1
|
Bentestuen MS, Weis CN, Jeppesen CB, Thiele LS, Thirstrup JP, Cordero-Solorzano J, Jensen HK, Starnawska A, Hauser AS, Gasse C. Pharmacogenomic markers associated with drug-induced QT prolongation: a systematic review. Pharmacogenomics 2025; 26:53-72. [PMID: 40116580 PMCID: PMC11988217 DOI: 10.1080/14622416.2025.2481025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025] Open
Abstract
AIM To systematically assess clinical studies involving patients undergoing drug therapy, comparing different genotypes to assess the relationship with changes in QT intervals, with no limitations on study design, setting, population, dosing regimens, or duration. METHODS This systematic review followed PRISMA guidelines and a pre-registered protocol. Clinical human studies on PGx markers of diQTP were identified, assessed using standardized tools, and categorized by design. Gene associations were classified as pharmacokinetic or pharmacodynamic. Identified genes underwent pathway enrichment analyses. Drugs were classified by third-level Anatomical Therapeutic Chemical (ATC) codes. Descriptive statistics were computed by study category and drug classes. RESULTS Of 4,493 reports, 84 studies were included, identifying 213 unique variants across 42 drug classes, of which 10% were replicated. KCNE1-Asp85Asn was the most consistent variant. Most findings (82%) were derived from candidate gene studies, suggesting bias toward known markers. The diQTP-associated genes were mainly linked to "cardiac conduction" and "muscle contraction" pathways (false discovery rate = 4.71 × 10-14). We also found an overlap between diQTP-associated genes and congenital long QT syndrome genes. CONCLUSION Key genes, drugs, and pathways were identified, but few consistent PGx markers emerged. Extensive, unbiased studies with diverse populations are crucial to advancing the field. REGISTRATION A protocol was pre-registered at PROSPERO under registration number CRD42022296097. DATA DEPOSITION Data sets generated by this review are available at figshare: DOI: 10.6084/m9.figshare.27959616.
Collapse
Affiliation(s)
- Marlene Schouby Bentestuen
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
| | - Christian Noe Weis
- Department of Forensic Psychiatry, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | | | - Liv Swea Thiele
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| | - Janne Pia Thirstrup
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
| | - Juan Cordero-Solorzano
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Henrik Kjærulf Jensen
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart: ERN GUARD‐Heart, Aarhus, Denmark
| | - Anna Starnawska
- Department of Biomedicine, Health, Aarhus University, Aarhus, Denmark
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark
- Center for Genomics and Personalized Medicine, CGPM, and Center for Integrative Sequencing, iSEQ, Aarhus, Denmark
| | - Alexander Sebastian Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christiane Gasse
- Psychosis Research Unit, Aarhus University Hospital Psychiatry, Aarhus, Denmark
- Department of Clinical Medicine, Health, Aarhus University, Aarhus, Denmark
- Department of Affective Disorders, Aarhus University Hospital Psychiatry, Aarhus, Denmark
| |
Collapse
|
2
|
Muhammad A, Calandranis ME, Li B, Yang T, Blackwell DJ, Harvey ML, Smith JE, Daniel ZA, Chew AE, Capra JA, Matreyek KA, Fowler DM, Roden DM, Glazer AM. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. Genome Med 2024; 16:73. [PMID: 38816749 PMCID: PMC11138074 DOI: 10.1186/s13073-024-01340-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 04/26/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. METHODS In this study, we leveraged the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein-coding KCNE1 variants. RESULTS We comprehensively assayed KCNE1 variant cell surface expression (2554/2709 possible single-amino-acid variants) and function (2534 variants). Our study identified 470 loss- or partial loss-of-surface expression and 574 loss- or partial loss-of-function variants. Of the 574 loss- or partial loss-of-function variants, 152 (26.5%) had reduced cell surface expression, indicating that most functionally deleterious variants affect channel gating. Nonsense variants at residues 56-104 generally had WT-like trafficking scores but decreased functional scores, indicating that the latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation (with > 70% loss-of-function variants) were in predicted close contact with binding partners KCNQ1 or calmodulin. Our functional assay data were consistent with gold standard electrophysiological data (ρ = - 0.64), population and patient cohorts (32/38 presumed benign or pathogenic variants with consistent scores), and computational predictors (ρ = - 0.62). Our data provide moderate-strength evidence for the American College of Medical Genetics/Association of Molecular Pathology functional criteria for benign and pathogenic variants. CONCLUSIONS Comprehensive variant effect maps of KCNE1 can both provide insight into I Ks channel biology and help reclassify variants of uncertain significance.
Collapse
Affiliation(s)
- Ayesha Muhammad
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maria E Calandranis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - M Lorena Harvey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Jeremy E Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Zerubabell A Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Ashli E Chew
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, 94143, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Dan M Roden
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrew M Glazer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, 1235 Medical Research Building IV, 2215B Garland Avenue, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
3
|
Chen Z, Xu Z, Gao C, Chen L, Tan T, Jiang W, Chen B, Yuan Y, Zhang Z. Escitalopram-induced QTc prolongation and its relationship with KCNQ1, KCNE1, and KCNH2 gene polymorphisms. J Affect Disord 2024; 347:399-405. [PMID: 38000475 DOI: 10.1016/j.jad.2023.11.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Escitalopram can cause prolongation of the QT interval on the electrocardiogram (ECG). However, only some patients get pathological QTc prolongation in clinic. We investigated the influence of KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors on escitalopram-induced QTc prolongation. METHODS A total of 713 patients prescribed escitalopram were identified and had at least one ECG recording in this retrospective study. 472 patients with two or more ECG data were divided into QTc prolongation (n = 119) and non-prolongation (n = 353) groups depending on the threshold change in QTc of 30 ms above baseline value (∆QTc ≥ 30 ms). 45 patients in the QTc prolongation group and 90 patients in the QTc non-prolongation group were genotyped for 43 single nucleotide polymorphisms (SNPs) of KCNQ1, KCNE1, and KCNH2 genes. RESULTS Patients with QTc prolongation (∆QTc ≥ 30 ms) got higher escitalopram dose (10.3 mg) than patients without QTc prolongation (9.4 mg), although no significant relationship was found between QTc interval and escitalopram dose in the linear mixed model. Patients who were older/coronary disease/hypertension or carried with KCNE1 rs1805127 C allele, KCNE1 rs4817668 C allele, KCNH2 rs3807372 AG/GG genotype were significantly at risk for QTc prolongation (∆QTc ≥ 30 ms). Concomitant antipsychotic treatment was associated with a longer QTc interval. LIMITATIONS A relatively small sample size and lack of the blood concentration of escitalopram restricted the accurate relationship between escitalopram dose and QTc interval. CONCLUSION Our study revealed that KCNQ1, KCNE1, and KCNH2 gene polymorphisms along with clinical factors provide a complementary effect in escitalopram-induced QTc prolongation.
Collapse
Affiliation(s)
- Zimu Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China; Department of General Practice, Zhongda Hospital, Southeast University, Nanjing, China.
| | - Chenjie Gao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Lei Chen
- Department of Psychiatry, General Hospital of Eastern Theater Command, Nanjing, China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University Nanjing, China; Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Lopez-Medina AI, Campos-Staffico AM, A Chahal CA, Volkers I, Jacoby JP, Berenfeld O, Luzum JA. Genetic risk factors for drug-induced long QT syndrome: findings from a large real-world case-control study. Pharmacogenomics 2024; 25:117-131. [PMID: 38506312 PMCID: PMC10964839 DOI: 10.2217/pgs-2023-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Aim: Drug-induced long QT syndrome (diLQTS), an adverse effect of many drugs, can lead to sudden cardiac death. Candidate genetic variants in cardiac ion channels have been associated with diLQTS, but several limitations of previous studies hamper clinical utility. Materials & methods: Thus, the purpose of this study was to assess the associations of KCNE1-D85N, KCNE2-I57T and SCN5A-G615E with diLQTS in a large observational case-control study (6,083 self-reported white patients treated with 27 different high-risk QT-prolonging medications; 12.0% with diLQTS). Results: KCNE1-D85N significantly associated with diLQTS (adjusted odds ratio: 2.24 [95% CI: 1.35-3.58]; p = 0.001). Given low minor allele frequencies, the study had insufficient power to analyze KCNE2-I57T and SCN5A-G615E. Conclusion: KCNE1-D85N is a risk factor for diLQTS that should be considered in future clinical practice guidelines.
Collapse
Affiliation(s)
- Ana I Lopez-Medina
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | | | - Choudhary Anwar A Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Cardiology, Barts Heart Centre, London, UK
| | - Isabella Volkers
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Juliet P Jacoby
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| | - Omer Berenfeld
- Center for Arrhythmia Research, Departments of Internal Medicine – Cardiology, Biomedical Engineering, & Applied Physics, University of Michigan, Ann Arbor, MI, USA
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Muhammad A, Calandranis ME, Li B, Yang T, Blackwell DJ, Harvey ML, Smith JE, Chew AE, Capra JA, Matreyek KA, Fowler DM, Roden DM, Glazer AM. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538612. [PMID: 37162834 PMCID: PMC10168370 DOI: 10.1101/2023.04.28.538612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background KCNE1 encodes a 129-residue cardiac potassium channel (IKs) subunit. KCNE1 variants are associated with long QT syndrome and atrial fibrillation. However, most variants have insufficient evidence of clinical consequences and thus limited clinical utility. Results Here, we demonstrate the power of variant effect mapping, which couples saturation mutagenesis with high-throughput sequencing, to ascertain the function of thousands of protein coding KCNE1 variants. We comprehensively assayed KCNE1 variant cell surface expression (2,554/2,709 possible single amino acid variants) and function (2,539 variants). We identified 470 loss-of-surface expression and 588 loss-of-function variants. Out of the 588 loss-of-function variants, only 155 had low cell surface expression. The latter half of the protein is dispensable for protein trafficking but essential for channel function. 22 of the 30 KCNE1 residues (73%) highly intolerant of variation were in predicted close contact with binding partners KCNQ1 or calmodulin. Our data were highly concordant with gold standard electrophysiological data (ρ = -0.65), population and patient cohorts (32/38 concordant variants), and computational metrics (ρ = -0.55). Our data provide moderate-strength evidence for the ACMG/AMP functional criteria for benign and pathogenic variants. Conclusions Comprehensive variant effect maps of KCNE1 can both provide insight into IKs channel biology and help reclassify variants of uncertain significance.
Collapse
Affiliation(s)
- Ayesha Muhammad
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN 37232, USA
| | - Maria E. Calandranis
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bian Li
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Daniel J. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - M. Lorena Harvey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeremy E. Smith
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ashli E. Chew
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A. Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94143, USA
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Douglas M. Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Dan M. Roden
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Andrew M. Glazer
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Cai D, Zheng Z, Jin X, Fu Y, Cen L, Ye J, Song Y, Lian J. The Advantages, Challenges, and Future of Human-Induced Pluripotent Stem Cell Lines in Type 2 Long QT Syndrome. J Cardiovasc Transl Res 2023; 16:209-220. [PMID: 35976484 DOI: 10.1007/s12265-022-10298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/23/2022] [Indexed: 02/05/2023]
Abstract
Type 2 long QT syndrome (LQT2) is the second most common subtype of long QT syndrome and is caused by mutations in KCHN2 encoding the rapidly activating delayed rectifier potassium channel vital for ventricular repolarization. Sudden cardiac death is a sentinel event of LQT2. Preclinical diagnosis by genetic testing is potentially life-saving.Traditional LQT2 models cannot wholly recapitulate genetic and phenotypic features; therefore, there is a demand for a reliable experimental model. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) meet this challenge. This review introduces the advantages of the hiPSC-CM model over the traditional model and discusses how hiPSC-CM and gene editing are used to decipher mechanisms of LQT2, screen for cardiotoxicity, and identify therapeutic strategies, thus promoting the realization of precision medicine for LQT2 patients.
Collapse
Affiliation(s)
- Dihui Cai
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Zequn Zheng
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
- Department of Cardiovascular, First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiaojun Jin
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Lichao Cen
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Jiachun Ye
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China
| | - Yongfei Song
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo University, Zhejiang Province, Ningbo, China.
- Department of Cardiovascular, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW To summarize and critically assess the contribution of genetics to the Long QT Syndrome (LQTS), with specific reference to the unraveling of its underlying mechanisms and to its impact on clinical practice. RECENT FINDINGS The evolution towards our current approach to therapy for LQTS patients is examined in terms of risk stratification, gene-specific management, and assessment of the clinical impact that genetic modifiers may have in modulating the natural history of the patients. Glimpses are provided on the newest multidisciplinary approaches to study disease mechanisms, test new candidate drugs and identify precision treatments. SUMMARY It is undeniable that genetics has revolutionized our mechanistic understanding of cardiac channelopathies. Its impact has been enormous but, curiously, the way LQTS patients are being treated today is largely the same that was used in the pregenetic era, even though management has been refined and gene-specific differences allow a more individually tailored antiarrhythmic protection. The synergy of genetic findings with modern in vitro and in silico tools may expand precision treatments; however, they will need to prove more effective than the current therapeutic approaches and equally safe.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics
| | - Luca Sala
- Istituto Auxologico Italiano IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics.,Department of Biotechnology and Biosciences, University of Milano - Bicocca, Milan, Italy
| |
Collapse
|
8
|
Krijger Juárez C, Amin AS, Offerhaus JA, Bezzina CR, Boukens BJ. Cardiac Repolarization in Health and Disease. JACC Clin Electrophysiol 2023; 9:124-138. [PMID: 36697193 DOI: 10.1016/j.jacep.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022]
Abstract
Abnormal cardiac repolarization is at the basis of life-threatening arrhythmias in various congenital and acquired cardiac diseases. Dysfunction of ion channels involved in repolarization at the cellular level are often the underlying cause of the repolarization abnormality. The expression pattern of the gene encoding the affected ion channel dictates its impact on the shape of the T-wave and duration of the QT interval, thereby setting the stage for both the occurrence of the trigger and the substrate for maintenance of the arrhythmia. Here we discuss how research into the genetic and electrophysiological basis of repolarization has provided us with insights into cardiac repolarization in health and disease and how this in turn may provide the basis for future improved patient-specific management.
Collapse
Affiliation(s)
- Christian Krijger Juárez
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Ahmad S Amin
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joost A Offerhaus
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Connie R Bezzina
- Department of Experimental Cardiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam University Medical Center, Amsterdam, the Netherlands; Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
9
|
Martinez K, Smith A, Ye D, Zhou W, Tester DJ, Ackerman MJ. Curcumin, a dietary natural supplement, prolongs the action potential duration of KCNE1-D85N-induced pluripotent stem cell-derived cardiomyocytes. Heart Rhythm 2022; 20:580-586. [PMID: 36586707 DOI: 10.1016/j.hrthm.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Curcumin, a polyphenolic dietary natural compound and active ingredient in turmeric, exerts antioxidant, anti-inflammatory, antidiabetic, anticancer, and antiarrhythmic properties. KCNE1-D85N, present in ∼1% of white, is a common, potentially proarrhythmic variant that predisposes individuals to drug-induced QT prolongation under certain conditions. OBJECTIVE The purpose of this article was to test the hypothesis that curcumin might cause action potential duration (APD) prolongation in KCNE1-D85N-derived human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS Gene-edited/variant-corrected isogenic control and patient-specific KCNE1-D85N-containing iPSC-CMs were generated previously. Voltage-sensing dye, multielectrode array (MEA), and whole-cell patch clamp technique were used to measure APD without and with 4-hour incubation with 10 nM curcumin. RESULTS KCNE1-D85N-derived iPSC-CMs demonstrated significant APD prolongation with treatment of 10 nM curcumin. Using voltage-sensing dye, action potential duration at 90% repolarization (APD90) was 578 ± 7 ms (n = 39) at baseline and was prolonged to 658 ± 13 ms (n = 35) with curcumin incubation (P < .0001). Using MEA, APD90 at baseline was 237 ± 6 ms (n = 24) compared with 280 ± 6 ms (n = 12) with curcumin incubation (P = .0002). The whole-cell patch clamp technique confirmed these results, with APD90 being 544 ± 37 ms at baseline and 664 ± 40 ms with treatment of curcumin (P < .005). However, APD from isogenic control iPSC-CMs remained unchanged with curcumin treatment. CONCLUSION This study provides pharmacological and functional evidence to suggest that curcumin, a dietary natural supplement, might cause APD prolongation in patients with common, potentially proarrhythmic functional variants such as KCNE1-D85N. Whether this supplement is potentially dangerous for the Caucasian subpopulation that has this variant warrants further investigation.
Collapse
Affiliation(s)
- Katherine Martinez
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Annabel Smith
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Wilde AAM, Semsarian C, Márquez MF, Shamloo AS, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace 2022; 24:1307-1367. [PMID: 35373836 PMCID: PMC9435643 DOI: 10.1093/europace/euac030] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische
Centra, Amsterdam, location AMC, The Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute,
University of Sydney, Sydney, Australia
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de
México, Mexico
- Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine,
and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm
Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and
Windland Smith Rice Sudden Death Genomics Laboratory, Mayo
Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University,
Stanford, California, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute,
Minas Gerais, Brazil; and
Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Héctor Barajas-Martinez
- Cardiovascular Research, Lankenau Institute of Medical
Research, Wynnewood, PA, USA; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical
Sciences, St. George’s, University of London; St. George’s University Hospitals NHS
Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental
Cardiology, Amsterdam, The
Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven,
Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques
Héréditaires, ICAN, Inserm UMR1166, Hôpital
Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin,
Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital,
Istituto Auxologico Italiano, IRCCS, Milan,
Italy
- Department of Medicine and Surgery, University of
Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology,
University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard
Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research
Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular
Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A
Coruña, Spain; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP,
Faculdade de Medicina, Universidade de Sao Paulo, Sao
Paulo, Brazil; and Member of the Latin
American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital
Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon
Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of
Medicine, University of Washington, Seattle, WA,
USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart
Institute, Université de Montréal, Montreal,
Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical
Sciences, Imperial College London, London,
UK
- Royal Brompton & Harefield Hospitals, Guy’s
and St. Thomas’ NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of
Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University,
Cleveland, OH, USA
| |
Collapse
|
11
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick Eduardo B, Barajas‐Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz‐Genga M, Sacilotto L, Schulze‐Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi J, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, Mac Intyre C, Mackall JA, Mont L, Napolitano C, Ochoa Juan P, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt‐Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. J Arrhythm 2022; 38:491-553. [PMID: 35936045 PMCID: PMC9347209 DOI: 10.1002/joa3.12717] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Arthur A. M. Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische CentraAmsterdamThe Netherlands
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary InstituteUniversity of SydneySydneyAustralia
| | - Manlio F. Márquez
- Instituto Nacional de Cardiología Ignacio ChávezCiudad de MéxicoMexico
| | | | - Michael J. Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo ClinicRochesterMNUSA
| | - Euan A. Ashley
- Department of Cardiovascular MedicineStanford UniversityStanfordCAUSA
| | | | | | - Elijah R. Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George’sUniversity of London; St. George’s University Hospitals NHS Foundation TrustLondonUKMayo Clinic HealthcareLondon
| | - Connie R. Bezzina
- Amsterdam UMC Heart Center, Department of Experimental CardiologyAmsterdamThe Netherlands
| | - Jeroen Breckpot
- Center for Human GeneticsUniversity Hospitals LeuvenLeuvenBelgium
| | | | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
- Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCSMilanItaly
- Department of Medicine and SurgeryUniversity of Milano‐BicoccaMilanItaly
| | - Michael H. Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of CardiologyUniversity of TorontoTorontoONCanada
| | - Steven Lubitz
- Cardiac Arrhythmia ServiceMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Naomasa Makita
- National Cerebral and Cardiovascular CenterResearch InstituteSuitaJapan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular CenterSuitaJapan
| | | | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao PauloBrazil
| | - Eric Schulze‐Bahr
- Institute for Genetics of Heart DiseasesUniversity Hospital MünsterMünsterGermany
| | - Wataru Shimizu
- Department of Cardiovascular MedicineGraduate School of MedicineTokyoJapan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of MedicineUniversity of WashingtonSeattleWAUSA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart InstituteUniversité de MontréalMontrealCanada
| | - James S. Ware
- National Heart and Lung Institute and MRC London Institute of Medical SciencesImperial College LondonLondonUK
- Royal Brompton & Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation TrustLondonUK
| | - David S. Winlaw
- Cincinnati Children's Hospital Medical CentreUniversity of CincinnatiCincinnatiOHUSA
| | | | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, SuitaOsakaJapan
| | - Andreas Bollmann
- Department of ElectrophysiologyHeart Center Leipzig at University of LeipzigLeipzigGermany
- Leipzig Heart InstituteLeipzigGermany
| | - Jong‐Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam HospitalKorea University College of MedicineSeoulRepublic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of CardiologyVanderbilt University School of MedicineNashvilleTNUSA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São PauloSão PauloBrazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo ClinicRochesterMNUSA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos AiresBuenos AiresArgentina
| | - Kui Hong
- Department of Cardiovascular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Andrew D. Krahn
- Division of CardiologyUniversity of British ColumbiaVancouverCanada
| | - Ciorsti Mac Intyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo ClinicRochesterMNUSA
| | - Judith A. Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical CenterCase Western Reserve University School of MedicineClevelandOHUSA
| | - Lluís Mont
- Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS). Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), MadridSpain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCSPaviaItaly
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Pablo Ochoa Juan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), MadridSpain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de HierroMadridSpain
- Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), MadridSpain
| | - Petr Peichl
- Department of CardiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Alexandre C. Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart InstituteUniversity of São Paulo Medical SchoolSão PauloBrazil
- Hipercol Brasil ProgramSão PauloBrazil
| | - Peter J. Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCSMilanItaly
| | - Jon Skinner
- Sydney Childrens Hospital NetworkUniversity of SydneySydneyAustralia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care MedicineUniversity Hospital Campus Klinikum BielefeldBielefeldGermany
| | - Jacob Tfelt‐Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of genetics, Department of Forensic Medicine, Faculty of Medical SciencesUniversity of CopenhagenDenmark
| | - Thomas Deneke
- Heart Center Bad NeustadtBad Neustadt a.d. SaaleGermany
| |
Collapse
|
12
|
Wilde AAM, Semsarian C, Márquez MF, Sepehri Shamloo A, Ackerman MJ, Ashley EA, Sternick EB, Barajas-Martinez H, Behr ER, Bezzina CR, Breckpot J, Charron P, Chockalingam P, Crotti L, Gollob MH, Lubitz S, Makita N, Ohno S, Ortiz-Genga M, Sacilotto L, Schulze-Bahr E, Shimizu W, Sotoodehnia N, Tadros R, Ware JS, Winlaw DS, Kaufman ES, Aiba T, Bollmann A, Choi JI, Dalal A, Darrieux F, Giudicessi J, Guerchicoff M, Hong K, Krahn AD, MacIntyre C, Mackall JA, Mont L, Napolitano C, Ochoa JP, Peichl P, Pereira AC, Schwartz PJ, Skinner J, Stellbrink C, Tfelt-Hansen J, Deneke T. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the State of Genetic Testing for Cardiac Diseases. Heart Rhythm 2022; 19:e1-e60. [PMID: 35390533 DOI: 10.1016/j.hrthm.2022.03.1225] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Arthur A M Wilde
- Heart Centre, Department of Cardiology, Amsterdam Universitair Medische Centra, Amsterdam, location AMC, The Netherlands.
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, University of Sydney, Sydney, Australia.
| | - Manlio F Márquez
- Instituto Nacional de Cardiología Ignacio Chávez, Ciudad de México, Mexico; and Member of the Latin American Heart Rhythm Society (LAHRS).
| | | | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology; Windland Smith Rice Genetic Heart Rhythm Clinic and Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Euan A Ashley
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Eduardo Back Sternick
- Arrhythmia and Electrophysiology Unit, Biocor Institute, Minas Gerais, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | | | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Institute of Molecular and Clinical Sciences, St. George's, University of London; St. George's University Hospitals NHS Foundation Trust, London, UK; Mayo Clinic Healthcare, London
| | - Connie R Bezzina
- Amsterdam UMC Heart Center, Department of Experimental Cardiology, Amsterdam, The Netherlands
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Philippe Charron
- Sorbonne Université, APHP, Centre de Référence des Maladies Cardiaques Héréditaires, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Lia Crotti
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Cardiomyopathy Unit and Cardiac Rehabilitation Unit, San Luca Hospital, Istituto Auxologico Italiano, IRCCS, Milan, Italy; Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Division of Cardiology, University of Toronto, Toronto, ON, Canada
| | - Steven Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center, Research Institute, Suita, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Martín Ortiz-Genga
- Clinical Department, Health in Code, A Coruña, Spain; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Luciana Sacilotto
- Arrhythmia Unit, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil; and Member of the Latin American Heart Rhythm Society (LAHRS)
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Bunkyo-ku, Tokyo, Japan
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Rafik Tadros
- Cardiovascular Genetics Center, Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Canada
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK; Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - David S Winlaw
- Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Elizabeth S Kaufman
- Metrohealth Medical Center, Case Western Reserve University, Cleveland, OH, USA.
| | - Takeshi Aiba
- Department of Clinical Laboratory Medicine and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Andreas Bollmann
- Department of Electrophysiology, Heart Center Leipzig at University of Leipzig, Leipzig, Germany; Leipzig Heart Institute, Leipzig Heart Digital, Leipzig, Germany
| | - Jong-Il Choi
- Division of Cardiology, Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aarti Dalal
- Department of Pediatrics, Division of Cardiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Francisco Darrieux
- Arrhythmia Unit, Instituto do Coração, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - John Giudicessi
- Department of Cardiovascular Medicine (Divisions of Heart Rhythm Services and Circulatory Failure and the Windland Smith Rice Genetic Heart Rhythm Clinic), Mayo Clinic, Rochester, MN, USA
| | - Mariana Guerchicoff
- Division of Pediatric Arrhythmia and Electrophysiology, Italian Hospital of Buenos Aires, Buenos Aires, Argentina
| | - Kui Hong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Andrew D Krahn
- Division of Cardiology, University of British Columbia, Vancouver, Canada
| | - Ciorsti MacIntyre
- Department of Cardiovascular Medicine, Division of Heart Rhythm Services, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN, USA
| | - Judith A Mackall
- Center for Cardiac Electrophysiology and Pacing, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Lluís Mont
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Carlo Napolitano
- Molecular Cardiology, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy; Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Juan Pablo Ochoa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigacion Biomedica en Red en Enfermedades Cariovasculares (CIBERCV), Madrid, Spain
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alexandre C Pereira
- Laboratory of Genetics and Molecular Cardiology, Heart Institute, University of São Paulo Medical School, São Paulo 05403-000, Brazil; Hipercol Brasil Program, São Paulo, Brazil
| | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Jon Skinner
- Sydney Childrens Hospital Network, University of Sydney, Sydney, Australia
| | - Christoph Stellbrink
- Department of Cardiology and Intensive Care Medicine, University Hospital Campus Klinikum Bielefeld, Bielefeld, Germany
| | - Jacob Tfelt-Hansen
- The Department of Cardiology, the Heart Centre, Copenhagen University Hospital, Rigshopitalet, Copenhagen, Denmark; Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark
| | - Thomas Deneke
- Heart Center Bad Neustadt, Bad Neustadt a.d. Saale, Germany
| |
Collapse
|
13
|
Lopez-Medina AI, Chahal CAA, Luzum JA. The genetics of drug-induced QT prolongation: evaluating the evidence for pharmacodynamic variants. Pharmacogenomics 2022; 23:543-557. [PMID: 35698903 DOI: 10.2217/pgs-2022-0027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Drug-induced long QT syndrome (diLQTS) is an adverse effect of many commonly prescribed drugs, and it can increase the risk for lethal ventricular arrhythmias. Genetic variants in pharmacodynamic genes have been associated with diLQTS, but the strength of the evidence for each of those variants has not yet been evaluated. Therefore, the purpose of this review was to evaluate the strength of the evidence for pharmacodynamic genetic variants associated with diLQTS using a novel, semiquantitative scoring system modified from the approach used for congenital LQTS. KCNE1-D85N and KCNE2-T8A had definitive and strong evidence for diLQTS, respectively. The high level of evidence for these variants supports current consideration as risk factors for patients that will be prescribed a QT-prolonging drug.
Collapse
Affiliation(s)
- Ana I Lopez-Medina
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| | - Choudhary Anwar A Chahal
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA.,Barts Heart Centre, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK.,WellSpan Health, Lancaster, PA 17607, USA
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Gray B, Baruteau AE, Antolin AA, Pittman A, Sarganas G, Molokhia M, Blom MT, Bastiaenen R, Bardai A, Priori SG, Napolitano C, Weeke PE, Shakir SA, Haverkamp W, Mestres J, Winkel BG, Witney AA, Chis-Ster I, Sangaralingam A, Camm AJ, Tfelt-Hansen J, Roden DM, Tan HL, Garbe E, Sturkenboom M, Behr ER. Rare Variation in Drug Metabolism and Long QT Genes and the Genetic Susceptibility to Acquired Long QT Syndrome. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2022; 15:e003391. [PMID: 35113648 DOI: 10.1161/circgen.121.003391] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Acquired long QT syndrome (aLQTS) is a serious unpredictable adverse drug reaction. Pharmacogenomic markers may predict risk. METHODS Among 153 aLQTS patients (mean age 58 years [range, 14-88], 98.7% White, 85.6% symptomatic), computational methods identified proteins interacting most significantly with 216 QT-prolonging drugs. All cases underwent sequencing of 31 candidate genes arising from this analysis or associating with congenital LQTS. Variants were filtered using a minor allele frequency <1% and classified for susceptibility for aLQTS. Gene-burden analyses were then performed comparing the primary cohort to control exomes (n=452) and an independent replication aLQTS exome sequencing cohort. RESULTS In 25.5% of cases, at least one rare variant was identified: 22.2% of cases carried a rare variant in a gene associated with congenital LQTS, and in 4% of cases that variant was known to be pathogenic or likely pathogenic for congenital LQTS; 7.8% cases carried a cytochrome-P450 (CYP) gene variant. Of 12 identified CYP variants, 11 (92%) were in an enzyme known to metabolize at least one culprit drug to which the subject had been exposed. Drug-drug interactions that affected culprit drug metabolism were found in 19% of cases. More than one congenital LQTS variant, CYP gene variant, or drug interaction was present in 7.8% of cases. Gene-burden analyses of the primary cohort compared to control exomes (n=452), and an independent replication aLQTS exome sequencing cohort (n=67) and drug-tolerant controls (n=148) demonstrated an increased burden of rare (minor allele frequency<0.01) variants in CYP genes but not LQTS genes. CONCLUSIONS Rare susceptibility variants in CYP genes are emerging as potentially important pharmacogenomic risk markers for aLQTS and could form part of personalized medicine approaches in the future.
Collapse
Affiliation(s)
- Belinda Gray
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - Alban-Elouen Baruteau
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France (A.-E.B.)
| | - Albert A Antolin
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute & University Pompeu Fabra, Parc de Recerca Biomedica, Barcelona, Catalonia, Spain (A.A.A., M.J.M.)
| | - Alan Pittman
- Genetics Research Centre (A.P.), St George's University of London, United Kingdom
| | - Giselle Sarganas
- Clinical Pharmacology & Toxicology, Charite Universitaetsmedizin, Berlin, Germany (G.S.)
| | - Mariam Molokhia
- Department of Population Health Sciences, King's College London, United Kingdom (M.M.)
| | - Marieke T Blom
- Heart Centre AMC, Department of Experimental & Clinical Cardiology, Academic Medical Center, Amsterdam, the Netherlands (M.T.B., A.B., H.L.T.)
| | - Rachel Bastiaenen
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - Abdenasser Bardai
- Heart Centre AMC, Department of Experimental & Clinical Cardiology, Academic Medical Center, Amsterdam, the Netherlands (M.T.B., A.B., H.L.T.)
| | - Silvia G Priori
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy (S.G.P., C.N.)
- Department of Molecular Medicine, University of Pavia, Italy (S.G.P., C.N.)
| | - Carlo Napolitano
- Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy (S.G.P., C.N.)
- Department of Molecular Medicine, University of Pavia, Italy (S.G.P., C.N.)
| | - Peter E Weeke
- L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, Nantes, France (A.-E.B.)
- Departments of Medicine, Pharmacology & Biomedical Informatics Vanderbilt University Medical Centre (P.E.W., D.M.R.)
| | - Saad A Shakir
- Drug Safety Research Unit, Bursledon Hall, Blundell Lane, Southampton, United Kingdom (S.A.S.)
- Associate Department of the School of Pharmacy & Biomedical Sciences, University of Portsmouth, United Kingdom (S.A.S.)
| | - Wilhelm Haverkamp
- Charité-Campus Virchow-Klinikum (CVK), Department of Cardiology, Berlin, Germany (W.H.)
| | - Jordi Mestres
- Systems Pharmacology, Research Program on Biomedical Informatics (GRIB), IMIM Hospital del Mar Medical Research Institute & University Pompeu Fabra, Parc de Recerca Biomedica, Barcelona, Catalonia, Spain (A.A.A., M.J.M.)
| | - Bo Gregers Winkel
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark (B.W., J.T.-H.)
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (P.E.W., B.W., J.T.-H.)
| | - Adam A Witney
- Institute of Infection & Immunity (A.A.W., I.C.-S.), St George's University of London, United Kingdom
| | - Irina Chis-Ster
- Institute of Infection & Immunity (A.A.W., I.C.-S.), St George's University of London, United Kingdom
| | - Ajanthah Sangaralingam
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - A John Camm
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (P.E.W., B.W., J.T.-H.)
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark (B.W., J.T.-H.)
| | - Dan M Roden
- Departments of Medicine, Pharmacology & Biomedical Informatics Vanderbilt University Medical Centre (P.E.W., D.M.R.)
| | - Hanno L Tan
- Heart Centre AMC, Department of Experimental & Clinical Cardiology, Academic Medical Center, Amsterdam, the Netherlands (M.T.B., A.B., H.L.T.)
| | - Edeltraut Garbe
- Leibniz Institute for Prevention Research & Epidemiology - BIPS, Bremen, Germany (E.G.)
| | - Miriam Sturkenboom
- Julius Global Health, University Medical Center Utrecht, the Netherlands (M.S.)
| | - Elijah R Behr
- Cardiology Clinical Academic Group, Molecular & Clinical Sciences Research Institute, St George's, University of London & St George's University Hospitals NHS Foundation Trust, London, United Kingdom (B.G., A.-E.B., R.B., A.S., A.J.C., E.R.B.)
| |
Collapse
|
15
|
Wada Y, Yang T, Shaffer CM, Daniel LL, Glazer AM, Davogustto GE, Lowery BD, Farber-Eger E, Wells QS, Roden DM. Common Ancestry-Specific Ion Channel Variants Predispose to Drug-Induced Arrhythmias. Circulation 2022; 145:299-308. [PMID: 34994586 PMCID: PMC8852297 DOI: 10.1161/circulationaha.121.054883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Multiple reports associate the cardiac sodium channel gene (SCN5A) variants S1103Y and R1193Q with type 3 congenital long QT syndrome and drug-induced long QT syndrome. These variants are too common in ancestral populations to be highly arrhythmogenic at baseline, however: S1103Y allele frequency is 8.1% in African Americans and R1193Q 6.1% in East Asians. R1193Q is known to increase late sodium current (INa-L) in cardiomyocytes derived from induced pluripotent stem cells but the role of these variants in modulating repolarization remains poorly understood. METHODS We determined the effect of S1103Y on QT intervals among African-American participants in a large electronic health record. Using cardiomyocytes derived from induced pluripotent stem cells carrying naturally occurring or genome-edited variants, we studied action potential durations (APDs) at baseline and after challenge with the repolarizing potassium current (IKr) blocker dofetilide and INa-L and IKr at baseline. RESULTS In 1479 African-American participants with no confounding medications or diagnoses of heart disease, QT intervals in S1103Y carriers was no different from that in noncarriers. Baseline APD was no different in cells expressing the Y allele (SY, YY cells) compared with isogenic cells with the reference allele (SS cells). However, INa-L was increased in SY and YY cells and the INa-L blocker GS967 shortened APD in SY/YY but not SS cells (P<0.001). IKr was increased almost 2-fold in SY/YY cells compared with SS cells (tail current: 0.66±0.1 versus 1.2±0.1 pA/pF; P<0.001). Dofetilide challenge prolonged APD at much lower concentrations in SY (4.1 nmol/L [interquartile range, 1.5-9.3]; n=11) and YY (4.2 nmol/L [1.7-5.0]; n=5) than in SS cells (249 nmol/L [22.3-2905]; n=14; P<0.001 and P<0.01, respectively) and elicited afterdepolarizations in 8/16 SY/YY cells but only in 1/14 SS cells. R1193Q cells similarly displayed no difference in baseline APD but increased IKr and increased dofetilide sensitivity. CONCLUSIONS These common ancestry-specific variants do not affect baseline repolarization, despite generating increased INa-L. We propose that increased IKr serves to maintain normal repolarization but increases the risk of manifest QT prolongation with IKr block in variant carriers. Our findings emphasize the need for inclusion of diverse populations in the study of adverse drug reactions.
Collapse
Affiliation(s)
- Yuko Wada
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Tao Yang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Laura L. Daniel
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew M. Glazer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | | | - Brandon D. Lowery
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Eric Farber-Eger
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn S. Wells
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Dan M. Roden
- Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN.,For correspondence: Dan M. Roden, M.D., Vanderbilt University Medical Center, 2215B Garland Ave, 1285 MRBIV, Nashville, TN 37232. Fax 615.343.4522, Tel 615.322.0067,
| |
Collapse
|
16
|
Martínez-Barrios E, Cesar S, Cruzalegui J, Hernandez C, Arbelo E, Fiol V, Brugada J, Brugada R, Campuzano O, Sarquella-Brugada G. Clinical Genetics of Inherited Arrhythmogenic Disease in the Pediatric Population. Biomedicines 2022; 10:106. [PMID: 35052786 PMCID: PMC8773373 DOI: 10.3390/biomedicines10010106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 12/19/2022] Open
Abstract
Sudden death is a rare event in the pediatric population but with a social shock due to its presentation as the first symptom in previously healthy children. Comprehensive autopsy in pediatric cases identify an inconclusive cause in 40-50% of cases. In such cases, a diagnosis of sudden arrhythmic death syndrome is suggested as the main potential cause of death. Molecular autopsy identifies nearly 30% of cases under 16 years of age carrying a pathogenic/potentially pathogenic alteration in genes associated with any inherited arrhythmogenic disease. In the last few years, despite the increasing rate of post-mortem genetic diagnosis, many families still remain without a conclusive genetic cause of the unexpected death. Current challenges in genetic diagnosis are the establishment of a correct genotype-phenotype association between genes and inherited arrhythmogenic disease, as well as the classification of variants of uncertain significance. In this review, we provide an update on the state of the art in the genetic diagnosis of inherited arrhythmogenic disease in the pediatric population. We focus on emerging publications on gene curation for genotype-phenotype associations, cases of genetic overlap and advances in the classification of variants of uncertain significance. Our goal is to facilitate the translation of genetic diagnosis to the clinical area, helping risk stratification, treatment and the genetic counselling of families.
Collapse
Affiliation(s)
- Estefanía Martínez-Barrios
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Sergi Cesar
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - José Cruzalegui
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Clara Hernandez
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Elena Arbelo
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Victoria Fiol
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
| | - Josep Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Arrhythmias Unit, Hospital Clinic, University of Barcelona-IDIBAPS, 08036 Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17007 Girona, Spain
| | - Oscar Campuzano
- Centro de Investigación Biomédica en Red, Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain; (E.A.); (R.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
- Cardiovascular Genetics Center, University of Girona-IDIBGI, 17190 Girona, Spain
| | - Georgia Sarquella-Brugada
- Arrhythmias Unit, Hospital Sant Joan de Déu, University of Barcelona, 08007 Barcelona, Spain; (E.M.-B.); (S.C.); (J.C.); (C.H.); (V.F.); (J.B.)
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
17
|
Scrocco C, Bezzina CR, Ackerman MJ, Behr ER. Genetics and genomics of arrhythmic risk: current and future strategies to prevent sudden cardiac death. Nat Rev Cardiol 2021; 18:774-784. [PMID: 34031597 DOI: 10.1038/s41569-021-00555-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 02/04/2023]
Abstract
A genetic risk of sudden cardiac arrest and sudden death due to an arrhythmic cause, known as sudden cardiac death (SCD), has become apparent from epidemiological studies in the general population and in patients with ischaemic heart disease. However, genetic susceptibility to sudden death is greatest in young people and is associated with uncommon, monogenic forms of heart disease. Despite comprehensive pathology and genetic evaluations, SCD remains unexplained in a proportion of young people and is termed sudden arrhythmic death syndrome, which poses challenges to the identification of relatives from affected families who might be at risk of SCD. In this Review, we assess the current understanding of the epidemiology and causes of SCD and evaluate both the monogenic and the polygenic contributions to the risk of SCD in the young and SCD associated with drug therapy. Finally, we analyse the potential clinical role of genomic testing in the prevention of SCD in the general population.
Collapse
Affiliation(s)
- Chiara Scrocco
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, UK
| | - Connie R Bezzina
- Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine, Pediatric and Adolescent Medicine, and Molecular Pharmacology & Experimental Therapeutics; Divisions of Heart Rhythm Services and Pediatric Cardiology, Mayo Clinic, Rochester, MN, USA.,Windland Smith Rice Genetic Heart Rhythm Clinic and the Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN, USA
| | - Elijah R Behr
- Cardiovascular Clinical Academic Group, Molecular and Clinical Sciences Institute, St George's University of London and St George's University Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
18
|
Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Anti-Ro/SSA Antibodies and the Autoimmune Long-QT Syndrome. Front Med (Lausanne) 2021; 8:730161. [PMID: 34552948 PMCID: PMC8450397 DOI: 10.3389/fmed.2021.730161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/11/2021] [Indexed: 01/08/2023] Open
Abstract
Autoimmunity is increasingly recognized as a novel pathogenic mechanism for cardiac arrhythmias. Several arrhythmogenic autoantibodies have been identified, cross-reacting with different types of surface proteins critically involved in the cardiomyocyte electrophysiology, primarily ion channels (autoimmune cardiac channelopathies). Specifically, some of these autoantibodies can prolong the action potential duration leading to acquired long-QT syndrome (LQTS), a condition known to increase the risk of life-threatening ventricular arrhythmias, particularly Torsades de Pointes (TdP). The most investigated form of autoimmune LQTS is associated with the presence of circulating anti-Ro/SSA-antibodies, frequently found in patients with autoimmune diseases (AD), but also in a significant proportion of apparently healthy subjects of the general population. Accumulating evidence indicates that anti-Ro/SSA-antibodies can markedly delay the ventricular repolarization via a direct inhibitory cross-reaction with the extracellular pore region of the human-ether-a-go-go-related (hERG) potassium channel, resulting in a higher propensity for anti-Ro/SSA-positive subjects to develop LQTS and ventricular arrhythmias/TdP. Recent population data demonstrate that the risk of LQTS in subjects with circulating anti-Ro/SSA antibodies is significantly increased independent of a history of overt AD, intriguingly suggesting that these autoantibodies may silently contribute to a number of cases of ventricular arrhythmias and cardiac arrest in the general population. In this review, we highlight the current knowledge in this topic providing complementary basic, clinical and population health perspectives.
Collapse
Affiliation(s)
- Pietro Enea Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Mohamed Boutjdir
- Veterans Affairs New York Harbor Healthcare System, State University of New York Downstate Medical Center, New York, NY, United States.,New York University School of Medicine, New York, NY, United States
| | - Pier Leopoldo Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
19
|
Eroglu TE, Barcella CA, Blom MT, Mohr GH, Souverein PC, Torp-Pedersen C, Folke F, Wissenberg M, de Boer A, Schwartz PJ, Gislason GH, Tan HL. Out-of-hospital cardiac arrest and differential risk of cardiac and non-cardiac QT-prolonging drugs in 37 000 cases. Br J Clin Pharmacol 2021; 88:820-829. [PMID: 34374122 PMCID: PMC9291302 DOI: 10.1111/bcp.15030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Aims Drugs that prolong the QT interval, either by design (cardiac QT‐prolonging drugs: anti‐arrhythmics) or as off‐target effect (non‐cardiac QT‐prolonging drugs), may increase the risk of ventricular arrhythmias and out‐of‐hospital cardiac arrest (OHCA). Risk mitigation measures were instituted, in particular, surrounding prescription of cardiac QT‐prolonging drugs. We studied OHCA risk of both drug types in current clinical practice. Methods Using data from large population‐based OHCA registries in the Netherlands and Denmark, we conducted two independent case–control studies. OHCA cases with presumed cardiac causes were matched on age/sex/index date with up to five non‐OHCA controls. We calculated odds ratios (ORs) for the association of cardiac or non‐cardiac QT‐prolonging drugs with OHCA risk using conditional logistic regression analyses. Results We identified 2503 OHCA cases and 10 543 non‐OHCA controls in the Netherlands, and 35 017 OHCA cases and 175 085 non‐OHCA controls in Denmark. Compared to no use of QT‐prolonging drugs, use of non‐cardiac QT‐prolonging drugs (Netherlands: cases: 3.0%, controls: 1.9%; Denmark: cases: 14.9%, controls: 7.5%) was associated with increased OHCA risk (Netherlands: OR 1.37 [95% CI: 1.03–1.81]; Denmark: OR 1.63 [95% CI: 1.57–1.70]). The association between cardiac QT‐prolonging drugs (Netherlands: cases: 4.0%, controls: 2.5%; Denmark: cases: 2.1%, controls: 0.9%) and OHCA was weaker (Netherlands: OR 1.17 [95% CI: 0.92–1.50]; Denmark: OR 1.21 [95% CI: 1.09–1.33]), although users of cardiac QT‐prolonging drugs had more medication use and comorbidities associated with OHCA risk than users of non‐cardiac QT‐prolonging drugs. Conclusion In clinical practice, cardiac QT‐prolonging drugs confer lower OHCA risk than non‐cardiac QT‐prolonging drugs, although users of the former have higher a priori risk. This is likely due to risk mitigation measures surrounding prescription of cardiac QT‐prolonging drugs.
Collapse
Affiliation(s)
- Talip E Eroglu
- Department of Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Carlo A Barcella
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Marieke T Blom
- Department of Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Grimur H Mohr
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Patrick C Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christian Torp-Pedersen
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Investigation and Cardiology, Nordsjaellands Hospital, Hillerød, Denmark
| | - Fredrik Folke
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Copenhagen Emergency Medical Services, Denmark
| | - Mads Wissenberg
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,Copenhagen Emergency Medical Services, Denmark
| | - Anthonius de Boer
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Milan, Italy
| | - Gunnar H Gislason
- Department of Cardiology, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark.,National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark.,The Danish Heart Foundation, Copenhagen, Denmark
| | - Hanno L Tan
- Department of Cardiology, Heart Center, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | | |
Collapse
|
20
|
|
21
|
Kim M, Ye D, John Kim CS, Zhou W, Tester DJ, Giudicessi JR, Ackerman MJ. Development of a Patient-Specific p.D85N-Potassium Voltage-Gated Channel Subfamily E Member 1-Induced Pluripotent Stem Cell-Derived Cardiomyocyte Model for Drug-Induced Long QT Syndrome. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003234. [PMID: 34003017 DOI: 10.1161/circgen.120.003234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prior epidemiological studies demonstrated that the p.D85N-Potassium voltage-gated channel subfamily E member 1 (KCNE1) common variant reduces repolarization reserve and predisposes to drug-induced QT prolongation/torsades de pointes. We sought to develop a cellular model for drug-induced long QT syndrome using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM). METHODS p.D85N-KCNE1 iPSCs were generated from a 23-year-old female with an exaggerated heart rate-corrected QT interval response to metoclopramide (ΔQTc of 160 ms). Clustered regularly interspaced short palindromic repeats-associated 9 technology was used to generate gene-corrected isogenic iPSCs. Field potential duration and action potential duration (APD) were measured from iPSC-CMs. RESULTS At baseline, p.D85N-KCNE1 iPSC-CMs displayed significantly longer field potential duration (281±15 ms, n=13 versus 223±8.6 ms, n=14, P<0.01) and action potential duration at 90% repolarization (APD90; 579±22 ms, n=24 versus 465±33 ms, n=26, P<0.01) than isogenic-control iPSC-CMs. Dofetilide at a concentration of 2 nM increased significantly field potential duration (379±20 ms, n=13, P<0.01) and APD90 (666±11 ms, n=46, P<0.01) in p.D85N-KCNE1 iPSC-CMs but not in isogenic-control. The effect of dofetilide on APD90 (616±54 ms, n=7 versus 526±54 ms, n=10, P<0.05) was confirmed by Patch-clamp. Interestingly, treatment of p.D85N-KCNE1 iPSC-CMs with estrogen at a concentration of 1 nM exaggerated further dofetilide-induced APD90 prolongation (696±9 ms, n=81, P<0.01) and caused more early afterdepolarizations (11.7%) compared with isogenic control (APD90: 618±8 ms, n=115 and early afterdepolarizations: 2.6%, P<0.05). CONCLUSIONS This iPSC-CM study provides further evidence that the p.D85N-KCNE1 common variant in combination with environmental factors such as QT prolonging drugs and female sex is proarrhythmic.
Collapse
Affiliation(s)
- Maengjo Kim
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.)
| | - Dan Ye
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.)
| | - C S John Kim
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.)
| | - Wei Zhou
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.)
| | - David J Tester
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.)
| | - John R Giudicessi
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.).,Departments of Cardiovascular Medicine (Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN (J.R.G.)
| | - Michael J Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology and Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (M.K., D.Y., C.S.J.K., W.Z., D.J.T., J.R.G., M.J.A.)
| |
Collapse
|
22
|
Davies B, Bartels K, Hathaway J, Xu F, Roberts JD, Tadros R, Green MS, Healey JS, Simpson CS, Sanatani S, Steinberg C, Gardner M, Angaran P, Talajic M, Hamilton R, Arbour L, Seifer C, Fournier A, Joza J, Krahn AD, Lehman A, Laksman ZWM. Variant Reinterpretation in Survivors of Cardiac Arrest With Preserved Ejection Fraction (the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry) by Clinicians and Clinical Commercial Laboratories. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2021; 14:e003235. [PMID: 33960826 DOI: 10.1161/circgen.120.003235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Following an unexplained cardiac arrest, clinical genetic testing is increasingly becoming standard of care. Periodic review of variant classification is required, as reinterpretation can change the diagnosis, prognosis, and management of patients and their relatives. METHODS This study aimed to develop and validate a standardized algorithm to facilitate clinical application of the 2015 American College of Medical Genetics and Association for Molecular Pathology guidelines for the interpretation of genetic variants. The algorithm was applied to genetic results in the Cardiac Arrest Survivors With Preserved Ejection Fraction Registry, to assess the rate of variant reclassification over time. Variant classifications were then compared with the classifications of 2 commercial laboratories to determine the rate and identify sources of variant interpretation discordance. RESULTS Thirty-one percent of participants (40 of 131) had at least 1 genetic variant with a clinically significant reclassification over time. Variants of uncertain significance were more likely to be downgraded (73%) to benign than upgraded to pathogenic (27%; P=0.03). For the second part of the study, 50% (70 of 139) of variants had discrepant interpretations (excluding benign variants), provided by at least 1 team. CONCLUSIONS Periodic review of genetic variant classification is a key component of follow-up care given rapidly changing information in the field. There is potential for clinical care gaps with discrepant variant interpretations, based on the interpretation and application of current guidelines. The development of gene- and disease-specific guidelines and algorithms may provide an opportunity to further standardize variant interpretation reporting in the future. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT00292032.
Collapse
Affiliation(s)
- Brianna Davies
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Kirsten Bartels
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | | | - Fang Xu
- Prevention Genetics, Marshfield, WI (F.X.)
| | - Jason D Roberts
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario (J.D.R.)
| | - Rafik Tadros
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | | | | | | | | | - Christian Steinberg
- Institut Universitaire de Cardiologie et Pneumologie de Québec, Laval University (C. Steinberg)
| | | | - Paul Angaran
- St. Michael's Hospital, University of Toronto, Canada (P.A.)
| | - Mario Talajic
- Department of Medicine, Cardiovascular Genetics Center, Montreal Heart Institute, Canada (R.T., M.T.)
| | - Robert Hamilton
- hTe Hospital for Sick Children (SickKids), Toronto, Canada (R.H.)
| | - Laura Arbour
- Division of Medical Genetics, Island Health, Victoria, Canada (L.A.)
| | - Colette Seifer
- Section of Cardiology, Department of Internal Medicine, University of Manitoba, Winnipeg, Canada (C. Seifer)
| | - Anne Fournier
- Division of Pediatric Cardiology, CHU Sainte-Justine, Université de Montréal, QC (A.F.)
| | - Jacqueline Joza
- Division of Cardiology, McGill University Health Center, Montreal, Canada (J.J.)
| | - Andrew D Krahn
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| | - Anna Lehman
- Department of Medical Genetics (A.L.), The University of British Columbia, Vancouver, Canada
| | - Zachary W M Laksman
- Division of Cardiology, Department of Medicine (B.D., K.B., A.D.K., Z.W.M.L.), The University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Kojima A, Mi X, Fukushima Y, Ding WG, Omatsu-Kanbe M, Matsuura H. Elevation of propofol sensitivity of cardiac I Ks channel by KCNE1 polymorphism D85N. Br J Pharmacol 2021; 178:2690-2708. [PMID: 33763865 DOI: 10.1111/bph.15460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The slowly activating delayed rectifier K+ channel (IKs ), composed of pore-forming KCNQ1 α-subunits and ancillary KCNE1 β-subunits, regulates ventricular repolarization in human heart. Propofol, at clinically used concentrations, modestly inhibits the intact (wild-type) IKs channels and is therefore unlikely to appreciably prolong QT interval in ECG during anaesthesia. However, little information is available concerning the inhibitory effect of propofol on IKs channel associated with its gene variants implicated in QT prolongation. The KCNE1 single nucleotide polymorphism leading to D85N is associated with drug-induced QT prolongation and therefore regarded as a clinically important genetic variant. This study examined whether KCNE1-D85N affects the sensitivity of IKs to inhibition by propofol. EXPERIMENTAL APPROACH Whole-cell patch-clamp and immunostaining experiments were conducted in HEK293 cells and/or mouse cardiomyocyte-derived HL-1 cells, transfected with wild-type KCNQ1, wild-type or variant KCNE1 cDNAs. KEY RESULTS Propofol inhibited KCNQ1/KCNE1-D85N current more potently than KCNQ1/KCNE1 current in HEK293 cells and HL-1 cells. Immunostaining experiments in HEK293 cells revealed that pretreatment with propofol (10 μM) did not appreciably affect cell membrane expression of KCNQ1 and KCNE1 proteins in KCNQ1/KCNE1 and KCNQ1/KCNE1-D85N channels. CONCLUSION AND IMPLICATIONS The KCNE1 polymorphism D85N significantly elevates the sensitivity of IKs to inhibition by propofol. This study detects a functionally important role of KCNE1-D85N polymorphism in conferring genetic susceptibility to propofol-induced QT prolongation and further suggests the possibility that the inhibitory action of anaesthetics on ionic currents becomes exaggerated in patients carrying variants in genes encoding ion channels.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Xinya Mi
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Fukushima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Japan
| | - Wei-Guang Ding
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| | | | - Hiroshi Matsuura
- Department of Physiology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
24
|
Abstract
In this section of the European Resuscitation Council Guidelines 2021, key information on the epidemiology and outcome of in and out of hospital cardiac arrest are presented. Key contributions from the European Registry of Cardiac Arrest (EuReCa) collaboration are highlighted. Recommendations are presented to enable health systems to develop registries as a platform for quality improvement and to inform health system planning and responses to cardiac arrest.
Collapse
|
25
|
Magavern EF, Kaski JC, Turner RM, Drexel H, Janmohamed A, Scourfield A, Burrage D, Floyd CN, Adeyeye E, Tamargo J, Lewis BS, Kjeldsen KP, Niessner A, Wassmann S, Sulzgruber P, Borry P, Agewall S, Semb AG, Savarese G, Pirmohamed M, Caulfield MJ. The Role of Pharmacogenomics in Contemporary Cardiovascular Therapy: A position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 8:85-99. [PMID: 33638977 DOI: 10.1093/ehjcvp/pvab018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
There is a strong and ever-growing body of evidence regarding the use of pharmacogenomics to inform cardiovascular pharmacology. However, there is no common position taken by international cardiovascular societies to unite diverse availability, interpretation and application of such data, nor is there recognition of the challenges of variation in clinical practice between countries within Europe. Aside from the considerable barriers to implementing pharmacogenomic testing and the complexities of clinically actioning results, there are differences in the availability of resources and expertise internationally within Europe. Diverse legal and ethical approaches to genomic testing and clinical therapeutic application also require serious thought. As direct-to-consumer genomic testing becomes more common, it can be anticipated that data may be brought in by patients themselves, which will require critical assessment by the clinical cardiovascular prescriber. In a modern, pluralistic and multi-ethnic Europe, self-identified race/ethnicity may not be concordant with genetically detected ancestry and thus may not accurately convey polymorphism prevalence. Given the broad relevance of pharmacogenomics to areas such as thrombosis and coagulation, interventional cardiology, heart failure, arrhythmias, clinical trials, and policy/regulatory activity within cardiovascular medicine, as well as to genomic and pharmacology subspecialists, this position statement attempts to address these issues at a wide-ranging level.
Collapse
Affiliation(s)
- E F Magavern
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - J C Kaski
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom
| | - R M Turner
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - H Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment (VIVIT), Feldkirch, A Private University of the Principality of Liechtenstein, Triesen, FL.,Drexel University College of Medicine, Philadelphia, USA
| | - A Janmohamed
- Department of Clinical Pharmacology, St George's, University of London, United Kingdom
| | - A Scourfield
- Department of Clinical Pharmacology, University College London Hospital Foundation Trust, UK
| | - D Burrage
- Whittington Health NHS Trust, London, UK
| | - C N Floyd
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.,Department of Clinical Pharmacology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - E Adeyeye
- Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - J Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Madrid, Spain
| | - B S Lewis
- Cardiovascular Clinical Research Institute, Lady Davis Carmel Medical Center and the Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Keld Per Kjeldsen
- Department of Cardiology, Copenhagen University Hospital (Amager-Hvidovre), Copenhagen, Denmark.,Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - A Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna
| | - S Wassmann
- Cardiology Pasing, Munich, Germany and University of the Saarland, Homburg/Saar, Germany
| | - P Sulzgruber
- Medical University of Vienna, Department of Medicine II, Division of Cardiology
| | - P Borry
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Leuven Institute for Human Genetics and Society, Leuven, Belgium
| | - S Agewall
- Oslo University Hospital Ullevål and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - A G Semb
- Preventive Cardio-Rheuma clinic, department of rheumatology, innovation and research, Diakonhjemmet hospital, Oslo, Norway
| | - G Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - M Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Liverpool Health Partners, Liverpool, UK
| | - M J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Wu AZ, Chen M, Yin D, Everett TH, Chen Z, Rubart M, Weiss JN, Qu Z, Chen PS. Sex-specific I KAS activation in rabbit ventricles with drug-induced QT prolongation. Heart Rhythm 2021; 18:88-97. [PMID: 32707174 PMCID: PMC7796981 DOI: 10.1016/j.hrthm.2020.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Female sex is a known risk factor for drug-induced long QT syndrome (diLQTS). We recently demonstrated a sex difference in apamin-sensitive small-conductance Ca2+-activated K+ current (IKAS) activation during β-adrenergic stimulation. OBJECTIVE The purpose of this study was to test the hypothesis that there is a sex difference in IKAS in the rabbit models of diLQTS. METHODS We evaluated the sex difference in ventricular repolarization in 15 male and 22 female Langendorff-perfused rabbit hearts with optical mapping techniques during atrial pacing. HMR1556 (slowly activating delayed rectifier K+ current [IKs] blocker), E4031 (rapidly activating delayed rectifier K+ current [IKr] blocker) and sea anemone toxin (ATX-II, late Na+ current [INaL] activator) were used to simulate types 1-3 long QT syndrome, respectively. Apamin, an IKAS blocker, was then added to determine the magnitude of further QT prolongation. RESULTS HMR1556, E4031, and ATX-II led to the prolongation of action potential duration at 80% repolarization (APD80) in both male and female ventricles at pacing cycle lengths of 300-400 ms. Apamin further prolonged APD80 (pacing cycle length 350 ms) from 187.8±4.3 to 206.9±7.1 (P=.014) in HMR1556-treated, from 209.9±7.8 to 224.9±7.8 (P=.003) in E4031-treated, and from 174.3±3.3 to 188.1±3.0 (P=.0002) in ATX-II-treated female hearts. Apamin did not further prolong the APD80 in male hearts. The Cai transient duration (CaiTD) was significantly longer in diLQTS than baseline but without sex differences. Apamin did not change CaiTD. CONCLUSION We conclude that IKAS is abundantly increased in female but not in male ventricles with diLQTS. Increased IKAS helps preserve the repolarization reserve in female ventricles treated with IKs and IKr blockers or INaL activators.
Collapse
Affiliation(s)
- Adonis Z Wu
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mu Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Dechun Yin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zhenhui Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Michael Rubart
- Department of Pediatrics, Riley Heart Research Center, Indiana University School of Medicine, Indianapolis, Indiana
| | - James N Weiss
- Departments of Medicine (Cardiology), Physiology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Zhilin Qu
- Departments of Medicine (Cardiology), Physiology, David Geffen School of Medicine at the University of California, Los Angeles, California
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
27
|
Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Genetic susceptibility for COVID-19-associated sudden cardiac death in African Americans. Heart Rhythm 2020; 17:1487-1492. [PMID: 32380288 PMCID: PMC7198426 DOI: 10.1016/j.hrthm.2020.04.045] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- John R Giudicessi
- Clinician-Investigator Training Program, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Heart Center, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Michael J Ackerman
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota; Department of Molecular Pharmacology & Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
28
|
Offerhaus JA, Wilde AAM, Remme CA. Prophylactic (hydroxy)chloroquine in COVID-19: Potential relevance for cardiac arrhythmia risk. Heart Rhythm 2020; 17:1480-1486. [PMID: 32622993 PMCID: PMC7332460 DOI: 10.1016/j.hrthm.2020.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023]
Abstract
(Hydroxy)chloroquine ((H)CQ) is being investigated as a treatment for COVID-19, but studies have so far demonstrated either no or a small benefit. However, these studies have been mostly performed in patients admitted to the hospital and hence likely already (severely) affected. Another suggested approach uses prophylactic (H)CQ treatment aimed at preventing either severe acute respiratory syndrome coronavirus 2 infection or the development of disease. A substantial number of clinical trials are planned or underway aimed at assessing the prophylactic benefit of (H)CQ. However, (H)CQ may lead to QT prolongation and potentially induce life-threatening arrhythmias. This may be of particular relevance to patients with preexisting cardiovascular disease and those taking other QT-prolonging drugs. In addition, it is known that a certain percentage of the population carries genetic variant(s) that reduces their repolarization reserve, predisposing them to (H)CQ-induced QT prolongation, and this may be more relevant to female patients who already have a longer QT interval to start with. This review provides an overview of the current evidence on (H)CQ therapy in patients with COVID-19 and discusses different strategies for prophylactic (H)CQ therapy (ie, preinfection, postexposure, and postinfection). In particular, the potential cardiac effects, including QT prolongation and arrhythmias, will be addressed. Based on these insights, recommendations will be presented as to which preventive measures should be taken when giving (H)CQ prophylactically, including electrocardiographic monitoring.
Collapse
Affiliation(s)
- Joost A Offerhaus
- Amsterdam UMC, location AMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Amsterdam UMC, location AMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARDHEART; https://guardheart.ern-net.eu); European Cardiac Arrhythmia Genetics Focus Group (ECGen) of the European Heart Rhythm Association (EHRA)
| | - Carol Ann Remme
- Amsterdam UMC, location AMC, University of Amsterdam, Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands; European Cardiac Arrhythmia Genetics Focus Group (ECGen) of the European Heart Rhythm Association (EHRA).
| |
Collapse
|
29
|
Lahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, Walsh R, Hasegawa K, Barc J, Ernsting M, Turkowski KL, Mazzanti A, Beckmann BM, Shimamoto K, Diamant UB, Wijeyeratne YD, Kucho Y, Robyns T, Ishikawa T, Arbelo E, Christiansen M, Winbo A, Jabbari R, Lubitz SA, Steinfurt J, Rudic B, Loeys B, Shoemaker MB, Weeke PE, Pfeiffer R, Davies B, Andorin A, Hofman N, Dagradi F, Pedrazzini M, Tester DJ, Bos JM, Sarquella-Brugada G, Campuzano Ó, Platonov PG, Stallmeyer B, Zumhagen S, Nannenberg EA, Veldink JH, van den Berg LH, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Andersen PM, Müller-Nurasyid M, Cusi D, Barlassina C, Galan P, Lathrop M, Munter M, Werge T, Ribasés M, Aung T, Khor CC, Ozaki M, Lichtner P, Meitinger T, van Tintelen JP, Hoedemaekers Y, Denjoy I, Leenhardt A, Napolitano C, Shimizu W, Schott JJ, Gourraud JB, Makiyama T, Ohno S, Itoh H, Krahn AD, Antzelevitch C, Roden DM, Saenen J, Borggrefe M, Odening KE, Ellinor PT, Tfelt-Hansen J, Skinner JR, van den Berg MP, Olesen MS, Brugada J, Brugada R, Makita N, Breckpot J, Yoshinaga M, Behr ER, Rydberg A, Aiba T, Kääb S, Priori SG, Guicheney P, Tan HL, Newton-Cheh C, Ackerman MJ, Schwartz PJ, et alLahrouchi N, Tadros R, Crotti L, Mizusawa Y, Postema PG, Beekman L, Walsh R, Hasegawa K, Barc J, Ernsting M, Turkowski KL, Mazzanti A, Beckmann BM, Shimamoto K, Diamant UB, Wijeyeratne YD, Kucho Y, Robyns T, Ishikawa T, Arbelo E, Christiansen M, Winbo A, Jabbari R, Lubitz SA, Steinfurt J, Rudic B, Loeys B, Shoemaker MB, Weeke PE, Pfeiffer R, Davies B, Andorin A, Hofman N, Dagradi F, Pedrazzini M, Tester DJ, Bos JM, Sarquella-Brugada G, Campuzano Ó, Platonov PG, Stallmeyer B, Zumhagen S, Nannenberg EA, Veldink JH, van den Berg LH, Al-Chalabi A, Shaw CE, Shaw PJ, Morrison KE, Andersen PM, Müller-Nurasyid M, Cusi D, Barlassina C, Galan P, Lathrop M, Munter M, Werge T, Ribasés M, Aung T, Khor CC, Ozaki M, Lichtner P, Meitinger T, van Tintelen JP, Hoedemaekers Y, Denjoy I, Leenhardt A, Napolitano C, Shimizu W, Schott JJ, Gourraud JB, Makiyama T, Ohno S, Itoh H, Krahn AD, Antzelevitch C, Roden DM, Saenen J, Borggrefe M, Odening KE, Ellinor PT, Tfelt-Hansen J, Skinner JR, van den Berg MP, Olesen MS, Brugada J, Brugada R, Makita N, Breckpot J, Yoshinaga M, Behr ER, Rydberg A, Aiba T, Kääb S, Priori SG, Guicheney P, Tan HL, Newton-Cheh C, Ackerman MJ, Schwartz PJ, Schulze-Bahr E, Probst V, Horie M, Wilde AA, Tanck MW, Bezzina CR. Transethnic Genome-Wide Association Study Provides Insights in the Genetic Architecture and Heritability of Long QT Syndrome. Circulation 2020; 142:324-338. [PMID: 32429735 PMCID: PMC7382531 DOI: 10.1161/circulationaha.120.045956] [Show More Authors] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long QT syndrome (LQTS) is a rare genetic disorder and a major preventable cause of sudden cardiac death in the young. A causal rare genetic variant with large effect size is identified in up to 80% of probands (genotype positive) and cascade family screening shows incomplete penetrance of genetic variants. Furthermore, a proportion of cases meeting diagnostic criteria for LQTS remain genetically elusive despite genetic testing of established genes (genotype negative). These observations raise the possibility that common genetic variants with small effect size contribute to the clinical picture of LQTS. This study aimed to characterize and quantify the contribution of common genetic variation to LQTS disease susceptibility. METHODS We conducted genome-wide association studies followed by transethnic meta-analysis in 1656 unrelated patients with LQTS of European or Japanese ancestry and 9890 controls to identify susceptibility single nucleotide polymorphisms. We estimated the common variant heritability of LQTS and tested the genetic correlation between LQTS susceptibility and other cardiac traits. Furthermore, we tested the aggregate effect of the 68 single nucleotide polymorphisms previously associated with the QT-interval in the general population using a polygenic risk score. RESULTS Genome-wide association analysis identified 3 loci associated with LQTS at genome-wide statistical significance (P<5×10-8) near NOS1AP, KCNQ1, and KLF12, and 1 missense variant in KCNE1(p.Asp85Asn) at the suggestive threshold (P<10-6). Heritability analyses showed that ≈15% of variance in overall LQTS susceptibility was attributable to common genetic variation (h2SNP 0.148; standard error 0.019). LQTS susceptibility showed a strong genome-wide genetic correlation with the QT-interval in the general population (rg=0.40; P=3.2×10-3). The polygenic risk score comprising common variants previously associated with the QT-interval in the general population was greater in LQTS cases compared with controls (P<10-13), and it is notable that, among patients with LQTS, this polygenic risk score was greater in patients who were genotype negative compared with those who were genotype positive (P<0.005). CONCLUSIONS This work establishes an important role for common genetic variation in susceptibility to LQTS. We demonstrate overlap between genetic control of the QT-interval in the general population and genetic factors contributing to LQTS susceptibility. Using polygenic risk score analyses aggregating common genetic variants that modulate the QT-interval in the general population, we provide evidence for a polygenic architecture in genotype negative LQTS.
Collapse
Affiliation(s)
- Najim Lahrouchi
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Rafik Tadros
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Cardiovascular Genetics Center, Montreal Heart Institute and Faculty of Medicine, Université de Montréal, Canada (R.T.)
| | - Lia Crotti
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., F.D., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics (L.C., M.P., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital (L.C.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy (L.C.)
| | - Yuka Mizusawa
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Pieter G. Postema
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Leander Beekman
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Roddy Walsh
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Kanae Hasegawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui, Japan (K.H.)
| | - Julien Barc
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
| | - Marko Ernsting
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Kari L. Turkowski
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - Andrea Mazzanti
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Italy (A.M., C.N., S.G.P.)
| | - Britt M. Beckmann
- Department of Internal Medicine I, University Hospital of the Ludwig Maximilians University, Munich, Germany (B.M.B., M.M.-N., S.K.)
| | - Keiko Shimamoto
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (K.S., W.S., T.A.)
| | - Ulla-Britt Diamant
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Department of Clinical Sciences, Unit of Paediatrics, Umeå University, Sweden (U.-B.D., A.R.)
| | - Yanushi D. Wijeyeratne
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular and Clinical Sciences Research Institute, St George’s University of London and Cardiology Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., A.A., E.R.B.)
| | - Yu Kucho
- National Hospital Organization Kagoshima Medical Center, Japan (Y.K., M.Y.)
| | - Tomas Robyns
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Department of Cardiovascular Diseases, University Hospitals Leuven, Belgium (T.R.)
- Department of Cardiovascular Sciences, KU Leuven, Belgium (T.R.)
| | - Taisuke Ishikawa
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan (T.I.)
| | - Elena Arbelo
- Cardiovascular Institute, Hospital Clinic de Barcelona, Universitat de Barcelona, Institut d’Investigació August Pi i Sunyer (IDIBAPS), and Centro de Investigacion Biomedica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain (E.A.)
| | - Michael Christiansen
- Department of Congenital Disorders, Statens Serum Institute, Copenhagen, Denmark (M.C.)
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark (M.C.)
- Laboratory of Experimental Cardiology, Department of Biomedical Sciences, University of Copenhagen, Denmark (M.C.)
| | - Annika Winbo
- Department of Physiology, The University of Auckland, New Zealand (A.W.)
| | - Reza Jabbari
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (R.J., P.E.W., J.T.-H.)
| | - Steven A. Lubitz
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.A.L., P.T.E.)
| | - Johannes Steinfurt
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Germany (J.S., K.E.O.)
| | - Boris Rudic
- Department of Medicine, University Medical Center Mannheim, and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (B.R., M.B.)
| | - Bart Loeys
- Department of Clinical Genetics, Antwerp University Hospital, Belgium (B.L.)
| | - M. Ben Shoemaker
- Department of Medicine (M.B.S., P.E.W., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Peter E. Weeke
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (R.J., P.E.W., J.T.-H.)
- Department of Medicine (M.B.S., P.E.W., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Ryan Pfeiffer
- Masonic Medical Research Institute, Utica, NY (R.P.)
| | - Brianna Davies
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (B.D., A.D.K.)
| | - Antoine Andorin
- Molecular and Clinical Sciences Research Institute, St George’s University of London and Cardiology Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., A.A., E.R.B.)
- L’Institut du Thorax, CHU Nantes, Service de Cardiologie, France (A.A., J.-J.S., J.-B.G.)
| | - Nynke Hofman
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Federica Dagradi
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., F.D., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Matteo Pedrazzini
- Laboratory of Cardiovascular Genetics (L.C., M.P., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - David J. Tester
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - J. Martijn Bos
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - Georgia Sarquella-Brugada
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Arrhythmia, Inherited Heart Disease and Sudden Death Unit, Hospital Sant Joan de Déu, European Reference Center at the ERN GUARD-Heart Reference Network for Rare Cardiac Diseases, Barcelona, Spain (G.S.-B.)
- Medical Science Department, School of Medicine, University of Girona, Spain (G.S.-B.)
- Cardiovascular Program, Research Institute of Sant Joan de Déu (IRSJD), Barcelona, Spain (G.S.-B., O.C.)
| | - Óscar Campuzano
- Cardiovascular Program, Research Institute of Sant Joan de Déu (IRSJD), Barcelona, Spain (G.S.-B., O.C.)
- Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Universitat de Barcelona; Institut d’Investigació August Pi i Sunyer (IDIBAPS); Cardiovascular Genetics Center, University of Girona-IDIBGI; and Medical Science Department, School of Medicine, University of Girona, Spain (O.C., R.B.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain (O.C.)
| | - Pyotr G. Platonov
- Center for Integrative Electrocardiology (CIEL), Department of Cardiology, Clinical Sciences, Lund University, Sweden (P.G.P.)
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Sven Zumhagen
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Eline A. Nannenberg
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands (E.A.N., J.P.v.T.)
| | - Jan H. Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Leonard H. van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, The Netherlands (J.H.V., L.H.v.d.B.)
| | - Ammar Al-Chalabi
- King’s College Hospital, Bessemer Road, London, United Kingdom (A.A.-C.)
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, United Kingdom (A.A.-C., C.E.S.)
| | - Christopher E. Shaw
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, United Kingdom (A.A.-C., C.E.S.)
- UK Dementia Research Institute, King’s College London, United Kingdom (C.E.S.)
| | - Pamela J. Shaw
- Center for Cardiac Arrhythmias of Genetic Origin (L.C., F.D., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Laboratory of Cardiovascular Genetics (L.C., M.P., P.J.S.), Istituto Auxologico Italiano, IRCCS, Milan, Italy
- Sheffield Institute for Translational Neuroscience, University of Sheffield, United Kingdom (P.J.S.)
| | - Karen E. Morrison
- Faculty of Medicine, University of Southampton, University Hospital Southampton, United Kingdom (K.E.M.)
| | - Peter M. Andersen
- Department of Neurology, Ulm University, Germany (P.M.A.)
- Department of Pharmacology and Clinical Neuroscience, Umeå University, Sweden (P.M.A.)
| | - Martina Müller-Nurasyid
- Department of Internal Medicine I, University Hospital of the Ludwig Maximilians University, Munich, Germany (B.M.B., M.M.-N., S.K.)
- Institute of Genetic Epidemiology, Helmholtz Zentrum München–German Research Center for Environmental Health, Neuherberg, Germany (M.M.-N.)
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Germany (M.M.-N.)
| | - Daniele Cusi
- Department of Health Sciences, University of Milan, Italy (D.C., C.B.)
- Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy (D.C., C.B.)
| | - Cristina Barlassina
- Department of Health Sciences, University of Milan, Italy (D.C., C.B.)
- Bio4Dreams - Business Nursery for Life Sciences, Milan, Italy (D.C., C.B.)
| | - Pilar Galan
- Equipe de Recherche en Epidémiologie Nutritionnelle, Centre d’Epidémiologie et Statistiques Paris Cité, Université Paris 13, Inserm (U1153), Inra (U1125), COMUE Sorbonne-Paris-Cité, Bobigny, France (P.G.)
| | - Mark Lathrop
- McGill University and Génome Québec Innovation Centre, Montréal, Canada (M.L., M.M.)
| | - Markus Munter
- McGill University and Génome Québec Innovation Centre, Montréal, Canada (M.L., M.M.)
| | - Thomas Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark (T.W.)
- Institute of Biological Psychiatry, Mental Health Centre Sct Hans, Copenhagen University Hospital, Roskilde, Denmark (T.W.)
- Department of Clinical Medicine, University of Copenhagen, Denmark (T.W.)
| | - Marta Ribasés
- Psychiatric Genetics Unit, Institute Vall d’Hebron Research (VHIR), Universitat Autònoma de Barcelona, Spain (M.R.)
| | - Tin Aung
- Singapore Eye Research Institute (T.A.)
| | | | | | - Peter Lichtner
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (P.L., T.M.)
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany (P.L., T.M.)
| | - J. Peter van Tintelen
- Department of Clinical Genetics, Amsterdam UMC, University of Amsterdam, The Netherlands (E.A.N., J.P.v.T.)
- Department of Clinical Genetics, University Medical Centre Groningen, The Netherlands (J.P.v.T., Y.H.)
- Department of Clinical Genetics, University Medical Centre Utrecht, University of Utrecht, The Netherlands (J.P.v.T.)
| | - Yvonne Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, The Netherlands (J.P.v.T., Y.H.)
| | - Isabelle Denjoy
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- AP-HP, Hôpital Bichat, Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, F-75018 Paris, France, Université de Paris INSERM U1166, F-75013 France (I.D., A.L.)
| | - Antoine Leenhardt
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- AP-HP, Hôpital Bichat, Département de Cardiologie et Centre de Référence des Maladies Cardiaques Héréditaires, F-75018 Paris, France, Université de Paris INSERM U1166, F-75013 France (I.D., A.L.)
| | - Carlo Napolitano
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Italy (A.M., C.N., S.G.P.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (K.S., W.S., T.A.)
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan (W.S., V.P.)
| | - Jean-Jacques Schott
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
- L’Institut du Thorax, CHU Nantes, Service de Cardiologie, France (A.A., J.-J.S., J.-B.G.)
| | - Jean-Baptiste Gourraud
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
- L’Institut du Thorax, CHU Nantes, Service de Cardiologie, France (A.A., J.-J.S., J.-B.G.)
| | - Takeru Makiyama
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Japan (T.M.)
| | - Seiko Ohno
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan (S.O., H.I., M.H.)
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan (S.O.)
| | - Hideki Itoh
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan (S.O., H.I., M.H.)
| | - Andrew D. Krahn
- Heart Rhythm Services, Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, Canada (B.D., A.D.K.)
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research and Lankenau Heart Institute, Wynnewood, PA (C.A.)
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA (C.A.)
| | - Dan M. Roden
- Department of Biomedical Informatics (D.M.R.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (M.B.S., P.E.W., D.M.R.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pharmacology (D.M.R.), Vanderbilt University Medical Center, Nashville, TN
| | - Johan Saenen
- Department of Cardiology, Antwerp University Hospital, Belgium (J.S.)
| | - Martin Borggrefe
- Department of Medicine, University Medical Center Mannheim, and German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Germany (B.R., M.B.)
| | - Katja E. Odening
- Department of Cardiology and Angiology I, Heart Center University of Freiburg, Medical Faculty, Germany (J.S., K.E.O.)
| | - Patrick T. Ellinor
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston (S.A.L., P.T.E.)
- Cardiovascular Disease Initiative and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA (S.A.L., P.T.E.)
| | - Jacob Tfelt-Hansen
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- The Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Denmark (R.J., P.E.W., J.T.-H.)
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark (J.T.-H.)
| | - Jonathan R. Skinner
- Cardiac Inherited Disease Group, Starship Children’s Hospital, Auckland, New Zealand (J.R.S.)
| | - Maarten P. van den Berg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands (M.P.v.d.B.)
| | - Morten Salling Olesen
- Laboratory for Molecular Cardiology, Department of Cardiology, The Heart Centre, Rigshospitalet (Copenhagen University Hospital), Denmark (M.S.O.)
- Department of Biomedical Sciences, University of Copenhagen, Denmark (M.S.O.)
| | - Josep Brugada
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Arrhythmia Unit, Hospital Sant Joan de Déu, Institut d’Investigació August Pi i Sunyer (IDIBAPS), Cardiovascular Institute, and Hospital Clinic de Barcelona, Universitat de Barcelona, Spain (J.B.)
| | - Ramón Brugada
- Center for Biomedical Diagnosis, Hospital Clinic de Barcelona, Universitat de Barcelona; Institut d’Investigació August Pi i Sunyer (IDIBAPS); Cardiovascular Genetics Center, University of Girona-IDIBGI; and Medical Science Department, School of Medicine, University of Girona, Spain (O.C., R.B.)
- Cardiovascular Genetics Center, University of Girona-IDIBGI, and Medical Science Department, School of Medicine, University of Girona, Spain (R.B.)
- Cardiology Service, Hospital Josep Trueta, Girona, Spain (R.B.)
| | - Naomasa Makita
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan (N.M.)
| | - Jeroen Breckpot
- Centre for Human Genetics, University Hospitals Leuven, Belgium (J.B.)
| | - Masao Yoshinaga
- National Hospital Organization Kagoshima Medical Center, Japan (Y.K., M.Y.)
| | - Elijah R. Behr
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular and Clinical Sciences Research Institute, St George’s University of London and Cardiology Clinical Academic Group, St George’s University Hospitals NHS Foundation Trust, United Kingdom (Y.D.W., A.A., E.R.B.)
| | - Annika Rydberg
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Department of Clinical Sciences, Unit of Paediatrics, Umeå University, Sweden (U.-B.D., A.R.)
| | - Takeshi Aiba
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan (K.S., W.S., T.A.)
| | - Stefan Kääb
- Department of Internal Medicine I, University Hospital of the Ludwig Maximilians University, Munich, Germany (B.M.B., M.M.-N., S.K.)
| | - Silvia G. Priori
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Molecular Cardiology, ICS Maugeri, IRCCS and Department of Molecular Medicine, University of Pavia, Italy (A.M., C.N., S.G.P.)
| | - Pascale Guicheney
- INSERM, Sorbonne University, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France (P.G.)
| | - Hanno L. Tan
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Netherlands Heart Institute, Utrecht (H.L.T.)
| | - Christopher Newton-Cheh
- Cardiovascular Research Center and Center for Genomic Medicine, Massachusetts General Hospital, Boston (C.N.-C.)
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart Rhythm Services and the Windland Smith Rice Genetic Heart Rhythm Clinic), Pediatric and Adolescent Medicine (Division of Pediatric Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN (K.L.T., D.J.T., J.M.B., M.J.A.)
| | - Peter J. Schwartz
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Eric Schulze-Bahr
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- Institute for Genetics of Heart Diseases, Department of Cardiovascular Medicine, University Hospital Muenster, Germany (M.E., B.S., S.Z., E.S.-B.)
| | - Vincent Probst
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
- L’Institut du Thorax, INSERM, CNRS, UNIV Nantes, France (J.B., J.-J.S., J.-B.G., V.P.)
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan (W.S., V.P.)
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan (K.H., S.O., H.I., M.H.)
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan (S.O., H.I., M.H.)
| | - Arthur A. Wilde
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| | - Michael W.T. Tanck
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, University of Amsterdam, The Netherlands (M.W.T.T.)
| | - Connie R. Bezzina
- Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, The Netherlands (N.L., R.T., Y.M., P.G.P., L.B., R.W., N.H., H.L.T., A.A.W., C.R.B.)
- Member of the European Reference Network for Rare, Low Prevalence, and Complex Diseases of the Heart - ERN GUARD-Heart (N.L., L.C., Y.M., P.G.P., L.B., R.W., J.B., M.E., A.M., U.-B.D., Y.D.W., T.R., R.J., N.H., F.D., G.S.-B., I.D., A.L., C.N., J.-J.S., J.-B.G., J.T.-H., J.B., E.R.B., A.R., S.G.P., H.L.T., P.J.S., E.S.-B., V.P., A.A.W., C.R.B.)
| |
Collapse
|
30
|
Stremmel C, Kellnar A, Massberg S, Kääb S. Hydroxychloroquine in COVID-19 Therapy: Protection Versus Proarrhythmia. J Cardiovasc Pharmacol Ther 2020; 25:497-502. [PMID: 32700555 DOI: 10.1177/1074248420935740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In recent months, the new coronavirus SARS-CoV-2 has emerged as a worldwide threat with about 4.2 million confirmed cases and almost 300 000 deaths. Its major clinical presentation is characterized by respiratory symptoms ranging from mild cough to serve pneumonia with fever and potentially even death. Until today, there is no known medication to improve clinical symptoms or even prevent or fight the infection. The search for a useful vaccination is ongoing and it will probably not be available before the end of 2020. In this review, we highlight hydroxychloroquine (HCQ) as a potential agent to prevent coronavirus disease 2019 (COVID-19) and reduce as well as shorten clinical symptoms. Moreover, it might serve as a potential post-exposition prophylaxis. Although it has been used in the treatment of rheumatoid arthritis, discoid or systemic lupus erythematosus, and malaria prophylaxis and therapy for decades, knowledge on HCQ as a potential treatment for COVID-19 is limited and multiple clinical trials have just emerged. Especially, rare HCQ side effects which were of minor importance for use in selected indications might gain major relevance with population-wide application. These rare side effects include retinopathy and-even more important-QT prolongation leading to sudden cardiac death by malignant arrhythmias.
Collapse
Affiliation(s)
- Christopher Stremmel
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, 54187Ludwig-Maximilians University, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Antonia Kellnar
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, 54187Ludwig-Maximilians University, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Steffen Massberg
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, 54187Ludwig-Maximilians University, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the Ludwig-Maximilians University (CORKUM), Munich, Germany
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München, 54187Ludwig-Maximilians University, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.,COVID-19 Registry of the Ludwig-Maximilians University (CORKUM), Munich, Germany
| |
Collapse
|
31
|
Roden DM. A current understanding of drug-induced QT prolongation and its implications for anticancer therapy. Cardiovasc Res 2020; 115:895-903. [PMID: 30689740 DOI: 10.1093/cvr/cvz013] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023] Open
Abstract
The QT interval, a global index of ventricular repolarization, varies among individuals and is influenced by diverse physiologic and pathophysiologic stimuli such as gender, age, heart rate, electrolyte concentrations, concomitant cardiac disease, and other diseases such as diabetes. Many drugs produce a small but reproducible effect on QT interval but in rare instances this is exaggerated and marked QT prolongation can provoke the polymorphic ventricular tachycardia 'torsades de pointes', which can cause syncope or sudden cardiac death. The generally accepted common mechanism whereby drugs prolong QT is block of a key repolarizing potassium current in heart, IKr, generated by expression of KCNH2, also known as HERG. Thus, evaluation of the potential that a new drug entity may cause torsades de pointes has relied on exposure of normal volunteers or patients to drug at usual and high concentrations, and on assessment of IKr block in vitro. More recent work, focusing on anticancer drugs with QT prolonging liability, is defining new pathways whereby drugs can prolong QT. Notably, the in vitro effects of some tyrosine kinase inhibitors to prolong cardiac action potentials (the cellular correlate of QT) can be rescued by intracellular phosphatidylinositol 3,4,5-trisphosphate, the downstream effector of phosphoinositide 3-kinase. This finding supports a role for inhibition of this enzyme, either directly or by inhibition of upstream kinases, to prolong QT through mechanisms that are being worked out, but include enhanced inward 'late' sodium current during the plateau of the action potential. The definition of non-IKr-dependent pathways to QT prolongation will be important for assessing risk, not only with anticancer therapies but also with other QT prolonging drugs and for generating a refined understanding how variable activity of intracellular signalling systems can modulate QT and associated arrhythmia risk.
Collapse
Affiliation(s)
- Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, 2215B Garland Avenue, Room 1285B, Nashville, TN, USA.,Department of Pharmacology, Vanderbilt University Medical Center, 2215B Garland Avenue, Room 1285B, Nashville, TN, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, 2215B Garland Avenue, Room 1285B, Nashville, TN, USA
| |
Collapse
|
32
|
Gollob MH. COVID-19, Clinical Trials, and QT-Prolonging Prophylactic Therapy in Healthy Subjects: First, Do No Harm. J Am Coll Cardiol 2020; 75:3184-3186. [PMID: 32407770 PMCID: PMC7213956 DOI: 10.1016/j.jacc.2020.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Michael H Gollob
- Inherited Arrhythmia and Cardiomyopathy Program, Arrhythmia Service, Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Liebrechts-Akkerman G, Liu F, van Marion R, Dinjens WNM, Kayser M. Explaining sudden infant death with cardiac arrhythmias: Complete exon sequencing of nine cardiac arrhythmia genes in Dutch SIDS cases highlights new and known DNA variants. Forensic Sci Int Genet 2020; 46:102266. [PMID: 32145446 DOI: 10.1016/j.fsigen.2020.102266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 01/23/2020] [Accepted: 02/26/2020] [Indexed: 01/11/2023]
Abstract
Previous studies suggested that Sudden Infant Death Syndrome (SIDS) can partially be genetically explained by cardiac arrhythmias; however, the number of individuals and populations investigated remain limited. We report the first SIDS study on cardiac arrhythmias genes from the Netherlands, a country with the lowest SIDS incidence likely due to parent education on awareness of environmental risk factors. By using targeted massively parallel sequencing (MPS) in 142 Dutch SIDS cases, we performed a complete exon screening of all 173 exons from 9 cardiac arrhythmias genes SCN5A, KCNQ1, KCNH2, KCNE1, KCNE2, CACNA1C, CAV3, ANK2 and KCNJ2 (∼34,000 base pairs), that were selected to harbour previously established SIDS-associated DNA variants. Motivated by the poor DNA quality from the paraffin embedded material used, the application of a conservative sequencing quality control protocol resulted in 102 SIDS cases surviving quality control. Amongst the 102 SIDS cases, we identified a total of 40 DNA variants in 8 cardiac arrhythmia genes found in 60 (58.8 %) cases. Statistical analyses using ancestry-adjusted reference population data and multiple test correction revealed that 13 (32.5 %) of the identified DNA variants in 6 cardiac arrhythmia genes were significantly associated with SIDS, which were observed in 15 (14.7 %) SIDS cases. These 13, and another three, DNA variants were classified as likely pathogenic for cardiac arrhythmias using the American College of Medical Genetics guidelines for interpretation of sequence variants. The 16 likely pathogenic DNA variants were found in 16 (15.7 %) SIDS cases, including i) 3 novel DNA variants not recorded in public databases ii) 7 known DNA variants for which significant SIDS association established here was previously unknown, and iii) 6 known DNA variants for which LQTS association was reported previously. By having replicated previously reported SIDS-associated DNA variants located in cardiac arrhythmia genes and by having highlighting novel SIDS-associated DNA variants in such genes, our findings provide additional empirical evidence for the partial genetic explanation of SIDS by cardiac arrhythmias. On a wider note, our study outcome stresses the need for routine post-mortem genetic screening of assumed SIDS cases, particularly for cardiac arrhythmia genes. When put in practise, it will allow preventing further sudden deaths (not only in infants) in the affected families, thereby allowing forensic molecular autopsy not only to provide answers on the cause of death, but moreover to save lives.
Collapse
Affiliation(s)
- Germaine Liebrechts-Akkerman
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Fan Liu
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands; Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ronald van Marion
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Winand N M Dinjens
- Department of Pathology, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Manfred Kayser
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Clinical and functional reappraisal of alleged type 5 long QT syndrome: Causative genetic variants in the KCNE1-encoded minK β-subunit. Heart Rhythm 2020; 17:937-944. [PMID: 32058015 DOI: 10.1016/j.hrthm.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/01/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND KCNE1 loss-of-function variants cause type 5 long QT syndrome (LQT5). However, most alleged LQT5-causative KCNE1 variants were identified before the true rate of background genetic variation was appreciated fully. OBJECTIVE The purpose of this study was to reassess the clinical and electrophysiological (EP) phenotypes associated with KCNE1 variants detected in a single-center LQTS cohort. METHODS Retrospective analysis of 1026 LQTS patients was used to identify those individuals with isolated KCNE1 ultra-rare variants (minor allele frequency [MAF] <0.0004 in the Genome Aggregation Database [gnomAD]). After classification according to American College of Medical Genetics (ACMG) guidelines, variants of uncertain significance (VUS) were characterized in vitro using whole-cell patch-clamp technique. Lastly, the clinical phenotype observed in ACMG pathogenic/likely pathogenic (P/LP) KCNE1-positive individuals was assessed. RESULTS Overall, 6 KCNE1 variants were identified in 38 of 1026 LQTS patients (3.7%). Based on existing data, 2 KCNE1 variants (p.Asp76Asn-KCNE1 and p.Arg98Trp-KCNE1) were classified as P/LP. Whereas the p.Ser28Leu-KCNE1 VUS conferred a loss-of-function EP phenotype (72% reduction in IKs current) and was upgraded to an LP variant, the 3 remaining KCNE1 VUS (p.Arg67Cys-KCNE1, p.Arg67His-KCNE1, p.Ser74Leu-KCNE1) were indistinguishable from wild type. Collectively, the phenotype observed in p.Ser28Leu-KCNE1-, p.Asp76Asn-KCNE1-, and p.Arg98Trp-KCNE1-positive individuals (n = 22) was relatively weak (91% asymptomatic; average QTc 444 ± 19 ms; 27% with a maladaptive QTc response during exercise/recovery). CONCLUSION This study indicates that p.Ser28Leu-KCNE1 may be an LQT5-causative substrate analogous to p.Asp76Asn-KCNE1 and p.Arg98Trp-KCNE1. However, the weak phenotype and cumulative gnomAD MAF (42/141,156) associated with these P/LP variants suggest LQT5/KCNE-LQTS may be a more common/weaker form of LQTS than anticipated previously.
Collapse
|
35
|
Lim TR, Rangaswami AA, Dubin AM, Kapphahn KI, Sakarovitch C, Long J, Motonaga KS, Trela T, Ceresnak SR. QTc Prolongation and Risk of Torsades de Pointes in Hospitalized Pediatric Oncology Patients. J Pediatr 2020; 217:33-38. [PMID: 31761428 DOI: 10.1016/j.jpeds.2019.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/09/2019] [Accepted: 10/09/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To evaluate the prevalence of torsades de pointes and to identify risk factors associated with QTc prolongation of ≥500 milliseconds in hospitalized pediatric oncology patients. A QTc prolongation of ≥500 milliseconds is associated with higher mortality in hospitalized adults but has not been demonstrated in pediatrics. STUDY DESIGN A single-center, retrospective review of all hospitalized oncology patients ≤21 years of age was performed from 2014 to 2016. Patients with long/short QT syndrome or a QRS interval of ≥120 ms were excluded. Rapid response events were reviewed to determine the prevalence of torsades. In patients with ECGs for review, data were compared between patients with a QTc of <500 and ≥500 ms via logistic regression. RESULTS There were 1934 hospitalized patients included. Rapid response events occurred in 90 patients (4.7%) with 2 torsades events (0.1%). There were 1412 electrocardiograms performed in 287 unique patients (10.6 ± 6.3 years of age; 43% female). The mean QTc was 448 ± 31 ms; 25 patients (8.7%) had ≥1 ECG with a QTc of ≥500 ms. The prevalence of torsades was greater in patients with a QTc of ≥500 ms (8% vs 0%; P<.01). In multivariate analysis, factors associated with a QTc of ≥500 ms included female sex, (OR 2.95) and ≥2 QT-prolonging medications (OR, 2.95). CONCLUSIONS The prevalence of torsades in hospitalized pediatric oncology patients was low (0.1%), although the risk was significantly greater in patients with a QTc of ≥500 ms. Routine monitoring of electrocardiograms and electrolytes is essential in patients with risk factors predisposing to QTc prolongation.
Collapse
Affiliation(s)
- Tiffany R Lim
- Department of Pediatrics, Stanford University, Stanford, CA.
| | - Arun A Rangaswami
- Division of Hematology and Oncology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA
| | - Anne M Dubin
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA
| | | | | | - Jin Long
- Quantitative Science Unit, Stanford University, Stanford, CA
| | - Kara S Motonaga
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA
| | - Tony Trela
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA
| | - Scott R Ceresnak
- Division of Cardiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA
| |
Collapse
|
36
|
Adler A, Novelli V, Amin AS, Abiusi E, Care M, Nannenberg EA, Feilotter H, Amenta S, Mazza D, Bikker H, Sturm AC, Garcia J, Ackerman MJ, Hershberger RE, Perez MV, Zareba W, Ware JS, Wilde AAM, Gollob MH. An International, Multicentered, Evidence-Based Reappraisal of Genes Reported to Cause Congenital Long QT Syndrome. Circulation 2020; 141:418-428. [PMID: 31983240 PMCID: PMC7017940 DOI: 10.1161/circulationaha.119.043132] [Citation(s) in RCA: 258] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Long QT syndrome (LQTS) is the first described and most common inherited arrhythmia. Over the last 25 years, multiple genes have been reported to cause this condition and are routinely tested in patients. Because of dramatic changes in our understanding of human genetic variation, reappraisal of reported genetic causes for LQTS is required. Methods: Utilizing an evidence-based framework, 3 gene curation teams blinded to each other’s work scored the level of evidence for 17 genes reported to cause LQTS. A Clinical Domain Channelopathy Working Group provided a final classification of these genes for causation of LQTS after assessment of the evidence scored by the independent curation teams. Results: Of 17 genes reported as being causative for LQTS, 9 (AKAP9, ANK2, CAV3, KCNE1, KCNE2, KCNJ2, KCNJ5, SCN4B, SNTA1) were classified as having limited or disputed evidence as LQTS-causative genes. Only 3 genes (KCNQ1, KCNH2, SCN5A) were curated as definitive genes for typical LQTS. Another 4 genes (CALM1, CALM2, CALM3, TRDN) were found to have strong or definitive evidence for causality in LQTS with atypical features, including neonatal atrioventricular block. The remaining gene (CACNA1C) had moderate level evidence for causing LQTS. Conclusions: More than half of the genes reported as causing LQTS have limited or disputed evidence to support their disease causation. Genetic variants in these genes should not be used for clinical decision-making, unless accompanied by new and sufficient genetic evidence. The findings of insufficient evidence to support gene-disease associations may extend to other disciplines of medicine and warrants a contemporary evidence-based evaluation for previously reported disease-causing genes to ensure their appropriate use in precision medicine.
Collapse
Affiliation(s)
- Arnon Adler
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.)
| | - Valeria Novelli
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Ahmad S Amin
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.S.A., A.A.M.W.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Emanuela Abiusi
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Melanie Care
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.)
| | - Eline A Nannenberg
- Department of Clinical Genetics (E.A.N., H.B.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Harriet Feilotter
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Canada (H.F.)
| | - Simona Amenta
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Daniela Mazza
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, and Istituto di Medicina Genomica, Università Cattolica del Sacro Cuore, Rome, Italy (V.N., E.A., S.A., D.M.)
| | - Hennie Bikker
- Department of Clinical Genetics (E.A.N., H.B.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands
| | - Amy C Sturm
- Geisinger Genomic Medicine Institute, Danville, PA (A.C.S.)
| | - John Garcia
- Invitae Corporation, San Francisco, CA (J.G.)
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Rochester, MN (M.J.A.)
| | - Raymond E Hershberger
- Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, Ohio State University, Columbus (R.E.H.)
| | - Marco V Perez
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, CA (M.V.P.)
| | - Wojciech Zareba
- Cardiology Unit of the Department of Medicine, University of Rochester Medical Center, NY (W.Z.)
| | - James S Ware
- National Heart and Lung Institute and Medical Research Council London Institute of Medical Sciences, Imperial College London, UK (J.S.W.).,Royal Brompton and Harefield Hospitals National Health Service Trust, London, UK (J.S.W.)
| | - Arthur A M Wilde
- Heart Center, Department of Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences (A.S.A., A.A.M.W.), Amsterdam University Medical Centers, University of Amsterdam, The Netherlands.,Columbia University Irving Medical Center, New York (A.A.M.W.)
| | - Michael H Gollob
- Division of Cardiology, Toronto General Hospital and University of Toronto, Canada (A.A, M.C., M.H.G.).,Department of Physiology, University of Toronto, and The Toronto General Hospital Research Institute, University Health Network, University of Toronto, Canada (M.H.G.)
| |
Collapse
|
37
|
Wu JC, Garg P, Yoshida Y, Yamanaka S, Gepstein L, Hulot JS, Knollmann BC, Schwartz PJ. Towards Precision Medicine With Human iPSCs for Cardiac Channelopathies. Circ Res 2019; 125:653-658. [PMID: 31465267 PMCID: PMC10765953 DOI: 10.1161/circresaha.119.315209] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Long-QT syndrome, a frequently fatal inherited arrhythmia syndrome caused by genetic variants (congenital) or drugs (acquired), affects 1 in 2000 people worldwide. Its sentinel event is often sudden cardiac death, which makes preclinical diagnosis by genetic testing potentially life-saving. Unfortunately, clinical experience with genetic testing has shown that it is difficult to correctly identify genetic variants as disease causing. These current deficiencies in accurately assigning pathogenicity led to the discovery of increasing numbers of rare variants classified as variant of uncertain significance. To overcome these challenges, new technologies such as clustered regularly interspaced short palindromic repeats (CRISPR) genome editing can be combined with human induced pluripotent stem cell-derived cardiomyocytes to provide a new approach to decipher pathogenicity of variants of uncertain significance and to better predict arrhythmia risk. To that end, the overarching goal of our network is to establish the utility of induced pluripotent stem cell-based platforms to solve major clinical problems associated with long-QT syndrome by determining how to (1) differentiate pathogenic mutations from background genetic noise, (2) assess existing and novel variants associated with congenital and acquired long-QT syndrome, and (3) provide genotype- and phenotype- guided risk stratification and pharmacological management of long-QT syndrome. To achieve these goals and to further advance the use of induced pluripotent stem cells in disease modeling and drug discovery, our team of investigators for this Leducq Foundation Transatlantic Networks of Excellence proposal will work together to (1) improve differentiation efficiency, cellular maturation, and lineage specificity, (2) develop new assays for high throughput cellular phenotyping, and (3) train young investigators to clinically implement patient-specific genetic modeling.
Collapse
Affiliation(s)
- Joseph C. Wu
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine
| | - Priyanka Garg
- Stanford Cardiovascular Institute
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine
| | - Yoshinori Yoshida
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California, USA
| | - Lior Gepstein
- Sohnis Research Laboratory for Cardiac Electrophysiology and Regenerative Medicine, The Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Jean-Sébastien Hulot
- Université de Paris, Paris Cardiovascular Research Center PARCC, INSERM, F-75015 Paris, France
| | - Björn C. Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter J. Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, and Laboratory of Cardiovascular Genetics, Milan, Italy
| |
Collapse
|
38
|
Cerrone M, Remme CA, Tadros R, Bezzina CR, Delmar M. Beyond the One Gene-One Disease Paradigm: Complex Genetics and Pleiotropy in Inheritable Cardiac Disorders. Circulation 2019; 140:595-610. [PMID: 31403841 DOI: 10.1161/circulationaha.118.035954] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inheritable cardiac disorders, which may be associated with cardiomyopathic changes, are often associated with increased risk of sudden death in the young. Early linkage analysis studies in Mendelian forms of these diseases, such as hypertrophic cardiomyopathy and long-QT syndrome, uncovered large-effect genetic variants that contribute to the phenotype. In more recent years, through genotype-phenotype studies and methodological advances in genetics, it has become evident that most inheritable cardiac disorders are not monogenic but, rather, have a complex genetic basis wherein multiple genetic variants contribute (oligogenic or polygenic inheritance). Conversely, studies on genes underlying these disorders uncovered pleiotropic effects, with a single gene affecting multiple and apparently unrelated phenotypes. In this review, we explore these 2 phenomena: on the one hand, the evidence that variants in multiple genes converge to generate one clinical phenotype, and, on the other, the evidence that variants in one gene can lead to apparently unrelated phenotypes. Although multiple conditions are addressed to illustrate these concepts, the experience obtained in the study of long-QT syndrome, Brugada syndrome, and arrhythmogenic cardiomyopathy, and in the study of functions related to SCN5A (the gene coding for the α-subunit of the most abundant sodium channel in the heart) and PKP2 (the gene coding for the desmosomal protein plakophilin-2), as well, is discussed in more detail.
Collapse
Affiliation(s)
- Marina Cerrone
- Leon H. Charney Division of Cardiology (M.C., M.D.), NYU School of Medicine, New York.,Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Carol Ann Remme
- Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Rafik Tadros
- Amsterdam UMC, University of Amsterdam, Clinical and Experimental Cardiology, Amsterdam Cardiovascular Sciences, AMC Heart Center, The Netherlands (C.A.R., C.R.B.)
| | - Connie R Bezzina
- Inherited Arrhythmias Clinic and Heart Rhythm Center, Leon H. Charney Division of Cardiology (M.C.), NYU School of Medicine, New York
| | - Mario Delmar
- Leon H. Charney Division of Cardiology (M.C., M.D.), NYU School of Medicine, New York
| |
Collapse
|
39
|
Kernik DC, Morotti S, Wu H, Garg P, Duff HJ, Kurokawa J, Jalife J, Wu JC, Grandi E, Clancy CE. A computational model of induced pluripotent stem-cell derived cardiomyocytes incorporating experimental variability from multiple data sources. J Physiol 2019; 597:4533-4564. [PMID: 31278749 PMCID: PMC6767694 DOI: 10.1113/jp277724] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
Key points Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Abstract There is a profound need to develop a strategy for predicting patient‐to‐patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient‐specific proclivity to cardiac disease utilizes induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs). A major strength of this approach is that iPSC‐CMs contain donor genetic information and therefore capture patient‐specific genotype–phenotype relationships. A cited detriment of iPSC‐CMs is the cell‐to‐cell variability observed in electrical activity. We postulated, however, that cell‐to‐cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole‐cell model of iPSC‐CMs composed of simple model components comprising ion channel models with single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally‐observed variability in the ionic currents. The resulting population of cellular models predicts robust inter‐subject variability in iPSC‐CMs. This approach links molecular mechanisms to known cellular‐level iPSC‐CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers. Induced pluripotent stem cell‐derived cardiomyocytes (iPSC‐CMs) capture patient‐specific genotype–phenotype relationships, as well as cell‐to‐cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole‐cell model of iPSC‐CMs, composed of single exponential voltage‐dependent gating variable rate constants, parameterized to fit experimental iPSC‐CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC‐CMs This framework links molecular mechanisms to cellular‐level outputs by revealing unique subsets of model parameters linked to known iPSC‐CM phenotypes
Collapse
Affiliation(s)
- Divya C Kernik
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Stefano Morotti
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - HaoDi Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Priyanka Garg
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Henry J Duff
- Libin Cardiovascular Institute of Alberta, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Junko Kurokawa
- Department of Bio-Informational Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, Cardiovascular Research Center, University of Michigan, Ann Arbor, MI, USA.,Centro Nacional de Investigaciones Cardiovasculares (CNIC), and CIBERV, Madrid, Spain
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, USA
| | - Colleen E Clancy
- Department of Physiology and Membrane Biology, Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
40
|
Martinez-Matilla M, Blanco-Verea A, Santori M, Ansede-Bermejo J, Ramos-Luis E, Gil R, Bermejo AM, Lotufo-Neto F, Hirata MH, Brisighelli F, Paramo M, Carracedo A, Brion M. Genetic susceptibility in pharmacodynamic and pharmacokinetic pathways underlying drug-induced arrhythmia and sudden unexplained deaths. Forensic Sci Int Genet 2019; 42:203-212. [PMID: 31376648 DOI: 10.1016/j.fsigen.2019.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 07/14/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022]
Abstract
Drug-induced arrhythmia is an adverse drug reaction that can be potentially fatal since it is mostly related to drug-induced QT prolongation, a known risk factor for Torsade de Pointes and sudden cardiac death (SCD). Several risk factors have been described in association to these drug-induced events, such as preexistent cardiac disease and genetic variation. Our objective was to study the genetic susceptibility in pharmacodynamic and pharmacokinetic pathways underlying suspected drug-induced arrhythmias and sudden unexplained deaths in 32 patients. The genetic component in the pharmacodynamic pathway was studied by analysing 96 genes associated with higher risk of SCD through massive parallel sequencing. Pharmacokinetic-mediated genetic susceptibility was investigated by studying the genes encoding cytochrome P450 enzymes using medium-throughput genotyping. Pharmacodynamic analysis showed three probably pathogenic variants and 45 variants of uncertain significance in 28 patients, several of them previously described in relation to mild or late onset cardiomyopathies. These results suggest that genetic variants in cardiomyopathy genes, in addition to those related with channelopathies, could be relevant to drug-induced cardiotoxicity and contribute to the arrhythmogenic phenotype. Pharmacokinetic analysis showed three patients that could have an altered metabolism of the drugs they received involving CYP2C19 and/or CYP2D6, probably contributing to the arrhythmogenic phenotype. The study of genetic variants in both pharmacodynamic and pharmacokinetic pathways may be a useful strategy to understand the multifactorial mechanism of drug-induced events in both clinical practice and forensic field. However, it is necessary to comprehensively study and evaluate the contribution of the genetic susceptibility to drug-induced cardiotoxicity.
Collapse
Affiliation(s)
- M Martinez-Matilla
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain.
| | - A Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - M Santori
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - J Ansede-Bermejo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| | - E Ramos-Luis
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - R Gil
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain
| | - A M Bermejo
- Instituto de Ciencias Forenses "Luis Concheiro" (INCIFOR), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - F Lotufo-Neto
- Psiquiatry Institute - Faculty of Medicine at University of São Paulo, São Paulo, Brazil
| | - M H Hirata
- Institute Dante Pazzanese of Cardiology, São Paulo, Brazil; School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - F Brisighelli
- Institute of Public Health, Section of Legal Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Paramo
- Servizo de Psiquiatría, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - A Carracedo
- Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| | - M Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela (A Coruña), Spain; Grupo de Medicina Xenómica, Universidade de Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Santiago de Compostela, Spain; Centro Nacional de Genotipado-CeGen-USC-PRB3-ISCIII, Santiago de Compostela, Spain
| |
Collapse
|
41
|
Kroncke BM, Glazer AM, Smith DK, Blume JD, Roden DM. SCN5A (Na V1.5) Variant Functional Perturbation and Clinical Presentation: Variants of a Certain Significance. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002095. [PMID: 29728395 DOI: 10.1161/circgen.118.002095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 03/05/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel SCN5A (protein NaV1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare SCN5A variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance. METHODS From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported SCN5A variants. For 356 variants, data were also available for 5 NaV1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation. RESULTS We found that peak and late current significantly associate with Brugada syndrome (P<0.001; ρ=-0.44; Spearman rank test) and long QT syndrome disease penetrance (P<0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm. CONCLUSIONS NaV1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of NaV1.5 variant electrophysiological abnormalities and help improve NaV1.5 variant classification.
Collapse
Affiliation(s)
| | | | - Derek K Smith
- Vanderbilt University Medical Center, Nashville, TN. Department of Biostatistics, Vanderbilt University, Nashville, TN (D.K.S., J.D.B.)
| | - Jeffrey D Blume
- Vanderbilt University Medical Center, Nashville, TN. Department of Biostatistics, Vanderbilt University, Nashville, TN (D.K.S., J.D.B.)
| | - Dan M Roden
- Department of Medicine (B.M.K., A.M.G., D.M.R.) .,Department of Biomedical Informatics (D.M.R.).,and Department of Pharmacology (D.M.R.)
| |
Collapse
|
42
|
Giudicessi JR, Roden DM, Wilde AAM, Ackerman MJ. Classification and Reporting of Potentially Proarrhythmic Common Genetic Variation in Long QT Syndrome Genetic Testing. Circulation 2019; 137:619-630. [PMID: 29431662 DOI: 10.1161/circulationaha.117.030142] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The acquired and congenital forms of long QT syndrome represent 2 distinct but clinically and genetically intertwined disorders of cardiac repolarization characterized by the shared final common pathway of QT interval prolongation and risk of potentially life-threatening arrhythmias. Over the past 2 decades, our understanding of the spectrum of genetic variation that (1) perturbs the function of cardiac ion channel macromolecular complexes and intracellular calcium-handling proteins, (2) underlies acquired/congenital long QT syndrome susceptibility, and (3) serves as a determinant of QT interval duration in the general population has grown exponentially. In turn, these molecular insights led to the development and increased utilization of clinically impactful genetic testing for congenital long QT syndrome. However, the widespread adoption and potential misinterpretation of the 2015 American College of Medical Genetics and Genomics variant classification and reporting guidelines may have contributed unintentionally to the reduced reporting of common genetic variants, with compelling epidemiological and functional evidence to support a potentially proarrhythmic role in patients with congenital and acquired long QT syndrome. As a result, some genetic testing reports may fail to convey the full extent of a patient's genetic susceptibility for a potentially life-threatening arrhythmia to the ordering healthcare professional. In this white paper, we examine the current classification and reporting (or lack thereof) of potentially proarrhythmic common genetic variants and investigate potential mechanisms to facilitate the reporting of these genetic variants without increasing the risk of diagnostic miscues.
Collapse
Affiliation(s)
- John R Giudicessi
- Departments of Cardiovascular Medicine and Internal Medicine, Clinician-Investigator Training Program, Mayo Clinic, Rochester, MN (J.R.G)
| | - Dan M Roden
- Departments of Biomedical Informatics, Medicine, and Pharmacology, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN (D.M.R.)
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, The Netherlands (A.A.M.W.)
| | - Michael J Ackerman
- Departments of Cardiovascular Diseases, Pediatrics, and Molecular Pharmacology and Experimental Therapeutics, Divisions of Heart Rhythm Services and Pediatric Cardiology, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN (M.J.A.)
| |
Collapse
|
43
|
Zerdazi EH, Vorspan F, Marees AT, Naccache F, Lepine JP, Laplanche JL, Prince N, Marie-Claire C, Bellivier F, Mouly S, Bloch V. QT length during methadone maintenance treatment: gene × dose interaction. Fundam Clin Pharmacol 2019; 33:96-106. [DOI: 10.1111/fcp.12405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/04/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
Affiliation(s)
- El-Hadi Zerdazi
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
- APHP; Service d'addictologie; DHU Pe-PSY; Pôle de Psychiatrie et d'Addictologie des Hôpitaux Universitaires; Henri Mondor; F94000 Créteil France
| | - Florence Vorspan
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
- APHP; Département de Psychiatrie et de Médecine Addictologigue; Hôpital Fernand Widal; 75010 Paris France
| | - Andries T. Marees
- Department of Psychiatry, Amsterdam Neuroscience; Academic Medical Center; University of Amsterdam; Amsterdam The Netherlands
- QIMR Berghofer; Translational Neurogenomics Group; Brisbane Australia
| | - François Naccache
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
- APHP; Département de Psychiatrie et de Médecine Addictologigue; Hôpital Fernand Widal; 75010 Paris France
| | - Jean-Pierre Lepine
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
- APHP; Département de Psychiatrie et de Médecine Addictologigue; Hôpital Fernand Widal; 75010 Paris France
| | - Jean-Louis Laplanche
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
| | - Nathalie Prince
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
| | - Cynthia Marie-Claire
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
| | - Frank Bellivier
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
- APHP; Département de Psychiatrie et de Médecine Addictologigue; Hôpital Fernand Widal; 75010 Paris France
- Fondation FondaMental; Fondation de coopération scientifique; Hôpital Albert Chenevier; 94000 Créteil France
| | - Stéphane Mouly
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
- Département de Médecine Interne; Hôpital Lariboisière; APHP; 75010 Paris France
| | - Vanessa Bloch
- INSERM U1144 Variabilité de réponse aux psychotropes; Université Paris Descartes; Université Paris Diderot; Université Sorbonne Paris Cité; Faculté de Pharmacie; 4 avenue de l'observatoire - 75006 Paris France
| |
Collapse
|
44
|
Marstrand P, Christensen AH, Bartels ED, Theilade J. Citalopram and the KCNE1 D85N variant: a case report on the implications of a genetic modifier. Eur Heart J Case Rep 2018; 2:yty106. [PMID: 31020182 PMCID: PMC6426086 DOI: 10.1093/ehjcr/yty106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/05/2018] [Indexed: 01/08/2023]
Abstract
Background Prolongation of the QT interval on the electrocardiogram is clinically important due to the association with an increased risk of sudden cardiac death. A long QT interval may be genetically determined (congenital long QT syndrome) or be drug-induced long QT syndrome e.g. caused by pharmaceutical drugs and electrolyte imbalances. Case summary In this report, we describe the case a 54-year-old woman, who presented with syncope. At presentation, the QTc interval was markedly prolonged, and she was admitted for observation under telemetry. The following day the patient had experienced a near syncope during an episode of 18 s of Torsade de Pointes (TdP). At the time of TdP, the potassium level (3.4 mmol/L) was mildly reduced, and the ECG showed a QTc interval of 640 ms. In spite of correction of hypokalaemia and discontinuation of the possibly LQTS-inducing drug citalopram the QTc duration remained intermittently prolonged. A transthoracic echocardiogram and a recent coronary angiogram were normal. The patient received an implantable cardioverter-defibrillator. Subsequent genetic testing identified a heterozygous KCNE1 p.D85N (c.253G>A) variant, a known QT modifier with a population prevalence of 1.3%. Discussion We conclude that the combination of a commonly prescribed antidepressant, discrete hypokalaemia, and a common KCNE1 QT modifier may cause severe QTc prolongation and life-threatening arrhythmia.
Collapse
Affiliation(s)
- Peter Marstrand
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital Copenhagen, Herlev Ringvej 75, Copenhagen, Denmark
| | - Alex Hørby Christensen
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital Copenhagen, Herlev Ringvej 75, Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Emil Daniel Bartels
- Department of Clinical Biochemistry, Rigshospitalet, University Hospital Copenhagen, Denmark
| | - Juliane Theilade
- Department of Cardiology, Herlev-Gentofte Hospital, University Hospital Copenhagen, Herlev Ringvej 75, Copenhagen, Denmark
| |
Collapse
|
45
|
Schwartz PJ, Crotti L, George AL. Modifier genes for sudden cardiac death. Eur Heart J 2018; 39:3925-3931. [PMID: 30215713 PMCID: PMC6247660 DOI: 10.1093/eurheartj/ehy502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/28/2018] [Indexed: 01/07/2023] Open
Abstract
Genetic conditions, even those associated with identical gene mutations, can present with variable clinical manifestations. One widely accepted explanation for this phenomenon is the existence of genetic factors capable of modifying the consequences of disease-causing mutations (modifier genes). Here, we address the concepts and principles by which genetic factors may be involved in modifying risk for cardiac arrhythmia, then discuss the current knowledge and interpretation of their contribution to clinical heterogeneity. We illustrate these concepts in the context of two important clinical conditions associated with risk for sudden cardiac death including a monogenic disorder (congenital long QT syndrome) in which the impact of modifier genes has been established, and a complex trait (life-threatening arrhythmias in acute myocardial infarction) for which the search for genetic modifiers of arrhythmic risk is more challenging. Advances in understanding the contribution of modifier genes to a higher or lower propensity towards sudden death should improve patient-specific risk stratification and be a major step towards precision medicine.
Collapse
Affiliation(s)
- Peter J Schwartz
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo, 22, Milan, Italy
- Corresponding author. Tel: +39 02 55000408, Fax: +39 02 55000411, ;
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, Via Pier Lombardo, 22, Milan, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Via Cadore, 48, Monza, Italy
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Piazzale Brescia 20, Milan, Italy
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Searle 8-510, East Superior Street, Chicago, IL, USA
| |
Collapse
|
46
|
Roston TM, Haji-Ghassemi O, LaPage MJ, Batra AS, Bar-Cohen Y, Anderson C, Lau YR, Maginot K, Gebauer RA, Etheridge SP, Potts JE, Van Petegem F, Sanatani S. Catecholaminergic polymorphic ventricular tachycardia patients with multiple genetic variants in the PACES CPVT Registry. PLoS One 2018; 13:e0205925. [PMID: 30403697 PMCID: PMC6221297 DOI: 10.1371/journal.pone.0205925] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/03/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Catecholaminergic polymorphic ventricular tachycardia (CPVT) is often a life-threatening arrhythmia disorder with variable penetrance and expressivity. Little is known about the incidence or outcomes of CPVT patients with ≥2 variants. METHODS The phenotypes, genotypes and outcomes of patients in the Pediatric and Congenital Electrophysiology Society CPVT Registry with ≥2 variants in genes linked to CPVT were ascertained. The American College of Medical Genetics & Genomics (ACMG) criteria and structural mapping were used to predict the pathogenicity of variants (3D model of pig RyR2 in open-state). RESULTS Among 237 CPVT subjects, 193 (81%) had genetic testing. Fifteen patients (8%) with a median age of 9 years (IQR 5-12) had ≥2 variants. Sudden cardiac arrest occurred in 11 children (73%), although none died during a median follow-up of 4.3 years (IQR 2.5-6.1). Thirteen patients (80%) had at least two RYR2 variants, while the remaining two patients had RYR2 variants plus variants in other CPVT-linked genes. Among all variants identified, re-classification of the commercial laboratory interpretation using ACMG criteria led to the upgrade from variant of unknown significance (VUS) to pathogenic/likely pathogenic (P/LP) for 5 variants, and downgrade from P/LP to VUS for 6 variants. For RYR2 variants, 3D mapping using the RyR2 model suggested that 2 VUS by ACMG criteria were P/LP, while 2 variants were downgraded to likely benign. CONCLUSIONS This severely affected cohort demonstrates that a minority of CPVT cases are related to ≥2 variants, which may have implications on family-based genetic counselling. While multi-variant CPVT patients were at high-risk for sudden cardiac arrest, there are insufficient data to conclude that this genetic phenomenon has prognostic implications at present. Further research is needed to determine the significance and generalizability of this observation. This study also shows that a rigorous approach to variant re-classification using the ACMG criteria and 3D mapping is important in reaching an accurate diagnosis, especially in the multi-variant population.
Collapse
Affiliation(s)
- Thomas M. Roston
- Departments of Medicine, Pediatrics, and Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Omid Haji-Ghassemi
- Departments of Medicine, Pediatrics, and Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Martin J. LaPage
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States of America
| | - Anjan S. Batra
- Department of Pediatrics, University of California at Irvine Medical Center, Irvine, CA, United States of America
| | - Yaniv Bar-Cohen
- Department of Pediatrics, Children’s Hospital Los Angeles, Los Angeles, CA, United States of America
| | - Chris Anderson
- Providence Sacred Heart Children’s Hospital, Spokane, WA, United States of America
| | - Yung R. Lau
- Division of Pediatric Cardiology, University of Alabama at Birmingham, Birmingham, AB, United States of America
| | - Kathleen Maginot
- Department of Pediatrics, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States of America
| | - Roman A. Gebauer
- Department of Pediatric Cardiology, University of Leipzig, Leipzig, Germany
| | - Susan P. Etheridge
- Department of Pediatrics, University of Utah, and Primary Children’s Hospital, Salt Lake City, UT, United States of America
| | - James E. Potts
- Departments of Medicine, Pediatrics, and Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Departments of Medicine, Pediatrics, and Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Shubhayan Sanatani
- Departments of Medicine, Pediatrics, and Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. Heart Rhythm 2018; 15:e73-e189. [DOI: 10.1016/j.hrthm.2017.10.036] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Indexed: 02/07/2023]
|
48
|
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2018; 138:e272-e391. [PMID: 29084731 DOI: 10.1161/cir.0000000000000549] [Citation(s) in RCA: 293] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - William G Stevenson
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Michael J Ackerman
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - William J Bryant
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - David J Callans
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Anne B Curtis
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Barbara J Deal
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Timm Dickfeld
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Michael E Field
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Gregg C Fonarow
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Anne M Gillis
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Christopher B Granger
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Stephen C Hammill
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Mark A Hlatky
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - José A Joglar
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - G Neal Kay
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Daniel D Matlock
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Robert J Myerburg
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| | - Richard L Page
- Writing committee members are required to recuse themselves from voting on sections to which their specific relationships with industry may apply; see Appendix 1 for detailed information. †ACC/AHA Representative. ‡HRS Representative. §ACC/AHA Task Force on Performance Measures Liaison/HFSA Representative. ‖ACC/AHA Task Force on Clinical Practice Guidelines Liaison
| |
Collapse
|
49
|
Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, Deal BJ, Dickfeld T, Field ME, Fonarow GC, Gillis AM, Granger CB, Hammill SC, Hlatky MA, Joglar JA, Kay GN, Matlock DD, Myerburg RJ, Page RL. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol 2018; 72:e91-e220. [PMID: 29097296 DOI: 10.1016/j.jacc.2017.10.054] [Citation(s) in RCA: 796] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
50
|
Ko JS, Guo S, Hassel J, Celestino-Soper P, Lynnes TC, Tisdale JE, Zheng JJ, Taylor SE, Foroud T, Murray MD, Kovacs RJ, Li X, Lin SF, Chen Z, Vatta M, Chen PS, Rubart M. Ondansetron blocks wild-type and p.F503L variant small-conductance Ca 2+-activated K + channels. Am J Physiol Heart Circ Physiol 2018; 315:H375-H388. [PMID: 29677462 PMCID: PMC6139629 DOI: 10.1152/ajpheart.00479.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 01/24/2023]
Abstract
Apamin-sensitive small-conductance Ca2+-activated K+ (SK) current ( IKAS) is encoded by Ca2+-activated K+ channel subfamily N ( KCNN) genes. IKAS importantly contributes to cardiac repolarization in conditions associated with reduced repolarization reserve. To test the hypothesis that IKAS inhibition contributes to drug-induced long QT syndrome (diLQTS), we screened for KCNN variants among patients with diLQTS, determined the properties of heterologously expressed wild-type (WT) and variant KCNN channels, and determined if the 5-HT3 receptor antagonist ondansetron blocks IKAS. We searched 2,306,335 records in the Indiana Network for Patient Care and found 11 patients with diLQTS who had DNA available in the Indiana Biobank. DNA sequencing discovered a heterozygous KCNN2 variant (p.F503L) in a 52-yr-old woman presenting with corrected QT interval prolongation at baseline (473 ms) and further corrected QT interval lengthening (601 ms) after oral administration of ondansetron. That patient was also heterozygous for the p.S38G and p.P2835S variants of the QT-controlling genes KCNE1 and ankyrin 2, respectively. Patch-clamp experiments revealed that the p.F503L KCNN2 variant heterologously expressed in human embryonic kidney (HEK)-293 cells augmented Ca2+ sensitivity, increasing IKAS density. The fraction of total F503L-KCNN2 protein retained in the membrane was higher than that of WT KCNN2 protein. Ondansetron at nanomolar concentrations inhibited WT and p.F503L SK2 channels expressed in HEK-293 cells as well as native SK channels in ventricular cardiomyocytes. Ondansetron-induced IKAS inhibition was also demonstrated in Langendorff-perfused murine hearts. In conclusion, the heterozygous p.F503L KCNN2 variant increases Ca2+ sensitivity and IKAS density in transfected HEK-293 cells. Ondansetron at therapeutic (i.e., nanomolar) concentrations is a potent IKAS blocker. NEW & NOTEWORTHY We showed that ondansetron, a 5-HT3 receptor antagonist, blocks small-conductance Ca2+-activated K+ (SK) current. Ondansetron may be useful in controlling arrhythmias in which increased SK current is a likely contributor. However, its SK-blocking effects may also facilitate the development of drug-induced long QT syndrome.
Collapse
Affiliation(s)
- Jum-Suk Ko
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
- Wonkwang University School of Medicine and Hospital, Iksan, South Korea
| | - Shuai Guo
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Jonathan Hassel
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Patricia Celestino-Soper
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Ty C Lynnes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - James E Tisdale
- Department of Pharmacy Practice, College of Pharmacy, Purdue University , West Lafayette, Indiana
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | | | - Stanley E Taylor
- Department of Biostatistics, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael D Murray
- Department of Pharmacy Practice, College of Pharmacy, Purdue University , West Lafayette, Indiana
- Regenstrief Institute , Indianapolis, Indiana
| | - Richard J Kovacs
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Xiaochun Li
- Department of Biostatistics, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Shien-Fong Lin
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
- Institute of Biomedical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan
| | - Zhenhui Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Matteo Vatta
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Medical and Molecular Genetics, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Pediatrics, Riley Heart Research Center, Indiana University School of Medicine , Indianapolis, Indiana
| | - Peng-Sheng Chen
- The Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine , Indianapolis, Indiana
| | - Michael Rubart
- Department of Pediatrics, Riley Heart Research Center, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|