1
|
Tiwari RK, Rawat SG, Rai S, Kumar A. Stress regulatory hormones and cancer: the contribution of epinephrine and cancer therapeutic value of beta blockers. Endocrine 2025; 88:359-386. [PMID: 39869294 DOI: 10.1007/s12020-025-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/08/2025] [Indexed: 01/28/2025]
Abstract
The word "cancer" evokes myriad emotions, ranging from fear and despair to hope and determination. Cancer is aptly defined as a complex and multifaceted group of diseases that has unapologetically led to the loss of countless lives and affected innumerable families across the globe. The battle with cancer is not only a physical battle, but also an emotional, as well as a psychological skirmish for patients and for their loved ones. Cancer has been a part of our history, stories, and lives for centuries and has challenged the ingenuity of health and medical science, and the resilience of the human spirit. From the early days of surgery and radiation therapy to cutting-edge developments in chemotherapeutic agents, immunotherapy, and targeted treatments, the medical field continues to make significant headway in the fight against cancer. However, even after all these advancements, cancer is still among the leading cause of death globally. This urges us to understand the central hallmarks of neoplastic cells to identify novel molecular targets for the development of promising therapeutic approaches. Growing research suggests that stress mediators, including epinephrine, play a critical role in the development and progression of cancer by inducing neoplastic features through activating adrenergic receptors, particularly β-adrenoreceptors. Further, our experimental data has also shown that epinephrine mediates the growth of T-cell lymphoma by inducing proliferation, glycolysis, and apoptosis evasion via altering the expression levels of key regulators of these vital cellular processes. The beauty of receptor-based therapy lies in its precision and higher therapeutic value. Interestingly, the enhanced expression of β-adrenergic receptors (ADRBs), namely ADRB2 (β2-adrenoreceptor) and ADRB3 (β3-adrenoreceptor) has been noted in many cancers, such as breast, colon, gastric, pancreatic, and prostate and has been reported to play a pivotal role in facilitating cancer growth mainly by promoting proliferation, evasion of apoptosis, angiogenesis, invasion and metastasis, and chemoresistance. The present review article is an attempt to summarize the available findings which indicate a distinct relationship between stress hormones and cancer, with a special emphasis on epinephrine, considered as a key stress regulatory molecule. This article also discusses the possibility of using beta-blockers for cancer therapy.
Collapse
Affiliation(s)
- Rajan Kumar Tiwari
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- School of Medicine and Health Sciences, The George Washington University, Washington DC, USA
| | - Shiv Govind Rawat
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- MD Anderson Cancer Center, The University of Texas, Texas, USA
| | - Siddharth Rai
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
2
|
Lian Y, Zhang H, Xing W, Li S, Lai X, Jia S, Shang J, Liu H. Global Research Trends and Focus on the Link Between Heart Failure and NLRP3 Inflammasome: A Bibliometric Analysis From 2010 to 2024. J Multidiscip Healthc 2025; 18:697-710. [PMID: 39949850 PMCID: PMC11822290 DOI: 10.2147/jmdh.s505356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Background Heart failure (HF) is characterized by elevated morbidity, mortality, and rehospitalization frequencies. This condition imposes a considerable medical burden and fiscal strain on society. Inflammation plays a crucial role in the inception, advancement, and outcome of HF. Despite mounting evidence demonstrating the pivotal function of the NLRP3 inflammasome in HF, a thorough bibliometric examination of research focal points and trajectories in this domain has yet to be undertaken. Methods Publications related to the NLRP3 inflammasome in HF were retrieved from the Web of Science database spanning 2010-2024. The acquired data were subsequently analyzed utilizing various visualization instruments, including Citespace, VOSviewer, Scimago Graphica, and Microsoft Office Excel 2021. Results A total of 282 papers were included in the analysis, authored by 2,130 researchers from 500 institutions across 34 nations/regions. China emerged as a significant contributor to this field, producing the highest number of outputs. Antonio Abbate was identified as the most prolific author. Virginia Commonwealth University and Wuhan University were the institutions with the highest publication output. INTERNATIONAL IMMUNOPHARMACOLOGY was the periodical with the most numerous publications in this sphere. CIRCULATION, however, received the highest number of citations, indicating its substantial influence on investigations in this field. Contemporary research focal points primarily concentrate on the activation and inhibition pathways of the NLRP3 inflammasome, the exploration of novel HF targets, and the association between HF and mitochondrial function. Future research trajectories are likely to encompass investigations into the relationship between HF and pyroptosis, as well as clinical studies on pharmaceuticals targeting the NLRP3 inflammasome as a therapeutic approach for HF. Conclusion This investigation provides a comprehensive bibliometric analysis and synopsis of NLRP3 inflammable-related studies in HF. The findings offer a conceptual foundation for further research on the NLRP3 inflammasome in HF and provide valuable guidance for future research directions in this domain.
Collapse
Affiliation(s)
- YanJie Lian
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
- Graduate School of Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Heyi Zhang
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
- Graduate School of Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Wenlong Xing
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Sinai Li
- Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, People’s Republic of China
| | - Xiaolei Lai
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Sihan Jia
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - JuJu Shang
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| | - Hongxu Liu
- Department of Cardiovascular, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, People’s Republic of China
| |
Collapse
|
3
|
Trauzeddel RF, Rothe LM, Nordine M, Dehé L, Scholtz K, Spies C, Hadzidiakos D, Winterer G, Borchers F, Kruppa J, Treskatsch S. Influence of a chronic beta-blocker therapy on perioperative opioid consumption - a post hoc secondary analysis. BMC Anesthesiol 2024; 24:80. [PMID: 38413849 PMCID: PMC10898005 DOI: 10.1186/s12871-024-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Beta-blocker (BB) therapy plays a central role in the treatment of cardiovascular diseases. An increasing number of patients with cardiovascular diseases undergoe noncardiac surgery, where opioids are an integral part of the anesthesiological management. There is evidence to suggest that short-term intravenous BB therapy may influence perioperative opioid requirements due to an assumed cross-talk between G-protein coupled beta-adrenergic and opioid receptors. Whether chronic BB therapy could also have an influence on perioperative opioid requirements is unclear. METHODS A post hoc analysis of prospectively collected data from a multicenter observational (BioCog) study was performed. Inclusion criteria consisted of elderly patients (≥ 65 years) undergoing elective noncardiac surgery as well as total intravenous general anesthesia without the use of regional anesthesia and duration of anesthesia ≥ 60 min. Two groups were defined: patients with and without BB in their regular preopreative medication. The administered opioids were converted to their respective morphine equivalent doses. Multiple regression analysis was performed using the morphine-index to identify independent predictors. RESULTS A total of 747 patients were included in the BioCog study in the study center Berlin. 106 patients fulfilled the inclusion criteria. Of these, 37 were on chronic BB. The latter were preoperatively significantly more likely to have arterial hypertension (94.6%), chronic renal failure (27%) and hyperlipoproteinemia (51.4%) compared to patients without BB. Both groups did not differ in terms of cumulative perioperative morphine equivalent dose (230.9 (BB group) vs. 214.8 mg (Non-BB group)). Predictive factors for increased morphine-index were older age, male sex, longer duration of anesthesia and surgery of the trunk. In a model with logarithmised morphine index, only gender (female) and duration of anesthesia remained predictive factors. CONCLUSIONS Chronic BB therapy was not associated with a reduced perioperative opioid consumption. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov ( NCT02265263 ) on the 15.10.2014 with the principal investigator being Univ.-Prof. Dr. med. Claudia Spies.
Collapse
Affiliation(s)
- Ralf F Trauzeddel
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Luisa M Rothe
- IS Global Campus Cliníc Rosselló, Barcelona Institute for Global Health, 132, 7è, Barcelona, 08036, Spain
| | - Michael Nordine
- Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Lukas Dehé
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Kathrin Scholtz
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Daniel Hadzidiakos
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Jochen Kruppa
- Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.
| |
Collapse
|
4
|
van Weperen VYH, Ripplinger CM, Vaseghi M. Autonomic control of ventricular function in health and disease: current state of the art. Clin Auton Res 2023; 33:491-517. [PMID: 37166736 PMCID: PMC10173946 DOI: 10.1007/s10286-023-00948-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
PURPOSE Cardiac autonomic dysfunction is one of the main pillars of cardiovascular pathophysiology. The purpose of this review is to provide an overview of the current state of the art on the pathological remodeling that occurs within the autonomic nervous system with cardiac injury and available neuromodulatory therapies for autonomic dysfunction in heart failure. METHODS Data from peer-reviewed publications on autonomic function in health and after cardiac injury are reviewed. The role of and evidence behind various neuromodulatory therapies both in preclinical investigation and in-use in clinical practice are summarized. RESULTS A harmonic interplay between the heart and the autonomic nervous system exists at multiple levels of the neuraxis. This interplay becomes disrupted in the setting of cardiovascular disease, resulting in pathological changes at multiple levels, from subcellular cardiac signaling of neurotransmitters to extra-cardiac, extra-thoracic remodeling. The subsequent detrimental cycle of sympathovagal imbalance, characterized by sympathoexcitation and parasympathetic withdrawal, predisposes to ventricular arrhythmias, progression of heart failure, and cardiac mortality. Knowledge on the etiology and pathophysiology of this condition has increased exponentially over the past few decades, resulting in a number of different neuromodulatory approaches. However, significant knowledge gaps in both sympathetic and parasympathetic interactions and causal factors that mediate progressive sympathoexcitation and parasympathetic dysfunction remain. CONCLUSIONS Although our understanding of autonomic imbalance in cardiovascular diseases has significantly increased, specific, pivotal mediators of this imbalance and the recognition and implementation of available autonomic parameters and neuromodulatory therapies are still lagging.
Collapse
Affiliation(s)
- Valerie Y H van Weperen
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA
| | | | - Marmar Vaseghi
- Division of Cardiology, Department of Medicine, UCLA Cardiac Arrythmia Center, University of California, 100 Medical Plaza, Suite 660, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Yano H, Onoue K, Tokinaga S, Ioka T, Ishihara S, Hashimoto Y, Nakada Y, Nakagawa H, Ueda T, Seno A, Nishida T, Watanabe M, Saito Y. Overexpression of GRK2 in vascular smooth muscle leads to inappropriate hypertension and acute heart failure as in clinical scenario 1. Sci Rep 2023; 13:7707. [PMID: 37173348 PMCID: PMC10182096 DOI: 10.1038/s41598-023-34209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Clinical scenario 1 (CS1) is acute heart failure (HF) characterized by transient systolic blood pressure (SBP) elevation and pulmonary congestion. Although it is managed by vasodilators, the molecular mechanism remains unclear. The sympathetic nervous system plays a key role in HF, and desensitization of cardiac β-adrenergic receptor (AR) signaling due to G protein-coupled receptor kinase 2 (GRK2) upregulation is known. However, vascular β-AR signaling that regulates cardiac afterload remains unelucidated in HF. We hypothesized that upregulation of vascular GRK2 leads to pathological conditions similar to CS1. GRK2 was overexpressed in vascular smooth muscle (VSM) of normal adult male mice by peritoneally injected adeno-associated viral vectors driven by the myosin heavy chain 11 promoter. Upregulation of GRK2 in VSM of GRK2 overexpressing mice augmented the absolute increase in SBP (+ 22.5 ± 4.3 mmHg vs. + 36.0 ± 4.0 mmHg, P < 0.01) and lung wet weight (4.28 ± 0.05 mg/g vs. 4.76 ± 0.15 mg/g, P < 0.01) by epinephrine as compared to those in control mice. Additionally, the expression of brain natriuretic peptide mRNA was doubled in GRK2 overexpressing mice as compared to that in control mice (P < 0.05). These findings were similar to CS1. GRK2 overexpression in VSM may cause inappropriate hypertension and HF, as in CS1.
Collapse
Affiliation(s)
- Hiroki Yano
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Shiho Tokinaga
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Tomoko Ioka
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Satomi Ishihara
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yukihiro Hashimoto
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yasuki Nakada
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Hitoshi Nakagawa
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Tomoya Ueda
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Ayako Seno
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Taku Nishida
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Makoto Watanabe
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, 840 Shijocho, Kashihara, Nara, 634-8522, Japan.
| |
Collapse
|
6
|
Liu J, Li X, Ding L, Li W, Niu X, Gao D. GRK2 participation in cardiac hypertrophy induced by isoproterenol through the regulation of Nrf2 signaling and the promotion of NLRP3 inflammasome and oxidative stress. Int Immunopharmacol 2023; 117:109957. [PMID: 37012864 DOI: 10.1016/j.intimp.2023.109957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE In cases of heart failure, cardiac hypertrophy may be caused by the upregulation of G-protein-coupled receptor kinase 2 (GRK2). Both NLRP3 inflammasome and oxidative stress contribute to cardiovascular disease. In this study, we clarified the effect of GRK2 on cardiac hypertrophy in H9c2 cells induced by isoproterenol (ISO) and examined the underlying mechanisms. METHODS We randomly categorized H9c2 cells into five groups: an ISO group, a paroxetine plus ISO group, a GRK2 small-interfering RNA (siRNA) plus ISO group, a GRK2 siRNA combined with ML385 plus ISO group, and a control group. To determine the effect of GRK2 on cardiac hypertrophy induced by ISO, we carried out CCK8 assays, RT-PCR, TUNEL staining, ELISA assay, DCFH-DA staining, immunofluorescence staining, and western blotting. RESULTS By using paroxetine or siRNA to inhibit GRK2, we significantly decreased cell viability; reduced the mRNA levels of ANP, BNP, and β-MHC; and limited the apoptosis rate and protein levels of cleaved caspase-3 and cytochrome c in H9c2 cells treated with ISO. We also found that oxidative stress induced by ISO could be mitigated with paroxetine or GRK2 siRNA. This result was validated by decreased activities of the antioxidant enzymes CAT, GPX, and SOD and increased MDA levels and ROS production. We observed that the protein expression of NLRP3, ASC, and caspase-1 and the intensity of NLRP3 could be inhibited by paroxetine or GRK2 siRNA. Both paroxetine and GRK2 siRNA were able to abolish the increase in GRK2 expression induced by ISO. They also could increase protein levels of HO-1, nuclear Nrf2, and Nrf2 immunofluorescence intensity; however, they could not change the protein level of cytoplasmic Nrf2. By combining treatment with ML385, we were able to reverse GRK2 inhibition on H9c2 cells treated with ISO. CONCLUSION According to the results of this study, GRK2 participated in cardiac hypertrophy induced by ISO by mitigating NLRP3 inflammasome and oxidative stress through the signaling of Nrf2 in H9c2 cells.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China; Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Xiaoli Li
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China
| | - Lu Ding
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China
| | - Wei Li
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an 710100, Shaanxi Province, China
| | - Xiaolin Niu
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an 710038, Shaanxi Province, China.
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710068, Shaanxi Province, China.
| |
Collapse
|
7
|
Islam MA, Rallabandi VPS, Mohammed S, Srinivasan S, Natarajan S, Dudekula DB, Park J. Screening of β1- and β2-Adrenergic Receptor Modulators through Advanced Pharmacoinformatics and Machine Learning Approaches. Int J Mol Sci 2021; 22:11191. [PMID: 34681845 PMCID: PMC8538848 DOI: 10.3390/ijms222011191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CDs) are a major concern in the human race and one of the leading causes of death worldwide. β-Adrenergic receptors (β1-AR and β2-AR) play a crucial role in the overall regulation of cardiac function. In the present study, structure-based virtual screening, machine learning (ML), and a ligand-based similarity search were conducted for the PubChem database against both β1- and β2-AR. Initially, all docked molecules were screened using the threshold binding energy value. Molecules with a better binding affinity were further used for segregation as active and inactive through ML. The pharmacokinetic assessment was carried out on molecules retained in the above step. Further, similarity searching of the ChEMBL and DrugBank databases was performed. From detailed analysis of the above data, four compounds for each of β1- and β2-AR were found to be promising in nature. A number of critical ligand-binding amino acids formed potential hydrogen bonds and hydrophobic interactions. Finally, a molecular dynamics (MD) simulation study of each molecule bound with the respective target was performed. A number of parameters obtained from the MD simulation trajectories were calculated and substantiated the stability between the protein-ligand complex. Hence, it can be postulated that the final molecules might be crucial for CDs subjected to experimental validation.
Collapse
Affiliation(s)
- Md Ataul Islam
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - V. P. Subramanyam Rallabandi
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - Sameer Mohammed
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - Sridhar Srinivasan
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | | | - Dawood Babu Dudekula
- 3BIGS Omicscore Pvt. Ltd., 1, O Shaughnessy Rd, Langford Gardens, Bengaluru, Karnataka 560025, India; (M.A.I.); (V.P.S.R.); (S.M.); (S.S.); (D.B.D.)
| | - Junhyung Park
- 3BIGS Co., Ltd., 156, Gwanggyo-ro, Yeongtong-gu, Suwon-si 16506, Korea;
| |
Collapse
|
8
|
Marsico F, Paolillo S, Gargiulo P, Parisi V, Nappi C, Assante R, Dell'Aversana S, Esposito I, Renga F, Esposito L, Bardi L, Rengo G, Dellegrottaglie S, Marciano C, Leosco D, Cuocolo A, Filardi PP. Renal function and cardiac adrenergic impairment in patients affected by heart failure. J Nucl Cardiol 2021; 28:2112-2122. [PMID: 31808105 DOI: 10.1007/s12350-019-01975-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/20/2019] [Indexed: 01/17/2023]
Abstract
Although in heart failure (HF) there is a strict correlation between heart and kidney, no data are available on the potential relationship in HF between renal dysfunction (RD) and the impaired sympathetic innervation. Aim of the present study was to assess the relationship between RD and cardiac sympathetic innervation in HF patients with reduced ejection fraction. Two hundred and sixty-three patients with mild-to-severe HF underwent iodine-123 meta-iodobenzylguanidine myocardial scintigraphy to assess sympathetic innervation, evaluating early and late heart-to-mediastinum (H/M) ratios and washout rate. In all patients, glomerular filtration rate (eGFR) by Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula was assessed. A direct association was found between EPI-eGFR and late H/M (r = .215; P < .001). Dividing the population into moderate-to-severe eGFR reduction and normal-to-mildly reduced eGFR (cutoff ≤ 60 mL·min-1·1.73 m-2), a statistically significant reduction of late H/M value was found in patients with RD compared to patients with preserved eGFR (P = .030). By multivariable linear regression analysis, eGFR resulted in the prediction of impaired late H/M in patients with RD (P = .005). Patients with RD and HF show more impaired cardiac sympathetic activity than HF patients with preserved renal function, and reduced eGFR is a predictor of reduced late H/M.
Collapse
Affiliation(s)
- Fabio Marsico
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Stefania Paolillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
- Mediterranea Cardiocentro, Naples, Italy
| | - Paola Gargiulo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Simona Dell'Aversana
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Immacolata Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Francesco Renga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Luca Esposito
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Luca Bardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | | | | | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy.
| |
Collapse
|
9
|
Howlett LA, Lancaster MK. Reduced cardiac response to the adrenergic system is a key limiting factor for physical capacity in old age. Exp Gerontol 2021; 150:111339. [PMID: 33838216 DOI: 10.1016/j.exger.2021.111339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Ageing is associated with a progressive reduction in physical capacity reducing quality of life. One key physiological limitation of physical capacity that deteriorates in a progressive age-dependent manner is cardiac reserve. Peak cardiac output falls progressively with advancing age such that in extreme old age there is limited ability to enhance cardiac output beyond basal function as is required to support the increased metabolic needs of physical activity. This loss of dynamic range in cardiac output associates with a progressive reduction in the heart's response to adrenergic stimulation. A combination of decreases in the expression and functioning of beta1 adrenergic receptors partially underlies this change. Changes in end effector proteins also have a role to play in this decline. Alterations in the efficiency of excitation-contraction coupling contribute to the reduced chronotropic, inotropic and lusitropic responses of the aged heart. Moderate to vigorous endurance exercise training however has some potential to counter elements of these changes. Further studies are required to fully elucidate the key pivotal mechanisms involved in the age-related loss of response to adrenergic signalling to allow targeted therapeutic strategies to be developed with the aim of preserving physical capacity in advanced old age.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | | |
Collapse
|
10
|
Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K. Compartmentalized Signaling in Aging and Neurodegeneration. Cells 2021; 10:464. [PMID: 33671541 PMCID: PMC7926881 DOI: 10.3390/cells10020464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic AMP (cAMP) signalling cascade is necessary for cell homeostasis and plays important roles in many processes. This is particularly relevant during ageing and age-related diseases, where drastic changes, generally decreases, in cAMP levels have been associated with the progressive decline in overall cell function and, eventually, the loss of cellular integrity. The functional relevance of reduced cAMP is clearly supported by the finding that increases in cAMP levels can reverse some of the effects of ageing. Nevertheless, despite these observations, the molecular mechanisms underlying the dysregulation of cAMP signalling in ageing are not well understood. Compartmentalization is widely accepted as the modality through which cAMP achieves its functional specificity; therefore, it is important to understand whether and how this mechanism is affected during ageing and to define which is its contribution to this process. Several animal models demonstrate the importance of specific cAMP signalling components in ageing, however, how age-related changes in each of these elements affect the compartmentalization of the cAMP pathway is largely unknown. In this review, we explore the connection of single components of the cAMP signalling cascade to ageing and age-related diseases whilst elaborating the literature in the context of cAMP signalling compartmentalization.
Collapse
Affiliation(s)
- Giulietta Di Benedetto
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Liliana F. Iannucci
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Nicoletta C. Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121 Padova, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
| | - Sofia Zanin
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Filippo Conca
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Francesca Grisan
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Biology, University of Padova, 35122 Padova, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70121 Bari, Italy;
| | - Konstantinos Lefkimmiatis
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy; (L.F.I.); (S.Z.); (F.C.); (F.G.)
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
11
|
Mora MT, Gong JQX, Sobie EA, Trenor B. The role of β-adrenergic system remodeling in human heart failure: A mechanistic investigation. J Mol Cell Cardiol 2020; 153:14-25. [PMID: 33326834 DOI: 10.1016/j.yjmcc.2020.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023]
Abstract
β-adrenergic receptor antagonists (β-blockers) are extensively used to improve cardiac performance in heart failure (HF), but the electrical improvements with these clinical treatments are not fully understood. The aim of this study was to analyze the electrophysiological effects of β-adrenergic system remodeling in heart failure with reduced ejection fraction and the underlying mechanisms. We used a combined mathematical model that integrated β-adrenergic signaling with electrophysiology and calcium cycling in human ventricular myocytes. HF remodeling, both in the electrophysiological and signaling systems, was introduced to quantitatively analyze changes in electrophysiological properties due to the stimulation of β-adrenergic receptors in failing myocytes. We found that the inotropic effect of β-adrenergic stimulation was reduced in HF due to the altered Ca2+ dynamics resulting from the combination of structural, electrophysiological and signaling remodeling. Isolated cells showed proarrhythmic risk after sympathetic stimulation because early afterdepolarizations appeared, and the vulnerability was greater in failing myocytes. When analyzing coupled cells, β-adrenergic stimulation reduced transmural repolarization gradients between endocardium and epicardium in normal tissue, but was less effective at reducing these gradients after HF remodeling. The comparison of the selective activation of β-adrenergic isoforms revealed that the response to β2-adrenergic receptors stimulation was blunted in HF while β1-adrenergic receptors downstream effectors regulated most of the changes observed after sympathetic stimulation. In conclusion, this study was able to reproduce an altered β-adrenergic activity on failing myocytes and to explain the mechanisms involved. The derived predictions could help in the treatment of HF and guide in the design of future experiments.
Collapse
Affiliation(s)
- Maria T Mora
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
| | - Jingqi Q X Gong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric A Sobie
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beatriz Trenor
- Centro de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
12
|
Cellular cross-talks in the diseased and aging heart. J Mol Cell Cardiol 2020; 138:136-146. [DOI: 10.1016/j.yjmcc.2019.11.152] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022]
|
13
|
Belletti A, Landoni G, Lomivorotov VV, Oriani A, Ajello S. Adrenergic Downregulation in Critical Care: Molecular Mechanisms and Therapeutic Evidence. J Cardiothorac Vasc Anesth 2019; 34:1023-1041. [PMID: 31839459 DOI: 10.1053/j.jvca.2019.10.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/09/2019] [Accepted: 10/10/2019] [Indexed: 02/08/2023]
Abstract
Catecholamines remain the mainstay of therapy for acute cardiovascular dysfunction. However, adrenergic receptors quickly undergo desensitization and downregulation after prolonged stimulation. Moreover, prolonged exposure to high circulating catecholamines levels is associated with several adverse effects on different organ systems. Unfortunately, in critically ill patients, adrenergic downregulation translates into progressive reduction of cardiovascular response to exogenous catecholamine administration, leading to refractory shock. Accordingly, there has been a growing interest in recent years toward use of noncatecholaminergic inotropes and vasopressors. Several studies investigating a wide variety of catecholamine-sparing strategies (eg, levosimendan, vasopressin, β-blockers, steroids, and use of mechanical circulatory support) have been published recently. Use of these agents was associated with improvement in hemodynamics and decreased catecholamine use but without a clear beneficial effect on major clinical outcomes. Accordingly, additional research is needed to define the optimal management of catecholamine-resistant shock.
Collapse
Affiliation(s)
- Alessandro Belletti
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Giovanni Landoni
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Vladimir V Lomivorotov
- Department of Anesthesiology and Intensive Care, E. Meshalkin National Medical Research Center, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Alessandro Oriani
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ajello
- Department of Anesthesia and Intensive Care, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
14
|
Alem MM. Endothelial Dysfunction in Chronic Heart Failure: Assessment, Findings, Significance, and Potential Therapeutic Targets. Int J Mol Sci 2019; 20:E3198. [PMID: 31261886 PMCID: PMC6651535 DOI: 10.3390/ijms20133198] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure (CHF) is a complex syndrome that results from structural and functional disturbances that affect the ability of the heart to supply oxygen to tissues. It largely affects and reduces the patient's quality of life, socio-economic status, and imposes great costs on health care systems worldwide. Endothelial dysfunction (ED) is a newly discovered phenomenon that contributes greatly to the pathophysiology of numerous cardiovascular conditions and commonly co-exists with chronic heart failure. However, the literature lacks clarity as to which heart failure patients might be affected, its significance in CHF patients, and its reversibility with pharmacological and non-pharmacological means. This review will emphasize all these points and summarize them for future researchers interested in vascular pathophysiology in this particular patient population. It will help to direct future studies for better characterization of these two phenomena for the potential discovery of therapeutic targets that might reduce future morbidity and mortality in this "at risk" population.
Collapse
Affiliation(s)
- Manal M Alem
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
15
|
Arcopinto M, Schiavo A, Salzano A, Bossone E, D'Assante R, Marsico F, Demelo-Rodriguez P, Baliga RR, Cittadini A, Marra AM. Metabolic Syndrome in Heart Failure: Friend or Foe? Heart Fail Clin 2019; 15:349-358. [PMID: 31079693 DOI: 10.1016/j.hfc.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interplay between metabolic syndrome (MetS) and heart failure (HF) is intricate. Population studies show that MetS confers an increased risk to develop HF and this effect is mediated by insulin resistance (IR). However, obesity, a key component in MetS and common partner of IR, is protective in patients with established HF, although IR confers an increased risk of dying by HF. Such phenomenon, known as "obesity paradox," accounts for the complexity of the HF-MetS relationship. Because IR impacts more on outcomes than MetS itself, the former may be considered the actual target for MetS in HF patients.
Collapse
Affiliation(s)
- Michele Arcopinto
- Department of Translational Medical Sciences, "Federico II" University, Via Pansini 5, 80131 Naples, Italy
| | - Alessandra Schiavo
- Department of Translational Medical Sciences, "Federico II" University, Via Pansini 5, 80131 Naples, Italy
| | - Andrea Salzano
- Department of Translational Medical Sciences, "Federico II" University, Via Pansini 5, 80131 Naples, Italy; Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital, Leicester, UK
| | - Eduardo Bossone
- Cardiology Division, A Cardarelli Hospital, Via Antonio Cardarelli 9, 80131 Naples, Italy
| | - Roberta D'Assante
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) SDN, Via Gianturco 113, 80142 Naples, Italy
| | - Fabio Marsico
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Via Pansini 5, 80131 Naples, Italy; Center for Congenital Heart Disease, University Hospital "Inselspital," University of Bern, Bern, Switzerland
| | - Pablo Demelo-Rodriguez
- Venous Thromboembolism Unit, Internal Medicine Department, Hospital General Universitario Gregorio Marañón, Calle del Dr. Esquerdo, 46, 28007 Madrid, Spain; School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Ragavendra R Baliga
- Division of Cardiovascular Medicine, The Ohio State University Wexner Medical Center, Davis Heart and Lung Research Institute, 473 W 12th Avenue, Columbus, OH 43210, USA
| | - Antonio Cittadini
- Department of Translational Medical Sciences, "Federico II" University, Via Pansini 5, 80131 Naples, Italy; Interdisciplinary Research Centre in Biomedical Materials (CRIB), Via Pansini 5, 80131 Naples, Italy
| | - Alberto M Marra
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) SDN, Via Gianturco 113, 80142 Naples, Italy.
| |
Collapse
|
16
|
Komici K, Femminella GD, de Lucia C, Cannavo A, Bencivenga L, Corbi G, Leosco D, Ferrara N, Rengo G. Predisposing factors to heart failure in diabetic nephropathy: a look at the sympathetic nervous system hyperactivity. Aging Clin Exp Res 2019; 31:321-330. [PMID: 29858985 DOI: 10.1007/s40520-018-0973-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022]
Abstract
Diabetes mellitus (DM) and heart failure (HF) are frequent comorbidities among elderly patients. HF, a leading cause of mortality and morbidity worldwide, is characterized by sympathetic nervous system hyperactivity. The prevalence of diabetes mellitus (DM) is rapidly growing and the risk of developing HF is higher among DM patients. DM is responsible for several macro- and micro-angiopathies that contribute to the development of coronary artery disease (CAD), peripheral artery disease, retinopathy, neuropathy and diabetic nephropathy (DN) as well. Independently of CAD, chronic kidney disease (CKD) and DM increase the risk of HF. Individuals with diabetic nephropathy are likely to present a distinct pathological condition, defined as diabetic cardiomyopathy, even in the absence of hypertension or CAD, whose pathogenesis is only partially known. However, several hypotheses have been proposed to explain the mechanism of diabetic cardiomyopathy: increased oxidative stress, altered substrate metabolism, mitochondrial dysfunction, activation of renin-angiotensin-aldosterone system (RAAS), insulin resistance, and autonomic dysfunction. In this review, we will focus on the involvement of sympathetic system hyperactivity in the diabetic nephropathy.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy.
| | - Grazia Daniela Femminella
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Claudio de Lucia
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Leonardo Bencivenga
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
- Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS - Istituto Scientifico di Telese, Terme, BN, Italy
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Via Sergio Pansini, 5, 80131, Naples, Italy.
- Istituti Clinici Scientifici Maugeri SPA - Società Benefit, IRCCS - Istituto Scientifico di Telese, Terme, BN, Italy.
| |
Collapse
|
17
|
Paolillo S, Agostoni P, De Martino F, Ferrazzano F, Marsico F, Gargiulo P, Pirozzi E, Marciano C, Dellegrottaglie S, Perrone Filardi P. Heart rate during exercise: mechanisms, behavior, and therapeutic and prognostic implications in heart failure patients with reduced ejection fraction. Heart Fail Rev 2019; 23:537-545. [PMID: 29926282 DOI: 10.1007/s10741-018-9712-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exercise intolerance is a typical manifestation of patients affected by heart failure with reduced ejection fraction (HFrEF); however, the relationship among functional capacity, mortality, and exercise-induced heart rate response during exercise remains unclear in either sinus rhythm or atrial fibrillation subjects. Heart rate increase during incremental load exercise has a typical pattern in normal subjects, whereas it is commonly compromised in HFrEF patients, mainly due to the imbalance of the autonomic nervous system. In the present review, we aim to describe the behavior of heart rate during exercise in normal subjects and in HFrEF patients in sinus rhythm and atrial fibrillation, understanding and explaining the mechanism leading to a different exercise performance and functional limitation. Moreover, the role of chronotropic incompetence and the need of standardizing the cutoff criteria are also discussed in order to clarify the clinical importance, the prognostic relevance, and the potential therapeutic implications of this condition. Looking into the relative contribution and interaction of heart rate response during exercise might represent an important issue to guide individualized therapeutic interventions and prognostic assessment in HFrEF patients.
Collapse
Affiliation(s)
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Sezione Cardiovascolare, Università di Milano, Milan, Italy
| | - Fabiana De Martino
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Naples, Italy
| | - Francesca Ferrazzano
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Naples, Italy
| | - Fabio Marsico
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Naples, Italy
| | | | - Elisabetta Pirozzi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Naples, Italy
| | | | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, Naples, Acerra, Italy.,Mount Sinai Medical School, New York City, NY, USA
| | - Pasquale Perrone Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University of Naples, Naples, Italy
| |
Collapse
|
18
|
Kelm NQ, Beare JE, Yuan F, George M, Shofner CM, Keller BB, Hoying JB, LeBlanc AJ. Adipose-derived cells improve left ventricular diastolic function and increase microvascular perfusion in advanced age. PLoS One 2018; 13:e0202934. [PMID: 30142193 PMCID: PMC6108481 DOI: 10.1371/journal.pone.0202934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
An early manifestation of coronary artery disease in advanced age is the development of microvascular dysfunction leading to deficits in diastolic function. Our lab has previously shown that epicardial treatment with adipose-derived stromal vascular fraction (SVF) preserves microvascular function following coronary ischemia in a young rodent model. Follow-up studies showed intravenous (i.v.) delivery of SVF allows the cells to migrate to the walls of small vessels and reset vasomotor tone. Therefore we tested the hypothesis that the i.v. cell injection of SVF would reverse the coronary microvascular dysfunction associated with aging in a rodent model. Fischer 344 rats were divided into 4 groups: young control (YC), old control (OC), old + rat aortic endothelial cells (O+EC) and old + GFP+ SVF cells (O+SVF). After four weeks, cardiac function and coronary flow reserve (CFR) were measured via echocardiography, and hearts were explanted either for histology or isolation of coronary arterioles for vessel reactivity studies. In a subgroup of animals, microspheres were injected during resting and dobutamine-stimulated conditions to measure coronary blood flow. GFP+ SVF cells engrafted and persisted in the myocardium and coronary vasculature four weeks following i.v. injection. Echocardiography showed age-related diastolic dysfunction without accompanying systolic dysfunction; diastolic function was improved in old rats after SVF treatment. Ultrasound and microsphere data both showed increased stimulated coronary blood flow in O+SVF rats compared to OC and O+EC, while isolated vessel reactivity was mostly unchanged. I.v.-injected SVF cells were capable of incorporating into the vasculature of the aging heart and are shown in this study to improve CFR and diastolic function in a model of advanced age. Importantly, SVF injection did not lead to arrhythmias or increased mortality in aged rats. SVF cells provide an autologous cell therapy option for treatment of microvascular and cardiac dysfunction in aged populations.
Collapse
Affiliation(s)
- Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States of America
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Monika George
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Charles M. Shofner
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - James B. Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
19
|
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
|
20
|
de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018; 9:904. [PMID: 30147654 PMCID: PMC6095970 DOI: 10.3389/fphar.2018.00904] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
Affiliation(s)
| | | | - Walter J. Koch
- Department of Pharmacology – Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
21
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Végh AMD, Duim SN, Smits AM, Poelmann RE, Ten Harkel ADJ, DeRuiter MC, Goumans MJ, Jongbloed MRM. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development. J Cardiovasc Dev Dis 2016; 3:jcdd3030028. [PMID: 29367572 PMCID: PMC5715672 DOI: 10.3390/jcdd3030028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system (cANS) is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of) the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.
Collapse
Affiliation(s)
- Anna M D Végh
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Sjoerd N Duim
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Anke M Smits
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Robert E Poelmann
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 20, 2311 EZ Leiden, The Netherlands.
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Marie José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
23
|
Han CC, Ma Y, Li Y, Wang Y, Wei W. Regulatory effects of GRK2 on GPCRs and non-GPCRs and possible use as a drug target (Review). Int J Mol Med 2016; 38:987-94. [DOI: 10.3892/ijmm.2016.2720] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/22/2016] [Indexed: 11/06/2022] Open
|
24
|
Parisi V, Rengo G, Perrone-Filardi P, Pagano G, Femminella GD, Paolillo S, Petraglia L, Gambino G, Caruso A, Grimaldi MG, Baldascino F, Nolano M, Elia A, Cannavo A, De Bellis A, Coscioni E, Pellegrino T, Cuocolo A, Ferrara N, Leosco D. Increased Epicardial Adipose Tissue Volume Correlates With Cardiac Sympathetic Denervation in Patients With Heart Failure. Circ Res 2016; 118:1244-53. [PMID: 26926470 DOI: 10.1161/circresaha.115.307765] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE It has been reported that epicardial adipose tissue (EAT) may affect myocardial autonomic function. OBJECTIVE The aim of this study was to explore the relationship between EAT and cardiac sympathetic nerve activity in patients with heart failure. METHODS AND RESULTS In 110 patients with systolic heart failure, we evaluated the correlation between echocardiographic EAT thickness and cardiac adrenergic nerve activity assessed by (123)I-metaiodobenzylguanidine ((123)I-MIBG). The predictive value of EAT thickness on cardiac sympathetic denervation ((123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score) was tested in a multivariate analysis. Furthermore, catecholamine levels, catecholamine biosynthetic enzymes, and sympathetic nerve fibers were measured in EAT and subcutaneous adipose tissue biopsies obtained from patients with heart failure who underwent cardiac surgery. EAT thickness correlated with (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score, but not with left ventricular ejection fraction. Moreover, EAT resulted as an independent predictor of (123)I-MIBG early and late heart:mediastinum ratio and single-photon emission computed tomography total defect score and showed a significant additive predictive value on (123)I-MIBG planar and single-photon emission computed tomography results over demographic and clinical data. Although no differences were found in sympathetic innervation between EAT and subcutaneous adipose tissue, EAT showed an enhanced adrenergic activity demonstrated by the increased catecholamine levels and expression of catecholamine biosynthetic enzymes. CONCLUSIONS This study provides the first evidence of a direct correlation between increased EAT thickness and cardiac sympathetic denervation in heart failure.
Collapse
Affiliation(s)
- Valentina Parisi
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Giuseppe Rengo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.).
| | - Pasquale Perrone-Filardi
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Gennaro Pagano
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Grazia Daniela Femminella
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Stefania Paolillo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Laura Petraglia
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Giuseppina Gambino
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Aurelio Caruso
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Maria Gabriella Grimaldi
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Francesco Baldascino
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Maria Nolano
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Andrea Elia
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Alessandro Cannavo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Antonio De Bellis
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Enrico Coscioni
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Teresa Pellegrino
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Alberto Cuocolo
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Nicola Ferrara
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| | - Dario Leosco
- From the Department of Translational Medical Sciences (V.P., G.R., G.P., G.D.F., L.P., G.G., A.C., N.F., D.L.) and Department of Advanced Biomedical Science (P.P.-F., T.P., A.C.), University Federico II, Naples, Italy; Department of Cardiology (G.R., G.G.) and Department of Neurology (M.N., A.E.), Salvatore Maugeri Foundation, IRCCS, Istituto di Telese, Benevento, Italy (G.R., G.G., M.N., A.E.); SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); Department of Cardiology and Cardiac Surgery, Casa di Cura San Michele, Maddaloni (CE), Italy (A.C., M.G.G., F.B., A.D.B.); Department of Cardiac Surgery, Ruggi D'Aragona Hospital, Salerno, Italy (E.C.); and Institute of Biostructure and Bioimaging Italian National Research Council (CNR), Naples, Italy (T.P.)
| |
Collapse
|
25
|
Rengo G, Pagano G, Filardi PP, Femminella GD, Parisi V, Cannavo A, Liccardo D, Komici K, Gambino G, D'Amico ML, de Lucia C, Paolillo S, Trimarco B, Vitale DF, Ferrara N, Koch WJ, Leosco D. Prognostic Value of Lymphocyte G Protein-Coupled Receptor Kinase-2 Protein Levels in Patients With Heart Failure. Circ Res 2016; 118:1116-24. [PMID: 26884616 DOI: 10.1161/circresaha.115.308207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/16/2016] [Indexed: 01/08/2023]
Abstract
RATIONALE Sympathetic nervous system hyperactivity is associated with poor prognosis in patients with heart failure (HF), yet routine assessment of sympathetic nervous system activation is not recommended for clinical practice. Myocardial G protein-coupled receptor kinase-2 (GRK2) is upregulated in HF patients, causing dysfunctional β-adrenergic receptor signaling. Importantly, myocardial GRK2 levels correlate with levels found in peripheral lymphocytes of HF patients. OBJECTIVE The independent prognostic value of blood GRK2 measurements in HF patients has never been investigated; thus, the purpose of this study was to evaluate whether lymphocyte GRK2 levels predict clinical outcome in HF patients. METHODS AND RESULTS We prospectively studied 257 HF patients with mean left ventricular ejection fraction of 31.4±8.5%. At the time of enrollment, plasma norepinephrine, serum NT-proBNP, and lymphocyte GRK2 levels, as well as clinical and instrumental variables were measured. The prognostic value of GRK2 to predict cardiovascular (CV) death and all-cause mortality was assessed using the Cox proportional hazard model including demographic, clinical, instrumental, and laboratory data. Over a mean follow-up period of 37.5±20.2 months (range, 3-60 months), there were 102 CV deaths. Age, left ventricular ejection fraction, New York Heart Association class, chronic obstructive pulmonary disease, chronic kidney disease, N-terminal-pro brain natriuretic peptide, and lymphocyte GRK2 protein levels were independent predictors of CV mortality in HF patients. GRK2 levels showed an additional prognostic and clinical value over demographic and clinical variables. The independent prognostic value of lymphocyte GRK2 levels was also confirmed for all-cause mortality. CONCLUSIONS Lymphocyte GRK2 protein levels can independently predict prognosis in patients with HF.
Collapse
Affiliation(s)
- Giuseppe Rengo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Gennaro Pagano
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Pasquale Perrone Filardi
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Grazia Daniela Femminella
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Valentina Parisi
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Alessandro Cannavo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Daniela Liccardo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Klara Komici
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Giuseppina Gambino
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Maria Loreta D'Amico
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Claudio de Lucia
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Stefania Paolillo
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Bruno Trimarco
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Dino Franco Vitale
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Nicola Ferrara
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.)
| | - Walter J Koch
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.).
| | - Dario Leosco
- From the Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy (G.R., G.G., D.F.V., N.F.); Division of Geriatrics, Department of Translational Medical Sciences (G.R., G.P., G.D.F., V.P., A.C., D. Liccardo, K.K., G.G., M.L.D.'A., C.d.L., N.F., D. Leosco), Division of Cardiology, Department of Advanced Biomedical Sciences (P.P.F., B.T.), Federico II University of Naples, Naples, Italy; SDN Foundation IRCCS, Institute of Diagnostic and Nuclear Development, Naples, Italy (S.P.); and Department of Pharmacology, Center of Translational Medicine, Temple University, Philadelphia, PA (A.C., D. Liccardo, W.J.K.).
| |
Collapse
|
26
|
Tian X, Wang Q, Guo R, Xu L, Chen QM, Hou Y. Effects of paroxetine-mediated inhibition of GRK2 expression on depression and cardiovascular function in patients with myocardial infarction. Neuropsychiatr Dis Treat 2016; 12:2333-2341. [PMID: 27695334 PMCID: PMC5028169 DOI: 10.2147/ndt.s109880] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Paroxetine is a selective serotonin reuptake inhibitor utilized in the treatment of depression and anxiety disorders. Recent studies have identified paroxetine as a G protein-coupled receptor kinase-2 (GRK2) inhibitor capable of reversing cardiac dysfunction and remodeling in experimental models of acute myocardial infarction (AMI). We determine the clinical importance of paroxetine on cardiac functions in patients having AMI with depression (AMID) in comparison with fluoxetine, an unrelated selective serotonin reuptake inhibitor that does not inhibit GRK2. METHODS Diagnosis of depression was based on the 17-item Hamilton Depression Scale and Self-rating Depression Scale in AMI patients after hospital admission. AMID patients were randomly assigned to paroxetine or fluoxetine for treatment of depression. Heart rate variability and cardiac function were evaluated. GRK2 protein levels were measured using peripheral lymphocytes and Western blot. RESULTS GRK2 expression in AMID patients was significantly higher than that in AMI patients without depression. In AMID patients, GRK2 levels were positively correlated with the 17-item Hamilton Depression Scale and the Self-rating Depression Scale scores, and negatively correlated with heart rate variability. Treatment of AMID patients with paroxetine significantly reduced the expression of GRK2, normalized the autonomic nervous system function, and improved cardiac performance. In contrast, fluoxetine normalized the autonomic nervous system but did not reduce the expression of GRK2 nor improved cardiac performance. CONCLUSION This study suggests that paroxetine is effective for improving cardiac function in patients with AMID and such effect correlates with GRK2 reduction.
Collapse
Affiliation(s)
- Xiuqing Tian
- Department of Cardiology, Qianfoshan Hospital of Shandong University, Jinan City
| | - Qing Wang
- Department of Cardiology, Qianfoshan Hospital of Shandong University, Jinan City
| | - Rui Guo
- Department of Physiology, Nanjing University of Chinese Medicine, Nanjing City
| | - Lingling Xu
- College of Medicine, Weifang Medical University, Weifang City, People's Republic of China
| | - Qin M Chen
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yinglong Hou
- Department of Cardiology, Qianfoshan Hospital of Shandong University, Jinan City
| |
Collapse
|
27
|
Castro B, Sánchez P, Miranda MT, Torres JM, Ortega E. Identification of dopamine- and serotonin-related genes modulated by bisphenol A in the prefrontal cortex of male rats. CHEMOSPHERE 2015; 139:235-239. [PMID: 26141625 DOI: 10.1016/j.chemosphere.2015.06.061] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/18/2015] [Accepted: 06/21/2015] [Indexed: 06/04/2023]
Abstract
There is concern that exposure of embryos and/or infants to bisphenol A (BPA) may lead to neurological and behavioral disorders with unknown prefrontal cortex (PFC) involvement. Critical PFC functions are modulated by dopamine (DA) and serotonin (5-HT) systems, whose alterations have been associated with psychopathologies that may appear in youth and/or adulthood. This study aims to determine in the PFC of male rats exposed to a low dose of BPA (10μgkg(-1)d(-1)) from gestational day 12 (GD12) to postnatal day 21 (PND21): (i) DA- and 5-HT-related genes modulated by BPA at the juvenile stage (PND21); (ii) reversible and irreversible transcriptional effects; (iii) long-term consequences (effects in adult rats, PND90). In juvenile rats, BPA altered significantly the transcription of 12 out of the 84 genes analyzed using PCR-array techniques. Interestingly, transcript levels of the neurotrophic factor Gdnf were decrease by BPA in both juvenile and adult rats. At adulthood, disruptions in genes encoding rate-limiting enzymes for DA and 5-HT synthesis emerged. Overall, the results indicate that early-life exposure to BPA has consequences on DA and 5-HT systems in both juvenile- and adult-life stages. Additionally, we reveal molecular targets that could provide the foundation for future BPA neurotoxicity studies.
Collapse
Affiliation(s)
- Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain
| | - María T Miranda
- Department of Biostatistics, Faculty of Medicine, University of Granada, Granada, Spain
| | - Jesús M Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neurosciences, University of Granada, Granada, Spain.
| | - Esperanza Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Granada, Spain; Institute of Neurosciences, University of Granada, Granada, Spain.
| |
Collapse
|
28
|
Alterations of left ventricular deformation and cardiac sympathetic derangement in patients with systolic heart failure: a 3D speckle tracking echocardiography and cardiac ¹²³I-MIBG study. Eur J Nucl Med Mol Imaging 2015; 42:1601-11. [PMID: 25947572 DOI: 10.1007/s00259-015-3054-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/19/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Myocardial contractile function is under the control of cardiac sympathetic activity. Three-dimensional speckle tracking echocardiography (3D-STE) and cardiac imaging with (123)I-metaiodobenzylguanidine ((123)I-MIBG) are two sophisticated techniques for the assessment of left ventricular (LV) deformation and sympathetic innervation, respectively, which offer important prognostic information in patients with heart failure (HF). The purpose of this investigation was to explore, in patients with systolic HF, the relationship between LV deformation assessed by 3D-STE and cardiac sympathetic derangement evaluated by (123)I-MIBG imaging. METHODS We prospectively studied 75 patients with systolic HF. All patients underwent a 3D-STE study (longitudinal, circumferential, area and radial) and (123)I-MIBG planar and SPECT cardiac imaging. RESULTS 3D-STE longitudinal, circumferential and area strain values were correlated with (123)I-MIBG late heart to mediastinum (H/M) ratio and late SPECT total defect score. After stratification of the patients according to ischaemic or nonischaemic HF aetiology, we observed a good correlation of all 3D-STE measurements with late H/M ratio and SPECT data in the ischaemic group, but in patients with HF of nonischaemic aetiology, no correlation was found between LV deformation and cardiac sympathetic activity. At the regional level, the strongest correlation between LV deformation and adrenergic innervation was found for the left anterior descending coronary artery distribution territory for all four 3D-STE values. In multivariate linear regression analyses, including age, gender, LV ejection fraction, NYHA class, body mass index, heart rate and HF aetiology, only 3D-STE area and radial strain values significantly predicted cardiac sympathetic derangement on (123)I-MIBG late SPECT. CONCLUSION This study indicated that 3D-STE measurements are correlated with (123)I-MIBG planar and SPECT data. Furthermore, 3D-STE area and radial strain values, but not LVEF, predict cardiac sympathetic derangement in human postischaemic HF.
Collapse
|
29
|
Paolillo S, Rengo G, Pellegrino T, Formisano R, Pagano G, Gargiulo P, Savarese G, Carotenuto R, Petraglia L, Rapacciuolo A, Perrino C, Piscitelli S, Attena E, Del Guercio L, Leosco D, Trimarco B, Cuocolo A, Perrone-Filardi P. Insulin resistance is associated with impaired cardiac sympathetic innervation in patients with heart failure. Eur Heart J Cardiovasc Imaging 2015; 16:1148-53. [PMID: 25845954 DOI: 10.1093/ehjci/jev061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/24/2015] [Indexed: 01/07/2023] Open
Abstract
AIMS Insulin resistance (IR) represents, at the same time, cause and consequence of heart failure (HF) and affects prognosis in HF patients, but pathophysiological mechanisms remain unclear. Hyperinsulinemia, which characterizes IR, enhances sympathetic drive, and it can be hypothesized that IR is associated with impaired cardiac sympathetic innervation in HF. Yet, this hypothesis has never been investigated. Aim of the present observational study was to assess the relationship between IR and cardiac sympathetic innervation in non-diabetic HF patients. METHODS AND RESULTS One hundred and fifteen patients (87% males; 65 ± 11.3 years) with severe-to-moderate HF (ejection fraction 32.5 ± 9.1%) underwent iodine-123 meta-iodobenzylguanidine ((123)I-MIBG) myocardial scintigraphy to assess sympathetic innervation and Homeostasis Model Assessment Insulin Resistance (HOMA-IR) evaluation to determine the presence of IR. From (123)I-MIBG imaging, early and late heart to mediastinum (H/M) ratios and washout rate were calculated. Seventy-two (63%) patients showed IR and 43 (37%) were non-IR. Early [1.68 (IQR 1.53-1.85) vs. 1.79 (IQR 1.66-1.95); P = 0.05] and late H/M ratio [1.50 (IQR 1.35-1.69) vs. 1.65 (IQR 1.40-1.85); P = 0.020] were significantly reduced in IR compared with non-IR patients. Early and late H/M ratio showed significant inverse correlation with fasting insulinemia and HOMA-IR. CONCLUSION Cardiac sympathetic innervation is more impaired in patients with IR and HF compared with matched non-IR patients. These findings shed light on the relationship among IR, HF, and cardiac sympathetic nervous system. Additional studies are needed to clarify the pathogenetic relationship between IR and HF.
Collapse
Affiliation(s)
- S Paolillo
- SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples, Italy
| | - G Rengo
- Division of Cardiology, "Salvatore Maugeri" Foundation-IRCCS-Institute of Telese Terme (BN), Italy Department of Translational Medical Sciences, Section of Geriatrics, Federico II University, Naples, Italy
| | - T Pellegrino
- Department of Advanced Biomedical Sciences, Section of Imaging, Radiotherapy, Neuroradiology and Medical Physics, Federico II University, Naples, Italy Institute of Biostructures and Bioimages of the National Council of Research, Naples, Italy
| | - R Formisano
- Department of Translational Medical Sciences, Section of Geriatrics, Federico II University, Naples, Italy
| | - G Pagano
- Department of Translational Medical Sciences, Section of Geriatrics, Federico II University, Naples, Italy
| | - P Gargiulo
- SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy
| | - G Savarese
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples, Italy
| | - R Carotenuto
- Department of Advanced Biomedical Sciences, Section of Imaging, Radiotherapy, Neuroradiology and Medical Physics, Federico II University, Naples, Italy
| | - L Petraglia
- Department of Translational Medical Sciences, Section of Geriatrics, Federico II University, Naples, Italy
| | - A Rapacciuolo
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples, Italy
| | - C Perrino
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples, Italy
| | - S Piscitelli
- Department of Translational Medical Sciences, Section of Clinical Pathology, Federico II University, Naples, Italy
| | - E Attena
- Department of Cardiology Fatebenefratelli Hospital, Naples, Italy
| | - L Del Guercio
- Department of Public Health, Federico II University, Naples, Italy
| | - D Leosco
- Department of Translational Medical Sciences, Section of Geriatrics, Federico II University, Naples, Italy
| | - B Trimarco
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples, Italy
| | - A Cuocolo
- SDN Foundation, Institute of Diagnostic and Nuclear Development, Naples, Italy Department of Advanced Biomedical Sciences, Section of Imaging, Radiotherapy, Neuroradiology and Medical Physics, Federico II University, Naples, Italy
| | - P Perrone-Filardi
- Department of Advanced Biomedical Sciences, Section of Cardiology, Federico II University, Naples, Italy
| |
Collapse
|
30
|
Rengo G, Pagano G, Paolillo S, de Lucia C, Femminella GD, Liccardo D, Cannavo A, Formisano R, Petraglia L, Komici K, Rengo F, Trimarco B, Ferrara N, Leosco D, Perrone-Filardi P. Impact of diabetes mellitus on lymphocyte GRK2 protein levels in patients with heart failure. Eur J Clin Invest 2015; 45:187-95. [PMID: 25545706 DOI: 10.1111/eci.12395] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 12/20/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with impaired prognosis in patients with heart failure (HF), but pathogenic mechanisms are unclear. In the failing heart, elevated β-adrenergic receptor (β-AR) activation by catecholamines causes G-protein-coupled receptor kinase-2 (GRK2) upregulation which is responsible for β-AR signalling dysfunction. Importantly, GRK2 expression, measured in peripheral lymphocytes of HF patients, correlates with levels of this kinase in the failing myocardium reflecting the loss of hemodynamic function. Moreover, HF-related GRK2 protein overexpression promotes insulin resistance by interfering with insulin signalling. The aim of this study was to assess lymphocyte GRK2 protein levels in HF patients with and without DM. METHODS AND MATERIALS Patients with a diagnosis of HF were enrolled in the study. All subjects underwent a complete clinical examination (including NYHA functional class assessment and echocardiography) and blood draw for serum N-terminal pro-brain natriuretic peptide (NT-proBNP), lymphocyte GRK2 and plasma norepinephrine (NE) levels. Demographic data including age, sex, medications, cardiovascular risk factors and presence of comorbidities were also collected. RESULTS Two hundred and sixty-eight patients with HF (left ventricular ejection fraction [LVEF] 30.6 ± 7.6%) with and without DM were enrolled. No differences between the two groups were found in terms of demography, HF aetiology, LVEF, NYHA class, NE and NT-proBNP. GRK2 was significantly higher in patients with DM compared to non-DM. At multivariate linear regression analysis, LVEF, NE, NT-proBNP and diabetes came out to be independent predictors of GRK2 levels in the overall study population. CONCLUSION In HF patients, DM is associated with significantly more elevated lymphocyte GRK2 protein levels, likely reflecting more compromised cardiac β-AR signalling/function, despite similar hemodynamic status and neuro-hormonal activation compared to patients without DM. These findings contribute to explain the negative prognostic impact of DM in patients with HF.
Collapse
Affiliation(s)
- Giuseppe Rengo
- IRCCS, Scientific Institute of Telese Terme (BN), Salvatore Maugeri Foundation, Telese Terme, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Woo AYH, Song Y, Xiao RP, Zhu W. Biased β2-adrenoceptor signalling in heart failure: pathophysiology and drug discovery. Br J Pharmacol 2014; 172:5444-56. [PMID: 25298054 DOI: 10.1111/bph.12965] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/27/2014] [Accepted: 09/28/2014] [Indexed: 12/27/2022] Open
Abstract
The body is constantly faced with a dynamic requirement for blood flow. The heart is able to respond to these changing needs by adjusting cardiac output based on cues emitted by circulating catecholamine levels. Cardiac β-adrenoceptors transduce the signal produced by catecholamine stimulation via Gs proteins to their downstream effectors to increase heart contractility. During heart failure, cardiac output is insufficient to meet the needs of the body; catecholamine levels are high and β-adrenoceptors become hyperstimulated. The hyperstimulated β1-adrenoceptors induce a cardiotoxic effect, which could be counteracted by the cardioprotective effect of β2-adrenoceptor-mediated Gi signalling. However, β2-adrenoceptor-Gi signalling negates the stimulatory effect of the Gs signalling on cardiomyocyte contraction and further exacerbates cardiodepression. Here, further to the localization of β1- and β2-adrenoceptors and β2-adrenoceptor-mediated β-arrestin signalling in cardiomyocytes, we discuss features of the dysregulation of β-adrenoceptor subtype signalling in the failing heart, and conclude that Gi-biased β2-adrenoceptor signalling is a pathogenic pathway in heart failure that plays a crucial role in cardiac remodelling. In contrast, β2-adrenoceptor-Gs signalling increases cardiomyocyte contractility without causing cardiotoxicity. Finally, we discuss a novel therapeutic approach for heart failure using a Gs-biased β2-adrenoceptor agonist and a β1-adrenoceptor antagonist in combination. This combination treatment normalizes the β-adrenoceptor subtype signalling in the failing heart and produces therapeutic effects that outperform traditional heart failure therapies in animal models. The present review illustrates how the concept of biased signalling can be applied to increase our understanding of the pathophysiology of diseases and in the development of novel therapies.
Collapse
Affiliation(s)
- Anthony Yiu-Ho Woo
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China.,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Song
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| | - Weizhong Zhu
- Department of Pharmacology, Nantong University School of Pharmacy, Nantong, China
| |
Collapse
|
32
|
Kaldara E, Sanoudou D, Adamopoulos S, Nanas JN. Outpatient management of chronic heart failure. Expert Opin Pharmacother 2014; 16:17-41. [PMID: 25480690 DOI: 10.1517/14656566.2015.978286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Heart failure (HF) treatment attracts a share of intensive research because of its poor HF prognosis. In the past decades, the prognosis of HF has improved considerably, mainly as a consequence of the progress that has been made in the pharmacological management of HF. AREAS COVERED This article reviews the outpatient pharmacological management of chronic HF due to left ventricular systolic dysfunction and offers recommendations on the use of various drugs. In addition, the present article attempts to provide practical therapeutic algorithms based on current clinical strategies. EXPERT OPINION Continued research directed toward identifying factors associated with high pharmacotherapy guideline adherence and understanding of variants that influence response to drugs will hopefully halt or reverse the major pathophysiological mechanisms involved in this syndrome.
Collapse
Affiliation(s)
- Elisabeth Kaldara
- University of Athens, Medical School, 3rd Cardiology Department , Mikras Asias 67, 11527 Attiki, Athens , Greece +30 2108236877 ; +30 2107789901 ;
| | | | | | | |
Collapse
|
33
|
Rengo G. The adrenergic system in cardiovascular pathophysiology: a translational science point of view. Front Physiol 2014; 5:356. [PMID: 25278905 PMCID: PMC4166352 DOI: 10.3389/fphys.2014.00356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/02/2014] [Indexed: 12/22/2022] Open
Affiliation(s)
- Giuseppe Rengo
- Scientific Institute of Telese Terme, Istituto di Ricovero e Cura a Carattere Scientifico, Salvatore Maugeri Foundation Telese Terme, Italy
| |
Collapse
|
34
|
Femminella GD, Barrese V, Ferrara N, Rengo G. Tailoring therapy for heart failure: the pharmacogenomics of adrenergic receptor signaling. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2014; 7:267-73. [PMID: 25276090 PMCID: PMC4175026 DOI: 10.2147/pgpm.s49799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heart failure is one of the leading causes of mortality in Western countries, and β-blockers are a cornerstone of its treatment. However, the response to these drugs is variable among individuals, which might be explained, at least in part, by genetic differences. Pharmacogenomics is the study of genetic contributions to drug response variability in order to provide evidence for a tailored therapy in an individual patient. Several studies have investigated the pharmacogenomics of the adrenergic receptor system and its role in the context of the use of β-blockers in treating heart failure. In this review, we will focus on the most significant polymorphisms described in the literature involving adrenergic receptors and adrenergic receptor-related proteins, as well as genetic variations influencing β-blocker metabolism.
Collapse
Affiliation(s)
| | - Vincenzo Barrese
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University, Naples, Italy ; Division of Biomedical Sciences, St George's University of London, London, UK
| | - Nicola Ferrara
- Department of Translational Medical Sciences, Federico II University, Naples, Italy ; "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| | - Giuseppe Rengo
- "Salvatore Maugeri" Foundation - IRCCS - Scientific Institute of Telese Terme, Telese Terme, Benevento, Italy
| |
Collapse
|
35
|
Abstract
The pathophysiology of heart failure (HF) is characterized by hemodynamic abnormalities that result in neurohormonal activation and autonomic imbalance with increase in sympathetic activity and withdrawal of vagal activity. Alterations in receptor activation from this autonomic imbalance may have profound effects on cardiac function and structure. Inhibition of the sympathetic drive to the heart through β-receptor blockade has become a standard component of therapy for HF with a dilated left ventricle because of its effectiveness in inhibiting the ventricular structural remodeling process and in prolonging life. Several devices for selective modulation of sympathetic and vagal activity have recently been developed in an attempt to alter the natural history of HF. The optimal counteraction of the excessive sympathetic activity is still unclear. A profound decrease in adrenergic support with excessive blockade of the sympathetic nervous system may result in adverse outcomes in clinical HF. In this review, we analyze the data supporting a contributory role of the autonomic functional alterations on the course of HF, the techniques used to assess autonomic nervous system activity, the evidence for clinical effectiveness of pharmacological and device interventions, and the potential future role of autonomic nervous system modifiers in the management of this syndrome.
Collapse
Affiliation(s)
- Viorel G Florea
- From the Minneapolis VA Health Care System, Section of Cardiology (V.G.F.) and Rasmussen Center for Cardiovascular Disease Prevention, Department of Medicine (J.N.C.), University of Minnesota Medical School
| | - Jay N Cohn
- From the Minneapolis VA Health Care System, Section of Cardiology (V.G.F.) and Rasmussen Center for Cardiovascular Disease Prevention, Department of Medicine (J.N.C.), University of Minnesota Medical School.
| |
Collapse
|
36
|
de Lucia C, Femminella GD, Gambino G, Pagano G, Allocca E, Rengo C, Silvestri C, Leosco D, Ferrara N, Rengo G. Adrenal adrenoceptors in heart failure. Front Physiol 2014; 5:246. [PMID: 25071591 PMCID: PMC4084669 DOI: 10.3389/fphys.2014.00246] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 06/13/2014] [Indexed: 01/08/2023] Open
Abstract
Heart failure (HF) is a chronic clinical syndrome characterized by the reduction in left ventricular (LV) function and it represents one of the most important causes of morbidity and mortality worldwide. Despite considerable advances in pharmacological treatment, HF represents a severe clinical and social burden. Sympathetic outflow, characterized by increased circulating catecholamines (CA) biosynthesis and secretion, is peculiar in HF and sympatholytic treatments (as β-blockers) are presently being used for the treatment of this disease. Adrenal gland secretes Epinephrine (80%) and Norepinephrine (20%) in response to acetylcholine stimulation of nicotinic cholinergic receptors on the chromaffin cell membranes. This process is regulated by adrenergic receptors (ARs): α2ARs inhibit CA release through coupling to inhibitory Gi-proteins, and β ARs (mainly β2ARs) stimulate CA release through coupling to stimulatory Gs-proteins. All ARs are G-protein-coupled receptors (GPCRs) and GPCR kinases (GRKs) regulate their signaling and function. Adrenal GRK2-mediated α2AR desensitization and downregulation are increased in HF and seem to be a fundamental regulator of CA secretion from the adrenal gland. Consequently, restoration of adrenal α2AR signaling through the inhibition of GRK2 is a fascinating sympatholytic therapeutic strategy for chronic HF. This strategy could have several significant advantages over existing HF pharmacotherapies minimizing side-effects on extra-cardiac tissues and reducing the chronic activation of the renin–angiotensin–aldosterone and endothelin systems. The role of adrenal ARs in regulation of sympathetic hyperactivity opens interesting perspectives in understanding HF pathophysiology and in the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Claudio de Lucia
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Grazia D Femminella
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppina Gambino
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Gennaro Pagano
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Candida Silvestri
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Dario Leosco
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy
| | - Nicola Ferrara
- Department of Medical Translational Sciences, University of Naples Federico II Naples, Italy ; Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| | - Giuseppe Rengo
- Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme Telese Terme, Italy
| |
Collapse
|
37
|
Cannavo A, Rengo G, Liccardo D, Pironti G, Scimia MC, Scudiero L, De Lucia C, Ferrone M, Leosco D, Zambrano N, Koch WJ, Trimarco B, Esposito G. Prothymosin alpha protects cardiomyocytes against ischemia-induced apoptosis via preservation of Akt activation. Apoptosis 2014; 18:1252-61. [PMID: 23857453 DOI: 10.1007/s10495-013-0876-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The human prothymosin alpha (PTα) gene encodes a 12.5 kDa highly acidic nuclear protein that is widely expressed in mammalian tissues including the heart and importantly, is detectable also in blood serum. During apoptosis or necrosis, PTα changes its nuclear localization and is able to exert an important cytoprotective effect. Since the role of PTα in the heart has never been evaluated, the aim of the present study was to investigate the effects of PTα on cardiomyocytes during ischemic injury. Our data show that seven after myocardial infarction (MI), PTα expression levels are significantly increased both in blood serum and in cardiac tissue, and notably we observe that PTα translocates from the nuclei to cytoplasm and plasma membrane of cardiomyocytes following MI. Furthermore, in vitro experiments in cardiomyocytes, confirm that after 6 h of simulated ischemia (SI), PTα protein levels are upregulated compared to normoxic cells. Importantly, treatment of cardiomyocytes with a recombinant PTα (rPTα), during SI results in a significant decrease in the apoptotic response and in a robust increase in cell survival. Moreover, these effects are accompanied to a significant preservation of the activated levels of the anti-apoptotic serine-threonine kinase Akt. Consistent with our in vitro observation, rPTα-treated MI mice exhibit a strong reduction in infarct size at 24 h, compared to the MI control group and at the molecular level, PTα treatment induces activation of Akt. The present study provides for the first time the demonstration that PTα offers cardioprotection against ischemic injury by an Akt-dependent mechanism.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Vigorito C, Giallauria F. Effects of exercise on cardiovascular performance in the elderly. Front Physiol 2014; 5:51. [PMID: 24600400 PMCID: PMC3929838 DOI: 10.3389/fphys.2014.00051] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Progressive aging induces several structural and functional alterations in the cardiovascular system, among whom particularly important are a reduced number of myocardial cells and increased interstitial collagen fibers, which result in impaired left ventricular diastolic function. Even in the absence of cardiovascular disease, aging is strongly associated to a age-related reduced maximal aerobic capacity. This is due to a variety of physiological changes both at central and at peripheral level. Physical activity (PA) appears in general to have a positive effect on several health outcomes in the elderly. This review aims to illustrate the beneficial effects of exercise on the physiologic decline of cardiovascular performance occurring with age. Furthermore, it will be stressed also the positive effect of physical activity in elderly patients affected by cardiovascular diseases, such as heart failure and hypertension, and multiple comorbidities which may significantly worse prognosis in this high risk population.
Collapse
Affiliation(s)
- Carlo Vigorito
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; School of Science and Technology, University of New England Armidale, NSW, Australia
| |
Collapse
|
39
|
Rengo G, Pagano G, Parisi V, Femminella GD, de Lucia C, Liccardo D, Cannavo A, Zincarelli C, Komici K, Paolillo S, Fusco F, Koch WJ, Perrone Filardi P, Ferrara N, Leosco D. Changes of plasma norepinephrine and serum N-terminal pro-brain natriuretic peptide after exercise training predict survival in patients with heart failure. Int J Cardiol 2014; 171:384-9. [DOI: 10.1016/j.ijcard.2013.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/11/2013] [Accepted: 12/14/2013] [Indexed: 01/21/2023]
|
40
|
Ferrara N, Komici K, Corbi G, Pagano G, Furgi G, Rengo C, Femminella GD, Leosco D, Bonaduce D. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front Physiol 2014; 4:396. [PMID: 24409150 PMCID: PMC3885807 DOI: 10.3389/fphys.2013.00396] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022] Open
Abstract
Elderly healthy individuals have a reduced exercise tolerance and a decreased left ventricle inotropic reserve related to increased vascular afterload, arterial-ventricular load mismatching, physical deconditioning and impaired autonomic regulation (the so called "β-adrenergic desensitization"). Adrenergic responsiveness is altered with aging and the age-related changes are limited to the β-adrenergic receptor density reduction and to the β-adrenoceptor-G-protein(s)-adenylyl cyclase system abnormalities, while the type and level of abnormalities change with species and tissues. Epidemiological studies have shown an high incidence and prevalence of heart failure in the elderly and a great body of evidence correlate the changes of β-adrenergic system with heart failure pathogenesis. In particular it is well known that: (a) levels of cathecolamines are directly correlated with mortality and functional status in heart failure, (b) β1-adrenergic receptor subtype is down-regulated in heart failure, (c) heart failure-dependent cardiac adrenergic responsiveness reduction is related to changes in G proteins activity. In this review we focus on the cardiovascular β-adrenergic changes involvement in the aging process and on similarities and differences between aging heart and heart failure.
Collapse
Affiliation(s)
- Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
- “S. Maugeri” Foundation, Scientific Institute of Telese Terme (BN), IRCCSTelese Terme, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of MoliseCampobasso, Italy
| | - Gennaro Pagano
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
| | - Giuseppe Furgi
- “S. Maugeri” Foundation, Scientific Institute of Telese Terme (BN), IRCCSTelese Terme, Italy
| | - Carlo Rengo
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
- “S. Maugeri” Foundation, Scientific Institute of Telese Terme (BN), IRCCSTelese Terme, Italy
| | - Grazia D. Femminella
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
| | - Dario Leosco
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples “Federico II”Naples, Italy
| |
Collapse
|
41
|
Femminella GD, de Lucia C, Iacotucci P, Formisano R, Petraglia L, Allocca E, Ratto E, D'Amico L, Rengo C, Pagano G, Bonaduce D, Rengo G, Ferrara N. Neuro-hormonal effects of physical activity in the elderly. Front Physiol 2013; 4:378. [PMID: 24391595 PMCID: PMC3868730 DOI: 10.3389/fphys.2013.00378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 12/04/2013] [Indexed: 01/14/2023] Open
Abstract
Thanks to diagnostic and therapeutic advances, the elderly population is continuously increasing in the western countries. Accordingly, the prevalence of most chronic age-related diseases will increase considerably in the next decades, thus it will be necessary to implement effective preventive measures to face this epidemiological challenge. Among those, physical activity exerts a crucial role, since it has been proven to reduce the risk of cardiovascular diseases, diabetes, obesity, cognitive impairment and cancer. The favorable effects of exercise on cardiovascular homeostasis can be at least in part ascribed to the modulation of the neuro-hormonal systems implicated in cardiovascular pathophysiology. In the elderly, exercise has been shown to affect catecholamine secretion and biosynthesis, to positively modulate the renin-angiotensin-aldosterone system and to reduce the levels of plasma brain natriuretic peptides. Moreover, drugs modulating the neuro-hormonal systems may favorably affect physical capacity in the elderly. Thus, efforts should be made to actually make physical activity become part of the therapeutic tools in the elderly.
Collapse
Affiliation(s)
- Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Claudio de Lucia
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Paola Iacotucci
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Roberto Formisano
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Elena Allocca
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Enza Ratto
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Loreta D'Amico
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Carlo Rengo
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| | - Gennaro Pagano
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico II Naples, Italy ; Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN) Telese Terme, Italy
| |
Collapse
|
42
|
Leosco D, Parisi V, Femminella GD, Formisano R, Petraglia L, Allocca E, Bonaduce D. Effects of exercise training on cardiovascular adrenergic system. Front Physiol 2013; 4:348. [PMID: 24348425 PMCID: PMC3842896 DOI: 10.3389/fphys.2013.00348] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/12/2013] [Indexed: 12/20/2022] Open
Abstract
In heart failure (HF), exercise has been shown to modulate cardiac sympathetic hyperactivation which is one of the earliest features of neurohormonal derangement in this syndrome and correlates with adverse outcome. An important molecular alteration related to chronic sympathetic overstimulation in HF is represented by cardiac β-adrenergic receptor (β-AR) dysfunction. It has been demonstrated that exercise reverses β-AR dysfunction by restoring cardiac receptor membrane density and G-protein-dependent adenylyl cyclase activation. In particular, several evidence indicate that exercise reduces levels of cardiac G-protein coupled receptor kinase-2 (GRK2) which is known to be involved in both β1-AR and β2-AR dysregulation in HF. Similar alterations of β-AR system have been described also in the senescent heart. It has also been demonstrated that exercise training restores adrenal GRK2/α-2AR/catecholamine (CA) production axis. At vascular level, exercise shows a therapeutic effect on age-related impairment of vascular reactivity to adrenergic stimulation and restores β-AR-dependent vasodilatation by increasing vascular β-AR responsiveness and reducing endothelial GRK2 activity. Sympathetic nervous system overdrive is thought to account for >50% of all cases of hypertension and a lack of balance between parasympathetic and sympathetic modulation has been observed in hypertensive subjects. Non-pharmacological, lifestyle interventions have been associated with reductions in SNS overactivity and blood pressure in hypertension. Several evidence have highlighted the blood pressure lowering effects of aerobic endurance exercise in patients with hypertension and the significant reduction in sympathetic neural activity has been reported as one of the main mechanisms explaining the favorable effects of exercise on blood pressure control.
Collapse
Affiliation(s)
- Dario Leosco
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Valentina Parisi
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Grazia D Femminella
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Roberto Formisano
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Laura Petraglia
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Elena Allocca
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
43
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013. [PMID: 24265619 DOI: 10.3389/fphys.2013.00324.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
44
|
Barrese V, Taglialatela M. New advances in beta-blocker therapy in heart failure. Front Physiol 2013; 4:323. [PMID: 24294204 PMCID: PMC3827547 DOI: 10.3389/fphys.2013.00323] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/18/2013] [Indexed: 12/24/2022] Open
Abstract
The use of β-blockers (BB) in heart failure (HF) has been considered a contradiction for many years. Considering HF simply as a state of inadequate systolic function, BB were contraindicated because of their negative effects on myocardial contractility. Nevertheless, evidence collected in the past years have suggested that additional mechanisms, such as compensatory neuro-humoral hyperactivation or inflammation, could participate in the pathogenesis of this complex disease. Indeed, chronic activation of the sympathetic nervous system, although initially compensating the reduced cardiac output from the failing heart, increases myocardial oxygen demand, ischemia and oxidative stress; moreover, high catecholamine levels induce peripheral vasoconstriction and increase both cardiac pre- and after-load, thus determining additional stress to the cardiac muscle (1). As a consequence of such a different view of the pathogenic mechanisms of HF, the efficacy of BB in the treatment of HF has been investigated in numerous clinical trials. Results from these trials highlighted BB as valid therapeutic tools in HF, providing rational basis for their inclusion in many HF treatment guidelines. However, controversy still exists about their use, in particular with regards to the selection of specific molecules, since BB differ in terms of adrenergic β-receptors selectivity, adjunctive effects on α-receptors, and effects on reactive oxygen species and inflammatory cytokines production. Further concerns about the heterogeneity in the response to BB, as well as the use in specific patients, are matter of debate among clinicians. In this review, we will recapitulate the pharmacological properties and the classification of BB, and the alteration of the adrenergic system occurring during HF that provide a rationale for their use; we will also focus on the possible molecular mechanisms, such as genetic polymorphisms, underlying the different efficacy of molecules belonging to this class.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Section of Pharmacology, Department of Neuroscience, University of Naples Federico II Naples, Italy
| | | |
Collapse
|
45
|
Corbi G, Conti V, Russomanno G, Longobardi G, Furgi G, Filippelli A, Ferrara N. Adrenergic signaling and oxidative stress: a role for sirtuins? Front Physiol 2013; 4:324. [PMID: 24265619 PMCID: PMC3820966 DOI: 10.3389/fphys.2013.00324] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/18/2013] [Indexed: 12/17/2022] Open
Abstract
The adrenergic system plays a central role in stress signaling and stress is often associated with increased production of ROS. However, ROS overproduction generates oxidative stress, that occurs in response to several stressors. β-adrenergic signaling is markedly attenuated in conditions such as heart failure, with downregulation and desensitization of the receptors and their uncoupling from adenylyl cyclase. Transgenic activation of β2-adrenoceptor leads to elevation of NADPH oxidase activity, with greater ROS production and p38MAPK phosphorylation. Inhibition of NADPH oxidase or ROS significantly reduced the p38MAPK signaling cascade. Chronic β2-adrenoceptor activation is associated with greater cardiac dilatation and dysfunction, augmented pro-inflammatory and profibrotic signaling, while antioxidant treatment protected hearts against these abnormalities, indicating ROS production to be central to the detrimental signaling of β2-adrenoceptors. It has been demonstrated that sirtuins are involved in modulating the cellular stress response directly by deacetylation of some factors. Sirt1 increases cellular stress resistance, by an increased insulin sensitivity, a decreased circulating free fatty acids and insulin-like growth factor (IGF-1), an increased activity of AMPK, increased activity of PGC-1a, and increased mitochondrial number. Sirt1 acts by involving signaling molecules such P-I-3-kinase-Akt, MAPK and p38-MAPK-β. βAR stimulation antagonizes the protective effect of the AKT pathway through inhibiting induction of Hif-1α and Sirt1 genes, key elements in cell survival. More studies are needed to better clarify the involvement of sirtuins in the β-adrenergic response and, overall, to better define the mechanisms by which tools such as exercise training are able to counteract the oxidative stress, by both activation of sirtuins and inhibition of GRK2 in many cardiovascular conditions and can be used to prevent or treat diseases such as heart failure.
Collapse
Affiliation(s)
- Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise Campobasso, Italy
| | | | | | | | | | | | | |
Collapse
|
46
|
Conti V, Russomanno G, Corbi G, Izzo V, Vecchione C, Filippelli A. Adrenoreceptors and nitric oxide in the cardiovascular system. Front Physiol 2013; 4:321. [PMID: 24223559 PMCID: PMC3818479 DOI: 10.3389/fphys.2013.00321] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 10/16/2013] [Indexed: 02/03/2023] Open
Abstract
Nitric Oxide (NO) is a small molecule that continues to attract much attention from the scientific community. Since its discovery, it has been evident that NO has a crucial role in the modulation of vascular tone. Moreover, NO is involved in multiple signal transduction pathways thus contributing to the regulation of many cellular functions. NO effects can be either dependent or independent on cGMP, and rely also upon several mechanisms such as the amount of NO, the compartmentalization of the enzymes responsible for its biosynthesis (NOS), and the local redox conditions. Several evidences highlighted the correlation among adrenoreceptors activity, vascular redox status and NO bioavailability. It was suggested a possible crosstalk between NO and oxidative stress hallmarks in the endothelium function and adaptation, and in sympathetic vasoconstriction control. Adrenergic vasoconstriction is a balance between a direct vasoconstrictive effect on smooth muscle and an indirect vasorelaxant action caused by α2- and β-adrenergic endothelial receptor-triggered NO release. An increased oxidative stress and a reduction of NO bioavailability shifts this equilibrium causing the enhanced vascular adrenergic responsiveness observed in hypertension. The activity of NOS contributes to manage the adrenergic pathway, thus supporting the idea that the endothelium might control or facilitate β-adrenergic effects on the vessels and the polymorphic variants in β2-receptors and NOS isoforms could influence aging, some pathological conditions and individual responses to drugs. This seems to be dependent, almost in part, on differences in the control of vascular tone exerted by NO. Given its involvement in such important mechanisms, the NO pathway is implicated in aging process and in both cardiovascular and non-cardiovascular conditions. Thus, it is essential to pinpoint NO involvement in the regulation of vascular tone for the effective clinical/therapeutic management of cardiovascular diseases (CVD).
Collapse
Affiliation(s)
- Valeria Conti
- Department of Medicine and Surgery, University of Salerno Baronissi, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Cannavo A, Rengo G, Liccardo D, Pagano G, Zincarelli C, De Angelis MC, Puglia R, Di Pietro E, Rabinowitz JE, Barone MV, Cirillo P, Trimarco B, Palmer TM, Ferrara N, Koch WJ, Leosco D, Rapacciuolo A. β1-adrenergic receptor and sphingosine-1-phosphate receptor 1 (S1PR1) reciprocal downregulation influences cardiac hypertrophic response and progression to heart failure: protective role of S1PR1 cardiac gene therapy. Circulation 2013; 128:1612-1622. [PMID: 23969695 PMCID: PMC3952877 DOI: 10.1161/circulationaha.113.002659] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/09/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND The sphingosine-1-phosphate receptor 1 (S1PR1) and β1-adrenergic receptor (β1AR) are G-protein-coupled receptors expressed in the heart. These 2 receptors have opposing actions on adenylyl cyclase because of differential G-protein coupling. Importantly, both of these receptors can be regulated by the actions of G-protein-coupled receptor kinase-2, which triggers desensitization and downregulation processes. Although classic signaling paradigms suggest that simultaneous activation of β1ARs and S1PR1s in a myocyte would simply result in opposing action on cAMP production, in this report we have uncovered a direct interaction between these 2 receptors, with regulatory involvement of G-protein-coupled receptor kinase-2. METHODS AND RESULTS In HEK (human embryonic kidney) 293 cells overexpressing both β1AR and S1PR1, we demonstrated that β1AR downregulation can occur after stimulation with sphingosine-1-phosphate (an S1PR1 agonist), whereas S1PR1 downregulation can be triggered by isoproterenol (a β-adrenergic receptor agonist) treatment. This cross talk between these 2 distinct G-protein-coupled receptors appears to have physiological significance, because they interact and show reciprocal regulation in mouse hearts undergoing chronic β-adrenergic receptor stimulation and in a rat model of postischemic heart failure. CONCLUSIONS We demonstrate that restoration of cardiac plasma membrane levels of S1PR1 produces beneficial effects that counterbalance the deleterious β1AR overstimulation in heart failure.
Collapse
MESH Headings
- Animals
- Cardiomegaly/physiopathology
- Cardiomegaly/therapy
- Disease Models, Animal
- Disease Progression
- Down-Regulation/physiology
- Genetic Therapy/methods
- Green Fluorescent Proteins/genetics
- HEK293 Cells
- Heart Failure/physiopathology
- Heart Failure/therapy
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Myoblasts, Cardiac/cytology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/therapy
- Rats
- Rats, Inbred WKY
- Receptor Cross-Talk/physiology
- Receptors, Adrenergic, beta-1/genetics
- Receptors, Adrenergic, beta-1/metabolism
- Receptors, Lysosphingolipid/genetics
- Receptors, Lysosphingolipid/metabolism
- Sphingosine-1-Phosphate Receptors
Collapse
Affiliation(s)
- Alessandro Cannavo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
- Center of Translational Medicine, Temple University, Philadelphia, PA
| | - Giuseppe Rengo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Daniela Liccardo
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
| | - Gennaro Pagano
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
| | - Carmela Zincarelli
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Maria Carmen De Angelis
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Roberto Puglia
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Elisa Di Pietro
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | | | - Maria Vittoria Barone
- Department of Pediatrics and European Laboratory for the Investigation of Food-Induced Diseases “Federico II” University, Naples, Italy
| | - Plinio Cirillo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| | - Bruno Trimarco
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Timothy M. Palmer
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Nicola Ferrara
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
- Division of Cardiology, Salvatore Maugeri Foundation, IRCCS, Scientific Institute of Telese Terme (BN), Italy
| | - Walter J. Koch
- Center of Translational Medicine, Temple University, Philadelphia, PA
| | - Dario Leosco
- Division of Geriatrics, Department of Translational Medical Sciences, Federico II University of Naples, Italy
| | - Antonio Rapacciuolo
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Italy
| |
Collapse
|
48
|
de Lucia C, Femminella GD, Rengo G, Ruffo A, Parisi V, Pagano G, Liccardo D, Cannavo A, Iacotucci P, Komici K, Zincarelli C, Rengo C, Perrone-Filardi P, Leosco D, Iacono F, Romeo G, Amato B, Ferrara N. Risk of acute myocardial infarction after transurethral resection of prostate in elderly. BMC Surg 2013; 13 Suppl 2:S35. [PMID: 24267821 PMCID: PMC3851236 DOI: 10.1186/1471-2482-13-s2-s35] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Benign prostatic hyperplasia is a frequent disease among elderly, and is responsible for considerable disability. Benign prostatic hyperplasia can be clinically significant due to lower urinary tract symptoms that take place because the gland is enlarged and obstructs urine flow. Transurethral resection of the prostate remains the gold standard treatment for patients with moderate or severe symptoms who need active treatment or who either fail or do not want medical therapy. Moreover, perioperative and postoperative surgery complications as cardiovascular ones still occur. The incidence of acute myocardial infarction in patients undergoing transurethral resection of the prostate is controversial. The first studies showed an increase in mortality and relative risk of death from myocardial infarction in transurethral resection of the prostate group vs open prostatectomy but these results are in contrast with more recent data. Discussion Given the conflicting evidence of the studies in the literature, in this review we are going to discuss the factors that may influence the risk of myocardial infarction in elderly patients undergoing prostate surgery. We analyzed the possible common factors that lead to the development of myocardial infarction and benign prostatic hyperplasia (cardiovascular and metabolic), the stressor factors related to prostatectomy (surgical and haemodynamic) and the risk factors specific of the elderly population (comorbidity and therapies). Summary Although transurethral resection of the prostate is considered at low risk for severe complications, there are several reports indicating that cardiovascular events in elderly patients undergoing this surgical operation are more common than in the general population. Several cardio-metabolic, surgical and aging-related factors may help explain this observation but results in literature are not concord, especially due to the fact that most data derive from retrospective studies in which selection bias cannot be excluded. Subsequently, further studies are necessary to clarify the incidence of acute myocardial infarction in old people.
Collapse
|
49
|
Rengo G, Parisi V, Femminella GD, Pagano G, de Lucia C, Cannavo A, Liccardo D, Giallauria F, Scala O, Zincarelli C, Perrone Filardi P, Ferrara N, Leosco D. Molecular aspects of the cardioprotective effect of exercise in the elderly. Aging Clin Exp Res 2013; 25:487-97. [PMID: 23949971 DOI: 10.1007/s40520-013-0117-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
Aging is a well-recognized risk factor for several different forms of cardiovascular disease. However, mechanisms by which aging exerts its negative effect on outcome have been only partially clarified. Numerous evidence indicate that aging is associated with alterations of several mechanisms whose integrity confers protective action on the heart and vasculature. The present review aims to focus on the beneficial effects of exercise, which plays a pivotal role in primary and secondary prevention of cardiovascular diseases, in counteracting age-related deterioration of protective mechanisms that are crucially involved in the homeostasis of cardiovascular system. In this regard, animal and human studies indicate that exercise training is able: (1) to improve the inotropic reserve of the aging heart through restoration of cardiac β-adrenergic receptor signaling; (2) to rescue the mechanism of cardiac preconditioning and angiogenesis whose integrity has been shown to confer cardioprotection against ischemia and to improve post-myocardial infarction left ventricular remodeling; (3) to counteract age-related reduction of antioxidant systems that is associated to decreased cellular resistance to reactive oxygen species accumulation. Moreover, this review also describes the molecular effects induced by different exercise training protocols (endurance vs. resistance) in the attempt to better explain what kind of exercise strategy could be more efficacious to improve cardiovascular performance in the elderly population.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, via Sergio Pansini, 5, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rengo G, Cannavo A, Liccardo D, Zincarelli C, de Lucia C, Pagano G, Komici K, Parisi V, Scala O, Agresta A, Rapacciuolo A, Perrone Filardi P, Ferrara N, Koch WJ, Trimarco B, Femminella GD, Leosco D. Vascular endothelial growth factor blockade prevents the beneficial effects of β-blocker therapy on cardiac function, angiogenesis, and remodeling in heart failure. Circ Heart Fail 2013; 6:1259-67. [PMID: 24029661 DOI: 10.1161/circheartfailure.113.000329] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Impaired angiogenesis in the post-myocardial infarction heart contributes to the progression to heart failure. The inhibition of vascular endothelial growth factor (VEGF) signaling has been shown to be crucial for the transition from compensatory hypertrophy to cardiac failure. Importantly, β-adrenergic receptor blocker therapy has been also shown to improve myocardial perfusion by enhancing neoangiogenesis in the failing heart. METHODS AND RESULTS Eight weeks from surgically induced myocardial infarction, heart failure rats were randomized to receive bisoprolol (B) or vehicle. At the end of a 10-week treatment period, echocardiography revealed reduced cardiac diameters and improved cardiac function in B-treated compared with vehicle-treated rats. Moreover, B treatment was associated with increased cardiac angiogenesis and in vivo coronary perfusion and reduced cardiac fibrosis. Importantly, 2 weeks after B treatment was started, increased cardiac VEGF expression and Akt and endothelial NO synthase activation were observed by comparing B-treated with drug-untreated failing hearts. To test whether the proangiogenic effects of B act via activation of VEGF pathway, rats were intravenously injected with adenoviral vector encoding a decoy VEGF receptor (Ad-Flk) or a control adenovirus (Ad-C), at the start of the treatment with B. After 10 weeks, histological analysis revealed reduced capillary and coronary perfusion in B-treated plus Ad-Flk rats compared with B-treated plus Ad-C rats. Moreover, VEGF inhibition counteracted the positive effects of B on cardiac function and remodeling. CONCLUSIONS β-Blockade promotes cardiac angiogenesis in heart failure via activation of VEGF signaling pathway. β-Blocker-induced enhancement of cardiac angiogenesis is essential for the favorable effects of this therapy on cardiac function and remodeling.
Collapse
Affiliation(s)
- Giuseppe Rengo
- Division of Cardiology, "Salvatore Maugeri" Foundation-IRCCS-Institute of Telese Terme
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|