1
|
Higuchi K, Manne M, Tchou P, Baranowski B, Bhargava M, Callahan T, Chung M, Dresing T, Hussein A, Kanj M, Mayuga K, Nakhla S, Saliba W, Rickard J, Wazni O, Santangeli P, Sroubek J, Varma N. Left ventricular mass as a modulator of ventricular arrhythmia risk and sex differences after CRT for nonischemic cardiomyopathy and LBBB. Heart Rhythm 2025; 22:339-348. [PMID: 39084586 PMCID: PMC11775229 DOI: 10.1016/j.hrthm.2024.07.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The risk of ventricular arrhythmias (VAs) after cardiac resynchronization therapy (CRT) has been associated with ischemic disease/scar, sex, and possibly left ventricular mass (LVM). OBJECTIVE The purpose of this study was to evaluate sex differences and baseline/postimplant change in LVM on VA risk after CRT implantation in patients with nonischemic cardiomyopathy and left bundle branch block. METHODS In patients meeting the criteria, baseline and follow-up echocardiographic images were obtained for LVM assessment. VA events were reported from device diagnostics and therapies. VA risk was stratified by receiver operating characteristic (Youden index cutoff point) for baseline LVM and baseline/postimplant change in LVM. Multivariate Cox regression model was also used for VA risk stratification. RESULTS One hundred eighteen patients (71 female patients [60.2%]; mean age 60.5 ± 11.3 years; left ventricular ejection fraction 19.2% ± 7.0%; QRS duration 165.6 ± 20 ms; LVM 313.9 ± 108.8 g) were enrolled and followed up for a median of 90 months (interquartile range 44-158 months). Thirty-five patients (29.6%) received appropriate shocks or antitachycardia pacing at a median of 73.5 months (interquartile range 25-130 months) postimplantation. Males had a higher VA incidence (male patients 18 of 47 [38.3%] vs female patients 17 of 71 [23.9%]; P = .02). Baseline LVM > 308.9 g separated patients with higher VA risk (P = .001). Less than a 20% decrease in LVM increased VA risk (P < .001). Baseline LVM was the only baseline characteristic predicting VA events in the Cox regression model (hazard ratio 1.01; 95% confidence interval 1.001-1.009; log-rank, P = .003). Sex differences in VA risk were eliminated by the baseline LVM parameters. CONCLUSION VA risk after CRT implantation in nonischemic cardiomyopathy was associated with baseline LV > 308.9 g and a decrease in LVM ≤ 20%, without sex differences.
Collapse
Affiliation(s)
- Koji Higuchi
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio.
| | - Mahesh Manne
- Department of Hospital Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Patrick Tchou
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Bryan Baranowski
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Mandeep Bhargava
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Thomas Callahan
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Mina Chung
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Thomas Dresing
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Ayman Hussein
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Mohamed Kanj
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Kenneth Mayuga
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Shady Nakhla
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Walid Saliba
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - John Rickard
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Oussama Wazni
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Pasquale Santangeli
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Jakub Sroubek
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Niraj Varma
- Cardiac Electrophysiology and Pacing Section, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
2
|
Ker J. The Evolving Science on Sudden Cardiac Death-The Marriage of Left Ventricular Hypertrophy and QT-Dispersion. Echocardiography 2024; 41:e70026. [PMID: 39494959 DOI: 10.1111/echo.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Affiliation(s)
- James Ker
- Department of Internal Medicine, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
3
|
Ju J, Wang K, Liu F, Liu CY, Wang YH, Wang SC, Zhou LY, Li XM, Wang YQ, Chen XZ, Li RF, Xu SJ, Chen C, Zhang MH, Yang SM, Tian JW, Wang K. Crotonylation of NAE1 Modulates Cardiac Hypertrophy via Gelsolin Neddylation. Circ Res 2024; 135:806-821. [PMID: 39229723 DOI: 10.1161/circresaha.124.324733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Cardiac hypertrophy and its associated remodeling are among the leading causes of heart failure. Lysine crotonylation is a recently discovered posttranslational modification whose role in cardiac hypertrophy remains largely unknown. NAE1 (NEDD8 [neural precursor cell expressed developmentally downregulated protein 8]-activating enzyme E1 regulatory subunit) is mainly involved in the neddylation modification of protein targets. However, the function of crotonylated NAE1 has not been defined. This study aims to elucidate the effects and mechanisms of NAE1 crotonylation on cardiac hypertrophy. METHODS Crotonylation levels were detected in both human and mouse subjects with cardiac hypertrophy through immunoprecipitation and Western blot assays. Tandem mass tag (TMT)-labeled quantitative lysine crotonylome analysis was performed to identify the crotonylated proteins in a mouse cardiac hypertrophic model induced by transverse aortic constriction. We generated NAE1 knock-in mice carrying a crotonylation-defective K238R (lysine to arginine mutation at site 238) mutation (NAE1 K238R) and NAE1 knock-in mice expressing a crotonylation-mimicking K238Q (lysine to glutamine mutation at site 238) mutation (NAE1 K238Q) to assess the functional role of crotonylation of NAE1 at K238 in pathological cardiac hypertrophy. Furthermore, we combined coimmunoprecipitation, mass spectrometry, and dot blot analysis that was followed by multiple molecular biological methodologies to identify the target GSN (gelsolin) and corresponding molecular events contributing to the function of NAE1 K238 (lysine residue at site 238) crotonylation. RESULTS The crotonylation level of NAE1 was increased in mice and patients with cardiac hypertrophy. Quantitative crotonylomics analysis revealed that K238 was the main crotonylation site of NAE1. Loss of K238 crotonylation in NAE1 K238R knock-in mice attenuated cardiac hypertrophy and restored the heart function, while hypercrotonylation mimic in NAE1 K238Q knock-in mice significantly enhanced transverse aortic constriction-induced pathological hypertrophic response, leading to impaired cardiac structure and function. The recombinant adenoviral vector carrying NAE1 K238R mutant attenuated, while the K238Q mutant aggravated Ang II (angiotensin II)-induced hypertrophy. Mechanistically, we identified GSN as a direct target of NAE1. K238 crotonylation of NAE1 promoted GSN neddylation and, thus, enhanced its protein stability and expression. NAE1 crotonylation-dependent increase of GSN promoted actin-severing activity, which resulted in adverse cytoskeletal remodeling and progression of pathological hypertrophy. CONCLUSIONS Our findings provide new insights into the previously unrecognized role of crotonylation on nonhistone proteins during cardiac hypertrophy. We found that K238 crotonylation of NAE1 plays an essential role in mediating cardiac hypertrophy through GSN neddylation, which provides potential novel therapeutic targets for pathological hypertrophy and cardiac remodeling.
Collapse
Affiliation(s)
- Jie Ju
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China (J.J.)
| | - Kai Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Fang Liu
- Department of Anatomy, Center of Diabetic Systems Medicine, and Guangxi Key Laboratory of Excellence, Guilin Medical University, China (F.L.)
| | - Cui-Yun Liu
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Yun-Hong Wang
- Hypertension Center (Y.-H.W.), Beijing Anzhen Hospital, Capital Medical University, China
| | - Shao-Cong Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Lu-Yu Zhou
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Xin-Min Li
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Yu-Qin Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Xin-Zhe Chen
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Rui-Feng Li
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Shi-Jun Xu
- Department of Cardiac Surgery (S.-J.X.), Beijing Anzhen Hospital, Capital Medical University, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (C.C.)
| | - Mei-Hua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang)
| | - Su-Min Yang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
| | - Jin-Wei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, China (J.-W.T.)
| | - Kun Wang
- Department of Cardiovascular Surgery, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, China (J.J., Kai Wang, C.-Y.L., S.-C.W., L.-Y.Z., X.-M.L., Y.-Q.W., X.-Z.C., R.-F.L., S.-M.Y., Kun Wang)
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan, China (J.J., M.-H.Z., Kun Wang)
| |
Collapse
|
4
|
Chinawa JM, Ossai EN, Chinawa AT, Onyia JT, Chime PU, Onyia OA, Aronu AE. Echocardiographic Comparison of Left Ventricular Systolic Function and Aortic Blood Flow Velocimetry in Children with Ventricular Septal Defect. Niger J Clin Pract 2024; 27:202-208. [PMID: 38409148 DOI: 10.4103/njcp.njcp_560_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 02/28/2024]
Abstract
BACKGROUND The assessments of left ventricular (LV) longitudinal systolic dynamics in children with ventricular septal defect (VSD) have achieved a major milestone in the evaluation of LV systolic function. OBJECTIVES This study aims to evaluate the LV function, LV mass (LVM), and the descending aorta blood flow in children with VSD compared to that obtained in age and sex-matched controls. RESULTS The mean LVM of the control, 113.5 ± 123.9 was higher than that of those who had VSD, 75.8 ± 83.9, and the difference in mean was found to be statistically significant (Mann-Whitney U = 2.322, P = 0.022). The mean EF of the control, 67.9 ± 10.3 was comparable to that of those with VSD, 65.6 ± 13.9, (Student's t = 1.223, P = 0.223). Similarly, the mean descending aorta blood flow of control, 1.6 ± 2.2 was comparable to that of those with VSD, 3.9 ± 16.1, (Mann-Whitney U = 1.002, P = 0.321). There was a very weak positive correlation between LVM and descending aorta blood flow among the subjects (n = 85, r = 0.117, P = 0.425). There was a very weak negative correlation between LVM and descending aorta blood flow among control. (n = 85, r = -0.065, P = 0.609). CONCLUSION The LVM among children with VSD is lower than controls but there is no difference between LV function in subjects and controls. There is a linear increase of LVM with descending aorta blood flow.
Collapse
Affiliation(s)
- J M Chinawa
- Department of Paediatrics, College of Medicine, University of Nigeria Ituku/Ozalla and University of Nigeria Teaching Hospital Ituku, Ozalla Enugu State, Nigeria
| | - E N Ossai
- Department of Community Medicine, Ebonyi State University Abakiliki, Parklane Enugu, Nigeria
| | - A T Chinawa
- Department of Community Medicine, ESUCOM, Parklane Enugu, Nigeria
| | - J T Onyia
- Department of Paediatrics, College of Medicine, University of Nigeria Ituku/Ozalla and University of Nigeria Teaching Hospital Ituku, Ozalla Enugu State, Nigeria
| | - P U Chime
- Department of Paediatrics, College of Medicine, University of Nigeria Ituku/Ozalla and University of Nigeria Teaching Hospital Ituku, Ozalla Enugu State, Nigeria
| | - O A Onyia
- Department of Radiology, University of Nigeria Teaching Hospital, Itulku-Ozalla, Nigeria
| | - A E Aronu
- Department of Paediatrics, College of Medicine, University of Nigeria Ituku/Ozalla and University of Nigeria Teaching Hospital Ituku, Ozalla Enugu State, Nigeria
| |
Collapse
|
5
|
Wang X, Yu X, Gavardinas K, Dey A, Zhang HY, Porter G, Porras L, Yu L, Guo H, Reidy CA, Haas JV, Xu Y, Kowala MC, Jadhav PK, Wetterau JR. Effect of an NHE3 inhibitor in combination with an NPT2b inhibitor on gastrointestinal phosphate absorption in Rodent models. PLoS One 2024; 19:e0292091. [PMID: 38277356 PMCID: PMC10817170 DOI: 10.1371/journal.pone.0292091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/12/2023] [Indexed: 01/28/2024] Open
Abstract
Many of the pathological consequences of chronic kidney disease can be attributed to an elevation in serum phosphate levels. Current therapies focused on decreasing intestinal phosphate absorption to treat hyperphosphatemia are inadequate. The most effective therapeutic strategy may be to target multiple absorptive pathways. In this study, the ability of a novel inhibitor of the intestinal sodium hydrogen exchanger 3 (NHE3), LY3304000, which inhibits paracellular, diffusional uptake of phosphate, to work in combination with an inhibitor of the active transporter, sodium dependent phosphate cotransporter 2b (NPT2b), LY3358966, was explored. LY3304000 modestly inhibited the acute uptake of phosphate into plasma of rats, while surprisingly, it doubled the rate of phosphate uptake in mice, an animal model dominated by NPT2b mediated acute phosphate uptake. In rats, LY3004000 and LY3358966 work in concert to inhibit acute phosphate uptake. On top of LY3358966, LY3304000 further decreased the acute uptake of phosphate into plasma. Studies measuring the recovery of radiolabeled phosphate in the intestine demonstrated LY3304000 and LY3358966 synergistically inhibited the absorption of phosphate in rats. We hypothesize the synergism is because the NHE3 inhibitor, LY3304000, has two opposing effects on intestinal phosphate absorption in rats, first it decreases diffusion mediated paracellular phosphate absorption, while second, it simultaneously increases phosphate absorption through the NPT2b pathway. NHE3 inhibition decreases proton export from enterocytes and raises the cell surface pH. In vitro, NPT2b mediated phosphate transport is increased at higher pHs. The increased NPT2b mediated transport induced by NHE3 inhibition is masked in rats which have relatively low levels of NPT2b mediated phosphate transport, by the more robust inhibition of diffusion mediated phosphate absorption. Thus, the inhibition of NPT2b mediated phosphate transport in rats in the presence of NHE3 inhibition has an effect that exceeds its effect in the absence of NHE3 inhibition, leading to the observed synergism on phosphate absorption between NPT2b and NHE3 inhibition.
Collapse
Affiliation(s)
- Xiaojun Wang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Xiaohong Yu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Kostas Gavardinas
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Asim Dey
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Hong Y. Zhang
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Gina Porter
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Leah Porras
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Lan Yu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Haihong Guo
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Charles A. Reidy
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Joseph V. Haas
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Yanping Xu
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Mark C. Kowala
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Prabhakar K. Jadhav
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - John R. Wetterau
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| |
Collapse
|
6
|
Cserne Szappanos H, Viola HM, Ito DW, Lim S, Mangala M, Holliday M, Barratt Ross S, Semsarian C, Hill A, Dixon RE, Hool LC. Cytoskeletal disarray increases arrhythmogenic vulnerability during sympathetic stimulation in a model of hypertrophic cardiomyopathy. Sci Rep 2023; 13:11296. [PMID: 37438479 PMCID: PMC10338442 DOI: 10.1038/s41598-023-38296-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) patients are advised to avoid strenuous exercise due to increased risk of arrhythmias. Mice expressing the human FHC-causing mutation R403Q in the myosin heavy chain gene (MYH6) recapitulate the human phenotype, including cytoskeletal disarray and increased arrhythmia susceptibility. Following in vivo administration of isoproterenol, mutant mice exhibited tachyarrhythmias, poor recovery and fatigue. Arrhythmias were attenuated with the β-blocker atenolol and protein kinase A inhibitor PKI. Mutant cardiac myocytes had significantly prolonged action potentials and triggered automaticity due to reduced repolarization reserve and connexin 43 expression. Isoproterenol shortened cycle length, and escalated electrical instability. Surprisingly isoproterenol did not increase CaV1.2 current. We found alterations in CaV1.2-β1 adrenergic receptor colocalization assessed using super-resolution nanoscopy, and increased CaV1.2 phosphorylation in mutant hearts. Our results reveal for the first time that altered ion channel expression, co-localization and β-adrenergic receptor signaling associated with myocyte disarray contribute to electrical instability in the R403Q mutant heart.
Collapse
Affiliation(s)
| | - Helena M Viola
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Danica W Ito
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Seakcheng Lim
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Melissa Mangala
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Mira Holliday
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Samantha Barratt Ross
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology, Centenary Institute, Sydney, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Adam Hill
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Livia C Hool
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia.
- Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Martínez-Solano J, Martínez-Sellés M. Sudden Death in Men Versus Women with Heart Failure. Curr Heart Fail Rep 2023; 20:129-137. [PMID: 36881322 DOI: 10.1007/s11897-023-00596-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Sudden cardiac death (SCD) represents the most feared complication of heart failure (HF). This review intends to provide insight on our current knowledge of sex differences in SCD mechanisms, prevention, and management in HF patients. RECENT FINDINGS Women with HF present a better prognosis than men and have a lower incidence of SCD, irrespective of the presence of ischemic heart disease and age. The influence of sex hormones, sex differences in intracellular calcium handling, and a differential myocardial remodeling may explain such a gap between men and women. Both HF drugs and ventricular arrhythmias ablation seems also useful for the management of women at risk of SCD, but special care must be taken with the use of antiarrhythmic QT-prolonging drugs. However, implantable cardioverter defibrillator (ICD) use has not been shown to be equally effective in women than men. Sex-specific recommendations regarding SCD in HF are still lacking due to the scarcity of information and the under-representation of women in clinical trials. Further investigation is required to provide specific risk stratification models in women. Cardiac magnetic resonance imaging, genetics development, and personalized medicine will probably play an increasing role in this evaluation.
Collapse
Affiliation(s)
- Jorge Martínez-Solano
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007, Madrid, Spain
| | - Manuel Martínez-Sellés
- Servicio de Cardiología, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, 28007, Madrid, Spain. .,Universidad Europea, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
8
|
Zhou N, Gong J, Liang X, Liu W, Li H, Li W. Preoperative Risk Prediction Score for and In-Hospital Clinical Outcomes of Reperfusion Ventricular Fibrillation After Release of Aortic Cross-Clamps: A Retrospective Study. J Cardiothorac Vasc Anesth 2023; 37:127-134. [PMID: 36331419 DOI: 10.1053/j.jvca.2022.09.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/11/2022]
Abstract
Reperfusion ventricular fibrillation (VF) is a common arrhythmia after cardiac surgery. Predictors of reperfusion VF and its relationships with the adverse prognosis are still unclear. This study aimed to identify a risk score model to predict reperfusion VF and its effect on in-hospital outcomes. The authors enrolled 1,024 consecutive patients undergoing cardiac surgery, and a total of 823 patients were included in the study. A novel risk score model was developed following logistic regression analysis of the predictors of reperfusion VF. The receiver operating characteristic curve was used to validate this model, and the effect of VF on prognosis was later identified in multivariate or Kaplan-Meier analyses. Risk factors for reperfusion VF occurrence included weight >55 kg, preoperative left ventricular ejection fraction <50%, prior stroke, hypertension, aortic valve replacement, HTK solution, and the use of ≥3 grafts in coronary artery bypass grafting. A novel risk score model was developed using the abovementioned variables, and points were assigned to each risk factor according to its odds ratio. A high score (>6) predicted greater than 65% of patients with VF occurrence. Reperfusion VF increased the risk of in-hospital cardiovascular death (p = 0.03) and renal replacement therapy postoperatively (p = 0.022). More attention should be given to reperfusion VF due to an adverse postoperative prognosis, and the developed risk score model may predict this risk.
Collapse
Affiliation(s)
- Ning Zhou
- The Sixth Affiliated Hospital of Guangzhou Medical University: Department of Anesthesiology, Qingyuan people's Hospital, Qingyuan City, Guangdong Province, People's Republic of China
| | - Jianping Gong
- The Sixth Affiliated Hospital of Guangzhou Medical University: Department of Anesthesiology, Qingyuan people's Hospital, Qingyuan City, Guangdong Province, People's Republic of China
| | - XiuSheng Liang
- The Sixth Affiliated Hospital of Guangzhou Medical University: Department of Anesthesiology, Qingyuan people's Hospital, Qingyuan City, Guangdong Province, People's Republic of China
| | - Weihua Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University: Department of Anesthesiology, Qingyuan people's Hospital, Qingyuan City, Guangdong Province, People's Republic of China
| | - Heng Li
- The Sixth Affiliated Hospital of Guangzhou Medical University: Department of Anesthesiology, Qingyuan people's Hospital, Qingyuan City, Guangdong Province, People's Republic of China
| | - Weichao Li
- The Sixth Affiliated Hospital of Guangzhou Medical University: Department of Anesthesiology, Qingyuan people's Hospital, Qingyuan City, Guangdong Province, People's Republic of China.
| |
Collapse
|
9
|
Hogea T, Suciu BA, Ivănescu AD, Carașca C, Chinezu L, Arbănași EM, Russu E, Kaller R, Arbănași EM, Mureșan AV, Radu CC. Increased Epicardial Adipose Tissue (EAT), Left Coronary Artery Plaque Morphology, and Valvular Atherosclerosis as Risks Factors for Sudden Cardiac Death from a Forensic Perspective. Diagnostics (Basel) 2023; 13:diagnostics13010142. [PMID: 36611434 PMCID: PMC9818730 DOI: 10.3390/diagnostics13010142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background: In sudden cardiac deaths (SCD), visceral adipose tissue has begun to manifest interest as a standalone cardiovascular risk factor. Studies have shown that epicardial adipose tissue can be seen as a viable marker of coronary atherosclerosis. This study aimed to evaluate, from a forensic perspective, the correlation between body mass index (BMI), heart weight, coronary and valvular atherosclerosis, left ventricular morphology, and the thickness of the epicardial adipose tissue (EAT) in sudden cardiac deaths, establishing an increased thickness of EAT as a novel risk factor. Methods: This is a retrospective case−control descriptive study that included 80 deaths that were autopsied, 40 sudden cardiac deaths, and 40 control cases who hanged themselves and had unknown pathologies prior to their death. In all the autopsies performed, the thickness of the epicardial adipose tissue was measured in two regions of the left coronary artery, and the left ventricular morphology, macro/microscopically quantified coronary and valvular atherosclerosis, and weight of the heart were evaluated. Results: This study revealed a higher age in the SCD group (58.82 ± 9.67 vs. 53.4 ± 13.00; p = 0.03), as well as a higher incidence in females (p = 0.03). In terms of heart and coronary artery characteristics, there were higher values of BMI (p = 0.0009), heart weight (p < 0.0001), EAT of the left circumflex artery (LCx) (p < 0.0001), and EAT of the left anterior descending artery (LAD) (p < 0.0001). In the multivariate analysis, a high baseline value of BMI (OR: 4.05; p = 0.004), heart weight (OR: 5.47; p < 0.001), EAT LCx (OR: 23.72; p < 0.001), and EAT LAD (OR: 21.07; p < 0.001) were strong independent predictors of SCD. Moreover, age over 55 years (OR: 2.53; p = 0.045), type Vb plaque (OR: 17.19; p < 0.001), mild valvular atherosclerosis (OR: 4.88; p = 0.002), and moderate left ventricle dilatation (OR: 16.71; p = 0.008) all act as predictors of SCD. Conclusions: The data of this research revealed that higher baseline values of BMI, heart weight, EAT LCx, and EAT LAD highly predict SCD. Furthermore, age above 55 years, type Vb plaque, mild valvular atherosclerosis, and left ventricle dilatation were all risk factors for SCD.
Collapse
Affiliation(s)
- Timur Hogea
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Bogdan Andrei Suciu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Adrian Dumitru Ivănescu
- Department of Anatomy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Cosmin Carașca
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
- Correspondence: ; Tel.: +40-751-065-887
| | - Laura Chinezu
- Department of Histology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Emil Marian Arbănași
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Eliza Russu
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Réka Kaller
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Eliza Mihaela Arbănași
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Adrian Vasile Mureșan
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Corina Carmen Radu
- Department of Forensic Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
10
|
Kunz M, Götzinger F, Emrich I, Schwenger V, Böhm M, Mahfoud F. Cardio-renal interaction - Clinical trials update 2022. Nutr Metab Cardiovasc Dis 2022; 32:2451-2458. [PMID: 36064690 DOI: 10.1016/j.numecd.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 10/31/2022]
Abstract
AIMS Chronic kidney disease is a common cardiovascular risk indicator and strongly associated with increased morbidity and mortality. The heart and kidneys are pathophysiologically closely connected, which becomes particularly obvious in patients with cardiorenal syndrome. This review summarizes clinically relevant studies on the cardio-renal interaction published in 2021 and 2022. DATA SYNTHESIS Selected trials published in high-impact journals were chosen from the database Pubmed and included in this review. New evidence about the selective mineralocorticoid receptor antagonist finerenone and the renoprotective sodium-glucose co-transporter-2-inhibitors (SGLT2-Inhibitors) are discussed and we update on novel insights about the treatment of arterial hypertension in patients with severe chronic kidney disease with the thiazide-like diuretic chlorthalidone. Finally, data on infective endocarditis in patients on chronic hemodialysis and the treatment of secondary hyperparathyroidism with the calcimimetic drug etelcalcetide in patients with end stage kidney disease are critically reviewed. CONCLUSION Several important studies investigating cardio-renal interactions were recently published may affect clinical practice. The graphical abstract (Fig. 1) depicts the most relevant clinical studies investigating cardio-renal interactions.
Collapse
Affiliation(s)
- Michael Kunz
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, 66424 Homburg, Germany.
| | - Felix Götzinger
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, 66424 Homburg, Germany
| | - Insa Emrich
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, 66424 Homburg, Germany
| | - Vedat Schwenger
- Department of Nephrology, Klinikum der Landeshauptstadt Stuttgart gKAöR - Katharinenhospital, 70174 Stuttgart, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, 66424 Homburg, Germany
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital Saarland, Saarland University, 66424 Homburg, Germany
| |
Collapse
|
11
|
Muscogiuri G, Guaricci AI, Soldato N, Cau R, Saba L, Siena P, Tarsitano MG, Giannetta E, Sala D, Sganzerla P, Gatti M, Faletti R, Senatieri A, Chierchia G, Pontone G, Marra P, Rabbat MG, Sironi S. Multimodality Imaging of Sudden Cardiac Death and Acute Complications in Acute Coronary Syndrome. J Clin Med 2022; 11:jcm11195663. [PMID: 36233531 PMCID: PMC9573273 DOI: 10.3390/jcm11195663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Sudden cardiac death (SCD) is a potentially fatal event usually caused by a cardiac arrhythmia, which is often the result of coronary artery disease (CAD). Up to 80% of patients suffering from SCD have concomitant CAD. Arrhythmic complications may occur in patients with acute coronary syndrome (ACS) before admission, during revascularization procedures, and in hospital intensive care monitoring. In addition, about 20% of patients who survive cardiac arrest develop a transmural myocardial infarction (MI). Prevention of ACS can be evaluated in selected patients using cardiac computed tomography angiography (CCTA), while diagnosis can be depicted using electrocardiography (ECG), and complications can be evaluated with cardiac magnetic resonance (CMR) and echocardiography. CCTA can evaluate plaque, burden of disease, stenosis, and adverse plaque characteristics, in patients with chest pain. ECG and echocardiography are the first-line tests for ACS and are affordable and useful for diagnosis. CMR can evaluate function and the presence of complications after ACS, such as development of ventricular thrombus and presence of myocardial tissue characterization abnormalities that can be the substrate of ventricular arrhythmias.
Collapse
Affiliation(s)
- Giuseppe Muscogiuri
- Department of Radiology, Istituto Auxologico Italiano IRCCS, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Correspondence:
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Nicola Soldato
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Riccardo Cau
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria (A.O.U.), di Cagliari-Polo di Monserrato, 09124 Cagliari, Italy
| | - Paola Siena
- University Cardiology Unit, Department of Interdisciplinary Medicine, University of Bari, 70121 Bari, Italy
| | - Maria Grazia Tarsitano
- Department of Medical and Surgical Science, University Magna Grecia, 88100 Catanzaro, Italy
| | - Elisa Giannetta
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy
| | - Davide Sala
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Paolo Sganzerla
- Department of Cardiac, Neurological and Metabolic Sciences, San Luca Hospital, Istituto Auxologico Italiano IRCCS, 20149 Milan, Italy
| | - Marco Gatti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Riccardo Faletti
- Radiology Unit, Department of Surgical Sciences, University of Turin, 10124 Turin, Italy
| | - Alberto Senatieri
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
| | | | | | - Paolo Marra
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Mark G. Rabbat
- Division of Cardiology, Loyola University of Chicago, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| | - Sandro Sironi
- School of Medicine, University of Milano-Bicocca, 20126 Milan, Italy
- Department of Radiology, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| |
Collapse
|
12
|
Dörr K, Kainz A, Oberbauer R. Lessons from effect of etelcalcetide on left ventricular hypertrophy in patients with end-stage kidney disease. Curr Opin Nephrol Hypertens 2022; 31:339-343. [PMID: 35703173 PMCID: PMC9394497 DOI: 10.1097/mnh.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Patients with end-stage kidney disease (ESKD) frequently develop left ventricular hypertrophy (LVH), which is associated with an exceptionally high risk of cardiovascular events and mortality. This review focuses on interventional studies that modify levels of fibroblast growth factor 23 (FGF23) and examine effects on myocardial hypertrophy, cardiovascular events and mortality. RECENT FINDINGS Quantitative evaluations of trials of calcimimetics found no effects on cardiovascular events and cardiovascular and all-cause mortality when compared with placebo. However, a recent randomized, controlled trial of etelcalcetide versus alfacalcidol showed that etelcalcetide effectively inhibited the progression of LVH in comparison to vitamin D in patients on haemodialysis after 1 year of treatment. Prior to that, oral calcimimetic treatment has already been shown to reduce left ventricular mass in patients on haemodialysis, whereas treatment with active vitamin D or mineralocorticoids was ineffective in patients with ESKD. SUMMARY Data from a recent trial of etelcalcetide on LVH suggest that FGF23 may be a possible therapeutic target for cardiac risk reduction in patients on haemodialysis. If these findings are confirmed by further research, it might be speculated that a treatment shift from active vitamin D towards FGF23-lowering therapy may occur in patients on haemodialysis.
Collapse
|
13
|
Liu Y, Cui C, Li Y, Wang Y, Hu Y, Bai M, Huang D, Zheng Q, Liu L. Predictive value of the echocardiographic noninvasive myocardial work index for left ventricular reverse remodeling in patients with multivessel coronary artery disease after percutaneous coronary intervention. Quant Imaging Med Surg 2022; 12:3725-3737. [PMID: 35782270 PMCID: PMC9246722 DOI: 10.21037/qims-21-1066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/15/2022] [Indexed: 09/29/2023]
Abstract
BACKGROUND Coronary artery disease (CAD) can lead to left ventricular (LV) remodeling, which, in adverse cases, has been associated with heart failure and increased mortality. Here, we aimed to evaluate the predictive value of the noninvasive myocardial work index (NIMWI) for LV reverse remodeling in patients with multivessel CAD after percutaneous coronary intervention (PCI). METHODS A total of 88 consecutive patients with multivessel CAD treated with PCI were identified and categorized according to the presence of LV reverse remodeling 3 months after PCI [≥15% decrease in the LV end diastolic volume (LVEDV)]. With the LV pressure-strain loop (PSL) technique, NIMWIs, including the global work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE), were statistically compared between the reverse LV remodeling group and nonreverse LV remodeling group 1 week before PCI. RESULTS Significantly lower GWI, GCW, and GWE, and significantly higher GWW were observed in the reverse LV remodeling group compared with the nonreverse LV remodeling group (P<0.05). Left ventricular mass index (LVMI), GCW, and GWE were independently associated with early LV reverse remodeling. Receiver operating characteristic (ROC) curve analysis demonstrated that GCW was the most powerful predictor of early LV reverse remodeling in patients with CAD [area under the curve (AUC) =0.867]. The optimal cutoff GCW value predictive of early LV reverse remodeling was 1,438.5 mmHg% (sensitivity, 85%; specificity, 70%). CONCLUSIONS GCW, among the NIMWIs, may be the major predictor of LV reverse remodeling in patients with multivessel CAD after PCI. NIMWI could potentially provide a new reference index for the quantitative evaluation of LV myocardial work.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Cunying Cui
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Li
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wang
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbin Hu
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Minfu Bai
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Danqing Huang
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Zheng
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Lin Liu
- Department of Ultrasound, Fuwai Central China Cardiovascular Hospital, Henan Provincial People’s Hospital, Central China Fuwai Hospital of Zhengzhou University, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Roca-Luque I, Quinto L, Sanchez-Somonte P, Garre P, Alarcón F, Zaraket F, Vazquez S, Prat-Gonzalez S, Ortiz-Perez JT, Guasch E, Tolosana JM, Arbelo E, Berruezo A, Sitges M, Brugada J, Mont L. Late Potential Abolition in Ventricular Tachycardia Ablation. Am J Cardiol 2022; 174:53-60. [PMID: 35437160 DOI: 10.1016/j.amjcard.2022.02.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/12/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Ventricular tachycardia (VT) substrate-based ablation has become the gold standard treatment for patients with structural heart disease-related VT. VT is linked to re-entry in relation to myocardial scarring, with areas of conduction block (core scar) and of slow conduction (border zone). Slow conduction areas can be detected in sinus rhythm as late potentials (LPs). LP abolition has been shown to be the best end point to avoid long-term recurrences. Our study aimed to analyze the challenges of LP abolition and the predictors of failure. We analyzed 169 consecutive patients with structural heart disease (61% ischemic cardiomyopathy, left ventricular ejection fraction: 37 ± 13%) who underwent VT ablation between 2013 and 2018. A preprocedural clinical evaluation, including cardiac magnetic resonance, was done in 66% of patients. Electroanatomical mapping with the identification of LPs was performed in all patients. Noninducibility was achieved in 71% (119), and complete LP abolition was achieved in 61% (103) of patients. Incomplete LP abolition was a powerful predictor of VT recurrence (67% vs 33%, hazard ratio 3.19 [2.1 to 4.7]; p <0.001). Lack of use of a high-density mapping catheter (odds ratio 6.2, 1.2 to 38.1; p = 0.028), the septal substrate (odds ratio 9.34, 2.27 to 38.4; p = 0.002), and larger left ventricular mass (190 ± 58 g vs 156 ± 46 g, p = 0.002) were predictors of incomplete LP abolition. The main reasons that contributed to unsuccessful LP abolition were anatomic obstacles (such as the conduction system) and large extension of the LP area. In conclusion, incomplete LP abolition is related to VT recurrence. Lack of use of a high-density mapping catheter, the septal substrate, and larger left ventricular mass are related to incomplete LP abolition.
Collapse
|
15
|
Wu SJ, Hsieh YC. Sudden cardiac death in heart failure with preserved ejection fraction: an updated review. INTERNATIONAL JOURNAL OF ARRHYTHMIA 2022. [DOI: 10.1186/s42444-021-00059-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AbstractDespite the advances in medical and device therapies for heart failure (HF), sudden cardiac death (SCD) remains a tremendous global burden in patients with HF. Among the risk factors for SCD, HF has the greatest impact. Previous studies focusing on patients with systolic dysfunction have found several predictive factors associated with SCD, leading to the subsequent development of strategies of primary prevention, like placement of implantable cardioverter-defibrillator (ICD) in high-risk patients. Although patients with HF with preserved ejection fraction (HFpEF) were less prone to SCD compared to patients with HF with reduced ejection fraction (HFrEF), patients with HFpEF did account for a significant proportion of all HF patients who encountered SCD. The cutoff value of left ventricular ejection fraction (LVEF) to define the subset of HF did not reach consensus until 2016 when the European Society of Cardiology proposed a new classification system by LVEF. There is a great unmet need in the field of SCD in HFpEF regarding risk stratification and appropriate device therapy with ICD implantation. In this article, we will approach SCD in HFpEF from HFrEF subsets. We also aim at clarifying the mechanisms, risk factors, and prevention of SCD in HFpEF.
Collapse
|
16
|
Westaby JD, Miles C, Chis Ster I, Cooper STE, Antonios TF, Meijles D, Behr ER, Sheppard MN. Characterisation of hypertensive heart disease: pathological insights from a sudden cardiac death cohort to inform clinical practice. J Hum Hypertens 2022; 36:246-253. [PMID: 33654238 DOI: 10.1038/s41371-021-00507-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 11/09/2022]
Abstract
Hypertensive heart disease refers to changes in the myocardium that result from hypertension. The relationship between hypertensive heart disease and sudden cardiac death is well established, but there are few pathological studies. We examined the clinical and pathological features of hypertensive heart disease in sudden cardiac death victims from a national cardiovascular pathology registry. We investigated 5239 cases of sudden cardiac death between 1994 and 2018. Hearts were examined by two expert cardiac pathologists. Diagnostic criteria included history of hypertension, increased heart weight and left ventricular wall thickness in the absence of other causes. Collagen was quantified using picrosirius red staining and imaging software. Of 75 sudden cardiac death cases due to hypertensive heart disease (age at death: 54 ± 16 years; 56% males), 56 (75%) reported no prior cardiac symptoms. Thirty-four (45%) recorded a BMI ≥ 30. Only two (2.7%) had hypertensive heart disease diagnosed antemortem. Four (5%) were diagnosed clinically with hypertrophic cardiomyopathy, but lacked myocyte disarray at autopsy. All hearts showed concentric left ventricular hypertrophy and myocyte hypertrophy. Fibrosis was identified microscopically in 59 cases (81%). The posterior left ventricular wall showed the greatest increase in the percentage of collagen in hypertensive diseased hearts compared to controls (25.2% vs 17.9%, p = 0.034). Most sudden deaths due to hypertensive heart disease occur without prior cardiac symptoms; thus, clinical risk stratification is challenging. Hypertensive heart disease can be misdiagnosed in life as hypertrophic cardiomyopathy which has major implications for relatives. Pathologists require a history of hypertension and histology for a definitive diagnosis of hypertensive heart disease.
Collapse
Affiliation(s)
- J D Westaby
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK.
| | - C Miles
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
| | - I Chis Ster
- Infection and Immunity Research Institute, St George's University of London, London, SW17 0RE, UK
| | - S T E Cooper
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
| | - T F Antonios
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
| | - D Meijles
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
| | - E R Behr
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
| | - M N Sheppard
- Cardiology Clinical Academic Group, Molecular and Clinical Sciences Research Institute, St George's University of London, London, SW17 0RE, UK
| |
Collapse
|
17
|
Maki KC, Wilcox ML, Dicklin MR, Kakkar R, Davidson MH. Left ventricular mass regression, all-cause and cardiovascular mortality in chronic kidney disease: a meta-analysis. BMC Nephrol 2022; 23:34. [PMID: 35034619 PMCID: PMC8761349 DOI: 10.1186/s12882-022-02666-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 12/22/2022] Open
Abstract
Background Cardiovascular disease is an important driver of the increased mortality associated with chronic kidney disease (CKD). Higher left ventricular mass (LVM) predicts increased risk of adverse cardiovascular outcomes and total mortality, but previous reviews have shown no clear association between intervention-induced LVM change and all-cause or cardiovascular mortality in CKD. Methods The primary objective of this meta-analysis was to investigate whether treatment-induced reductions in LVM over periods ≥12 months were associated with all-cause mortality in patients with CKD. Cardiovascular mortality was investigated as a secondary outcome. Measures of association in the form of relative risks (RRs) with associated variability and precision (95% confidence intervals [CIs]) were extracted directly from each study, when reported, or were calculated based on the published data, if possible, and pooled RR estimates were determined. Results The meta-analysis included 42 trials with duration ≥12 months: 6 of erythropoietin stimulating agents treating to higher vs. lower hemoglobin targets, 10 of renin-angiotensin-aldosterone system inhibitors vs. placebo or another blood pressure lowering agent, 14 of modified hemodialysis regimens, and 12 of other types of interventions. All-cause mortality was reported in 121/2584 (4.86%) subjects in intervention groups and 168/2606 (6.45%) subjects in control groups. The pooled RR estimate of the 27 trials ≥12 months with ≥1 event in ≥1 group was 0.72 (95% CI 0.57 to 0.90, p = 0.005), with little heterogeneity across studies. Directionalities of the associations in intervention subgroups were the same. Sensitivity analyses of ≥6 months (34 trials), ≥9 months (29 trials), and >12 months (10 trials), and including studies with no events in either group, demonstrated similar risk reductions to the primary analysis. The point estimate for cardiovascular mortality was similar to all-cause mortality, but not statistically significant: RR 0.67, 95% CI 0.39 to 1.16. Conclusions These results suggest that LVM regression may be a useful surrogate marker for benefits of interventions intended to reduce mortality risk in patients with CKD. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-022-02666-1.
Collapse
Affiliation(s)
- Kevin C Maki
- Department of Applied Health Science, Indiana University School of Public Health, 1025 E 7th St #111, Bloomington, IN, 47405, USA. .,Midwest Biomedical Research, Addison, IL, USA.
| | | | | | | | | |
Collapse
|
18
|
Rajan D, Garcia R, Svane J, Tfelt-Hansen J. Risk of sports-related sudden cardiac death in women. Eur Heart J 2021; 43:1198-1206. [PMID: 34894223 DOI: 10.1093/eurheartj/ehab833] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/21/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Sudden cardiac death (SCD) is a tragic incident accountable for up to 50% of deaths from cardiovascular disease. Sports-related SCD (SrSCD) is a phenomenon which has previously been associated with both competitive and recreational sport activities. SrSCD has been found to occur 5-33-fold less frequently in women than in men, and the sex difference persists despite a rapid increase in female participation in sports. Establishing the reasons behind this difference could pinpoint targets for improved prevention of SrSCD. Therefore, this review summarizes existing knowledge on epidemiology, characteristics, and causes of SrSCD in females, and elaborates on proposed mechanisms behind the sex differences. Although literature concerning the aetiology of SrSCD in females is limited, proposed mechanisms include sex-specific variations in hormones, blood pressure, autonomic tone, and the presentation of acute coronary syndromes. Consequently, these biological differences impact the degree of cardiac hypertrophy, dilation, right ventricular remodelling, myocardial fibrosis, and coronary atherosclerosis, and thereby the occurrence of ventricular arrhythmias in male and female athletes associated with short- and long-term exercise. Finally, cardiac examinations such as electrocardiograms and echocardiography are useful tools allowing easy differentiation between physiological and pathological cardiac adaptations following exercise in women. However, as a significant proportion of SrSCD causes in women are non-structural or unexplained after autopsy, channelopathies may play an important role, encouraging attention to prodromal symptoms and family history. These findings will aid in the identification of females at high risk of SrSCD and development of targeted prevention for female sport participants.
Collapse
Affiliation(s)
- Deepthi Rajan
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Section 2142, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - Rodrigue Garcia
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Section 2142, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.,The Department of Cardiology, University Hospital of Poitiers, 2 rue de la Milétrie, 86021 Poitiers, France
| | - Jesper Svane
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Section 2142, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.,Department of Forensic Medicine, Copenhagen University, Frederik V's Vej 11, 2100 Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Section 2142, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark.,Department of Forensic Medicine, Copenhagen University, Frederik V's Vej 11, 2100 Copenhagen, Denmark
| |
Collapse
|
19
|
Improta-Caria AC, Aras MG, Nascimento L, De Sousa RAL, Aras-Júnior R, Souza BSDF. MicroRNAs Regulating Renin-Angiotensin-Aldosterone System, Sympathetic Nervous System and Left Ventricular Hypertrophy in Systemic Arterial Hypertension. Biomolecules 2021; 11:biom11121771. [PMID: 34944415 PMCID: PMC8698399 DOI: 10.3390/biom11121771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene and protein expression. MicroRNAs also regulate several cellular processes such as proliferation, differentiation, cell cycle, apoptosis, among others. In this context, they play important roles in the human body and in the pathogenesis of diseases such as cancer, diabetes, obesity and hypertension. In hypertension, microRNAs act on the renin-angiotensin-aldosterone system, sympathetic nervous system and left ventricular hypertrophy, however the signaling pathways that interact in these processes and are regulated by microRNAs inducing hypertension and the worsening of the disease still need to be elucidated. Thus, the aim of this review is to analyze the pattern of expression of microRNAs in these processes and the possible associated signaling pathways.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Department of Physical Education in Cardiology of the State of Bahia, Brazilian Society of Cardiology, Salvador 41170-130, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| | - Marcela Gordilho Aras
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Luca Nascimento
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | | | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 22281-100, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| |
Collapse
|
20
|
Dumitru RB, Bissell LA, Erhayiem B, Kidambi A, Dumitru AMH, Fent G, Abignano G, Donica H, Burska A, Greenwood JP, Biglands J, Schlosshan D, Del Galdo F, Plein S, Buch MH. Cardiovascular outcomes in systemic sclerosis with abnormal cardiovascular MRI and serum cardiac biomarkers. RMD Open 2021; 7:rmdopen-2021-001689. [PMID: 34663635 PMCID: PMC8524374 DOI: 10.1136/rmdopen-2021-001689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Objectives To explore the prognostic value of subclinical cardiovascular (CV) imaging measures and serum cardiac biomarkers in systemic sclerosis (SSc) for the development of CV outcomes of primary heart involvement (pHI). Methods Patients with SSc with no clinical SSc-pHI and no history of heart disease underwent cardiovascular magnetic resonance (CMR) imaging, and measurement of serum high-sensitivity-troponin I (hs-TnI) and N-terminal-pro-brain natriuretic peptide (NT-proBNP). Follow-up clinical and CV outcome data were recorded. CV outcomes were defined as myocarditis, arrhythmia and/or echocardiographic functional impairment including systolic dysfunction and/or diastolic dysfunction. Results Seventy-four patients with a median (IQR) age of 57 (49, 63) years, 32% diffuse cutaneous SSc, 39% interstitial lung disease, 30% Scl70+ were followed up for median (IQR) 22 (15, 54) months. Ten patients developed CV outcomes, comprising one patient with myocarditis and systolic dysfunction and nine arrhythmias: three non-sustained ventricular tachycardia and six supraventricular arrhythmias. The probability of CV outcomes was considerably higher in those with NT-proBNP >125 pg/mL versus normal NT-proBNP (X2=4.47, p=0.035). Trend for poorer time-to-event was noted in those with higher extracellular volume (ECV; indicating diffuse fibrosis) and hs-TnI levels versus those with normal values (X2=2.659, p=0.103; X2=2.530, p=0.112, respectively). In a predictive model, NT-proBNP >125 pg/mL associated with CV outcomes (OR=5.335, p=0.040), with a trend observed for ECV >29% (OR=4.347, p=0.073). Conclusion These data indicate standard serum cardiac biomarkers (notably NT-proBNP) and CMR indices of myocardial fibrosis associate with adverse CV outcomes in SSc. This forms the basis to develop a prognostic model in larger, longitudinal studies.
Collapse
Affiliation(s)
- Raluca B Dumitru
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, West Yorkshire, UK
| | - Lesley-Anne Bissell
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, West Yorkshire, UK
| | - Bara Erhayiem
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Ananth Kidambi
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK.,Leeds Teaching Hospitals NHS Trust Department of Cardiology, Leeds, West Yorkshire, UK
| | - Ana-Maria H Dumitru
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK.,Faculty of Business Economics and Law, University of Surrey, Guildford, Surrey, UK
| | - Graham Fent
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK
| | - Giuseppina Abignano
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, West Yorkshire, UK
| | - Helena Donica
- Department of Biochemical Diagnostics, Medical University of Lublin, Lublin, Lubelskie, Poland
| | - Agata Burska
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, West Yorkshire, UK
| | - John P Greenwood
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK.,Leeds Teaching Hospitals NHS Trust Department of Cardiology, Leeds, West Yorkshire, UK
| | - John Biglands
- National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, West Yorkshire, UK
| | - Dominik Schlosshan
- Leeds Teaching Hospitals NHS Trust Department of Cardiology, Leeds, West Yorkshire, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK.,National Institute for Health Research, Leeds Biomedical Research Centre, Leeds, West Yorkshire, UK
| | - Sven Plein
- Department of Biomedical Imaging Science, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, West Yorkshire, UK.,Leeds Teaching Hospitals NHS Trust Department of Cardiology, Leeds, West Yorkshire, UK
| | - Maya H Buch
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds Faculty of Medicine and Health, Leeds, West Yorkshire, UK .,Centre for Musculoskeletal Research, School of Biological Sciences, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
21
|
Sheng R, Chen JL, Qin ZH. Cerebral conditioning: Mechanisms and potential clinical implications. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
22
|
Gomez J. Left ventricular myocardial volume in CZT SPECT: Expanding the horizon? J Nucl Cardiol 2021; 28:1634-1635. [PMID: 31858427 DOI: 10.1007/s12350-019-01995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Affiliation(s)
- Javier Gomez
- Division of Cardiology, John H. Stroger, Jr. Hospital of Cook County, 1901 W. Harrison St., Suite # 3620, Chicago, IL, 60612, USA.
| |
Collapse
|
23
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Targeting mitochondrial reactive oxygen species-mediated oxidative stress attenuates nicotine-induced cardiac remodeling and dysfunction. Sci Rep 2021; 11:13845. [PMID: 34226619 PMCID: PMC8257608 DOI: 10.1038/s41598-021-93234-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/22/2021] [Indexed: 01/20/2023] Open
Abstract
Long-term nicotine intake is associated with an increased risk of myocardial damage and dysfunction. However, it remains unclear whether targeting mitochondrial reactive oxygen species (ROS) prevents nicotine-induced cardiac remodeling and dysfunction. This study investigated the effects of mitoTEMPO (a mitochondria-targeted antioxidant), and resveratrol (a sirtuin activator) , on nicotine-induced cardiac remodeling and dysfunction. Sprague–Dawley rats were administered 0.6 mg/kg nicotine daily with 0.7 mg/kg mitoTEMPO, 8 mg/kg resveratrol, or vehicle alone for 28 days. At the end of the study, rat hearts were collected to analyze the cardiac structure, mitochondrial ROS level, oxidative stress, and inflammation markers. A subset of rat hearts was perfused ex vivo to determine the cardiac function and myocardial susceptibility to ischemia–reperfusion injury. Nicotine administration significantly augmented mitochondrial ROS level, cardiomyocyte hypertrophy, fibrosis, and inflammation in rat hearts. Nicotine administration also induced left ventricular dysfunction, which was worsened by ischemia–reperfusion in isolated rat hearts. MitoTEMPO and resveratrol both significantly attenuated the adverse cardiac remodeling induced by nicotine, as well as the aggravation of postischemic ventricular dysfunction. Findings from this study show that targeting mitochondrial ROS with mitoTEMPO or resveratrol partially attenuates nicotine-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Anand Ramalingam
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Program of Biomedical Science, Centre of Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Program of Biomedical Science, Centre of Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Giamouzis G, Dimos A, Xanthopoulos A, Skoularigis J, Triposkiadis F. Left ventricular hypertrophy and sudden cardiac death. Heart Fail Rev 2021; 27:711-724. [PMID: 34184173 DOI: 10.1007/s10741-021-10134-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 12/31/2022]
Abstract
Sudden cardiac death (SCD) is among the leading causes of death worldwide, and it remains a public health problem, as it involves young subjects. Current guideline-directed risk stratification for primary prevention is largely based on left ventricular (LV) ejection fraction (LVEF), and preventive strategies such as implantation of a cardiac defibrillator (ICD) are justified only for documented low LVEF (i.e., ≤ 35%). Unfortunately, only a small percentage of primary prevention ICDs, implanted on the basis of a low LVEF, will deliver life-saving therapies on an annual basis. On the other hand, the vast majority of patients that experience SCD have LVEF > 35%, which is clamoring for better understanding of the underlying mechanisms. It is mandatory that additional variables be considered, both independently and in combination with the EF, to improve SCD risk prediction. LV hypertrophy (LVH) is a strong independent risk factor for SCD regardless of the etiology and the severity of symptoms. Concentric and eccentric LV hypertrophy, and even earlier concentric remodeling without hypertrophy, are all associated with increased risk of SCD. In this paper, we summarize the physiology and physiopathology of LVH, review the epidemiological evidence supporting the association between LVH and SCD, briefly discuss the mechanisms linking LVH with SCD, and emphasize the need to evaluate LV geometry as a potential risk stratification tool regardless of the LVEF.
Collapse
Affiliation(s)
- Grigorios Giamouzis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece.,Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Apostolos Dimos
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece
| | - Andrew Xanthopoulos
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece
| | - John Skoularigis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece.,Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Filippos Triposkiadis
- Department of Cardiology, University General Hospital of Larissa, Larissa, Greece. .,Department of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| |
Collapse
|
25
|
Park SK, Ryoo JH, Kang JG, Jung JY. Smoking Status, Intensity of Smoking, and Their Relation to Left Ventricular Hypertrophy in Working Aged Korean Men. Nicotine Tob Res 2021; 23:1176-1182. [PMID: 33537724 DOI: 10.1093/ntr/ntab020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 01/31/2021] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Smoking is an established risk factor for atherosclerotic cardiovascular disease. However, the effect of smoking on left ventricular (LV) structure has been less studied. This study was designed to assess the association of smoking status and smoking intensity with left ventricular hypertrophy (LVH). METHODS Study subjects were 53,666 working aged Korean men who received echocardiography as an item of health check up. They were grouped by smoking status (never, former, and current smokers), pack-year of smoking (never, <10, 10-19.9, and ≥20 pack-year), and urine cotinine excretion (<100, 100-999, ≥1000 ng/mL). Multivariate logistic regression analysis was used in calculating adjusted odds ratios (ORs) and 95% confidence interval for LVH (adjusted odds ratios [95% confidence interval]). The proportions of abnormal LV geometry patterns were compared among groups. RESULTS Former and current smokers had the higher levels in LV mass index, relative wall thickness, and the prevalence of LVH than never smoker. The association with LVH increased in order of never (reference), former (1.44 [1.01-2.04]), and current smokers (2.10 [1.44-3.05]). LVH showed the proportional relationship with pack-year of smoking (never smoker: reference, <10: 1.45 [1.01-2.08], 10-19.9: 1.73 [1.17-2.57], ≥20: 2.43 [1.58-3.74]) and urine cotinine excretion (never smoker: reference, 100-999: 1.70 [1.21-2.37], >1000: 1.97 [1.43-2.72]). The proportions of abnormal LV geometry patterns were higher in smoking groups than never smoking group. CONCLUSION Exposure to tobacco use and intensity of smoking was associated with LVH in working aged population. IMPLICATIONS In working aged Koreans with mean age of 39.9 ± 7.0 years, former and current smokers are more likely to have LVH than never smoker. Dose-dependent relationship was found between the smoking status (never, former, and current smokers), pack-year of smoking, urine cotinine excretion, and LVH. These findings indicate that smoking has an adverse influence on LV structure even in relatively young age group.
Collapse
Affiliation(s)
- Sung Keun Park
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Hong Ryoo
- Department of Occupational and Environmental Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong Gyu Kang
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - Ju Young Jung
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| |
Collapse
|
26
|
Prognostic Significance of Echocardiographic Measures of Cardiac Remodeling in the Community. Curr Cardiol Rep 2021; 23:86. [PMID: 34081212 DOI: 10.1007/s11886-021-01512-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Echocardiography is a noninvasive tool of choice for evaluating cardiac structure and function in numerous cardiac conditions ranging from congenital heart disease, myocardial diseases, coronary artery disease (CAD), valvulopathies, arrhythmias, and pericardial disorders. We review the prognostic significance of echocardiographic indices of cardiac remodeling in the general population. RECENT FINDINGS Recent meta-analyses have confirmed the prognostic significance of echocardiographic measurements (left ventricular mass/hypertrophy, systolic and diastolic dysfunction, left atrial dimensions and function, and strain rate measures) in asymptomatic people in the community for adverse clinical outcomes including CAD, stroke, heart failure, atrial fibrillation, sudden death, and all-cause mortality. The clinical utility of screening echocardiography has been examined comprehensively in hypertensive patients, where it is challenged by measurement variability. Echocardiographic measures predict cardiovascular disease outcomes consistently in multiple community-based epidemiological studies. However, the clinical utility of screening asymptomatic individuals with echocardiography in population-based settings is limited.
Collapse
|
27
|
Usefulness of echocardiography for predicting ventricular tachycardia detected by implantable loop recorder in syncope patients. Int J Cardiovasc Imaging 2021; 37:3157-3166. [PMID: 34050421 DOI: 10.1007/s10554-021-02295-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Ventricular tachycardia (VT) may lead to syncope and sudden cardiac death. Implantable loop recorders (ILR) are recommended in the clinical work-up of patients with unexplained syncope. Our aim was to evaluate if echocardiographic parameters assessed prior to ILR implantation in patients with unexplained syncope may aid in identifying individuals with an increased risk of VT. The present study included 288 ambulatory patients (mean age 58 ± 19 years, 51% women) with syncope (90%) and presyncope (10%) who had an ILR implanted in the diagnostic workup. All patients underwent an echocardiographic examination prior to device implantation (median 3 months [IQR 1 to 6 months]). We examined incident VT, defined as a first-time episode of VT (> 30 s) or non-sustained VT (< 30 s) detected by the ILR. During median follow-up of 2.9 years [IQR 1.3 to 3.5 years] of continuous rhythm monitoring, 36 patients (13%) were diagnosed with incident VT (n = 25 non-sustained VT, n = 11 sustained VT). In unadjusted Cox proportional hazards models, left ventricular (LV) mass index (HR: 1.04 per 1 g/m2 increase [1.00 to 1.08], P = 0.047), mean LV wall thickness (HR: 1.36 per 1 mm increase [1.08 to 1.71], P = 0.009), and global longitudinal strain (HR: 1.15 per 1% decrease [1.05 to 1.25], P = 0.002) were significantly associated with VT. After adjusting for age, sex, implantable loop recorder indication and known heart failure, the above-mentioned parameters remained significantly associated with incident VT. LV mass index, LV wall thickness, and GLS may aid in identifying patients with increased risk of incident VT among patients with syncope. Echocardiography may potentially help select patients who can benefit from ILR.
Collapse
|
28
|
Dörr K, Kammer M, Reindl-Schwaighofer R, Lorenz M, Prikoszovich T, Marculescu R, Beitzke D, Wielandner A, Erben RG, Oberbauer R. Randomized Trial of Etelcalcetide for Cardiac Hypertrophy in Hemodialysis. Circ Res 2021; 128:1616-1625. [PMID: 33825489 DOI: 10.1161/circresaha.120.318556] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Katharina Dörr
- Department of Nephrology and Dialysis, Medical University of Vienna (K.D., M.K.D.I., R.R.-S., R.O., D.B., A.W.)
| | - Michael Kammer
- Department of Nephrology and Dialysis, Medical University of Vienna (K.D., M.K.D.I., R.R.-S., R.O., D.B., A.W.).,Center for Medical Statistics, Informatics and Intelligent Systems (CeMSIIS), Section for Clinical Biometrics (M.K.D.-I.)
| | - Roman Reindl-Schwaighofer
- Department of Nephrology and Dialysis, Medical University of Vienna (K.D., M.K.D.I., R.R.-S., R.O., D.B., A.W.)
| | | | | | | | - Dietrich Beitzke
- Department of Nephrology and Dialysis, Medical University of Vienna (K.D., M.K.D.I., R.R.-S., R.O., D.B., A.W.).,Biomedical Imaging and Image-guided Therapy, and Division of Cardiovascular and Interventional Radiology (D.B., A.W.)
| | - Alice Wielandner
- Department of Nephrology and Dialysis, Medical University of Vienna (K.D., M.K.D.I., R.R.-S., R.O., D.B., A.W.).,Biomedical Imaging and Image-guided Therapy, and Division of Cardiovascular and Interventional Radiology (D.B., A.W.)
| | | | - Rainer Oberbauer
- Department of Nephrology and Dialysis, Medical University of Vienna (K.D., M.K.D.I., R.R.-S., R.O., D.B., A.W.)
| |
Collapse
|
29
|
Park SK, Oh CM, Kang JG, Seok HS, Jung JY. The association between left ventricular hypertrophy and consumption of nuts, including peanuts, pine nuts, and almonds. Nutr Metab Cardiovasc Dis 2021; 31:76-84. [PMID: 33500111 DOI: 10.1016/j.numecd.2020.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIMS Studies have reported that nut consumption is potentially beneficial in preventing cardiovascular disease. However, data are insufficient regarding the association between nut consumption and left ventricular hypertrophy (LVH). METHODS AND RESULTS In the Kangbuk Samsung Health Study, the participants were 34,617 men and 12,257 women who completed a food-frequency questionnaire for nut consumption and received echocardiography. Nut consumption was evaluated only for peanuts, pine nuts, and almonds defining 15 g as one serving/servings dose. Multivariable adjusted odds ratio (OR) and 95% confidence interval (CI) for LVH were evaluated according to the consumption frequency of one serving dose of nut. The frequency of nut consumption was categorized into five groups (<1/month, 1/month-1/week, 1-2/week, 2-4/week, and ≥4/week). The subgroup analysis was conducted by dividing the participants into the following two groups: the nonhypertensive/nondiabetic group and hypertensive or diabetic group. In women, nut consumption ≥2/week had the lower multivariable adjusted OR and 95% CI for LVH (2-4/week: 0.46 [0.26-0.81] and ≥4/week: 0.48 [0.25-0.92]) when compared with nut consumption <1/month. This association was identically observed in the subgroup analysis for women without hypertension and diabetes mellitus (DM) and women with hypertension or DM. However, men did not show the significant association. CONCLUSION In women, nut consumption ≥2/week was associated with the decreased probability of LVH. Further research studies should investigate whether the beneficial effect of nut consumption on LV structure results in better cardiovascular prognosis.
Collapse
Affiliation(s)
- Sung Keun Park
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Chang-Mo Oh
- Department of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul, South Korea
| | - Jeong Gyu Kang
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Hyo Sun Seok
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Ju Young Jung
- Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, South Korea.
| |
Collapse
|
30
|
Cappetta D, De Angelis A, Flamini S, Cozzolino A, Bereshchenko O, Ronchetti S, Cianflone E, Gagliardi A, Ricci E, Rafaniello C, Rossi F, Riccardi C, Berrino L, Bruscoli S, Urbanek K. Deficit of glucocorticoid-induced leucine zipper amplifies angiotensin-induced cardiomyocyte hypertrophy and diastolic dysfunction. J Cell Mol Med 2021; 25:217-228. [PMID: 33247627 PMCID: PMC7810940 DOI: 10.1111/jcmm.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022] Open
Abstract
Poor prognosis in heart failure and the lack of real breakthrough strategies validate targeting myocardial remodelling and the intracellular signalling involved in this process. So far, there are no effective strategies to counteract hypertrophy, an independent predictor of heart failure progression and death. Glucocorticoid-induced leucine zipper (GILZ) is involved in inflammatory signalling, but its role in cardiac biology is unknown. Using GILZ-knockout (KO) mice and an experimental model of hypertrophy and diastolic dysfunction, we addressed the role of GILZ in adverse myocardial remodelling. Infusion of angiotensin II (Ang II) resulted in myocardial dysfunction, inflammation, apoptosis, fibrosis, capillary rarefaction and hypertrophy. Interestingly, GILZ-KO showed more evident diastolic dysfunction and aggravated hypertrophic response compared with WT after Ang II administration. Both cardiomyocyte and left ventricular hypertrophy were more pronounced in GILZ-KO mice. On the other hand, Ang II-induced inflammatory and fibrotic phenomena, cell death and reduction in microvascular density, remained invariant between the WT and KO groups. The analysis of regulators of hypertrophic response, GATA4 and FoxP3, demonstrated an up-regulation in WT mice infused with Ang II; conversely, such an increase did not occur in GILZ-KO hearts. These data on myocardial response to Ang II in mice lacking GILZ indicate that this protein is a new element that can be mechanistically involved in cardiovascular pathology.
Collapse
Affiliation(s)
- Donato Cappetta
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Antonella De Angelis
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Sara Flamini
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Anna Cozzolino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and EducationUniversity of PerugiaPerugiaItaly
| | - Simona Ronchetti
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Eleonora Cianflone
- Department of Medical and Surgical SciencesUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| | - Andrea Gagliardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Erika Ricci
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Concetta Rafaniello
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Francesco Rossi
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Carlo Riccardi
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Liberato Berrino
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
| | - Stefano Bruscoli
- Department of MedicineSection of PharmacologyUniversity of PerugiaPerugiaItaly
| | - Konrad Urbanek
- Department of Experimental MedicineUniversity of Campania 'Luigi Vanvitelli'NaplesItaly
- Department of Experimental and Clinical MedicineUniversity 'Magna Graecia' of CatanzaroCatanzaroItaly
| |
Collapse
|
31
|
Park SK, Ryoo JH, Kang JG, Jung JY. Association of left ventricular hypertrophy with the level of thyroid hormone in euthyroid state. J Endocrinol Invest 2021; 44:111-117. [PMID: 32383145 DOI: 10.1007/s40618-020-01277-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/24/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE It has been demonstrated that variation in thyroid hormone levels even within normal range was associated with increased cardiovascular risk. However, available data are still insufficient on association between left ventricular hypertrophy (LVH) and thyroid hormone levels within euthyroid state. METHODS In 69,298 Koreans with euthyroid function, we evaluated association between echocardiographically detected LVH and thyroid hormone levels within the normal range. Study participants were categorized into elderly (age ≥ 40) and younger (age < 40) groups, where subjects were divided into four groups according to quartile levels of thyroxine (FT4), triiodothyronine (FT3), and thyroid-stimulating hormone (TSH). Multivariable adjusted logistic regression analysis was used to calculate odds ratios (ORs) and 95% confidence interval (CI) for LVH (adjusted ORs [95% CI]) across quartile levels of thyroid hormones. RESULTS In elderly group, adjusted ORs for LVH generally higher in the first quartile group than other quartile groups, despite no statistical significance in some cases (first quartile: reference, second quartile: 0.86 [0.67-1.11] in TSH, 0.75 [0.58-0.95] in FT4 and 0.63 [0.49-0.81] in FT3, third quartile: 0.70 [0.54-0.92] in TSH, 0.79 [0.61-1.02] in FT4 and 0.72 [0.55-0.93] in FT3, fourth quartile: 0.81 [0.65-1.04] in TSH, 0.85 [0.65-1.10] in FT4 and 0.58 [0.44-0.77] in FT3). This finding was similarly found in the younger group, despite discrepancy in some cases. CONCLUSION In euthyroid state, low normal levels in FT4, FT3 and TSH were more strongly associated with LVH.
Collapse
Affiliation(s)
- S K Park
- Center for Cohort Studies, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae-Hong Ryoo
- Department of Occupational and Environmental Medicine, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - J G Kang
- Total Healthcare Center, KangBuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea
| | - J Y Jung
- Total Healthcare Center, KangBuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Korea.
- School of Medicine, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
32
|
Goo HW, Park SH. Pattern Analysis of Left Ventricular Remodeling Using Cardiac Computed Tomography in Children with Congenital Heart Disease: Preliminary Results. Korean J Radiol 2020; 21:717-725. [PMID: 32410410 PMCID: PMC7231616 DOI: 10.3348/kjr.2019.0689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/24/2019] [Accepted: 02/09/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To assess left ventricular remodeling patterns using cardiac computed tomography (CT) in children with congenital heart disease and correlate these patterns with their clinical course. MATERIALS AND METHODS Left ventricular volume and myocardial mass were quantified in 17 children with congenital heart disease who underwent initial and follow-up end-systolic cardiac CT studies with a mean follow-up duration of 8.4 ± 9.7 months. Based on changes in the indexed left ventricular myocardial mass (LVMi) and left ventricular mass-volume ratio (LVMVR), left ventricular remodeling between the two serial cardiac CT examinations was categorized into one of four patterns: pattern 1, increased LVMi and increased LVMVR; pattern 2, decreased LVMi and decreased LVMVR; pattern 3, increased LVMi and decreased LVMVR; and pattern 4, decreased LVMi and increased LVMVR. Left ventricular remodeling patterns were correlated with unfavorable clinical courses. RESULTS Baseline LVMi and LVMVR were 65.1 ± 37.9 g/m² and 4.0 ± 3.2 g/mL, respectively. LVMi increased in 10 patients and decreased in seven patients. LVMVR increased in seven patients and decreased in 10 patients. Pattern 1 was observed in seven patients, pattern 2 in seven, and pattern 3 in three patients. Unfavorable events were observed in 29% (2/7) of patients with pattern 1 and 67% (2/3) of patients with pattern 3, but no such events occurred in pattern 2 during the follow-up period (4.4 ± 2.7 years). CONCLUSION Left ventricular remodeling patterns can be characterized using cardiac CT in children with congenital heart disease and may be used to predict their clinical course.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Sang Hyub Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
33
|
The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N 6-methyladenosine methylation of Parp10 mRNA. Nat Cell Biol 2020; 22:1319-1331. [PMID: 33020597 DOI: 10.1038/s41556-020-0576-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 08/11/2020] [Indexed: 12/21/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are abundantly expressed during cardiac hypertrophy. However, their functions and molecular mechanisms remain unknown. Here, we identified a cardiac-hypertrophy-associated piRNA (CHAPIR) that promotes pathological hypertrophy and cardiac remodelling by targeting METTL3-mediated N6-methyladenosine (m6A) methylation of Parp10 mRNA transcripts. CHAPIR deletion markedly attenuates cardiac hypertrophy and restores heart function, while administration of a CHAPIR mimic enhances the pathological hypertrophic response in pressure-overloaded mice. Mechanistically, CHAPIR-PIWIL4 complexes directly interact with METTL3 and block the m6A methylation of Parp10 mRNA transcripts, which upregulates PARP10 expression. The CHAPIR-dependent increase in PARP10 promotes the mono-ADP-ribosylation of GSK3β and inhibits its kinase activity, which results in the accumulation of nuclear NFATC4 and the progression of pathological hypertrophy. Hence, our findings reveal that a piRNA-mediated RNA epigenetic mechanism is involved in the regulation of cardiac hypertrophy and that the CHAPIR-METTL3-PARP10-NFATC4 signalling axis could be therapeutically targeted for treating pathological hypertrophy and maladaptive cardiac remodelling.
Collapse
|
34
|
Park SK, Oh CM, Kang JG, Jung JY. Association of Sugar-Sweetened Carbonated Beverage with the Alteration in Left Ventricular Structure and Diastolic Function. J Am Coll Nutr 2020; 40:496-501. [PMID: 32779979 DOI: 10.1080/07315724.2020.1800534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND High consumption of sugar-sweetened carbonated beverage (SSCB) has been associated with multiple metabolic risk factors for cardiovascular disease. However, published data is scarce regarding the influence of SSCB consumption on left ventricular (LV) structure and diastolic function. The present study is to investigate the association of SSCB consumption with alteration in LV structure and diastolic function. METHOD Study subjects were 46,417 Koreans who received echocardiography as an item of health checkup. They were categorized into 4 groups by SSCB consumption based on one serving dose (200 ml) with never/almost never, <1 serving/week, 1 ≤ serving/week <3 and ≥3 serving/week. Multivariate logistic regression analysis was used in calculating adjusted odd ratio (OR) and 95% confidence interval (CI) (adjusted OR [95% CI]) for left ventricular hypertrophy, increased relative wall thickness (IRWT) and impaired LV relaxation with each group (reference: never/almost never consumption). Subgroup analysis was conducted by age of ≥40 and <40. RESULT Compared with never/almost never consumption, SSCB consumption ≥3 serving/week had the higher mean levels in body mass index, blood pressure and triglyceride despite of younger age. In fully adjusted analysis, SSCB consumption ≥3 serving/week was associated with IRWT (1.14 [1.02-1.27]) and impaired LV relaxation (1.23 [1.08-1.41]). This association was reinforced in age subgroup ≥40 years, but not statistically significant in age subgroup <40 years. CONCLUSION SSCB consumption ≥3 serving/week was associated with the increased probability of IRWT and impaired LV relaxation.
Collapse
Affiliation(s)
- Sung Keun Park
- Center for Cohort Studies, Total Healthcare Center, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| | - Chang-Mo Oh
- Departments of Preventive Medicine, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jeong Gyu Kang
- Total Healthcare Center, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| | - Ju Young Jung
- Total Healthcare Center, School of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
35
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, ESC Scientific Document Group, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Europace 2020; 22:1147-1148. [PMID: 32538434 PMCID: PMC7400488 DOI: 10.1093/europace/euaa065] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São, Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo-São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, USA
- Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology “Ignacio Chavez,” Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women s Hospital and Harvard Medical School, Boston, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- Los Angeles UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine, at UCLA, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
36
|
Structural and Physiological Imaging to Predict the Risk of Lethal Ventricular Arrhythmias and Sudden Death. JACC Cardiovasc Imaging 2020; 12:2049-2064. [PMID: 31601379 DOI: 10.1016/j.jcmg.2019.05.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/10/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022]
Abstract
Identifying patients at risk of sudden cardiac death remains a major challenge in cardiovascular medicine. Advances in cardiovascular imaging have identified several anatomic and functional variables that can be quantified as continuous variables to predict the risk of developing lethal ventricular tachyarrhythmias in patients with depressed left ventricular (LV) systolic function. Some, such as LV mass, volume, and the dyssynchrony of contraction, can be derived from currently available echocardiographic and nuclear imaging modalities. Others require advanced cardiac imaging modalities with quantification of myocardial scar with gadolinium-enhanced cardiac magnetic resonance and myocardial sympathetic denervation using norepinephrine analogs and positron emission tomography or single-photon emission computed tomography offering the most promise. There is an immediate need to develop a sequential cost-effective approach that capitalizes on readily available clinical information complemented with advanced imaging modalities in selected patients to improve risk stratification for arrhythmic death beyond LV ejection fraction.
Collapse
|
37
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, Lim HS, Lip GYH, Nava-Townsend S, Pak HN, Diez GR, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Pava Molano LF, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. Heart Rhythm 2020; 17:e269-e316. [PMID: 32553607 DOI: 10.1016/j.hrthm.2020.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Alberto Alfie
- Division of Electrophysiology, Instituto Cardiovascular Adventista, Clinica Bazterrica, Buenos Aires, Argentina
| | - Serge Boveda
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Nikolaos Dagres
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | - Dario Di Toro
- Department of Cardiology, Division of Electrophysiology, Argerich Hospital and CEMIC, Buenos Aires, Argentina
| | - Lee L Eckhardt
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kenneth Ellenbogen
- Division of Cardiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Carina Hardy
- Arrhythmia Unit, Heart Institute, University of São Paulo Medical School, Instituto do Coração -InCor- Faculdade de Medicina de São Paulo, São Paulo, Brazil
| | - Takanori Ikeda
- Department of Cardiovascular Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center, Metrohealth Campus of Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew Krahn
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Kengo Kusano
- Division of Arrhythmia and Electrophysiology, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Valentina Kutyifa
- University of Rochester, Medical Center, Rochester, New York, USA; Semmelweis University, Heart and Vascular Center, Budapest, Hungary
| | - Han S Lim
- Department of Cardiology, Austin Health, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK; Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology, National Institute of Cardiology "Ignacio Chavez," Mexico City, Mexico
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic, Arrhytmias Unity, CMN 20 de Noviembre, ISSSTE, Mexico City, Mexico
| | - William Sauer
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Anil Saxena
- Department of Cardiac Electrophysiology, Fortis Escorts Heart Institute, Okhla Road, New Delhi, India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Diego Vanegas
- Hospital Militar Central, Fundarritmia, Bogotá, Colombia
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, UCLA Health System, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Arthur Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam, the Netherlands
| | - T Jared Bunch
- Department of Medicine, Intermountain Heart Institute, Intermountain Medical Center, Salt Lake City, Utah, USA
| | | | - Alfred E Buxton
- Department of Medicine, The Richard A. and Susan F. Smith Center for Outcomes Research in Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Tze-Fan Chao
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Lars Eckardt
- Department for Cardiology, Electrophysiology, University Hospital Münster, Münster, Germany
| | - Heidi Estner
- Department of Medicine, I, University Hospital Munich, Ludwig-Maximilians University, Munich, Germany
| | - Anne M Gillis
- University of Calgary - Libin Cardiovascular Institute of Alberta, Calgary, Canada
| | - Rodrigo Isa
- Clínica RedSalud Vitacura and Hospital el Carmen de Maipú, Santiago, Chile
| | - Josef Kautzner
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Joshua D Moss
- Department of Cardiac Electrophysiology, University of California San Francisco, San Francisco, California, USA
| | - Gi-Byung Nam
- Division of Cardiology, Asan Medical Center, University of Ulsan, College of Medicine, Seoul, Republic of Korea
| | - Brian Olshansky
- University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Mauricio Pimentel
- Cardiology Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Mukund Prabhu
- Department of Cardiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum, India
| | - Wendy S Tzou
- Department of Cardiology/Cardiac Electrophysiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum, Clinic for Electrophysiology, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Alejandro Vidal
- Division of Cardiology, McGill University Health Center, Montreal, Canada
| | - Thomas Deneke
- Clinic for Cardiology II (Interventional Electrophysiology), Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| | - Gerhard Hindricks
- Department of Electrophysiology, Leipzig Heart Center at University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
38
|
Nielsen JC, Lin YJ, de Oliveira Figueiredo MJ, Sepehri Shamloo A, Alfie A, Boveda S, Dagres N, Di Toro D, Eckhardt LL, Ellenbogen K, Hardy C, Ikeda T, Jaswal A, Kaufman E, Krahn A, Kusano K, Kutyifa V, S Lim H, Lip GYH, Nava-Townsend S, Pak HN, Rodríguez Diez G, Sauer W, Saxena A, Svendsen JH, Vanegas D, Vaseghi M, Wilde A, Bunch TJ, Buxton AE, Calvimontes G, Chao TF, Eckardt L, Estner H, Gillis AM, Isa R, Kautzner J, Maury P, Moss JD, Nam GB, Olshansky B, Molano LFP, Pimentel M, Prabhu M, Tzou WS, Sommer P, Swampillai J, Vidal A, Deneke T, Hindricks G, Leclercq C. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on risk assessment in cardiac arrhythmias: use the right tool for the right outcome, in the right population. J Arrhythm 2020; 36:553-607. [PMID: 32782627 PMCID: PMC7411224 DOI: 10.1002/joa3.12338] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
| | - Yenn-Jiang Lin
- Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan
| | | | - Alireza Sepehri Shamloo
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Alberto Alfie
- Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina
| | - Serge Boveda
- Department of Cardiology Clinique Pasteur Toulouse France
| | - Nikolaos Dagres
- Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany
| | - Dario Di Toro
- Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina
| | - Lee L Eckhardt
- Department of Medicine University of Wisconsin-Madison Madison WI USA
| | - Kenneth Ellenbogen
- Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA
| | - Carina Hardy
- Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil
| | - Takanori Ikeda
- Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan
| | - Aparna Jaswal
- Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Elizabeth Kaufman
- The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA
| | - Andrew Krahn
- Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada
| | - Kengo Kusano
- Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan
| | - Valentina Kutyifa
- University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary
| | - Han S Lim
- Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark
| | - Santiago Nava-Townsend
- Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico
| | - Hui-Nam Pak
- Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea
| | - Gerardo Rodríguez Diez
- Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico
| | - William Sauer
- Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA
| | - Anil Saxena
- Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India
| | - Jesper Hastrup Svendsen
- Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands
| | | | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA
| | - Arthur Wilde
- Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - T Jared Bunch
- Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alfred E Buxton
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gonzalo Calvimontes
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Tze-Fan Chao
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Lars Eckardt
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Heidi Estner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Anne M Gillis
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Rodrigo Isa
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Josef Kautzner
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philippe Maury
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Joshua D Moss
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gi-Byung Nam
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Brian Olshansky
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Luis Fernando Pava Molano
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mauricio Pimentel
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Mukund Prabhu
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Wendy S Tzou
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Philipp Sommer
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Janice Swampillai
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Alejandro Vidal
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Thomas Deneke
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Gerhard Hindricks
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| | - Christophe Leclercq
- Department of Cardiology Aarhus University Hospital Skejby Denmark.,Division of Cardiology Department of Medicine Taipei Veterans General Hospital Taipei Taiwan.,Electrophysiology Service Department of Internal Medicine University of Campinas Hospital Campinas Brazil.,Department of Electrophysiology Leipzig Heart Center at University of Leipzig Leipzig Germany.,Division of Electrophysiology Instituto Cardiovascular Adventista Clinica Bazterrica Buenos Aires Argentina.,Department of Cardiology Clinique Pasteur Toulouse France.,Division of Electrophysiology Department of Cardiology Argerich Hospital and CEMIC Buenos Aires Argentina.,Department of Medicine University of Wisconsin-Madison Madison WI USA.,Division of Cardiology Virginia Commonwealth University School of Medicine Richmond USA.,Heart Institute University of São Paulo Medical School Arrhythmia Unit Instituto do Coração -InCor- Faculdade de Medicina de São Paulo São Paulo Brazil.,Faculty of Medicine Department of Cardiovascular Medicine Toho University Japan.,Department of Cardiac Electrophysiology Fortis Escorts Heart Institute New Delhi India.,The Heart and Vascular Research Center Metrohealth Campus of Case Western Reserve University Cleveland OH USA.,Division of Cardiology Department of Medicine University of British Columbia Vancouver Canada.,Division of Arrthythmia and Electrophysiology Department of Cardiovascular Medicine National Cerebral and Cardiovascular Center Osaka Japan.,University of Rochester Medical Center Rochester USA.,Heart and Vascular Center Semmelweis University Budapest Hungary.,Department of Cardiology Austin Health Melbourne VIC Australia.,Cardiovascular Medicine University of Melbourne Melbourne VIC Australia.,Liverpool Centre for Cardiovascular Science University of Liverpool and Liverpool Heart & Chest Hospital Liverpool UK.,Aalborg Thrombosis Research Unit Department of Clinical Medicine Aalborg University Aalborg Denmark.,Department of Electrocardiology National Institute of Cardiology "Ignacio Chavez" Mexico City Mexico.,Division of Cardiology Department of Internal Medicine Yonsei University Health System Seoul Republic of Korea.,Department of Electrophysiology and Hemodynamic Arrhytmias Unity CMN 20 de Noviembre ISSSTE Mexico City Mexico.,Cardiovascular Division Brigham and Women's Hospital and Harvard Medical School Boston USA.,Department of Cardio Electrophysiology Fortis Escorts Heart Institute New Delhi India.,Department of Cardiology, Rigshospitalet University of Copenhagen Copenhagen Denmark.,Amsterdam UMC University of Amsterdam Heart Center Department of Clinical and Experimental Cardiology Amsterdam The Netherlands.,Hospital Militar Central Bogotá Colombia.,UCLA Cardiac Arrhythmia Center UCLA Health System David Geffen School of Medicine, at UCLA Los Angeles USA.,Heart Center Department of Clinical and Experimental Cardiology Amsterdam UMC University of Amsterdam Amsterdam The Netherlands.,Department of Medicine Intermountain Heart Institute Intermountain Medical Center Salt Lake City USA
| |
Collapse
|
39
|
Sarcomeric Gene Variants and Their Role with Left Ventricular Dysfunction in Background of Coronary Artery Disease. Biomolecules 2020; 10:biom10030442. [PMID: 32178433 PMCID: PMC7175236 DOI: 10.3390/biom10030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 03/11/2020] [Indexed: 12/18/2022] Open
Abstract
: Cardiovascular diseases are one of the leading causes of death in developing countries, generally originating as coronary artery disease (CAD) or hypertension. In later stages, many CAD patients develop left ventricle dysfunction (LVD). Left ventricular ejection fraction (LVEF) is the most prevalent prognostic factor in CAD patients. LVD is a complex multifactorial condition in which the left ventricle of the heart becomes functionally impaired. Various genetic studies have correlated LVD with dilated cardiomyopathy (DCM). In recent years, enormous progress has been made in identifying the genetic causes of cardiac diseases, which has further led to a greater understanding of molecular mechanisms underlying each disease. This progress has increased the probability of establishing a specific genetic diagnosis, and thus providing new opportunities for practitioners, patients, and families to utilize this genetic information. A large number of mutations in sarcomeric genes have been discovered in cardiomyopathies. In this review, we will explore the role of the sarcomeric genes in LVD in CAD patients, which is a major cause of cardiac failure and results in heart failure.
Collapse
|
40
|
Le Goff C, Farré Segura J, Dufour P, Kaux JF, Cavalier E. Intense sport practices and cardiac biomarkers. Clin Biochem 2020; 79:1-8. [PMID: 32097617 DOI: 10.1016/j.clinbiochem.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022]
Abstract
Biomarkers are well established for the diagnosis of myocardial infarction, heart failure and cardiac fibrosis. Different papers on cardiac biomarker evolution during exercise have been published in the literature and generally show mild to moderate elevations. However, the mechanism responsible for these elevations, reflecting physiological or even pathophysiological changes, still has to be clearly elucidated. There are also indications of higher cardiac risk in poorly trained athletes than in well-trained athletes. Whether regular repetition of intensive exercise might lead, in the longer term, to fibrosis and heart failure remains to be determined. In this review, we summarized the main research about the effects of intense exercise (in particular, running) on cardiac biomarkers (including troponins, natriuretic peptides, etc.). We found that cardiac fibrosis biomarkers seemed to be the most informative regarding the biological impact of intense physical activity.
Collapse
Affiliation(s)
- C Le Goff
- Department of Clinical Chemistry, University Hospital of Liege, Belgium.
| | - J Farré Segura
- Department of Clinical Chemistry, University Hospital of Liege, Belgium
| | - P Dufour
- Department of Clinical Chemistry, University Hospital of Liege, Belgium
| | - J F Kaux
- Department of Clinical Chemistry, University Hospital of Liege, Belgium
| | - E Cavalier
- Department of Clinical Chemistry, University Hospital of Liege, Belgium
| |
Collapse
|
41
|
Park GY, Oh WS, Chon SB, Kim S. The Maximum Diameter of the Left Ventricle May Not Be the Optimum Target for Chest Compression During Cardiopulmonary Resuscitation: A Preliminary, Observational Study Challenging the Traditional Assumption. J Cardiothorac Vasc Anesth 2020; 34:383-391. [PMID: 31585685 DOI: 10.1053/j.jvca.2019.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Researchers have assumed that compressing the point beneath which the left ventricle (LV) diameter is maximum (P_max.LV) would improve cardiopulmonary resuscitation outcomes. Defining the midsternum, the currently recommended location for chest compression, as the reference (x = 0), the lateral deviation (x_max.LV) of personalized P_max.LV has become estimable using posteroanterior chest radiography. The authors investigated whether out-of-hospital cardiac arrest (OHCA) patients, whose x_max.LV was closer to the midsternum and thus had their P_max.LV compressed closer during cardiopulmonary resuscitation, showed better chances of return of spontaneous circulation (ROSC) and survival to discharge. DESIGN Retrospective, cross-sectional study. SETTING A university hospital. PARTICIPANTS Adult OHCA patients with available previous posteroanterior chest radiography. INTERVENTION None. MEASUREMENTS AND MAIN RESULTS For each clinical outcome, multivariable logistic regression was performed, grouping x_max.LV into tertiles and adjusting the variables selected among the core elements of the Utstein template showing possible differences (p > 0.10) in univariate analysis. Odds ratios were presented as OR (95% confidence interval). Among 268 cases (age 64.4 ± 15.8 y, female 89 [33.2%]), 123 (45.9%) achieved ROSC and 40 (14.9%) survival to discharge. Compared with the third tertile of x_max.LV (59 to ∼101 mm), the first (31 to ∼48 mm) and second (48 to ∼59 mm) tertiles, which had a P_max.LV closer to the midsternum, were negatively associated with ROSC (OR 0.502 [0.262-0.960]; p = 0.037 and OR 0.442 [0.233-0.837]; p = 0.012, respectively) and survival to discharge (OR 0.286 [0.080-1.03]; p = 0.055 and OR 0.046 [0.007-0.308]; p = 0.002, respectively). CONCLUSIONS OHCA patients with a P_max.LV located closer to the midsternum showed worse chances of ROSC and survival to discharge, which challenges the traditional assumption of identifying P_max.LV as the optimum compression point.
Collapse
Affiliation(s)
- Gwang-Yeol Park
- Department of Emergency Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| | - Won Sup Oh
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Sung-Bin Chon
- Department of Emergency Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea.
| | - Shinwoo Kim
- Department of Emergency Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
42
|
Park S, Jung J, Kang J, Hong H, Oh CM. Association of Left Ventricular Hypertrophy with Hemoglobin Levels in Nonanemic and Anemic Populations. Cardiology 2020; 145:485-491. [DOI: 10.1159/000508034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/15/2020] [Indexed: 01/19/2023]
Abstract
<b><i>Introduction:</i></b> It is established that anemia leads to adaptive changes in cardiac geometry including left ventricular hypertrophy (LVH). However, published data are still scarce regarding the association of LVH with normal-range hemoglobin levels. <b><i>Objective:</i></b> To evaluate the association between hemoglobin level and LVH in subjects with or without anemia. <b><i>Methods:</i></b> The study included 48,034 Korean men and women who received echocardiography during their medical health checkup. They were divided into 4 groups according to their hemoglobin concentration (g/dL) in men (<14, 14–14.9, 15–15.9, and ≥16) and women (<12, 12–12.9, 13–13.9, and ≥15). Multivariate logistic regression analysis was used to calculate adjusted ORs and 95% CI for LVH in each group compared with the group with the lowest hemoglobin. Subgroup analysis was conducted for subjects within normal hemoglobin levels. <b><i>Results:</i></b> There was an inverse relationship between hemoglobin levels and LVH, where unadjusted and adjusted ORs and 95% CI for LVH decreased with increasing hemoglobin levels in both men and women. In subgroup analysis, this inverse relationship was also observed in subjects with hemoglobin in the nonanemic range. <b><i>Conclusion:</i></b> The decrease in hemoglobin was significantly associated with the increased probability of LVH, and this association was found even in nonanemic subjects.
Collapse
|
43
|
Ramalingam A, Budin SB, Mohd Fauzi N, Ritchie RH, Zainalabidin S. Angiotensin II Type I Receptor Antagonism Attenuates Nicotine-Induced Cardiac Remodeling, Dysfunction, and Aggravation of Myocardial Ischemia-Reperfusion Injury in Rats. Front Pharmacol 2019; 10:1493. [PMID: 31920673 PMCID: PMC6920178 DOI: 10.3389/fphar.2019.01493] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
Increased exposure to nicotine contributes to the development of cardiac dysfunction by promoting oxidative stress, fibrosis, and inflammation. These deleterious events altogether render cardiac myocytes more susceptible to acute cardiac insults such as ischemia-reperfusion (I/R) injury. This study sought to elucidate the role of angiotensin II type I (AT1) receptors in cardiac injury resulting from prolonged nicotine administration in a rat model. Male Sprague-Dawley rats were given nicotine (0.6 mg/kg ip) for 28 days to induce cardiac dysfunction, alone or in combination with the AT1 receptor antagonist, irbesartan (10 mg/kg, po). Vehicle-treated rats were used as controls. Rat hearts isolated from each experimental group at study endpoint were examined for changes in function, histology, gene expression, and susceptibility against acute I/R injury determined ex vivo. Rats administered nicotine alone exhibited significantly increased cardiac expression of angiotensin II and angiotensin-converting enzyme (ACE) in addition to elevated systolic blood pressure (SBP) and heart rate. Furthermore, nicotine administration markedly reduced left ventricular (LV) performance with concomitant increases in myocardial oxidative stress, fibrosis, and inflammation. Concomitant treatment with irbesartan attenuated these effects, lowering blood pressure, heart rate, oxidative stress, and expression of fibrotic and inflammatory genes. Importantly, the irbesartan-treated group also manifested reduced susceptibility to I/R injury ex vivo. These findings suggest that AT1 receptors play an important role in nicotine-induced cardiac dysfunction, and pharmacological approaches targeting cardiac AT1 receptors may thus benefit patients with sustained exposure to nicotine.
Collapse
Affiliation(s)
- Anand Ramalingam
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Applied and Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Amigues I, Russo C, Giles JT, Tugcu A, Weinberg R, Bokhari S, Bathon JM. Myocardial Microvascular Dysfunction in Rheumatoid Arthritis Quantitation by 13N-Ammonia Positron Emission Tomography/Computed Tomography. Circ Cardiovasc Imaging 2019; 12:e007495. [PMID: 30636512 PMCID: PMC6361523 DOI: 10.1161/circimaging.117.007495] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The goal of this study was to assess the prevalence of myocardial microvascular dysfunction in rheumatoid arthritis (RA) patients without clinical cardiovascular disease and its association with RA characteristics and measures of cardiac structure and function. METHODS Participants with RA underwent rest and vasodilator stress N-13 ammonia positron emission tomography and echocardiography. Global myocardial blood flow was quantified at rest and during peak hyperemia. Myocardial flow reserve (MFR) was calculated as peak stress myocardial blood flow/rest myocardial blood flow. A small number of asymptomatic and symptomatic non-RA controls were also evaluated. RESULTS In RA patients, mean±SD MFR was 2.9±0.8, with 29% having reduced MFR (<2.5). Male sex and higher interleukin-6 were significantly associated with lower MFR, while the use of tumor necrosis factor inhibitors was associated with higher MFR. Lower MFR was associated with higher left ventricle mass index and higher left ventricle volumes but not with ejection fraction or diastolic dysfunction. RA and symptomatic controls had comparable MFR (mean±SD: 2.9±0.8 versus 2.55±0.6; P=0.48). In contrast, MFR was higher in the asymptomatic controls (mean±SD: 3.25±0.7) although not statistically different. CONCLUSIONS Reduced MFR was observed in a third of RA patients without clinical cardiovascular disease and was associated with a measure of inflammation and with higher left ventricle mass and volumes. MFR in RA patients was similar to controls referred for clinical scans (symptomatic controls). Whether reduced MFR contributes to the increased risk for heart failure in RA remains unknown.
Collapse
Affiliation(s)
- Isabelle Amigues
- Division of Rheumatology (I.A., J.T.G., J.M.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Cesare Russo
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Current address for Cesare Russo: Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Jon T Giles
- Division of Rheumatology (I.A., J.T.G., J.M.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Aylin Tugcu
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Current address for Aylin Tugcu: Bristol Myers Squibb, Lawrenceville, NJ
| | - Richard Weinberg
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Nuclear Cardiology Laboratory (R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Sabahat Bokhari
- Division of Cardiology (C.R., A.T., R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
- Nuclear Cardiology Laboratory (R.W., S.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| | - Joan M Bathon
- Division of Rheumatology (I.A., J.T.G., J.M.B.), Columbia University College of Physicians and Surgeons, New York Presbyterian Hospital
| |
Collapse
|
45
|
Miceli F, Presta V, Citoni B, Canichella F, Figliuzzi I, Ferrucci A, Volpe M, Tocci G. Conventional and new electrocardiographic criteria for hypertension-mediated cardiac organ damage: A narrative review. J Clin Hypertens (Greenwich) 2019; 21:1863-1871. [PMID: 31693279 DOI: 10.1111/jch.13726] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/25/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
Hypertension-mediated organ damage (HMOD) is frequently observed in hypertensive patients at different cardiovascular (CV) risk profile. This may have both diagnostic and therapeutic implications for the choice of the most appropriate therapies. Among different markers of HMOD, the most frequent functional and structural adaptations can be observed at cardiac level, including left ventricular hypertrophy (LVH), diastolic dysfunction, aortic root dilatation, and left atrial enlargement. In particular, LVH was shown to be a strong and independent risk factor for major CV events, namely myocardial infarction, stroke, congestive heart failure, CV death. Thus, early identification of LVH is a key element for preventing CV events in hypertension. Although echocardiographic assessment of LVH represents the gold standard technique, this is not cost-effective and cannot be adopted in routine clinical practice of hypertension. On the other hand, electrocardiographic (ECG) assessment of HMOD relative to the heart is a simple, reproducible, widely available and cost-effective method to assess the presence of LVH, and could be preferred in large scale screening tests. Several new indicators have been proposed and tested in observational studies and clinical trials of hypertension, in order to improve the relatively low sensitivity of the conventional ECG criteria for LVH, despite high specificity. This article reviews the differences in the use of the main conventional and the new 12 lead ECG criteria of LVH for early assessment of asymptomatic, subclinical cardiac HMOD in a setting of clinical practice of hypertension.
Collapse
Affiliation(s)
- Francesca Miceli
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Vivianne Presta
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Barbara Citoni
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Flaminia Canichella
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Ilaria Figliuzzi
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Andrea Ferrucci
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy
| | - Massimo Volpe
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Giuliano Tocci
- Hypertension Unit, Division of Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, University of Rome Sapienza, Sant'Andrea Hospital, Rome, Italy.,IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
46
|
Kochetkov AI, Borisova EV, Ostroumova OD, Lopukhina MV, Piksina GV. Effect of the Single-Pill Amlodipine/Valsartan Combination on Hypertrophy and Myocardial Deformation Characteristics in Middle-Aged Patients with Essential Arterial Hypertension. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2019. [DOI: 10.20996/1819-6446-2019-15-3-305-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To investigate the impact of amlodipine/valsartan single-pill combination (A/V SPC) on left ventricular hypertrophy (LVH) and left ventricular (LV) myocardial strain and stiffness parameters in naїve middle-aged patients with stage II grade 1-2 essential arterial hypertension (EAH).Material and methods. A group of patients with stage II grade 1-2 EAH who had not previously received regular antihypertensive treatment (AHT) [n=38; mean age 49.7±7.0 years] was retrospectively formed. All the patients were treated with A/V SPC and all of them achieved target office blood pressure (BP) (less than 140/90 mm Hg). And after 12 weeks follow-up (since the time of reaching the target BP) the AHT effectiveness assessment, its impact on LVH and LV myocardial strain and stiffness parameters (general clinical data, ambulatory blood pressure monitoring, conventional and 2D-speckle tracking echocardiography) were performed in all included patients.Results. The number of patients with LVH significantly (p=0.039) decreased from 25 individuals (65.8%) at baseline to 15 patients (39.5%) at the end of follow-up. Among patients with LVH at baseline after the treatment with A/V SPC significantly decreased (p<0.001 for all) interventricular septum thickness (from 1.36±0.19 to 1.28±0.18 cm), LV posterior wall thickness (from 1.08±0.09 to 0.97±0.11 cm) and the LV myocardial mass index (from 123.3±19.3 to 110.8±20.8 g/m2). At the end of follow-up end-systolic elastance significantly (p<0.001) decreased from 4.01±1.12 to 3.46±0.88 mm Hg/ml. In the subgroup of patients with reduced (in absolute value) LV longitudinal 2D-strain (n=27) at baseline, there was a significantly (p=0.005) increasing in this parameter at the end of the study (from -16.14±2.21% to -17.30±2.13%, Δ%=8.45±13.35).Conclusion. In naive patients 40-65 years old with stage II grade 1-2 EAH AHT with A/V SPC provides effective 24 hours BP control, significantly reduced LVH and improves LV strain parameters, which indicates decreasing of LV myocardial stiffness.
Collapse
Affiliation(s)
| | | | - O. D. Ostroumova
- Pirogov Russian National Research Medical University
I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | |
Collapse
|
47
|
Kim GS, Byun YS, Lee HY, Jung IH, Rhee KJ, Kim BO. Difference in SBP between arms is a predictor of chronic kidney disease development in the general Korean population. J Hypertens 2019; 37:790-794. [PMID: 30817460 DOI: 10.1097/hjh.0000000000001931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE An increased inter-arm SBP difference (IASBPD) is associated with mortality and cardiovascular events, as well as peripheral vascular disease, which is attributed to subclavian stenosis. The aim of the present study was to investigate the association between the IASBPD and incident chronic kidney disease (CKD) in the Korean population. METHODS A retrospective cohort study was performed on 8780 Korean adults without baseline CKD. The bilateral blood pressure was measured sequentially and repeatedly at the first visit. IASBPD was defined as a BP at least 15 mmHg according to the National Institutes for Health and Clinical Excellence guidelines, and CKD was defined as an estimated glomerular filtration rate less than 60 ml/min per 1.73 m. We assessed the value of IASBPD to predict the incidence of CKD and investigated cardiovascular disease, including coronary heart disease and stroke. RESULTS Over a mean follow-up period of 8.5 years, 96 of 581 (16.5%) patients in the IASBPD group and 1037 of 8199 (12.6%) patients in the non-IASBPD group developed incident CKD. Compared with the non-IASBPD, an IASBPD was associated with incident CKD [hazard ratio (HR): 1.336, 95% confidence interval (CI): 1.08-1.65, P = 0.007]. After adjusting for potential confounders, including age, sex, hypertension, diabetes, and obesity, we found that the hazard ratio was also robust (hazard ratio 1.275, 95% CI 1.03-1.58, P = 0.024). CONCLUSION Increased IASBPD is an independent predictor of incident CKD in the general population.
Collapse
|
48
|
Goo HW. Technical feasibility of semiautomatic three-dimensional threshold-based cardiac computed tomography quantification of left ventricular mass. Pediatr Radiol 2019; 49:318-326. [PMID: 30470863 DOI: 10.1007/s00247-018-4303-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/17/2018] [Accepted: 10/31/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Semiautomatic three-dimensional (3-D) threshold-based cardiac computed tomography (CT) quantification has not been attempted for left ventricular mass. OBJECTIVE To evaluate the technical feasibility of semiautomatic 3-D threshold-based cardiac CT quantification of left ventricular mass in patients with various degrees of left ventricular hypertrophy. MATERIALS AND METHODS In 99 patients, cardiac CT was utilized to quantify ventricular volume and mass by using a semiautomatic 3-D threshold-based method. Left ventricular mass values were compared between the end-systole and the end-diastole. Volumetric parameters were compared among three left ventricular hypertrophy groups (definite, borderline, none). The reproducibility was assessed. The t-test, one-way analysis of variance and Pearson correlation were used. RESULTS There were no technical failures. The left ventricular mass between the two sessions exhibited a small mean difference of 2.3±1.1% (mean±standard deviation). The indexed mass values were significantly higher at the end-systole than at the end-diastole (71.4±42.9 g/m2 vs. 65.9±43.3 g/m2, P<0.001), with significant correlation (R=0.99, P<0.001). The definite group (83.5±41.3 g/m2) showed statistically significantly higher indexed mass values than the borderline and none groups (64.7±26.9 and 55.6±23.9 g/m2, respectively; P<0.03), while demonstrating no statistically significant difference between the latter two groups (P>0.05). Left ventricular volume-mass and mass-volume ratios could be calculated in all three groups. CONCLUSION CT quantification of left ventricular mass using semiautomatic 3-D threshold-based segmentation is feasible with high reproducibility and the mass values and its ratios with ventricular volumes may be used in patients with various degrees of left ventricular hypertrophy.
Collapse
Affiliation(s)
- Hyun Woo Goo
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, South Korea.
| |
Collapse
|
49
|
Porthan K, Kenttä T, Niiranen TJ, Nieminen MS, Oikarinen L, Viitasalo M, Hernesniemi J, Jula AM, Salomaa V, Huikuri HV, Albert CM, Tikkanen JT. ECG left ventricular hypertrophy as a risk predictor of sudden cardiac death. Int J Cardiol 2019; 276:125-129. [DOI: 10.1016/j.ijcard.2018.09.104] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022]
|
50
|
Kontaraki JE, Marketou ME, Kochiadakis GE, Maragkoudakis S, Konstantinou J, Vardas PE, Parthenakis FI. The long non-coding RNAs MHRT
,FENDRR
and CARMEN
, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy. Clin Exp Pharmacol Physiol 2018; 45:1213-1217. [DOI: 10.1111/1440-1681.12997] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/23/2018] [Accepted: 06/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Joanna E. Kontaraki
- Molecular Cardiology Laboratory; School of Medicine; University of Crete; Heraklion Greece
| | - Maria E. Marketou
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | | | | | - John Konstantinou
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | - Panos E. Vardas
- Department of Cardiology; Heraklion University Hospital; Heraklion Greece
| | | |
Collapse
|