 2019; 29:451-455. [PMID: 30642643 DOI: 10.1016/j.tcm.2019.01.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/27/2018] [Accepted: 01/01/2019] [Indexed: 01/08/2023]
Abstract
Lipid lowering therapy has been the mainstay of cardiovascular risk reduction and prevention. Statin drugs have been shown to reduce serum cholesterol along with significant reduction in morbidity and mortality of cardiovascular disease. Whether these benefits are purely through lipid lowering or pleiotropic (cholesterol independent) effects has yet to be fully understood. Advances in cardiac imaging, from intravascular ultrasound to multi-detector coronary computed tomography angiography, have furthered our understanding of statin's effect on atherosclerotic plaque. Notably, statins play a role in plaque regression with reduction in lipid content. These drugs further stabilize atherosclerotic plaque with thickened fibrous caps and macrocalcification that serves to stabilize atheromas.
Collapse
Affiliation(s)
- Shone O Almeida
- Los Angeles Biomedical Institute, 1124W Carson St, Torrance, CA 90502, USA.
| | - Matthew Budoff
- Los Angeles Biomedical Institute, 1124W Carson St, Torrance, CA 90502, USA
| |
Collapse
|
21
|
Muñoz ÓM, Reyna Carrasco ÓA, Castelblanco SM, García ÁA, Fernández-Avila DG. Impacto terapéutico de las estatinas en el perfil lipídico y riesgo cardiovascular en pacientes con artritis reumatoide: Revisión sistemática de la literatura y metaanálisis. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.rcreu.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
22
|
Fitzgerald G, Kiernan T. PCSK9 inhibitors and LDL reduction: pharmacology, clinical implications, and future perspectives. Expert Rev Cardiovasc Ther 2018; 16:567-578. [DOI: 10.1080/14779072.2018.1497975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Gerald Fitzgerald
- Cardiology Department, University Hospital Limerick, Limerick, Ireland
| | - Tom Kiernan
- Cardiology Department, University Hospital Limerick, Limerick, Ireland
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Type 2 diabetes is associated with a characteristic dyslipidemia that may exacerbate cardiovascular risk. The causes of, and the effects of new antihyperglycemia medications on, this dyslipidemia, are under investigation. In an unexpected reciprocal manner, lowering LDL-cholesterol with statins slightly increases the risk of diabetes. Here we review the latest findings. RECENT FINDINGS The inverse relationship between LDL-cholesterol and diabetes has now been confirmed by multiple lines of evidence. This includes clinical trials, genetic instruments using aggregate single nucleotide polymorphisms, as well as at least eight individual genes - HMGCR, NPC1L1, HNF4A, GCKR, APOE, PCKS9, TM6SF2, and PNPLA3 - support this inverse association. Genetic and pharmacologic evidence suggest that HDL-cholesterol may also be inversely associated with diabetes risk. Regarding the effects of diabetes on lipoproteins, new evidence suggests that insulin resistance but not diabetes per se may explain impaired secretion and clearance of VLDL-triglycerides. Weight loss, bariatric surgery, and incretin-based therapies all lower triglycerides, whereas SGLT2 inhibitors may slightly increase HDL-cholesterol and LDL-cholesterol. SUMMARY Diabetes and lipoproteins are highly interregulated. Further research is expected to uncover new mechanisms governing the metabolism of glucose, fat, and cholesterol. This topic has important implications for treating type 2 diabetes and cardiovascular disease.
Collapse
MESH Headings
- Animals
- Cholesterol, HDL/genetics
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/genetics
- Cholesterol, LDL/metabolism
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/therapy
- Dyslipidemias/genetics
- Dyslipidemias/metabolism
- Dyslipidemias/therapy
- Humans
- Lipoproteins, VLDL/genetics
- Lipoproteins, VLDL/metabolism
- Polymorphism, Single Nucleotide
- Triglycerides/genetics
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Sei Higuchi
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| | - M Concepción Izquierdo
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| | - Rebecca A Haeusler
- Columbia University College of Physicians & Surgeons, Naomi Berrie Diabetes Center
- Department of Pathology and Cell Biology, New York, NY
| |
Collapse
|
24
|
Kawashiri MA, Tada H, Nomura A, Yamagishi M. Mendelian randomization: Its impact on cardiovascular disease. J Cardiol 2018; 72:307-313. [PMID: 29801689 DOI: 10.1016/j.jjcc.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 02/03/2023]
Abstract
Cardiovascular diseases and their risk factors are inheritable. Single nucleotide polymorphisms in the human genome are found in around 1 in 1000 base pairs, and this may affect the genetic variety of individuals. During meiosis, any genetic information is randomized and is independent of other characteristics. In a Mendelian randomization study (MRS), a genetic variant associated with biomarker is used as a proxy for the biomarker, and the outcomes are compared between the groups harboring the effect alleles and a group with the reference allele. An MRS using variants of both rare and modest effect sizes and variants of common and lower effect sizes provides an understanding of risk factors and their causality of cardiovascular disease; for example, an individual possessing an allele associated with lower low-density lipoprotein cholesterol (LDL-C) exhibits lower risk of coronary artery disease (CAD). Moreover, the log-transformed reduction rates of CAD are linearly correlated with the reduction value of LDL-C. High-density lipoprotein (HDL) removes cholesteryl esters from peripheral tissues, including atherosclerotic plaque to the liver. Numerous epidemiological studies have shown that HDL-cholesterol (HDL-C) levels are inversely associated with the frequency of the occurrence of CAD. However, genetic variants, which are only associated with higher HDL-C levels, do not decrease the frequency of myocardial infarction. This fact shows that HDL-C level is not a cause but a biomarker of CAD. Discoveries of rare variants in Mendelian disorders resulted in the successful development of drugs for the general population. An MRS may also predict the pharmacological effectiveness and adverse side effects of novel drugs targeting specific molecules. An MRS could become a standard process to be performed before the development of novel drugs. Furthermore, future guidelines for the prevention of CAD should consider the genetic information of individuals, which will result in precision medicine for cardiovascular diseases.
Collapse
Affiliation(s)
- Masa-Aki Kawashiri
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan.
| | - Hayato Tada
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Akihiro Nomura
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Masakazu Yamagishi
- Department of Cardiovascular and Internal Medicine, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
25
|
Labos C, Brophy JM, Smith GD, Sniderman AD, Thanassoulis G. Response by Labos et al to Letter Regarding Article, “Evaluation of the Pleiotropic Effects of Statins: A Reanalysis of the Randomized Trial Evidence Using Egger Regression”. Arterioscler Thromb Vasc Biol 2018; 38:e87-e88. [DOI: 10.1161/atvbaha.118.310907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christopher Labos
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - James M. Brophy
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, United Kingdom
| | - Allan D. Sniderman
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - George Thanassoulis
- Division of Cardiology, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Hartwig FP, Borges MC, Lawlor DA. Letter by Hartwig et al Regarding Article, "Evaluation of the Pleiotropic Effects of Statins: A Reanalysis of the Randomized Trial Evidence Using Egger Regression". Arterioscler Thromb Vasc Biol 2018; 38:e85-e86. [PMID: 29695534 DOI: 10.1161/atvbaha.118.310897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Maria Carolina Borges
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, United Kingdom
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, United Kingdom
| |
Collapse
|