1
|
Kistamás K, Lamberto F, Vaiciuleviciute R, Leal F, Muenthaisong S, Marte L, Subías-Beltrán P, Alaburda A, Arvanitis DN, Zana M, Costa PF, Bernotiene E, Bergaud C, Dinnyés A. The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity. Int J Mol Sci 2024; 25:9186. [PMID: 39273136 PMCID: PMC11394806 DOI: 10.3390/ijms25179186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases.
Collapse
Affiliation(s)
- Kornél Kistamás
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Federica Lamberto
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
| | - Filipa Leal
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | | | - Luis Marte
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Paula Subías-Beltrán
- Digital Health Unit, Eurecat-Centre Tecnològic de Catalunya, 08005 Barcelona, Spain
| | - Aidas Alaburda
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio al. 7, LT-10257 Vilnius, Lithuania
| | - Dina N Arvanitis
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - Melinda Zana
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
| | - Pedro F Costa
- Biofabics Lda, Rua Alfredo Allen 455, 4200-135 Porto, Portugal
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Innovative Medicine Centre, Santariskiu g. 5, LT-08406 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Tech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| | - Christian Bergaud
- Laboratory for Analysis and Architecture of Systems-French National Centre for Scientific Research (LAAS-CNRS), 7 Avenue du Colonel Roche, F-31400 Toulouse, France
| | - András Dinnyés
- BioTalentum Ltd., Aulich Lajos Str 26, H-2100 Gödöllő, Hungary
- Department of Physiology and Animal Health, Institute of Physiology and Animal Nutrition, Hungarian University of Agriculture and Life Sciences, Páter Károly Str 1, H-2100 Gödöllő, Hungary
| |
Collapse
|
2
|
Clancy CE, Santana LF. Advances in induced pluripotent stem cell-derived cardiac myocytes: technological breakthroughs, key discoveries and new applications. J Physiol 2024; 602:3871-3892. [PMID: 39032073 PMCID: PMC11326976 DOI: 10.1113/jp282562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
A transformation is underway in precision and patient-specific medicine. Rapid progress has been enabled by multiple new technologies including induced pluripotent stem cell-derived cardiac myocytes (iPSC-CMs). Here, we delve into these advancements and their future promise, focusing on the efficiency of reprogramming techniques, the fidelity of differentiation into the cardiac lineage, the functional characterization of the resulting cardiac myocytes, and the many applications of in silico models to understand general and patient-specific mechanisms controlling excitation-contraction coupling in health and disease. Furthermore, we explore the current and potential applications of iPSC-CMs in both research and clinical settings, underscoring the far-reaching implications of this rapidly evolving field.
Collapse
Affiliation(s)
- Colleen E Clancy
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| | - L Fernando Santana
- Department of Physiology & Membrane Biology, School of Medicine, University of California Davis, Davis, CA, USA
- Center for Precision Medicine and Data Sciences, University of California Davis, School of Medicine, Sacramento, CA, USA
| |
Collapse
|
3
|
Kistamás K, Müller A, Muenthaisong S, Lamberto F, Zana M, Dulac M, Leal F, Maziz A, Costa P, Bernotiene E, Bergaud C, Dinnyés A. Multifactorial approaches to enhance maturation of human iPSC-derived cardiomyocytes. J Mol Liq 2023; 387:122668. [DOI: 10.1016/j.molliq.2023.122668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
4
|
Galow AM, Brenmoehl J, Hoeflich A. Synergistic effects of hormones on structural and functional maturation of cardiomyocytes and implications for heart regeneration. Cell Mol Life Sci 2023; 80:240. [PMID: 37541969 PMCID: PMC10403476 DOI: 10.1007/s00018-023-04894-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/18/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
The limited endogenous regenerative capacity of the human heart renders cardiovascular diseases a major health threat, thus motivating intense research on in vitro heart cell generation and cell replacement therapies. However, so far, in vitro-generated cardiomyocytes share a rather fetal phenotype, limiting their utility for drug testing and cell-based heart repair. Various strategies to foster cellular maturation provide some success, but fully matured cardiomyocytes are still to be achieved. Today, several hormones are recognized for their effects on cardiomyocyte proliferation, differentiation, and function. Here, we will discuss how the endocrine system impacts cardiomyocyte maturation. After detailing which features characterize a mature phenotype, we will contemplate hormones most promising to induce such a phenotype, the routes of their action, and experimental evidence for their significance in this process. Due to their pleiotropic effects, hormones might be not only valuable to improve in vitro heart cell generation but also beneficial for in vivo heart regeneration. Accordingly, we will also contemplate how the presented hormones might be exploited for hormone-based regenerative therapies.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany.
| | - Julia Brenmoehl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| |
Collapse
|
5
|
Bourque K, Jones-Tabah J, Pétrin D, Martin RD, Tanny JC, Hébert TE. Comparing the signaling and transcriptome profiling landscapes of human iPSC-derived and primary rat neonatal cardiomyocytes. Sci Rep 2023; 13:12248. [PMID: 37507481 PMCID: PMC10382583 DOI: 10.1038/s41598-023-39525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023] Open
Abstract
The inaccessibility of human cardiomyocytes significantly hindered years of cardiovascular research efforts. To overcome these limitations, non-human cell sources were used as proxies to study heart function and associated diseases. Rodent models became increasingly acceptable surrogates to model the human heart either in vivo or through in vitro cultures. More recently, due to concerns regarding animal to human translation, including cross-species differences, the use of human iPSC-derived cardiomyocytes presented a renewed opportunity. Here, we conducted a comparative study, assessing cellular signaling through cardiac G protein-coupled receptors (GPCRs) in rat neonatal cardiomyocytes (RNCMs) and human induced pluripotent stem cell-derived cardiomyocytes. Genetically encoded biosensors were used to explore GPCR-mediated nuclear protein kinase A (PKA) and extracellular signal-regulated kinase 1/ 2 (ERK1/2) activities in both cardiomyocyte populations. To increase data granularity, a single-cell analytical approach was conducted. Using automated high content microscopy, our analyses of nuclear PKA and ERK1/2 signaling revealed distinct response clusters in rat and human cardiomyocytes. In line with this, bulk RNA-seq revealed key differences in the expression patterns of GPCRs, G proteins and downstream effector expression levels. Our study demonstrates that human stem cell-derived models of the cardiomyocyte offer distinct advantages for understanding cellular signaling in the heart.
Collapse
Affiliation(s)
- Kyla Bourque
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jace Jones-Tabah
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Darlaine Pétrin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Ryan D Martin
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Jason C Tanny
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
6
|
Daily N, Elson J, Wakatsuki T. Aging Model for Analyzing Drug-Induced Proarrhythmia Risks Using Cardiomyocytes Differentiated from Progeria-Patient-Derived Induced Pluripotent Stem Cells. Int J Mol Sci 2023; 24:11959. [PMID: 37569335 PMCID: PMC10418415 DOI: 10.3390/ijms241511959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Among various cardiac safety concerns, proarrhythmia risks, including QT prolongation leading to Torsade de Pointes, is one of major cause for drugs being withdrawn (~45% 1975-2007). Preclinical study requires the evaluation of proarrhythmia using in silico, in vitro, and/or animal models. Considering that the primary consumers of prescription drugs are elderly patients, applications of "aging-in-a-dish" models would be appropriate for screening proarrhythmia risks. However, acquiring such models, including cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs), presents extensive challenges. We proposed the hypothesis that CMs differentiated from iPSCs derived from Hutchinson-Gilford progeria syndrome (HGPS, progeria) patients, an ultra-rare premature aging syndrome, can mimic the phenotypes of aging CMs. Our objective, therefore, was to examine this hypothesis by analyzing the response of 11 reference compounds utilized by the Food and Drug Administration (FDA)'s Comprehensive in vitro Proarrhythmia Assay (CiPA) using progeria and control CMs. As a sensitive surrogate marker of modulating cardiac excitation-contraction coupling, we evaluated drug-induced changes in calcium transient (CaT). We observed that the 80% CaT peak duration in the progeria CMs (0.98 ± 0.04 s) was significantly longer than that of control CMs (0.70 ± 0.05 s). Furthermore, when the progeria CMs were subjected to four doses of 11 compounds from low-, intermediate-, and high-risk categories, they demonstrated greater arrhythmia susceptibility than control cells, as shown through six-parameter CaT profile analyses. We also employed the regression analysis established by CiPA to classify the 11 reference compounds and compared proarrhythmia susceptibilities between the progeria and control CMs. This analysis revealed a greater proarrhythmia susceptibility in the progeria CMs compared to the control CMs. Interestingly, in both CMs, the compounds categorized as low risk did not exceed the safety risk threshold of 0.8. In conclusion, our study demonstrates increased proarrhythmia sensitivity in progeria CMs when tested with reference compounds. Future studies are needed to analyze underlying mechanisms and further validate our findings using a larger array of reference compounds.
Collapse
|
7
|
Xie A, Kang GJ, Kim EJ, Feng F, Givens SE, Ogle BM, Dudley SC. Lysosomal Ca 2+ flux modulates automaticity in ventricular cardiomyocytes and correlates with arrhythmic risk. PNAS NEXUS 2023; 2:pgad174. [PMID: 37303713 PMCID: PMC10255768 DOI: 10.1093/pnasnexus/pgad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
Automaticity involves Ca2+ handling at the cell membrane and sarcoplasmic reticulum (SR). Abnormal or acquired automaticity is thought to initiate ventricular arrhythmias associated with myocardial ischemia. Ca2+ flux from mitochondria can influence automaticity, and lysosomes also release Ca2+. Therefore, we tested whether lysosomal Ca2+ flux could influence automaticity. We studied ventricular human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), hiPSC 3D engineered heart tissues (EHTs), and ventricular cardiomyocytes isolated from infarcted mice. Preventing lysosomal Ca2+ cycling reduced automaticity in hiPSC-CMs. Consistent with a lysosomal role in automaticity, activating the transient receptor potential mucolipin channel (TRPML1) enhanced automaticity, and two channel antagonists reduced spontaneous activity. Activation or inhibition of lysosomal transcription factor EB (TFEB) increased or decreased total lysosomes and automaticity, respectively. In adult ischemic cardiomyocytes and hiPSC 3D EHTs, reducing lysosomal Ca2+ release also inhibited automaticity. Finally, TRPML1 was up-regulated in cardiomyopathic patients with ventricular tachycardia (VT) compared with those without VT. In summary, lysosomal Ca2+ handling modulates abnormal automaticity, and reducing lysosomal Ca2+ release may be a clinical strategy for preventing ventricular arrhythmias.
Collapse
Affiliation(s)
- An Xie
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Gyeoung-Jin Kang
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Eun Ji Kim
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Feng Feng
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| | - Sophie E Givens
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, Stem Cell Institute, University of Minnesota, McGuire Translational Research Facility, 2001 6th Street SE, Mail Code 2873, Minneapolis, MN 55455, USA
- Department of Pediatrics, Institute for Engineering in Medicine, University of Minnesota, 420 Delaware Street Southeast, 725 Mayo Memorial Building, MMC 94, Minneapolis, MN 55455, USA
| | - Samuel C Dudley
- Department of Medicine, University of Minnesota, 401 East River Parkway, VCRC 1st Floor, Suite 131, Minneapolis, MN 55455, USA
- Lillehei Heart Institute, University of Minnesota, 2231 6th Street SE, Suite 4-156, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Cheng S, Brenière-Letuffe D, Ahola V, Wong AO, Keung HY, Gurung B, Zheng Z, Costa KD, Lieu DK, Keung W, Li RA. Single-cell RNA sequencing reveals maturation trajectory in human pluripotent stem cell-derived cardiomyocytes in engineered tissues. iScience 2023; 26:106302. [PMID: 36950112 PMCID: PMC10025988 DOI: 10.1016/j.isci.2023.106302] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Cardiac in vitro models have become increasingly obtainable and affordable with the optimization of human pluripotent stem cell-derived cardiomyocyte (hPSC-CM) differentiation. However, these CMs are immature compared to their in vivo counterparts. Here we study the cellular phenotype of hPSC-CMs by comparing their single-cell gene expression and functional profiles in three engineered cardiac tissue configurations: human ventricular (hv) cardiac anisotropic sheet, cardiac tissue strip, and cardiac organoid chamber (hvCOC), with spontaneously aggregated 3D cardiac spheroids (CS) as control. The CM maturity was found to increase with increasing levels of complexity of the engineered tissues from CS to hvCOC. The contractile components are the first function to mature, followed by electrophysiology and oxidative metabolism. Notably, the 2D tissue constructs show a higher cellular organization whereas metabolic maturity preferentially increases in the 3D constructs. We conclude that the tissue engineering models resembling configurations of native tissues may be reliable for drug screening or disease modeling.
Collapse
Affiliation(s)
- Shangli Cheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - David Brenière-Letuffe
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
- Department of Clinical Sciences, Intervention and Technology, CLINTEC, Karolinska Institutet, 141 52 Stockholm, Sweden
- Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, 141 86 Stockholm, Sweden
| | - Virpi Ahola
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | | | - Hoi Yee Keung
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - Bimal Gurung
- Novoheart, Irvine, CA 92617, USA
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zongli Zheng
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Hong Kong SAR, China
| | - Kevin D. Costa
- Novoheart, Irvine, CA 92617, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah K. Lieu
- Novoheart, Irvine, CA 92617, USA
- Institute for Regenerative Cures and Stem Cell Program, University of California, Davis, Sacramento, CA 95817, USA
| | - Wendy Keung
- Novoheart, Irvine, CA 92617, USA
- Dr. Li Dak Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
9
|
Marchiano S, Nakamura K, Reinecke H, Neidig L, Lai M, Kadota S, Perbellini F, Yang X, Klaiman JM, Blakely LP, Karbassi E, Fields PA, Fenix AM, Beussman KM, Jayabalu A, Kalucki FA, Potter JC, Futakuchi-Tsuchida A, Weber GJ, Dupras S, Tsuchida H, Pabon L, Wang L, Knollmann BC, Kattman S, Thies RS, Sniadecki N, MacLellan WR, Bertero A, Murry CE. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell 2023; 30:396-414.e9. [PMID: 37028405 PMCID: PMC10283080 DOI: 10.1016/j.stem.2023.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.
Collapse
Affiliation(s)
- Silvia Marchiano
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kenta Nakamura
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Hans Reinecke
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Lauren Neidig
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | | - Shin Kadota
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | | | - Xiulan Yang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jordan M Klaiman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Leslie P Blakely
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elaheh Karbassi
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Paul A Fields
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Adaptive Biotechnologies, Seattle, WA 98102, USA
| | - Aidan M Fenix
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Beussman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA
| | - Anu Jayabalu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Faith A Kalucki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Jennifer C Potter
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Akiko Futakuchi-Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Gerhard J Weber
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sarah Dupras
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Hiroshi Tsuchida
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lil Pabon
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Lili Wang
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Björn C Knollmann
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Steven Kattman
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - R Scott Thies
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA
| | - Nathan Sniadecki
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Department of Mechanical Engineering, University of Washington, 3720 15(th) Avenue NE, Seattle, WA 98105, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - W Robb MacLellan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Bertero
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles E Murry
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA; Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Sana Biotechnology, Seattle, WA 98102, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Iachetta G, Melle G, Colistra N, Tantussi F, De Angelis F, Dipalo M. Long-term in vitro recording of cardiac action potentials on microelectrode arrays for chronic cardiotoxicity assessment. Arch Toxicol 2023; 97:509-522. [PMID: 36607357 PMCID: PMC9859891 DOI: 10.1007/s00204-022-03422-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/15/2022] [Indexed: 01/07/2023]
Abstract
The reliable identification of chronic cardiotoxic effects in in vitro screenings is fundamental for filtering out toxic molecular entities before in vivo animal experimentation and clinical trials. Present techniques such as patch-clamp, voltage indicators, and standard microelectrode arrays do not offer at the same time high sensitivity for measuring transmembrane ion currents and low-invasiveness for monitoring cells over long time. Here, we show that optoporation applied to microelectrode arrays enables measuring action potentials from human-derived cardiac syncytia for more than 1 continuous month and provides reliable data on chronic cardiotoxic effects caused by known compounds such as pentamidine. The technique has high potential for detecting chronic cardiotoxicity in the early phases of drug development.
Collapse
Affiliation(s)
| | | | | | | | | | - Michele Dipalo
- Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italy.
- FORESEE Biosystems Srl, Genova, Italy.
| |
Collapse
|
11
|
Dias TP, Baltazar T, Pinto SN, Fernandes TG, Fernandes F, Diogo MM, Prieto M, Cabral JMS. Xeno-Free Integrated Platform for Robust Production of Cardiomyocyte Sheets from hiPSCs. Stem Cells Int 2022; 2022:4542719. [PMID: 36467280 PMCID: PMC9712013 DOI: 10.1155/2022/4542719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2024] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be efficiently differentiated into cardiomyocytes (CMs), which can be used for cardiac disease modeling, for drug screening, and to regenerate damaged myocardium. Implementation of xeno-free culture systems is essential to fully explore the potential of these cells. However, differentiation using xeno-free adhesion matrices often results in low CM yields and lack of functional CM sheets, capable of enduring additional maturation stages. Here, we established a xeno-free CM differentiation platform using TeSR/Synthemax, including a replating step and integrated with two versatile purification/enrichment metabolic approaches. Results showed that the replating step was essential to reestablish a fully integrated, closely-knit CM sheet. In addition, replating contributed to increase the cTnT expression from 65% to 75% and the output from 2.2 to 3.1 CM per hiPSC, comparable with the efficiency observed when using TeSR/Matrigel. In addition, supplementation with PluriSin1 and Glu-Lac+ medium allowed increasing the CM content over 80% without compromising CM sheet integrity or functionality. Thus, this xeno-free differentiation platform is a reliable and robust method to produce hiPSC-derived CMs, increasing the possibility of using these cells safely for a wide range of applications.
Collapse
Affiliation(s)
- Tiago P. Dias
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tânia Baltazar
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Sandra N. Pinto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Tiago G. Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio Fernandes
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Manuel Prieto
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB—Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
12
|
Varzideh F, Mone P, Santulli G. Bioengineering Strategies to Create 3D Cardiac Constructs from Human Induced Pluripotent Stem Cells. Bioengineering (Basel) 2022; 9:168. [PMID: 35447728 PMCID: PMC9028595 DOI: 10.3390/bioengineering9040168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) can be used to generate various cell types in the human body. Hence, hiPSC-derived cardiomyocytes (hiPSC-CMs) represent a significant cell source for disease modeling, drug testing, and regenerative medicine. The immaturity of hiPSC-CMs in two-dimensional (2D) culture limit their applications. Cardiac tissue engineering provides a new promise for both basic and clinical research. Advanced bioengineered cardiac in vitro models can create contractile structures that serve as exquisite in vitro heart microtissues for drug testing and disease modeling, thereby promoting the identification of better treatments for cardiovascular disorders. In this review, we will introduce recent advances of bioengineering technologies to produce in vitro cardiac tissues derived from hiPSCs.
Collapse
Affiliation(s)
- Fahimeh Varzideh
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Pasquale Mone
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
| | - Gaetano Santulli
- Department of Medicine, Wilf Family Cardiovascular Research Institute, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA; (F.V.); (P.M.)
- Department of Molecular Pharmacology, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
13
|
Yang D, Deschênes I, Fu JD. Multilayer control of cardiac electrophysiology by microRNAs. J Mol Cell Cardiol 2022; 166:107-115. [PMID: 35247375 PMCID: PMC9035102 DOI: 10.1016/j.yjmcc.2022.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
The electrophysiological properties of the heart include cardiac automaticity, excitation (i.e., depolarization and repolarization of action potential) of individual cardiomyocytes, and highly coordinated electrical propagation through the whole heart. An abnormality in any of these properties can cause arrhythmias. MicroRNAs (miRs) have been recognized as essential regulators of gene expression through the conventional RNA interference (RNAi) mechanism and are involved in a variety of biological events. Recent evidence has demonstrated that miRs regulate the electrophysiology of the heart through fine regulation by the conventional RNAi mechanism of the expression of ion channels, transporters, intracellular Ca2+-handling proteins, and other relevant factors. Recently, a direct interaction between miRs and ion channels has also been reported in the heart, revealing a biophysical modulation by miRs of cardiac electrophysiology. These advanced discoveries suggest that miR controls cardiac electrophysiology through two distinct mechanisms: immediate action through biophysical modulation and long-term conventional RNAi regulation. Here, we review the recent research progress and summarize the current understanding of how miR manipulates the function of ion channels to maintain the homeostasis of cardiac electrophysiology.
Collapse
Affiliation(s)
- Dandan Yang
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Isabelle Deschênes
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA
| | - Ji-Dong Fu
- The Dorothy M. Davis Heart and Lung Research Institute, Frick Center for Heart Failure and Arrhythmia, Department of Physiology and Cell Biology, The Ohio State University, 333 W. 10(th) Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
14
|
Du C, Rasmusson RL, Bett GC, Franks B, Zhang H, Hancox JC. Investigation of the Effects of the Short QT Syndrome D172N Kir2.1 Mutation on Ventricular Action Potential Profile Using Dynamic Clamp. Front Pharmacol 2022; 12:794620. [PMID: 35115940 PMCID: PMC8806151 DOI: 10.3389/fphar.2021.794620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
The congenital short QT syndrome (SQTS) is a cardiac condition that leads to abbreviated ventricular repolarization and an increased susceptibility to arrhythmia and sudden death. The SQT3 form of the syndrome is due to mutations to the KCNJ2 gene that encodes Kir2.1, a critical component of channels underlying cardiac inwardly rectifying K+ current, IK1. The first reported SQT3 KCNJ2 mutation gives rise to the D172N Kir2.1 mutation, the consequences of which have been studied on recombinant channels in vitro and in ventricular cell and tissue simulations. The aim of this study was to establish the effects of the D172N mutation on ventricular repolarization through real-time replacement of IK1 using the dynamic clamp technique. Whole-cell patch-clamp recordings were made from adult guinea-pig left ventricular myocytes at physiological temperature. Action potentials (APs) were elicited at 1 Hz. Intrinsic IK1 was inhibited with a low concentration (50 µM) of Ba2+ ions, which led to AP prolongation and triangulation, accompanied by a ∼6 mV depolarization of resting membrane potential. Application of synthetic IK1 through dynamic clamp restored AP duration, shape and resting potential. Replacement of wild-type (WT) IK1 with heterozygotic (WT-D172N) or homozygotic (D172N) mutant formulations under dynamic clamp significantly abbreviated AP duration (APD90) and accelerated maximal AP repolarization velocity, with no significant hyperpolarization of resting potential. Across stimulation frequencies from 0.5 to 3 Hz, the relationship between APD90 and cycle length was downward shifted, reflecting AP abbreviation at all stimulation frequencies tested. In further AP measurements at 1 Hz from hiPSC cardiomyocytes, the D172N mutation produced similar effects on APD and repolarization velocity; however, resting potential was moderately hyperpolarized by application of mutant IK1 to these cells. Overall, the results of this study support the major changes in ventricular cell AP repolarization with the D172N predicted from prior AP modelling and highlight the potential utility of using adult ventricular cardiomyocytes for dynamic clamp exploration of functional consequences of Kir2.1 mutations.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Randall L. Rasmusson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
| | - Glenna C. Bett
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
- Department of Obstetrics and Gynecology, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, NY, United States
| | | | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Jules C. Hancox,
| |
Collapse
|
15
|
Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, Molina CE, Sacconi L, Smith G, Stengl M, Thomas D, Zaza A, Remme CA, Heijman J. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 2021; 23:1795-1814. [PMID: 34313298 PMCID: PMC11636574 DOI: 10.1093/europace/euab142] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Collapse
Affiliation(s)
- Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Ana-Maria Gomez
- Signaling and cardiovascular pathophysiology—UMR-S 1180, Inserm, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Leonardo Sacconi
- National Institute of Optics and European Laboratory for Non Linear Spectroscopy, Italy
- Institute for Experimental Cardiovascular Medicine, University Freiburg, Germany
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
17
|
Chu X, Wang M, Qiu X, Huang Y, Li T, Otieno E, Li N, Luo L, Xiao X. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues. J Biomed Mater Res A 2021; 110:488-503. [PMID: 34397148 DOI: 10.1002/jbm.a.37298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cardiac micro-tissue is a promising model for simulating the structural and functional features of heart in vitro. This scientific achievement provides a platform for exploration about the mechanisms on the development, damage, and regeneration of tissue, hence, paving a way toward development of novel therapies for heart diseases. However, 3D micro-tissue technology is still in its infant stages faced with many challenges such as incompleteness of the tissue microarchitecture, loss of the resident immune cells, poor reproducibility, and deficiencies in continuously feeding the nutrients and removing wastes during micro-tissue culturing. There is an urgent need to optimize the construction of 3D cardiac micro-tissue and improve functions of the involved cells. Therefore, scaffolds and cell resources for building 3D cardiac micro-tissues, strategies for inducing the maturation and functionalization of pluripotent stem cell- or cardiac progenitor cell-derived cardiomyocytes, and the major challenges were reviewed in this writing to enable future fabrication of 3D cardiac micro-tissues or organoids for drug screening, disease modeling, regeneration treatment, and so on.
Collapse
Affiliation(s)
- Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Laboratory Animals Science, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Na Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
18
|
Zhu Y, Wang L, Cui C, Qin H, Chen H, Chen S, Lin Y, Cheng H, Jiang X, Chen M. Pathogenesis and drug response of iPSC-derived cardiomyocytes from two Brugada syndrome patients with different Na v1.5-subunit mutations. J Biomed Res 2021; 35:395-407. [PMID: 34628405 PMCID: PMC8502687 DOI: 10.7555/jbr.35.20210045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Brugada syndrome (BrS) is a complex genetic cardiac ion channel disease that causes a high predisposition to sudden cardiac death. Considering that its heterogeneity in clinical manifestations may result from genetic background, the application of patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) may help to reveal cell phenotype characteristics underlying different genetic variations. Here, to verify and compare the pathogenicity of mutations (SCN5A c.4213G>A andSCN1B c.590C>T) identified from two BrS patients, we generated two novel BrS iPS cell lines that carried missense mutations inSCN5A or SCN1B, compared their structures and electrophysiology, and evaluated the safety of quinidine in patient-specific iPSC-derived CMs. Compared to the control group, BrS-CMs showed a significant reduction in sodium current, prolonged action potential duration, and varying degrees of decreased Vmax, but no structural difference. After applying different concentrations of quinidine, drug-induced cardiotoxicity was not observed within 3-fold unbound effective therapeutic plasma concentration (ETPC). The data presented proved that iPSC-CMs with variants in SCN5A c.4213G>A orSCN1B c.590C>T are able to recapitulate single-cell phenotype features of BrS and respond appropriately to quinidine without increasing incidence of arrhythmic events.
Collapse
Affiliation(s)
- Yue Zhu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Linlin Wang
- Department of Cardiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Chest Hospital, Nanjing, Jiangsu 210029, China
| | - Chang Cui
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiyuan Qin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongwu Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shaojie Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yongping Lin
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hongyi Cheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaohong Jiang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Minglong Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
19
|
Aghasafari P, Yang PC, Kernik DC, Sakamoto K, Kanda Y, Kurokawa J, Vorobyov I, Clancy CE. A deep learning algorithm to translate and classify cardiac electrophysiology. eLife 2021; 10:68335. [PMID: 34212860 PMCID: PMC8282335 DOI: 10.7554/elife.68335] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
The development of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) has been a critical in vitro advance in the study of patient-specific physiology, pathophysiology, and pharmacology. We designed a new deep learning multitask network approach intended to address the low throughput, high variability, and immature phenotype of the iPSC-CM platform. The rationale for combining translation and classification tasks is because the most likely application of the deep learning technology we describe here is to translate iPSC-CMs following application of a perturbation. The deep learning network was trained using simulated action potential (AP) data and applied to classify cells into the drug-free and drugged categories and to predict the impact of electrophysiological perturbation across the continuum of aging from the immature iPSC-CMs to the adult ventricular myocytes. The phase of the AP extremely sensitive to perturbation due to a steep rise of the membrane resistance was found to contain the key information required for successful network multitasking. We also demonstrated successful translation of both experimental and simulated iPSC-CM AP data validating our network by prediction of experimental drug-induced effects on adult cardiomyocyte APs by the latter.
Collapse
Affiliation(s)
- Parya Aghasafari
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Pei-Chi Yang
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| | - Divya C Kernik
- Washington University in St. Louis, St. Louis, United States
| | - Kazuho Sakamoto
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States.,Department of Pharmacology, University of California, Davis, Davis, United States
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
| |
Collapse
|
20
|
Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes. Biosci Rep 2021; 41:226678. [PMID: 33057659 PMCID: PMC8209171 DOI: 10.1042/bsr20200833] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have the ability to differentiate into cardiomyocytes (CMs). They are not only widely used in cardiac pharmacology screening, human heart disease modeling, and cell transplantation-based treatments, but also the most promising source of CMs for experimental and clinical applications. However, their use is largely restricted by the immature phenotype of structure and function, which is similar to embryonic or fetal CMs and has certain differences from adult CMs. In order to overcome this critical issue, many studies have explored and revealed new strategies to induce the maturity of iPSC-CMs. Therefore, this article aims to review recent induction methods of mature iPSC-CMs, related mechanisms, and limitations.
Collapse
|
21
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
22
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
23
|
Physiological and pharmacological stimulation for in vitro maturation of substrate metabolism in human induced pluripotent stem cell-derived cardiomyocytes. Sci Rep 2021; 11:7802. [PMID: 33833285 PMCID: PMC8032667 DOI: 10.1038/s41598-021-87186-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enable human cardiac cells to be studied in vitro, although they use glucose as their primary metabolic substrate and do not recapitulate the properties of adult cardiomyocytes. Here, we have explored the interplay between maturation by stimulation of fatty acid oxidation and by culture in 3D. We have investigated substrate metabolism in hiPSC-CMs grown as a monolayer and in 3D, in porous collagen-derived scaffolds and in engineered heart tissue (EHT), by measuring rates of glycolysis and glucose and fatty acid oxidation (FAO), and changes in gene expression and mitochondrial oxygen consumption. FAO was stimulated by activation of peroxisome proliferator-activated receptor alpha (PPARα), using oleate and the agonist WY-14643, which induced an increase in FAO in monolayer hiPSC-CMs. hiPSC-CMs grown in 3D on collagen-derived scaffolds showed reduced glycolysis and increased FAO compared with monolayer cells. Activation of PPARα further increased FAO in cells on collagen/elastin scaffolds but not collagen or collagen/chondroitin-4-sulphate scaffolds. In EHT, FAO was significantly higher than in monolayer cells or those on static scaffolds and could be further increased by culture with oleate and WY-14643. In conclusion, a more mature metabolic phenotype can be induced by culture in 3D and FAO can be incremented by pharmacological stimulation.
Collapse
|
24
|
Hnatiuk AP, Briganti F, Staudt DW, Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chem Biol 2021; 28:271-282. [PMID: 33740432 PMCID: PMC8054828 DOI: 10.1016/j.chembiol.2021.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023]
Abstract
Human induced pluripotent stem cells (hiPSCs) have emerged as a promising platform for pharmacogenomics and drug development. In cardiology, they make it possible to produce unlimited numbers of patient-specific human cells that reproduce hallmark features of heart disease in the culture dish. Their potential applications include the discovery of mechanism-specific therapeutics, the evaluation of safety and efficacy in a human context before a drug candidate reaches patients, and the stratification of patients for clinical trials. Although this new technology has the potential to revolutionize drug discovery, translational hurdles have hindered its widespread adoption for pharmaceutical development. Here we discuss recent progress in overcoming these hurdles that should facilitate the use of hiPSCs to develop new medicines and individualize therapies for heart disease.
Collapse
Affiliation(s)
- Anna P Hnatiuk
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Francesca Briganti
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David W Staudt
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, 240 Pasteur Drive, Biomedical Innovation Building, Palo Alto, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
25
|
Liu G, Liu Z, Cao N. Human pluripotent stem cell–based cardiovascular disease modeling and drug discovery. Pflugers Arch 2021; 473:1087-1097. [DOI: 10.1007/s00424-021-02542-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
|
26
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
27
|
Almeida HV, Tenreiro MF, Louro AF, Abecasis B, Santinha D, Calmeiro T, Fortunato E, Ferreira L, Alves PM, Serra M. Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS APPLIED BIO MATERIALS 2021; 4:1888-1899. [PMID: 35014458 DOI: 10.1021/acsabm.0c01490] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human induced pluripotent stem cells (hiPSC) possess significant therapeutic potential due to their high self-renewal capability and potential to differentiate into specialized cells such as cardiomyocytes. However, generated hiPSC-derived cardiomyocytes (hiPSC-CM) are still immature, with phenotypic and functional features resembling the fetal rather than their adult counterparts, which limits their application in cell-based therapies, in vitro cardiac disease modeling, and drug cardiotoxicity screening. Recent discoveries have demonstrated the potential of the extracellular matrix (ECM) as a critical regulator in development, homeostasis, and injury of the cardiac microenvironment. Within this context, this work aimed to assess the impact of human cardiac ECM in the phenotype and maturation features of hiPSC-CM. Human ECM was isolated from myocardium tissue through a physical decellularization approach. The cardiac tissue decellularization process reduced DNA content significantly while maintaining ECM composition in terms of sulfated glycosaminoglycans (s-GAG) and collagen content. These ECM particles were successfully incorporated in three-dimensional (3D) hiPSC-CM aggregates (CM+ECM) with no impact on viability and metabolic activity throughout 20 days in 3D culture conditions. Also, CM+ECM aggregates displayed organized and longer sarcomeres, with improved calcium handling when compared to hiPSC-CM aggregates. This study shows that human cardiac ECM functionalization of hiPSC-based cardiac tissues improves cardiomyocyte maturation. The knowledge generated herein provides essential insights to streamline the application of ECM in the development of hiPSC-based therapies targeting cardiac diseases.
Collapse
Affiliation(s)
- Henrique V Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Deolinda Santinha
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.,Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Tomás Calmeiro
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lino Ferreira
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.,Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
28
|
A Scalable Approach Reveals Functional Responses of iPSC Cardiomyocyte 3D Spheroids. SLAS DISCOVERY 2020; 26:352-363. [DOI: 10.1177/2472555220975332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cardiomyocytes (CMs) derived from induced pluripotent stem cells (iPSCs) provide an in vitro model of the human myocardium. Complex 3D scaffolded culture methods improve the phenotypical maturity of iPSC-CMs, although typically at the expense of throughput. We have developed a novel, scalable approach that enables the use of iPSC-CM 3D spheroid models in a label-free readout system in a standard 96-well plate-based format. Spheroids were accurately positioned onto recording electrodes using a magnetic gold–iron oxide nanoparticle approach. Remarkably, both contractility (impedance) and extracellular field potentials (EFPs) could be detected from the actively beating spheroids over long durations and after automated dosing with pharmacological agents. The effects on these parameters of factors, such as co-culture (including human primary cardiac fibroblasts), extracellular buffer composition, and electrical pacing, were investigated. Beat amplitudes were increased greater than 15-fold by co-culture with fibroblasts. Optimization of extracellular Ca2+ fluxes and electrical pacing promoted the proper physiological response to positive inotropic agonists of increased beat amplitude (force) rather than the increased beat rate often observed in iPSC-CM studies. Mechanistically divergent repolarizations in different spheroid models were indicated by their responses to BaCl2 compared with E-4031. These studies demonstrate a new method that enables the pharmacological responses of 3D iPSC-CM spheroids to be determined in a label-free, standardized, 96-well plate-based system. This approach could have discovery applications across cardiovascular efficacy and safety, where parameters typically sought as readouts of iPSC-CM maturity or physiological relevance have the potential to improve assay predictivity.
Collapse
|
29
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
30
|
Ravindran D, Kok C, Farraha M, Selvakumar D, Clayton ZE, Kumar S, Chong J, Kizana E. Gene and Cell Therapy for Cardiac Arrhythmias. Clin Ther 2020; 42:1911-1922. [PMID: 32988632 DOI: 10.1016/j.clinthera.2020.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE In the last decade, interest in gene therapy as a therapeutic technology has increased, largely driven by an exciting yet modest number of successful applications for monogenic diseases. Setbacks in the use of gene therapy for cardiac disease have motivated efforts to develop vectors with enhanced tropism for the heart and more efficient delivery methods. Although monogenic diseases are the logical target, cardiac arrhythmias represent a group of conditions amenable to gene therapy because of focal targets (biological pacemakers, nodal conduction, or stem cell-related arrhythmias) or bystander effects on cells not directly transduced because of electrical coupling. METHODS This review provides a contemporary narrative of the field of gene therapy for experimental cardiac arrhythmias, including those associated with stem cell transplant. Recent articles published in the English language and available through the PubMed database and other prominent literature are discussed. FINDINGS The promise of gene therapy has been realized for a handful of monogenic diseases and is actively being pursued for cardiac applications in preclinical models. With improved vectors, it is likely that cardiac disease will also benefit from this technology. Cardiac arrhythmias, whether inherited or acquired, are a group of conditions with a potentially lower threshold for phenotypic correction and as such hold unique potential as targets for cardiac gene therapy. IMPLICATIONS There has been a proliferation of research on the potential of gene therapy for cardiac arrhythmias. This body of investigation forms a strong basis on which further developments, particularly with viral vectors, are likely to help this technology progress along its translational trajectory.
Collapse
Affiliation(s)
- Dhanya Ravindran
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Cindy Kok
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Melad Farraha
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | - Dinesh Selvakumar
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - James Chong
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia; Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
31
|
"Betwixt Mine Eye and Heart a League Is Took": The Progress of Induced Pluripotent Stem-Cell-Based Models of Dystrophin-Associated Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21196997. [PMID: 32977524 PMCID: PMC7582534 DOI: 10.3390/ijms21196997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/19/2022] Open
Abstract
The ultimate goal of precision disease modeling is to artificially recreate the disease of affected people in a highly controllable and adaptable external environment. This field has rapidly advanced which is evident from the application of patient-specific pluripotent stem-cell-derived precision therapies in numerous clinical trials aimed at a diverse set of diseases such as macular degeneration, heart disease, spinal cord injury, graft-versus-host disease, and muscular dystrophy. Despite the existence of semi-adequate treatments for tempering skeletal muscle degeneration in dystrophic patients, nonischemic cardiomyopathy remains one of the primary causes of death. Therefore, cardiovascular cells derived from muscular dystrophy patients' induced pluripotent stem cells are well suited to mimic dystrophin-associated cardiomyopathy and hold great promise for the development of future fully effective therapies. The purpose of this article is to convey the realities of employing precision disease models of dystrophin-associated cardiomyopathy. This is achieved by discussing, as suggested in the title echoing William Shakespeare's words, the settlements (or "leagues") made by researchers to manage the constraints ("betwixt mine eye and heart") distancing them from achieving a perfect precision disease model.
Collapse
|
32
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
33
|
Ramachandra CJA, Chua J, Cong S, Kp MMJ, Shim W, Wu JC, Hausenloy DJ. Human-induced pluripotent stem cells for modelling metabolic perturbations and impaired bioenergetics underlying cardiomyopathies. Cardiovasc Res 2020; 117:694-711. [PMID: 32365198 DOI: 10.1093/cvr/cvaa125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/23/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022] Open
Abstract
Normal cardiac contractile and relaxation functions are critically dependent on a continuous energy supply. Accordingly, metabolic perturbations and impaired mitochondrial bioenergetics with subsequent disruption of ATP production underpin a wide variety of cardiac diseases, including diabetic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, anthracycline cardiomyopathy, peripartum cardiomyopathy, and mitochondrial cardiomyopathies. Crucially, there are no specific treatments for preventing the onset or progression of these cardiomyopathies to heart failure, one of the leading causes of death and disability worldwide. Therefore, new treatments are needed to target the metabolic disturbances and impaired mitochondrial bioenergetics underlying these cardiomyopathies in order to improve health outcomes in these patients. However, investigation of the underlying mechanisms and the identification of novel therapeutic targets have been hampered by the lack of appropriate animal disease models. Furthermore, interspecies variation precludes the use of animal models for studying certain disorders, whereas patient-derived primary cell lines have limited lifespan and availability. Fortunately, the discovery of human-induced pluripotent stem cells has provided a promising tool for modelling cardiomyopathies via human heart tissue in a dish. In this review article, we highlight the use of patient-derived iPSCs for studying the pathogenesis underlying cardiomyopathies associated with metabolic perturbations and impaired mitochondrial bioenergetics, as the ability of iPSCs for self-renewal and differentiation makes them an ideal platform for investigating disease pathogenesis in a controlled in vitro environment. Continuing progress will help elucidate novel mechanistic pathways, and discover novel therapies for preventing the onset and progression of heart failure, thereby advancing a new era of personalized therapeutics for improving health outcomes in patients with cardiomyopathy.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasper Chua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Faculty of Science, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Shuo Cong
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, 111 Yixueyuan Road, Xuhui District, Shanghai 200032, China
| | - Myu Mai Ja Kp
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, 10 Dover Drive, Singapore 138683, Singapore
| | - Joseph C Wu
- Cardiovascular Institute, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Medicine, Stanford University, Stanford, CA 94305, USA.,Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Derek J Hausenloy
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.,Yong Loo Lin Medical School, National University of Singapore, 10 Medical Drive, Singapore 11759, Singapore.,The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, Bloomsbury, London WC1E 6HX, UK.,Cardiovascular Research Centre, College of Medical and Health Sciences, Asia University, No. 500, Liufeng Road, Wufeng District, Taichung City 41354,Taiwan
| |
Collapse
|
34
|
Weber N, Kowalski K, Holler T, Radocaj A, Fischer M, Thiemann S, de la Roche J, Schwanke K, Piep B, Peschel N, Krumm U, Lingk A, Wendland M, Greten S, Schmitto JD, Ismail I, Warnecke G, Zywietz U, Chichkov B, Meißner J, Haverich A, Martin U, Brenner B, Zweigerdt R, Kraft T. Advanced Single-Cell Mapping Reveals that in hESC Cardiomyocytes Contraction Kinetics and Action Potential Are Independent of Myosin Isoform. Stem Cell Reports 2020; 14:788-802. [PMID: 32302556 PMCID: PMC7220955 DOI: 10.1016/j.stemcr.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 01/14/2023] Open
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent an attractive model to investigate CM function and disease mechanisms. One characteristic marker of ventricular specificity of human CMs is expression of the ventricular, slow β-myosin heavy chain (MyHC), as opposed to the atrial, fast α-MyHC. The main aim of this study was to investigate at the single-cell level whether contraction kinetics and electrical activity of hESC-CMs are influenced by the relative expression of α-MyHC versus β-MyHC. For effective assignment of functional parameters to the expression of both MyHC isoforms at protein and mRNA levels in the very same hESC-CMs, we developed a single-cell mapping technique. Surprisingly, α- versus β-MyHC was not related to specific contractile or electrophysiological properties of the same cells. The multiparametric cell-by-cell analysis suggests that in hESC-CMs the expression of genes associated with electrical activity, contraction, calcium handling, and MyHCs is independently regulated.
Collapse
Affiliation(s)
- Natalie Weber
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany.
| | - Kathrin Kowalski
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Tim Holler
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Ante Radocaj
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Martin Fischer
- Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Stefan Thiemann
- Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Jeanne de la Roche
- Institute of Neurophysiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Neele Peschel
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Uwe Krumm
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Alexander Lingk
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Meike Wendland
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Stephan Greten
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Jan Dieter Schmitto
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Issam Ismail
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Gregor Warnecke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Urs Zywietz
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Boris Chichkov
- Laser Zentrum Hannover e.V., Hollerithallee 8, 30419 Hannover, Germany
| | - Joachim Meißner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Axel Haverich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg Straße 1, 30625 Hannover, Germany
| |
Collapse
|
35
|
Wei F, Pourrier M, Strauss DG, Stockbridge N, Pang L. Effects of Electrical Stimulation on hiPSC-CM Responses to Classic Ion Channel Blockers. Toxicol Sci 2020; 174:254-265. [PMID: 32040191 DOI: 10.1093/toxsci/kfaa010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) hold great potential for personalized cardiac safety prediction, particularly for that of drug-induced proarrhythmia. However, hiPSC-CMs fire spontaneously and the variable beat rates of cardiomyocytes can be a confounding factor that interferes with data interpretation. Controlling beat rates with pacing may reduce batch and assay variations, enable evaluation of rate-dependent drug effects, and facilitate the comparison of results obtained from hiPSC-CMs with those from adult human cardiomyocytes. As electrical stimulation (E-pacing) of hiPSC-CMs has not been validated with high-throughput assays, herein, we compared the responses of hiPSC-CMs exposed with classic cardiac ion channel blockers under spontaneous beating and E-pacing conditions utilizing microelectrode array technology. We found that compared with spontaneously beating hiPSC-CMs, E-pacing: (1) reduced overall assay variabilities, (2) showed limited changes of field potential duration to pacemaker channel block, (3) revealed reverse rate dependence of multiple ion channel blockers on field potential duration, and (4) eliminated the effects of sodium channel block on depolarization spike amplitude and spike slope due to a software error in acquiring depolarization spike at cardiac pacing mode. Microelectrode array optogenetic pacing and current clamp recordings at various stimulation frequencies demonstrated rate-dependent block of sodium channels in hiPSC-CMs as reported in adult cardiomyocytes. In conclusion, pacing enabled more accurate rate- and concentration-dependent drug effect evaluations. Analyzing responses of hiPSC-CMs under both spontaneously beating and rate-controlled conditions may help better assess the effects of test compounds on cardiac electrophysiology and evaluate the value of the hiPSC-CM model.
Collapse
Affiliation(s)
- Feng Wei
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Marc Pourrier
- IonsGate Preclinical Services Inc, Vancouver, British Columbia, Canada
| | - David G Strauss
- Division of Applied and Regulatory Science, Office of Clinical Pharmacology, Office of Translational Science, Center for Drug Evaluation and Research
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Office of New Drugs I, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Li Pang
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
36
|
Modeling the heart with Novoheart’s MyHeart™ platform. FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2020-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reliable and predictive human-specific in vitro heart models can revolutionize drug discovery and development. With the advent of pluripotent stem cell technologies, human cardiomyocytes can now be readily produced in large quantities. Using tissue engineering techniques, they can be further assembled into cardiac tissues of specific 2D and 3D configurations, to create models that behave and function like the native human heart. Novoheart (BC, Canada) uniquely offers the MyHeartTM Platform of bioengineered human heart constructs, designed to provide researchers with effective models of either healthy or diseased human hearts. As in vitro, human-based assays become more widely accepted, the next decade could witness a shift away from animal testing towards more accurate and scalable human assays like the MyHeartTM Platform.
Collapse
|
37
|
Wong AOT, Wong N, Geng L, Chow MZY, Lee EK, Wu H, Khine M, Kong CW, Costa KD, Keung W, Cheung YF, Li RA. Combinatorial Treatment of Human Cardiac Engineered Tissues With Biomimetic Cues Induces Functional Maturation as Revealed by Optical Mapping of Action Potentials and Calcium Transients. Front Physiol 2020; 11:165. [PMID: 32226389 PMCID: PMC7080659 DOI: 10.3389/fphys.2020.00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 01/16/2023] Open
Abstract
Although biomimetic stimuli, such as microgroove-induced alignment (μ), triiodothyronine (T3) induction, and electrical conditioning (EC), have been reported to promote maturation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs), a systematic examination of their combinatorial effects on engineered cardiac tissue constructs and the underlying molecular pathways has not been reported. Herein, human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs) were used to generate a micro-patterned human ventricular cardiac anisotropic sheets (hvCAS) for studying the physiological effects of combinatorial treatments by a range of functional, calcium (Ca2+)-handling, and molecular analyses. High-resolution optical mapping showed that combined μ-T3-EC treatment of hvCAS increased the conduction velocity, anisotropic ratio, and proportion of mature quiescent-yet-excitable preparations by 2. 3-, 1. 8-, and 5-fold (>70%), respectively. Such electrophysiological changes could be attributed to an increase in inward sodium current density and a decrease in funny current densities, which is consistent with the observed up- and downregulated SCN1B and HCN2/4 transcripts, respectively. Furthermore, Ca2+-handling transcripts encoding for phospholamban (PLN) and sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) were upregulated, and this led to faster upstroke and decay kinetics of Ca2+-transients. RNA-sequencing and pathway mapping of T3-EC-treated hvCAS revealed that the TGF-β signaling was downregulated; the TGF-β receptor agonist and antagonist TGF-β1 and SB431542 partially reversed T3-EC induced quiescence and reduced spontaneous contractions, respectively. Taken together, we concluded that topographical cues alone primed cardiac tissue constructs for augmented electrophysiological and calcium handling by T3-EC. Not only do these studies improve our understanding of hPSC-CM biology, but the orchestration of these pro-maturational factors also improves the use of engineered cardiac tissues for in vitro drug screening and disease modeling.
Collapse
Affiliation(s)
- Andy On-Tik Wong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Nicodemus Wong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Geng
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Maggie Zi-Ying Chow
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Eugene K Lee
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Hongkai Wu
- Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Michelle Khine
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Chi-Wing Kong
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kevin D Costa
- Icahn School of Medicine at Mount Sinai, Manhattan, NY, United States
| | - Wendy Keung
- Stem Cell and Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yiu-Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ronald A Li
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Dr. Li Dak-Sum Research Centre, The University of Hong Kong - Karolinska Institutet Collaboration in Regenerative Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.,Ming-Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
38
|
Becker N, Horváth A, De Boer T, Fabbri A, Grad C, Fertig N, George M, Obergrussberger A. Automated Dynamic Clamp for Simulation of I
K1
in Human Induced Pluripotent Stem Cell–Derived Cardiomyocytes in Real Time Using Patchliner Dynamite
8. ACTA ACUST UNITED AC 2019; 88:e70. [DOI: 10.1002/cpph.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Teun De Boer
- Department of Medical PhysiologyUniversity Medical Center Utrecht Utrecht The Netherlands
| | - Alan Fabbri
- Department of Medical PhysiologyUniversity Medical Center Utrecht Utrecht The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Chang CW, Kao HKJ, Yechikov S, Lieu DK, Chan JW. An intrinsic, label-free signal for identifying stem cell-derived cardiomyocyte subtype. Stem Cells 2019; 38:390-394. [PMID: 31778240 DOI: 10.1002/stem.3127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/06/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022]
Abstract
Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have many promising applications, including the regeneration of injured heart muscles, cardiovascular disease modeling, and drug cardiotoxicity screening. Current differentiation protocols yield a heterogeneous cell population that includes pluripotent stem cells and different cardiac subtypes (pacemaking and contractile cells). The ability to purify these cells and obtain well-defined, controlled cell compositions is important for many downstream applications; however, there is currently no established and reliable method to identify hiPSC-derived cardiomyocytes and their subtypes. Here, we demonstrate that second harmonic generation (SHG) signals generated directly from the myosin rod bundles can be a label-free, intrinsic optical marker for identifying hiPSC-derived cardiomyocytes. A direct correlation between SHG signal intensity and cardiac subtype is observed, with pacemaker-like cells typically exhibiting ~70% less signal strength than atrial- and ventricular-like cardiomyocytes. These findings suggest that pacemaker-like cells can be separated from the heterogeneous population by choosing an SHG intensity threshold criteria. This work lays the foundation for developing an SHG-based high-throughput flow sorter for purifying hiPSC-derived cardiomyocytes and their subtypes.
Collapse
Affiliation(s)
- Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California
| | - Hillary K J Kao
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, California
| | - Sergey Yechikov
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, California
| | - Deborah K Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Sacramento, California
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California
| |
Collapse
|
40
|
Pang L, Sager P, Yang X, Shi H, Sannajust F, Brock M, Wu JC, Abi-Gerges N, Lyn-Cook B, Berridge BR, Stockbridge N. Workshop Report: FDA Workshop on Improving Cardiotoxicity Assessment With Human-Relevant Platforms. Circ Res 2019; 125:855-867. [PMID: 31600125 PMCID: PMC6788760 DOI: 10.1161/circresaha.119.315378] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Given that cardiovascular safety concerns remain the leading cause of drug attrition at the preclinical drug development stage, the National Center for Toxicological Research of the US Food and Drug Administration hosted a workshop to discuss current gaps and challenges in translating preclinical cardiovascular safety data to humans. This white paper summarizes the topics presented by speakers from academia, industry, and government intended to address the theme of improving cardiotoxicity assessment in drug development. The main conclusion is that to reduce cardiovascular safety liabilities of new therapeutic agents, there is an urgent need to integrate human-relevant platforms/approaches into drug development. Potential regulatory applications of human-derived cardiomyocytes and future directions in employing human-relevant platforms to fill the gaps and overcome barriers and challenges in preclinical cardiovascular safety assessment were discussed. This paper is intended to serve as an initial step in a public-private collaborative development program for human-relevant cardiotoxicity tools, particularly for cardiotoxicities characterized by contractile dysfunction or structural injury.
Collapse
Affiliation(s)
- Li Pang
- From the Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration (L.P.)
| | | | - Xi Yang
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (X.Y.)
| | - Hong Shi
- Discovery Toxicology, Bristol-Myers Squibb (BMS) Company (H.S.)
| | - Frederick Sannajust
- Safety & Exploratory Pharmacology Department, SALAR Division, Merck & Co (F.S.)
| | | | - Joseph C Wu
- Stanford University School of Medicine, Stanford Cardiovascular Institute (J.C.W.)
| | | | - Beverly Lyn-Cook
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (B.L.-C.)
| | - Brian R Berridge
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health (B.R.B.)
| | - Norman Stockbridge
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration (N.S.)
| |
Collapse
|
41
|
Sun YH, Kao HKJ, Chang CW, Merleev A, Overton JL, Pretto D, Yechikov S, Maverakis E, Chiamvimonvat N, Chan JW, Lieu DK. Human induced pluripotent stem cell line with genetically encoded fluorescent voltage indicator generated via CRISPR for action potential assessment post-cardiogenesis. Stem Cells 2019; 38:90-101. [PMID: 31566285 DOI: 10.1002/stem.3085] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
Genetically encoded fluorescent voltage indicators, such as ArcLight, have been used to report action potentials (APs) in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). However, the ArcLight expression, in all cases, relied on a high number of lentiviral vector-mediated random genome integrations (8-12 copy/cell), raising concerns such as gene disruption and alteration of global and local gene expression, as well as loss or silencing of reporter genes after differentiation. Here, we report the use of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 nuclease technique to develop a hiPSC line stably expressing ArcLight from the AAVS1 safe harbor locus. The hiPSC line retained proliferative ability with a growth rate similar to its parental strain. Optical recording with conventional epifluorescence microscopy allowed the detection of APs as early as 21 days postdifferentiation, and could be repeatedly monitored for at least 5 months. Moreover, quantification and analysis of the APs of ArcLight-CMs identified two distinctive subtypes: a group with high frequency of spontaneous APs of small amplitudes that were pacemaker-like CMs and a group with low frequency of automaticity and large amplitudes that resembled the working CMs. Compared with FluoVolt voltage-sensitive dye, although dimmer, the ArcLight reporter exhibited better optical performance in terms of phototoxicity and photostability with comparable sensitivities and signal-to-noise ratios. The hiPSC line with targeted ArcLight engineering design represents a useful tool for studying cardiac development or hiPSC-derived cardiac disease models and drug testing.
Collapse
Affiliation(s)
- Yao-Hui Sun
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems, Sacramento, California
| | - Hillary K J Kao
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems, Sacramento, California
| | - Che-Wei Chang
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California
| | - Alexander Merleev
- Department of Dermatology, University of California, Davis, Davis, California
| | - James L Overton
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems, Sacramento, California.,Bridges to Stem Cell Research Program, California State University, Sacramento, Sacramento, California
| | - Dalyir Pretto
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems, Sacramento, California
| | - Sergey Yechikov
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems, Sacramento, California
| | - Emanual Maverakis
- Department of Dermatology, University of California, Davis, Davis, California
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Department of Veterans Affairs, Northern California Health Care System, Mather, California
| | - James W Chan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California
| | - Deborah K Lieu
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, Davis, California.,Institute for Regenerative Cures and Stem Cell Program, University of California Davis Health Systems, Sacramento, California
| |
Collapse
|
42
|
Garg P, Garg V, Shrestha R, Sanguinetti MC, Kamp TJ, Wu JC. Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes as Models for Cardiac Channelopathies: A Primer for Non-Electrophysiologists. Circ Res 2019; 123:224-243. [PMID: 29976690 DOI: 10.1161/circresaha.118.311209] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Life threatening ventricular arrhythmias leading to sudden cardiac death are a major cause of morbidity and mortality. In the absence of structural heart disease, these arrhythmias, especially in the younger population, are often an outcome of genetic defects in specialized membrane proteins called ion channels. In the heart, exceptionally well-orchestrated activity of a diversity of ion channels mediates the cardiac action potential. Alterations in either the function or expression of these channels can disrupt the configuration of the action potential, leading to abnormal electrical activity of the heart that can sometimes initiate an arrhythmia. Understanding the pathophysiology of inherited arrhythmias can be challenging because of the complexity of the disorder and lack of appropriate cellular and in vivo models. Recent advances in human induced pluripotent stem cell technology have provided remarkable progress in comprehending the underlying mechanisms of ion channel disorders or channelopathies by modeling these complex arrhythmia syndromes in vitro in a dish. To fully realize the potential of induced pluripotent stem cells in elucidating the mechanistic basis and complex pathophysiology of channelopathies, it is crucial to have a basic knowledge of cardiac myocyte electrophysiology. In this review, we will discuss the role of the various ion channels in cardiac electrophysiology and the molecular and cellular mechanisms of arrhythmias, highlighting the promise of human induced pluripotent stem cell-cardiomyocytes as a model for investigating inherited arrhythmia syndromes and testing antiarrhythmic strategies. Overall, this review aims to provide a basic understanding of the electrical activity of the heart and related channelopathies, especially to clinicians or research scientists in the cardiovascular field with limited electrophysiology background.
Collapse
Affiliation(s)
- Priyanka Garg
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | - Vivek Garg
- Stanford University School of Medicine, CA; Department of Physiology, University of California San Francisco (V.G.)
| | - Rajani Shrestha
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.).,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| | | | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison (T.J.K.)
| | - Joseph C Wu
- From the Stanford Cardiovascular Institute (P.G., R.S., J.C.W.) .,Department of Medicine, Division of Cardiology (P.G., R.S., J.C.W.).,Institute for Stem Cell Biology and Regenerative Medicine (P.G., R.S., J.C.W.)
| |
Collapse
|
43
|
Gintant G, Burridge P, Gepstein L, Harding S, Herron T, Hong C, Jalife J, Wu JC. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes in Preclinical Cancer Drug Cardiotoxicity Testing: A Scientific Statement From the American Heart Association. Circ Res 2019; 125:e75-e92. [PMID: 31533542 DOI: 10.1161/res.0000000000000291] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
It is now well recognized that many lifesaving oncology drugs may adversely affect the heart and cardiovascular system, including causing irreversible cardiac injury that can result in reduced quality of life. These effects, which may manifest in the short term or long term, are mechanistically not well understood. Research is hampered by the reliance on whole-animal models of cardiotoxicity that may fail to reflect the fundamental biology or cardiotoxic responses of the human myocardium. The emergence of human induced pluripotent stem cell-derived cardiomyocytes as an in vitro research tool holds great promise for understanding drug-induced cardiotoxicity of oncological drugs that may manifest as contractile and electrophysiological dysfunction, as well as structural abnormalities, making it possible to deliver novel drugs free from cardiac liabilities and guide personalized therapy. This article briefly reviews the challenges of cardio-oncology, the strengths and limitations of using human induced pluripotent stem cell-derived cardiomyocytes to represent clinical findings in the nonclinical research space, and future directions for their further use.
Collapse
|
44
|
de la Roche J, Angsutararux P, Kempf H, Janan M, Bolesani E, Thiemann S, Wojciechowski D, Coffee M, Franke A, Schwanke K, Leffler A, Luanpitpong S, Issaragrisil S, Fischer M, Zweigerdt R. Comparing human iPSC-cardiomyocytes versus HEK293T cells unveils disease-causing effects of Brugada mutation A735V of Na V1.5 sodium channels. Sci Rep 2019; 9:11173. [PMID: 31371804 PMCID: PMC6673693 DOI: 10.1038/s41598-019-47632-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Loss-of-function mutations of the SCN5A gene encoding for the sodium channel α-subunit NaV1.5 result in the autosomal dominant hereditary disease Brugada Syndrome (BrS) with a high risk of sudden cardiac death in the adult. We here engineered human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the CRISPR/Cas9 introduced BrS-mutation p.A735V-NaV1.5 (g.2204C > T in exon 14 of SCN5A) as a novel model independent of patient´s genetic background. Recent studies raised concern regarding the use of hiPSC-CMs for studying adult-onset hereditary diseases due to cells' immature phenotype. To tackle this concern, long-term cultivation of hiPSC-CMs on a stiff matrix (27-42 days) was applied to promote maturation. Patch clamp recordings of A735V mutated hiPSC-CMs revealed a substantially reduced upstroke velocity and sodium current density, a prominent rightward shift of the steady state activation curve and decelerated recovery from inactivation as compared to isogenic hiPSC-CMs controls. These observations were substantiated by a comparative study on mutant A735V-NaV1.5 channels heterologously expressed in HEK293T cells. In contrast to mutated hiPSC-CMs, a leftward shift of sodium channel inactivation was not observed in HEK293T, emphasizing the importance of investigating mechanisms of BrS in independent systems. Overall, our approach supports hiPSC-CMs' relevance for investigating channelopathies in a dish.
Collapse
Affiliation(s)
- Jeanne de la Roche
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| | - Paweorn Angsutararux
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand
| | - Henning Kempf
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
- Department of Stem Cell Discovery, Novo Nordisk A/S, 2760, Maaloev, Denmark
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand
| | - Emiliano Bolesani
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Stefan Thiemann
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Daniel Wojciechowski
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Michelle Coffee
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Annika Franke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Kristin Schwanke
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Andreas Leffler
- Department of Anaesthesiology and Intensive Care, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research (SiSCR), Faculty of Medicine, Siriraj Hospital, 2, Bangkoknoi, Bangkok, 10700, Thailand.
| | - Martin Fischer
- Institute for Neurophysiology, Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Robert Zweigerdt
- Department of Cardiac, Thoracic, Transplantation and Vascular Surgery (HTTG), Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO) and Hans Borst Zentrum (HBZ), Hannover Medical School, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
45
|
Kernik DC, Morotti S, Wu H, Garg P, Duff HJ, Kurokawa J, Jalife J, Wu JC, Grandi E, Clancy CE. A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources. J Physiol 2019; 597:4533-4564. [PMID: 31278749 PMCID: PMC6767694 DOI: 10.1113/jp277724] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Key points Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Abstract There is a profound need to develop a strategy for predicting patient‐to‐patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient‐specific proclivity to cardiac disease utilizes induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs). A major strength of this approach is that iPSC‐CMs contain donor genetic information and therefore capture patient‐specific genotype–phenotype relationships. A cited detriment of iPSC‐CMs is the cell‐to‐cell variability observed in electrical activity. We postulated, however, that cell‐to‐cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole‐cell model of iPSC‐CMs composed of simple model components comprising ion channel models with single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally‐observed variability in the ionic currents. The resulting population of cellular models predicts robust inter‐subject variability in iPSC‐CMs. This approach links molecular mechanisms to known cellular‐level iPSC‐CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers. Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Collapse
Affiliation(s)
- Divya C Kernik
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - HaoDi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), and CIBERV, Madrid, Spain
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
46
|
Biermann M, Cai W, Lang D, Hermsen J, Profio L, Zhou Y, Czirok A, Isai DG, Napiwocki BN, Rodriguez AM, Brown ME, Woon MT, Shao A, Han T, Park D, Hacker TA, Crone WC, Burlingham WJ, Glukhov AV, Ge Y, Kamp TJ. Epigenetic Priming of Human Pluripotent Stem Cell-Derived Cardiac Progenitor Cells Accelerates Cardiomyocyte Maturation. Stem Cells 2019; 37:910-923. [PMID: 31087611 DOI: 10.1002/stem.3021] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) exhibit a fetal phenotype that limits in vitro and therapeutic applications. Strategies to promote cardiomyocyte maturation have focused interventions on differentiated hPSC-CMs, but this study tests priming of early cardiac progenitor cells (CPCs) with polyinosinic-polycytidylic acid (pIC) to accelerate cardiomyocyte maturation. CPCs were differentiated from hPSCs using a monolayer differentiation protocol with defined small molecule Wnt temporal modulation, and pIC was added during the formation of early CPCs. pIC priming did not alter the expression of cell surface markers for CPCs (>80% KDR+/PDGFRα+), expression of common cardiac transcription factors, or final purity of differentiated hPSC-CMs (∼90%). However, CPC differentiation in basal medium revealed that pIC priming resulted in hPSC-CMs with enhanced maturity manifested by increased cell size, greater contractility, faster electrical upstrokes, increased oxidative metabolism, and more mature sarcomeric structure and composition. To investigate the mechanisms of CPC priming, RNAseq revealed that cardiac progenitor-stage pIC modulated early Notch signaling and cardiomyogenic transcriptional programs. Chromatin immunoprecipitation of CPCs showed that pIC treatment increased deposition of the H3K9ac activating epigenetic mark at core promoters of cardiac myofilament genes and the Notch ligand, JAG1. Inhibition of Notch signaling blocked the effects of pIC on differentiation and cardiomyocyte maturation. Furthermore, primed CPCs showed more robust formation of hPSC-CMs grafts when transplanted to the NSGW mouse kidney capsule. Overall, epigenetic modulation of CPCs with pIC accelerates cardiomyocyte maturation enabling basic research applications and potential therapeutic uses. Stem Cells 2019;37:910-923.
Collapse
Affiliation(s)
- Mitch Biermann
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Di Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jack Hermsen
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Luke Profio
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Zhou
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Andras Czirok
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dona G Isai
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Brett N Napiwocki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew E Brown
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marites T Woon
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Annie Shao
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tianxiao Han
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Donglim Park
- Department of Virology, Harvard University, Boston, Massachusetts, USA
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Wendy C Crone
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
47
|
Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, Korolj A, Ahadian S, Radisic M. Cardiovascular disease models: A game changing paradigm in drug discovery and screening. Biomaterials 2019; 198:3-26. [PMID: 30343824 PMCID: PMC6397087 DOI: 10.1016/j.biomaterials.2018.09.036] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/11/2018] [Accepted: 09/22/2018] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Although investment in drug discovery and development has been sky-rocketing, the number of approved drugs has been declining. Cardiovascular toxicity due to therapeutic drug use claims the highest incidence and severity of adverse drug reactions in late-stage clinical development. Therefore, to address this issue, new, additional, replacement and combinatorial approaches are needed to fill the gap in effective drug discovery and screening. The motivation for developing accurate, predictive models is twofold: first, to study and discover new treatments for cardiac pathologies which are leading in worldwide morbidity and mortality rates; and second, to screen for adverse drug reactions on the heart, a primary risk in drug development. In addition to in vivo animal models, in vitro and in silico models have been recently proposed to mimic the physiological conditions of heart and vasculature. Here, we describe current in vitro, in vivo, and in silico platforms for modelling healthy and pathological cardiac tissues and their advantages and disadvantages for drug screening and discovery applications. We review the pathophysiology and the underlying pathways of different cardiac diseases, as well as the new tools being developed to facilitate their study. We finally suggest a roadmap for employing these non-animal platforms in assessing drug cardiotoxicity and safety.
Collapse
Affiliation(s)
- Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Mohammad Hossein Mohammadi
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Naimeh Rafatian
- Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Masood Khaksar Toroghi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada
| | - Yimu Zhao
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Anastasia Korolj
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada
| | - Samad Ahadian
- Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 170 College St, Toronto, Ontario, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, Ontario, M5S 3E5, Canada; Toronto General Research Institute, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, Ontario, M5G 2C4, Canada.
| |
Collapse
|
48
|
Quach B, Krogh-Madsen T, Entcheva E, Christini DJ. Light-Activated Dynamic Clamp Using iPSC-Derived Cardiomyocytes. Biophys J 2018; 115:2206-2217. [PMID: 30447994 PMCID: PMC6289097 DOI: 10.1016/j.bpj.2018.10.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/23/2018] [Accepted: 10/02/2018] [Indexed: 01/31/2023] Open
Abstract
iPSC-derived cardiomyocytes (iPSC-CMs) are a potentially advantageous platform for drug screening because they provide a renewable source of human cardiomyocytes. One obstacle to their implementation is their immature electrophysiology, which reduces relevance to adult arrhythmogenesis. To address this, dynamic clamp is used to inject current representing the insufficient potassium current, IK1, thereby producing more adult-like electrophysiology. However, dynamic clamp requires patch clamp and is therefore low throughput and ill-suited for large-scale drug screening. Here, we use optogenetics to generate such a dynamic-clamp current. The optical dynamic clamp (ODC) uses outward-current-generating opsin, ArchT, to mimic IK1, resulting in more adult-like action potential morphology, similar to IK1 injection via classic dynamic clamp. Furthermore, in the presence of an IKr blocker, ODC revealed expected action potential prolongation and reduced spontaneous excitation. The ODC presented here still requires an electrode to measure Vm but provides a first step toward contactless dynamic clamp, which will not only enable high-throughput screening but may also allow control within multicellular iPSC-CM formats to better recapitulate adult in vivo physiology.
Collapse
Affiliation(s)
- Bonnie Quach
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Trine Krogh-Madsen
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York
| | - Emilia Entcheva
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | - David J Christini
- Cardiovascular Research Institute, New York, New York; Weill Cornell Medicine, New York, New York.
| |
Collapse
|
49
|
Defining human cardiac transcription factor hierarchies using integrated single-cell heterogeneity analysis. Nat Commun 2018; 9:4906. [PMID: 30464173 PMCID: PMC6249224 DOI: 10.1038/s41467-018-07333-4] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/26/2018] [Indexed: 11/08/2022] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have become a powerful tool for human disease modeling and therapeutic testing. However, their use remains limited by their immaturity and heterogeneity. To characterize the source of this heterogeneity, we applied complementary single-cell RNA-seq and bulk RNA-seq technologies over time during hiPSC cardiac differentiation and in the adult heart. Using integrated transcriptomic and splicing analysis, more than half a dozen distinct single-cell populations were observed, several of which were coincident at a single time-point, day 30 of differentiation. To dissect the role of distinct cardiac transcriptional regulators associated with each cell population, we systematically tested the effect of a gain or loss of three transcription factors (NR2F2, TBX5, and HEY2), using CRISPR genome editing and ChIP-seq, in conjunction with patch clamp, calcium imaging, and CyTOF analysis. These targets, data, and integrative genomics analysis methods provide a powerful platform for understanding in vitro cellular heterogeneity. Human induced pluripotent stem cell derived cardiomyocytes are a powerful model for cardiogenesis and disease in vitro. Here the authors comprehensively map cardiac differentiation using multiple modalities, including single-cell RNA seq and CyTOF, in cells with a gain or loss of function in key cardiac transcription factors.
Collapse
|
50
|
Yamoah MA, Moshref M, Sharma J, Chen WC, Ledford HA, Lee JH, Chavez KS, Wang W, López JE, Lieu DK, Sirish P, Zhang XD. Highly efficient transfection of human induced pluripotent stem cells using magnetic nanoparticles. Int J Nanomedicine 2018; 13:6073-6078. [PMID: 30323594 PMCID: PMC6179720 DOI: 10.2147/ijn.s172254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose The delivery of transgenes into human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSC-CMs) represents an important tool in cardiac regeneration with potential for clinical applications. Gene transfection is more difficult, however, for hiPSCs and hiPSC-CMs than for somatic cells. Despite improvements in transfection and transduction, the efficiency, cytotoxicity, safety, and cost of these methods remain unsatisfactory. The objective of this study is to examine gene transfection in hiPSCs and hiPSC-CMs using magnetic nanoparticles (NPs). Methods Magnetic NPs are unique transfection reagents that form complexes with nucleic acids by ionic interaction. The particles, loaded with nucleic acids, can be guided by a magnetic field to allow their concentration onto the surface of the cell membrane. Subsequent uptake of the loaded particles by the cells allows for high efficiency transfection of the cells with nucleic acids. We developed a new method using magnetic NPs to transfect hiPSCs and hiPSC-CMs. HiPSCs and hiPSC-CMs were cultured and analyzed using confocal microscopy, flow cytometry, and patch clamp recordings to quantify the transfection efficiency and cellular function. Results We compared the transfection efficiency of hiPSCs with that of human embryonic kidney (HEK 293) cells. We observed that the average efficiency in hiPSCs was 43%±2% compared to 62%±4% in HEK 293 cells. Further analysis of the transfected hiPSCs showed that the differentiation of hiPSCs to hiPSC-CMs was not altered by NPs. Finally, robust transfection of hiPSC-CMs with an efficiency of 18%±2% was obtained. Conclusion The difficult-to-transfect hiPSCs and hiPSC-CMs were efficiently transfected using magnetic NPs. Our study offers a novel approach for transfection of hiPSCs and hiPSC-CMs without the need for viral vector generation.
Collapse
Affiliation(s)
- Megan A Yamoah
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Maryam Moshref
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Janhavi Sharma
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Wei Chun Chen
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Hannah A Ledford
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Jeong Han Lee
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Karen S Chavez
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Wenying Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Javier E López
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Deborah K Lieu
- Department of Internal Medicine, University of California, Davis, CA, USA, ,
| | - Padmini Sirish
- Department of Internal Medicine, University of California, Davis, CA, USA, , .,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA, ,
| | - Xiao-Dong Zhang
- Department of Internal Medicine, University of California, Davis, CA, USA, , .,Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA, ,
| |
Collapse
|