1
|
Qian S, Zhang C, Li W, Song S, Lin G, Cheng Z, Zhou W, Yin H, Li H, Shen HY, Sun Z. Enzyme-independent functions of HDAC3 in the adult heart. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.630635. [PMID: 39803453 PMCID: PMC11722435 DOI: 10.1101/2024.12.29.630635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction. Genetically abolishing HDAC3 enzymatic activity without affecting its protein level does not cause cardiac dysfunction on HFD. HDAC3 depletion causes robust downregulation of lipid oxidation/bioenergetic genes and upregulation of antioxidant/anti-apoptotic genes. In contrast, HDAC3 enzyme activity abolishment causes much milder changes in far fewer genes. The abnormal gene expression is cardiomyocyte-autonomous and can be rescued by an enzyme-dead HDAC3 mutant but not by an HDAC3 mutant (Δ33-70) that lacks interaction with the nuclear-envelope protein lamina-associated polypeptide 2β (LAP2β). Tethering LAP2β to the HDAC3 Δ33-70 mutant restored its ability to rescue gene expression. Finally, HDAC3 depletion, not loss of HDAC3 enzymatic activity, exacerbates cardiac contractile functions upon aortic constriction. These results suggest that the cardiac function of HDAC3 in adults is not attributable to its enzyme activity, which has implications for understanding the cardioprotective effects of HDIs.
Collapse
Affiliation(s)
- Sichong Qian
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Chen Zhang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Wenbo Li
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Shiyang Song
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
- Children’s Heart Center, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, China
| | - Guanqiao Lin
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Zixiu Cheng
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Wenjun Zhou
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Huiqi Yin
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
| | - Haiyang Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hu-Ying Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Zheng Sun
- Department of Medicine – Endocrinology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
2
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
3
|
Zhang M, Hu T, Ma T, Huang W, Wang Y. Epigenetics and environmental health. Front Med 2024; 18:571-596. [PMID: 38806988 DOI: 10.1007/s11684-023-1038-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/15/2023] [Indexed: 05/30/2024]
Abstract
Epigenetic modifications including DNA methylation, histone modifications, chromatin remodeling, and RNA modifications complicate gene regulation and heredity and profoundly impact various physiological and pathological processes. In recent years, accumulating evidence indicates that epigenetics is vulnerable to environmental changes and regulates the growth, development, and diseases of individuals by affecting chromatin activity and regulating gene expression. Environmental exposure or induced epigenetic changes can regulate the state of development and lead to developmental disorders, aging, cardiovascular disease, Alzheimer's disease, cancers, and so on. However, epigenetic modifications are reversible. The use of specific epigenetic inhibitors targeting epigenetic changes in response to environmental exposure is useful in disease therapy. Here, we provide an overview of the role of epigenetics in various diseases. Furthermore, we summarize the mechanism of epigenetic alterations induced by different environmental exposures, the influence of different environmental exposures, and the crosstalk between environmental variation epigenetics, and genes that are implicated in the body's health. However, the interaction of multiple factors and epigenetics in regulating the initiation and progression of various diseases complicates clinical treatments. We discuss some commonly used epigenetic drugs targeting epigenetic modifications and methods to prevent or relieve various diseases regulated by environmental exposure and epigenetics through diet.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Hu
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Lu J, Qian S, Sun Z. Targeting histone deacetylase in cardiac diseases. Front Physiol 2024; 15:1405569. [PMID: 38983721 PMCID: PMC11232433 DOI: 10.3389/fphys.2024.1405569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/31/2024] [Indexed: 07/11/2024] Open
Abstract
Histone deacetylases (HDAC) catalyze the removal of acetylation modifications on histones and non-histone proteins, which regulates gene expression and other cellular processes. HDAC inhibitors (HDACi), approved anti-cancer agents, emerge as a potential new therapy for heart diseases. Cardioprotective effects of HDACi are observed in many preclinical animal models of heart diseases. Genetic mouse models have been developed to understand the role of each HDAC in cardiac functions. Some of the findings are controversial. Here, we provide an overview of how HDACi and HDAC impact cardiac functions under physiological or pathological conditions. We focus on in vivo studies of zinc-dependent classical HDACs, emphasizing disease conditions involving cardiac hypertrophy, myocardial infarction (MI), ischemic reperfusion (I/R) injury, and heart failure. In particular, we review how non-biased omics studies can help our understanding of the mechanisms underlying the cardiac effects of HDACi and HDAC.
Collapse
Affiliation(s)
- Jiao Lu
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Sichong Qian
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
| | - Zheng Sun
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
5
|
Ji XD, Yang D, Cui XY, Lou LX, Nie B, Zhao JL, Zhao MJ, Wu AM. Mechanism of Qili Qiangxin Capsule for Heart Failure Based on miR133a-Endoplasmic Reticulum Stress. Chin J Integr Med 2024; 30:398-407. [PMID: 38386253 DOI: 10.1007/s11655-024-3654-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To investigate the pharmacological mechanism of Qili Qiangxin Capsule (QLQX) improvement of heart failure (HF) based on miR133a-endoplasmic reticulum stress (ERS) pathway. METHODS A left coronary artery ligation-induced HF after myocardial infarction model was used in this study. Rats were randomly assigned to the sham group, the model group, the QLQX group [0.32 g/(kg·d)], and the captopril group [2.25 mg/(kg·d)], 15 rats per group, followed by 4 weeks of medication. Cardiac function such as left ventricular ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximal rate of increase of left ventricular pressure (+dp/dt max), and the maximal rate of decrease of left ventricular pressure (-dp/dt max) were monitored by echocardiography and hemodynamics. Hematoxylin and eosin (HE) and Masson stainings were used to visualize pathological changes in myocardial tissue. The mRNA expression of miR133a, glucose-regulated protein78 (GRP78), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), X-box binding protein1 (XBP1), C/EBP homologous protein (CHOP) and Caspase 12 were detected by RT-PCR. The protein expression of GRP78, p-IRE1/IRE1 ratio, cleaved-ATF6, XBP1-s (the spliced form of XBP1), CHOP and Caspase 12 were detected by Western blot. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the rate of apoptosis. RESULTS QLQX significantly improved cardiac function as evidenced by increased EF, FS, LVSP, +dp/dt max, -dp/dt max, and decreased LVEDP (P<0.05, P<0.01). HE staining showed that QLQX ameliorated cardiac pathologic damage to some extent. Masson staining indicated that QLQX significantly reduced collagen volume fraction in myocardial tissue (P<0.01). Results from RT-PCR and Western blot showed that QLQX significantly increased the expression of miR133a and inhibited the mRNA expressions of GRP78, IRE1, ATF6 and XBP1, as well as decreased the protein expressions of GRP78, cleaved-ATF6 and XBP1-s and decreased p-IRE1/IRE1 ratio (P<0.05, P<0.01). Further studies showed that QLQX significantly reduced the expression of CHOP and Caspase12, resulting in a significant reduction in apoptosis rate (P<0.05, P<0.01). CONCLUSION The pharmacological mechanism of QLQX in improving HF is partly attributed to its regulatory effect on the miR133a-IRE1/XBP1 pathway.
Collapse
Affiliation(s)
- Xiao-di Ji
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Department of Traditional Chinese Medicine, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100037, China
| | - Ding Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Xi-Yuan Cui
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Li-Xia Lou
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Bo Nie
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Jiu-Li Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Ming-Jing Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Ai-Ming Wu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China.
| |
Collapse
|
6
|
Liu Y, Wen D, Ho C, Yu L, Zheng D, O'Reilly S, Gao Y, Li Q, Zhang Y. Epigenetics as a versatile regulator of fibrosis. J Transl Med 2023; 21:164. [PMID: 36864460 PMCID: PMC9983257 DOI: 10.1186/s12967-023-04018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Fibrosis, a process caused by excessive deposition of extracellular matrix (ECM), is a common cause and outcome of organ failure and even death. Researchers have made many efforts to understand the mechanism of fibrogenesis and to develop therapeutic strategies; yet, the outcome remains unsatisfactory. In recent years, advances in epigenetics, including chromatin remodeling, histone modification, DNA methylation, and noncoding RNA (ncRNA), have provided more insights into the fibrotic process and have suggested the possibility of novel therapy for organ fibrosis. In this review, we summarize the current research on the epigenetic mechanisms involved in organ fibrosis and their possible clinical applications.
Collapse
Affiliation(s)
- Yangdan Liu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Dongsheng Wen
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Chiakang Ho
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Li Yu
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Danning Zheng
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | | | - Ya Gao
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Qingfeng Li
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Yifan Zhang
- Department of Plastic & Reconstructive Surgery, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
7
|
Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: Clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:119-152. [DOI: 10.1016/bs.pmbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Abstract
PURPOSE OF REVIEW The current review aims to present the most recent achievements on the role of microRNAs (miRNAs) on the kidney function to stimulate research in the field and to expand new emerging concepts. RECENT FINDINGS The focus is on the role of miRNAs in intercellular communication along the segments of the nephron and on the epi-miRNAs, namely the possibility of some miRNAs to modulate the epigenetic machinery and so gene expression. Indeed, recent evidence showed that miRNAs included in exosomes and released by proximal tubule cells can modulate ENaC activity on cells of collecting duct. These data, although, from in-vitro models open to a novel role for miRNAs to participate in paracrine signaling pathways. In addition, the role of miRNAs as epigenetic modulators is expanding not only in the cancer field, but also in the other kidney diseases. Recent evidence identified three miRNAs able to modulate the AQP2 promoter metilation and showing an additional level of regulation for the AQP2. SUMMARY These evidence can inspire novel area of research both for renal physiology and drug discovery. The diseases involving the collecting duct are still missing disease modifying agents and the expanding miRNAs field could represent an opportunity.
Collapse
|
9
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Yan H, Zhao H, Yi SW, Zhuang H, Wang DW, Jiang JG, Shen GF. Sphingosine-1-Phosphate Protects Against the Development of Cardiac Remodeling via Sphingosine Kinase 2 and the S1PR2/ERK Pathway. Curr Med Sci 2022; 42:702-710. [PMID: 35963947 DOI: 10.1007/s11596-022-2600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Cardiac remodeling is a common pathological change in various cardiovascular diseases and can ultimately result in heart failure. Thus, there is an urgent need for more effective strategies to aid in cardiac protection. Our previous work found that sphingosine-1-phosphate (S1P) could ameliorate cardiac hypertrophy. In this study, we aimed to investigate whether S1P could prevent cardiac fibrosis and the associated mechanisms in cardiac remodeling. METHODS Eight-week-old male C57BL/6 mice were randomly divided into a sham, transverse aortic constriction (TAC) or a TAC+S1P treatment group. RESULTS We found that S1P treatment improved cardiac function in TAC mice and that the cardiac fibrosis ratio in the TAC+S1P group was significantly lower and was accompanied by a decrease in α-smooth muscle actin (α-SMA) and collagen type I (COL I) expression compared with the TAC group. We also found that one of the key S1P enzymes, sphingosine kinase 2 (SphK2), which was mainly distributed in cytoblasts, was downregulated in the cardiac remodeling case and recovered after S1P treatment in vivo and in vitro. In addition, our in vitro results showed that S1P treatment activated extracellular regulated protein kinases (ERK) phosphorylation mainly through the S1P receptor 2 (S1PR2) and spurred p-ERK transposition from the cytoplasm to cytoblast in H9c2 cells exposed to phenylephrine. CONCLUSION These findings suggest that SphK2 and the S1PR2/ERK pathway may participate in the anti-remodeling effect of S1P on the heart. This work therefore uncovers a novel potential therapy for the prevention of cardiac remodeling.
Collapse
Affiliation(s)
- Hui Yan
- Wuhan No. 4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hu Zhao
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shao-Wei Yi
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hang Zhuang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dao-Wen Wang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Gang Jiang
- Division of Cardiology, Department of Internal Medicine and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gui-Fen Shen
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Zhang M, Guo F, Li X, Xian M, Wang T, Wu H, Wei J, Huang Y, Cui X, Wu S, Gong M, Yang H. Yi-Xin-Shu capsule ameliorates cardiac hypertrophy by regulating RB/HDAC1/GATA4 signaling pathway based on proteomic and mass spectrometry image analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154185. [PMID: 35679794 DOI: 10.1016/j.phymed.2022.154185] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cardiac hypertrophy (CH) forms the main pathological basis of chronic heart failure (CHF). Mitigating and preventing CH is the key strategy for the treatment of ventricular remodeling in CHF. Yi-Xin-Shu capsule (YXS) has been commonly applied in the clinical treatment of CHF in Asian countries for several decades. However, the underlying mechanism of YXS has not been revealed yet. PURPOSE To assess the efficiency of YXS in CH and identify its potential therapeutic targets for the managing of CH. METHOD Ultrasonic cardiogram was used to evaluate the cardiac function of CH rats. Hematein Eosin (HE)-staining, Masson-staining and transmission electron microscope were used to measure the morphological changes, cardiac fibrosis degree and ultrastructure characteristics of cardiomyocytes, respectively. ELISA was used to detect the myocardial injury biomarkers. Then, the potential targets regulated by YXS were screened out via proteomic analysis and mass spectrometry image analysis. Finally, the targets were validated by real-time quantitative (RT-q) PCR, immunofluorescence, immunohistochemistry, and western-blotting methods. RESULTS YXS improved the cardiac function of CH rats and attenuated the injuries in morphology and subcellular structure of cardiomyocytes. A core protein-protein interaction network was established on differentially expressed proteins (DEP) using proteomics analysis. GATA binding protein 4 (GATA4) was identified as the key target regulated by YXS. The results of mass spectrometry image analysis indicated that the expressions of histone deacetylase 1 (HDAC1) and retinoblastoma (RB) could also be regulated by YXS. Further valuative experiments showed that YXS may attenuate CH by regulating the RB/HDAC1/GATA4 signaling pathway. CONCLUSIONS For the first time, this study discloses the precise mechanism investigation of the efficacy of YXS against CH. These data demonstrate that YXS may protect against CH by regulating the RB/HDAC1/GATA4 signaling pathway.
Collapse
Affiliation(s)
- Minyu Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Feifei Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xianyu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minghua Xian
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tingting Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongwei Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ying Huang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiangning Cui
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Sha Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China
| | - Muxin Gong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research, Beijing 100069, China.
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
12
|
Dong Y, Peng N, Dong L, Tan S, Zhang X. Non-coding RNAs: Important participants in cardiac fibrosis. Front Cardiovasc Med 2022; 9:937995. [PMID: 35966549 PMCID: PMC9365961 DOI: 10.3389/fcvm.2022.937995] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/24/2022] [Indexed: 11/24/2022] Open
Abstract
Cardiac remodeling is a pathophysiological process activated by diverse cardiac stress, which impairs cardiac function and leads to adverse clinical outcome. This remodeling partly attributes to cardiac fibrosis, which is a result of differentiation of cardiac fibroblasts to myofibroblasts and the production of excessive extracellular matrix within the myocardium. Non-coding RNAs mainly include microRNAs and long non-coding RNAs. These non-coding RNAs have been proved to have a profound impact on biological behaviors of various cardiac cell types and play a pivotal role in the development of cardiac fibrosis. This review aims to summarize the role of microRNAs and long non-coding RNAs in cardiac fibrosis associated with pressure overload, ischemia, diabetes mellitus, aging, atrial fibrillation and heart transplantation, meanwhile shed light on the diagnostic and therapeutic potential of non-coding RNAs for cardiac fibrosis.
Collapse
|
13
|
Han Y, Nie J, Wang DW, Ni L. Mechanism of histone deacetylases in cardiac hypertrophy and its therapeutic inhibitors. Front Cardiovasc Med 2022; 9:931475. [PMID: 35958418 PMCID: PMC9360326 DOI: 10.3389/fcvm.2022.931475] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac hypertrophy is a key process in cardiac remodeling development, leading to ventricle enlargement and heart failure. Recently, studies show the complicated relation between cardiac hypertrophy and epigenetic modification. Post-translational modification of histone is an essential part of epigenetic modification, which is relevant to multiple cardiac diseases, especially in cardiac hypertrophy. There is a group of enzymes related in the balance of histone acetylation/deacetylation, which is defined as histone acetyltransferase (HAT) and histone deacetylase (HDAC). In this review, we introduce an important enzyme family HDAC, a key regulator in histone deacetylation. In cardiac hypertrophy HDAC I downregulates the anti-hypertrophy gene expression, including Kruppel-like factor 4 (Klf4) and inositol-5 phosphatase f (Inpp5f), and promote the development of cardiac hypertrophy. On the contrary, HDAC II binds to myocyte-specific enhancer factor 2 (MEF2), inhibit the assemble ability to HAT and protect against cardiac hypertrophy. Under adverse stimuli such as pressure overload and calcineurin stimulation, the HDAC II transfer to cytoplasm, and MEF2 can bind to nuclear factor of activated T cells (NFAT) or GATA binding protein 4 (GATA4), mediating inappropriate gene expression. HDAC III, also known as SIRTs, can interact not only to transcription factors, but also exist interaction mechanisms to other HDACs, such as HDAC IIa. We also present the latest progress of HDAC inhibitors (HDACi), as a potential treatment target in cardiac hypertrophy.
Collapse
Affiliation(s)
- Yu Han
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Dao Wen Wang,
| | - Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Li Ni,
| |
Collapse
|
14
|
Budde H, Hassoun R, Mügge A, Kovács Á, Hamdani N. Current Understanding of Molecular Pathophysiology of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:928232. [PMID: 35874547 PMCID: PMC9301384 DOI: 10.3389/fphys.2022.928232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
Abstract
Heart Failure (HF) is the most common cause of hospitalization in the Western societies. HF is a heterogeneous and complex syndrome that may result from any dysfunction of systolic or diastolic capacity. Abnormal diastolic left ventricular function with impaired relaxation and increased diastolic stiffness is characteristic of heart failure with preserved ejection fraction (HFpEF). HFpEF accounts for more than 50% of all cases of HF. The prevalence increases with age: from around 1% for those aged <55 years to >10% in those aged 70 years or over. Nearly 50% of HF patients have HFrEF and the other 50% have HFpEF/HFmrEF, mainly based on studies in hospitalized patients. The ESC Long-Term Registry, in the outpatient setting, reports that 60% have HFrEF, 24% have HFmrEF, and 16% have HFpEF. To some extent, more than 50% of HF patients are female. HFpEF is closely associated with co-morbidities, age, and gender. Epidemiological evidence suggests that HFpEF is highly represented in older obese women and proposed as 'obese female HFpEF phenotype'. While HFrEF phenotype is more a male phenotype. In addition, metabolic abnormalities and hemodynamic perturbations in obese HFpEF patients appear to have a greater impact in women then in men (Sorimachi et al., European J of Heart Fail, 2022, 22). To date, numerous clinical trials of HFpEF treatments have produced disappointing results. This outcome suggests that a "one size fits all" approach to HFpEF may be inappropriate and supports the use of tailored, personalized therapeutic strategies with specific treatments for distinct HFpEF phenotypes. The most important mediators of diastolic stiffness are the cardiomyocytes, endothelial cells, and extracellular matrix (ECM). The complex physiological signal transduction networks that respond to the dual challenges of inflammatory and oxidative stress are major factors that promote the development of HFpEF pathologies. These signalling networks contribute to the development of the diseases. Inhibition and/or attenuation of these signalling networks also delays the onset of disease. In this review, we discuss the molecular mechanisms associated with the physiological responses to inflammation and oxidative stress and emphasize the nature of the contribution of most important cells to the development of HFpEF via increased inflammation and oxidative stress.
Collapse
Affiliation(s)
- Heidi Budde
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Roua Hassoun
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Árpád Kovács
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
15
|
Histone Deacetylase 1 Depletion Alleviates Coronary Heart Disease Via the MicroRNA-182-Mediated Transforming Growth Factor β/Smad Signaling Pathway. J Cardiovasc Pharmacol 2022; 79:815-826. [PMID: 35289769 DOI: 10.1097/fjc.0000000000001260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Histone deacetylase (HDAC) determines the acetylation status of histones, thereby regulating gene expression. HDAC inhibitors have been demonstrated to suppress cardiomyocyte growth in vitro and in vivo. We assessed here whether HDAC1 exerts an aggravating effect on coronary heart disease (CHD). Epigenetic probe array revealed that HDAC1 was overexpressed in patients with CHD. HDAC1 was then downregulated in rat cardiomyocytes, and microRNA microarray analysis was performed to detect downstream targets of HDAC1, followed by chromatin immunoprecipitation validation. HDAC1 inhibited miR-182 expression through deacetylation. miR-182 was poorly expressed in patients with CHD. Using enzyme-linked immunosorbent assay, Reverse transcription-quantitative PCR, hematoxylin-eosin staining, terminal deoxynucleotidyl transferase (TdT)-mediated 2'-deoxyuridine 5'-triphosphate (dUTP) nick-end labeling assay, and immunohistochemistry, we observed that HDAC1 downregulation promoted cardiac function, restored lipid levels, reduced myocardial injury markers and inflammatory factors, and alleviated myocardial tissue damage and apoptosis in CHD rats. By contrast, miR-182 downregulation exacerbated injury in rats in the presence of HDAC1 knockdown. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the target genes of miR-182 were mainly enriched in the transforming growth factor (TGF)-β/Smad pathway. Western blot also validated that HDAC1/miR-182 modulated the TGF-β/Smad pathway activity. Our results demonstrated that HDAC1 repressed miR-182 and activated the TGF-β/Smad pathway to promote CHD.
Collapse
|
16
|
Travers JG, Tharp CA, Rubino M, McKinsey TA. Therapeutic targets for cardiac fibrosis: from old school to next-gen. J Clin Invest 2022; 132:148554. [PMID: 35229727 PMCID: PMC8884906 DOI: 10.1172/jci148554] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with pathological fibrotic remodeling mediated by activated cardiac myofibroblasts representing a unifying theme across etiologies. Despite the profound contributions of myocardial fibrosis to cardiac dysfunction and heart failure, there currently exist limited clinical interventions that effectively target the cardiac fibroblast and its role in fibrotic tissue deposition. Exploration of novel strategies designed to mitigate or reverse myofibroblast activation and cardiac fibrosis will likely yield powerful therapeutic approaches for the treatment of multiple diseases of the heart, including heart failure with preserved or reduced ejection fraction, acute coronary syndrome, and cardiovascular disease linked to type 2 diabetes. In this Review, we provide an overview of classical regulators of cardiac fibrosis and highlight emerging, next-generation epigenetic regulatory targets that have the potential to revolutionize treatment of the expanding cardiovascular disease patient population.
Collapse
|
17
|
Shao T, Xue Y, Fang M. Epigenetic Repression of Chloride Channel Accessory 2 Transcription in Cardiac Fibroblast: Implication in Cardiac Fibrosis. Front Cell Dev Biol 2021; 9:771466. [PMID: 34869368 PMCID: PMC8633401 DOI: 10.3389/fcell.2021.771466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is a key pathophysiological process that contributes to heart failure. Cardiac resident fibroblasts, exposed to various stimuli, are able to trans-differentiate into myofibroblasts and mediate the pro-fibrogenic response in the heart. The present study aims to investigate the mechanism whereby transcription of chloride channel accessory 2 (Clca2) is regulated in cardiac fibroblast and its potential implication in fibroblast-myofibroblast transition (FMyT). We report that Clca2 expression was down-regulated in activated cardiac fibroblasts (myofibroblasts) compared to quiescent cardiac fibroblasts in two different animal models of cardiac fibrosis. Clca2 expression was also down-regulated by TGF-β, a potent inducer of FMyT. TGF-β repressed Clca2 expression at the transcriptional level likely via the E-box element between -516 and -224 of the Clca2 promoter. Further analysis revealed that Twist1 bound directly to the E-box element whereas Twist1 depletion abrogated TGF-β induced Clca2 trans-repression. Twist1-mediated Clca2 repression was accompanied by erasure of histone H3/H4 acetylation from the Clca2 promoter. Mechanistically Twist1 interacted with HDAC1 and recruited HDAC1 to the Clca2 promoter to repress Clca2 transcription. Finally, it was observed that Clca2 over-expression attenuated whereas Clca2 knockdown enhanced FMyT. In conclusion, our data demonstrate that a Twist1-HDAC1 complex represses Clca2 transcription in cardiac fibroblasts, which may contribute to FMyT and cardiac fibrosis.
Collapse
Affiliation(s)
- Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Center for Experimental Medicine, Jiangsu Health Vocational College, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
18
|
Walker CJ, Crocini C, Ramirez D, Killaars AR, Grim JC, Aguado BA, Clark K, Allen MA, Dowell RD, Leinwand LA, Anseth KS. Nuclear mechanosensing drives chromatin remodelling in persistently activated fibroblasts. Nat Biomed Eng 2021; 5:1485-1499. [PMID: 33875841 PMCID: PMC9102466 DOI: 10.1038/s41551-021-00709-w] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 03/07/2021] [Indexed: 02/02/2023]
Abstract
Fibrotic disease is caused by the continuous deposition of extracellular matrix by persistently activated fibroblasts (also known as myofibroblasts), even after the resolution of the injury. Using fibroblasts from porcine aortic valves cultured on hydrogels that can be softened via exposure to ultraviolet light, here we show that increased extracellular stiffness activates the fibroblasts, and that cumulative tension on the nuclear membrane and increases in the activity of histone deacetylases transform transiently activated fibroblasts into myofibroblasts displaying condensed chromatin with genome-wide alterations. The condensed structure of the myofibroblasts is associated with cytoskeletal stability, as indicated by the inhibition of chromatin condensation and myofibroblast persistence after detachment of the nucleus from the cytoskeleton via the displacement of endogenous nesprins from the nuclear envelope. We also show that the chromatin structure of myofibroblasts from patients with aortic valve stenosis is more condensed than that of myofibroblasts from healthy donors. Our findings suggest that nuclear mechanosensing drives distinct chromatin signatures in persistently activated fibroblasts.
Collapse
Affiliation(s)
- Cierra J Walker
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Anouk R Killaars
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph C Grim
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Brian A Aguado
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Kyle Clark
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Mary A Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| | - Kristi S Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
19
|
Improta-Caria AC, Aras MG, Nascimento L, De Sousa RAL, Aras-Júnior R, Souza BSDF. MicroRNAs Regulating Renin-Angiotensin-Aldosterone System, Sympathetic Nervous System and Left Ventricular Hypertrophy in Systemic Arterial Hypertension. Biomolecules 2021; 11:biom11121771. [PMID: 34944415 PMCID: PMC8698399 DOI: 10.3390/biom11121771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are small non-coding RNAs that regulate gene and protein expression. MicroRNAs also regulate several cellular processes such as proliferation, differentiation, cell cycle, apoptosis, among others. In this context, they play important roles in the human body and in the pathogenesis of diseases such as cancer, diabetes, obesity and hypertension. In hypertension, microRNAs act on the renin-angiotensin-aldosterone system, sympathetic nervous system and left ventricular hypertrophy, however the signaling pathways that interact in these processes and are regulated by microRNAs inducing hypertension and the worsening of the disease still need to be elucidated. Thus, the aim of this review is to analyze the pattern of expression of microRNAs in these processes and the possible associated signaling pathways.
Collapse
Affiliation(s)
- Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Department of Physical Education in Cardiology of the State of Bahia, Brazilian Society of Cardiology, Salvador 41170-130, Brazil
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| | - Marcela Gordilho Aras
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Luca Nascimento
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | | | - Roque Aras-Júnior
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil;
- Faculty of Medicine, Federal University of Bahia, Salvador 40110-100, Brazil; (M.G.A.); (L.N.)
| | - Bruno Solano de Freitas Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador 41253-190, Brazil
- D’Or Institute for Research and Education (IDOR), Salvador 22281-100, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Correspondence: (A.C.I.-C.); (B.S.d.F.S.)
| |
Collapse
|
20
|
Paulus WJ, Zile MR. From Systemic Inflammation to Myocardial Fibrosis: The Heart Failure With Preserved Ejection Fraction Paradigm Revisited. Circ Res 2021; 128:1451-1467. [PMID: 33983831 PMCID: PMC8351796 DOI: 10.1161/circresaha.121.318159] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In accordance with the comorbidity-inflammation paradigm, comorbidities and especially metabolic comorbidities are presumed to drive development and severity of heart failure with preserved ejection fraction through a cascade of events ranging from systemic inflammation to myocardial fibrosis. Recently, novel experimental and clinical evidence emerged, which strengthens the validity of the inflammatory/profibrotic paradigm. This evidence consists among others of (1) myocardial infiltration by immunocompetent cells not only because of an obesity-induced metabolic load but also because of an arterial hypertension-induced hemodynamic load. The latter is sensed by components of the extracellular matrix like basal laminin, which also interact with cardiomyocyte titin; (2) expression in cardiomyocytes of inducible nitric oxide synthase because of circulating proinflammatory cytokines. This results in myocardial accumulation of degraded proteins because of a failing unfolded protein response; (3) definition by machine learning algorithms of phenogroups of patients with heart failure with preserved ejection fraction with a distinct inflammatory/profibrotic signature; (4) direct coupling in mediation analysis between comorbidities, inflammatory biomarkers, and deranged myocardial structure/function with endothelial expression of adhesion molecules already apparent in early preclinical heart failure with preserved ejection fraction (HF stage A, B). This new evidence paves the road for future heart failure with preserved ejection fraction treatments such as biologicals directed against inflammatory cytokines, stimulation of protein ubiquitylation with phosphodiesterase 1 inhibitors, correction of titin stiffness through natriuretic peptide-particulate guanylyl cyclase-PDE9 (phosphodiesterase 9) signaling and molecular/cellular regulatory mechanisms that control myocardial fibrosis.
Collapse
Affiliation(s)
- Walter J Paulus
- Amsterdam University Medical Centers, The Netherlands (W.J.P.)
| | - Michael R Zile
- RHJ Department of Veterans Affairs Medical Center, Medical University of South Carolina, Charleston (M.R.Z.)
| |
Collapse
|
21
|
Diao LT, Xie SJ, Lei H, Qiu XS, Huang MC, Tao S, Hou YR, Hu YX, Sun YJ, Zhang Q, Xiao ZD. METTL3 regulates skeletal muscle specific miRNAs at both transcriptional and post-transcriptional levels. Biochem Biophys Res Commun 2021; 552:52-58. [PMID: 33740664 DOI: 10.1016/j.bbrc.2021.03.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 12/31/2022]
Abstract
METTL3 increasing the mature miRNA levels via N6-Methyladenosine (m6A) modification of primary miRNA (pri-miRNA) transcripts has emerged as an important post-transcriptional regulation of miRNA biogenesis. Our previous studies and others have showed that muscle specific miRNAs are essential for skeletal muscle differentiation. Whether these miRNAs are also regulated by METTL3 is still unclear. Here, we found that m6A motifs were present around most of these miRNAs, which were indeed m6A modified as confirmed by m6A-modified RNA immunoprecipitation (m6A RIP). However, we surprisingly found that these muscle specific miRNAs were repressed instead of increased by METTL3 in C2C12 in vitro differentiation and mouse skeletal muscle regeneration after injury in vivo model. To elucidate the underlined mechanism, we performed reporter assays in 293T cells and validated METTL3 increasing these miRNAs at post-transcriptional level as expected. Furthermore, in myogenic C2C12 cells, we found that METTL3 not only repressed the expression of myogenic transcription factors (TFs) which can enhance the muscle specific miRNAs, but also increased the expression of epigenetic regulators which can repress these miRNAs. Thus, METTL3 could repress the muscle specific miRNAs at transcriptional level indirectly. Taken together, our results demonstrated that skeletal muscle specific miRNAs were repressed by METTL3 and such repression is likely synthesized transcriptional and post-transcriptional regulations.
Collapse
Affiliation(s)
- Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shu-Juan Xie
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Hang Lei
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiu-Sheng Qiu
- Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Meng-Chun Huang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yu-Jia Sun
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China; Vaccine Research Institute of Sun Yat-sen University, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Colpaert RMW, Calore M. Epigenetics and microRNAs in cardiovascular diseases. Genomics 2021; 113:540-551. [PMID: 33482325 DOI: 10.1016/j.ygeno.2020.12.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/12/2020] [Accepted: 12/05/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are among the leading causes of mortality worldwide. Besides environmental and genetic changes, these disorders can be influenced by processes which do not affect DNA sequence yet still play an important role in gene expression and which can be inherited. These so-called 'epigenetic' changes include DNA methylation, histone modifications, and ATP-dependent chromatin remodeling enzymes, which influence chromatin remodeling and gene expression. Next to these, microRNAs are non-coding RNA molecules that silence genes post-transcriptionally. Both epigenetic factors and microRNAs are known to influence cardiac development and homeostasis, in an individual fashion but also in a complex regulatory network. In this review, we will discuss how epigenetic factors and microRNAs interact with each other and how together they can influence cardiovascular diseases.
Collapse
Affiliation(s)
- Robin M W Colpaert
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands
| | - Martina Calore
- Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences, Faculty of Science and Engineering, Maastricht University, the Netherlands.
| |
Collapse
|
23
|
Chun P. Therapeutic effects of histone deacetylase inhibitors on heart disease. Arch Pharm Res 2020; 43:1276-1296. [PMID: 33245518 DOI: 10.1007/s12272-020-01297-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 01/04/2023]
Abstract
A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.
Collapse
Affiliation(s)
- Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Inje-ro, Gimhae, Gyeongnam, 50834, Republic of Korea.
| |
Collapse
|
24
|
Wang H, Sugimoto K, Lu H, Yang WY, Liu JY, Yang HY, Song YB, Yan D, Zou TY, Shen S. HDAC1-mediated deacetylation of HIF1α prevents atherosclerosis progression by promoting miR-224-3p-mediated inhibition of FOSL2. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:577-591. [PMID: 33510945 PMCID: PMC7815465 DOI: 10.1016/j.omtn.2020.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
We intended to characterize functional relevance of microRNA (miR)-224-3p in endothelial cell (EC) apoptosis and reactive oxygen species (ROS) accumulation in atherosclerosis, considering also the integral involvement of histone deacetylase 1 (HDAC1)-mediated hypoxia-inducible factor-1α (HIF1α) deacetylation. The binding affinity between miR-224-3p and Fos-like antigen 2 (FOSL2) was predicted and validated. Furthermore, we manipulated miR-224-3p, FOSL2, HDAC1, and HIF1α expression in oxidized low-density lipoprotein (ox-LDL)-induced ECs, aiming to clarify their effects on cell activities, inflammation, and ROS level. Additionally, we examined the impact of miR-224-3p on aortic atherosclerotic plaque and lesions in a high-fat-diet-induced atherosclerosis model in ApoE−/− mice. Clinical atherosclerotic samples and ox-LDL-induced human aortic ECs (HAECs) exhibited low HDAC1/miR-224-3p expression and high HIF1α/FOSL2 expression. miR-224-3p repressed EC cell apoptosis, inflammatory responses, and intracellular ROS levels through targeting FOSL2. HIF1α reduced miR-224-3p expression to accelerate EC apoptosis and ROS accumulation. Moreover, HDAC1 inhibited HIF1α expression by deacetylation, which in turn enhanced miR-224-3p expression to attenuate EC apoptosis and ROS accumulation. miR-224-3p overexpression reduced atherosclerotic lesions in vivo. In summary, HDAC1 overexpression may enhance the anti-atherosclerotic and endothelial-protective effects of miR-224-3p-mediated inhibition of FOSL2 by deacetylating HIF1α, underscoring a novel therapeutic insight against experimental atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hao Lu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Wan-Yong Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Ji-Yue Liu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Hong-Yu Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Yue-Bo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Dong Yan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Tian-Yu Zou
- Department of Encephalopathy, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, P.R. China
| | - Si Shen
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
25
|
Nudelman V, Zahalka MA, Nudelman A, Rephaeli A, Kessler-Icekson G. Cardioprotection by AN-7, a prodrug of the histone deacetylase inhibitor butyric acid: Selective activity in hypoxic cardiomyocytes and cardiofibroblasts. Eur J Pharmacol 2020; 882:173255. [PMID: 32553737 DOI: 10.1016/j.ejphar.2020.173255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/19/2020] [Accepted: 06/05/2020] [Indexed: 12/27/2022]
Abstract
The anticancer prodrug butyroyloxymethyl diethylphosphate (AN-7), upon metabolic hydrolysis, releases the histone deacetylase inhibitor butyric acid and imparts histone hyperacetylation. We have shown previously that AN-7 increases doxorubicin-induced cancer cell death and reduces doxorubicin toxicity and hypoxic damage to the heart and cardiomyocytes. The cardiofibroblasts remain unprotected against both insults. Herein we examined the selective effect of AN-7 on hypoxic cardiomyocytes and cardiofibroblasts and investigated mechanisms underlying the cell specific response. Hypoxic cardiomyocytes and cardiofibroblasts or H2O2-treated H9c2 cardiomyoblasts, were treated with AN-7 and cell damage and death were evaluated as well as cell signaling pathways and the expression levels of heme oxygenase-1 (HO-1). AN-7 diminished hypoxia-induced mitochondrial damage and cell death in hypoxic cardiomyocytes and reduced hydrogen peroxide damage in H9c2 cells while increasing cell injury and death in hypoxic cardiofibroblasts. In the cell line, AN-7 induced Akt and ERK survival pathway activation in a kinase-specific manner including phosphorylation of the respective downstream targets, GSK-3β and BAD. Hypoxic cardiomyocytes responded to AN-7 treatment by enhanced phosphorylation of Akt, ERK, GSK-3β and BAD and a significant 6-fold elevation in HO-1 levels. In hypoxic cardiofibroblasts, AN-7 did not activate Akt and ERK beyond the effect of hypoxia alone and induced a limited (~1.5-fold) increase in HO-1. The cell specific differences in kinase activation and in heme oxygenase-1 upregulation may explain, at least in part, the disparate outcome of AN-7 treatment in hypoxic cardiomyocytes and hypoxic cardiofibroblasts.
Collapse
Affiliation(s)
- Vadim Nudelman
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Muayad A Zahalka
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Abraham Nudelman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel.
| | - Ada Rephaeli
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Gania Kessler-Icekson
- The Felsenstein Medical Research Center, Rabin Medical Center, Petach-Tikva, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
26
|
Wallner M, Eaton DM, Berretta RM, Liesinger L, Schittmayer M, Gindlhuber J, Wu J, Jeong MY, Lin YH, Borghetti G, Baker ST, Zhao H, Pfleger J, Blass S, Rainer PP, von Lewinski D, Bugger H, Mohsin S, Graier WF, Zirlik A, McKinsey TA, Birner-Gruenberger R, Wolfson MR, Houser SR. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci Transl Med 2020; 12:eaay7205. [PMID: 31915304 PMCID: PMC7065257 DOI: 10.1126/scitranslmed.aay7205] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/23/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major health problem without effective therapies. This study assessed the effects of histone deacetylase (HDAC) inhibition on cardiopulmonary structure, function, and metabolism in a large mammalian model of pressure overload recapitulating features of diastolic dysfunction common to human HFpEF. Male domestic short-hair felines (n = 31, aged 2 months) underwent a sham procedure (n = 10) or loose aortic banding (n = 21), resulting in slow-progressive pressure overload. Two months after banding, animals were treated daily with suberoylanilide hydroxamic acid (b + SAHA, 10 mg/kg, n = 8), a Food and Drug Administration-approved pan-HDAC inhibitor, or vehicle (b + veh, n = 8) for 2 months. Echocardiography at 4 months after banding revealed that b + SAHA animals had significantly reduced left ventricular hypertrophy (LVH) (P < 0.0001) and left atrium size (P < 0.0001) versus b + veh animals. Left ventricular (LV) end-diastolic pressure and mean pulmonary arterial pressure were significantly reduced in b + SAHA (P < 0.01) versus b + veh. SAHA increased myofibril relaxation ex vivo, which correlated with in vivo improvements of LV relaxation. Furthermore, SAHA treatment preserved lung structure, compliance, blood oxygenation, and reduced perivascular fluid cuffs around extra-alveolar vessels, suggesting attenuated alveolar capillary stress failure. Acetylation proteomics revealed that SAHA altered lysine acetylation of mitochondrial metabolic enzymes. These results suggest that acetylation defects in hypertrophic stress can be reversed by HDAC inhibitors, with implications for improving cardiac structure and function in patients.
Collapse
Affiliation(s)
- Markus Wallner
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz 8010, Austria
| | - Deborah M Eaton
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Remus M Berretta
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Laura Liesinger
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Matthias Schittmayer
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Juergen Gindlhuber
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
| | - Jichuan Wu
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Mark Y Jeong
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ying H Lin
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Giulia Borghetti
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sandy T Baker
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jessica Pfleger
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sandra Blass
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Dirk von Lewinski
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Heiko Bugger
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Wolfgang F Graier
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
| | - Andreas Zirlik
- Division of Cardiology, Medical University of Graz, Graz 8036, Austria
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ruth Birner-Gruenberger
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center, Medical University of Graz, Graz 8036, Austria
- Institute of Pathology, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, Graz 8036, Austria
- Omics Center Graz, BioTechMed-Graz, Graz 8010, Austria
- Institute of Chemical Technology and Analytical Chemistry, Vienna University of Technology, Vienna 1060, Austria
| | - Marla R Wolfson
- CENTRe: Consortium for Environmental and Neonatal Therapeutics Research, Lewis Katz School of Medicine, Department of Physiology, Department of Thoracic Medicine and Surgery, Pediatrics, Center for Inflammation, Translational and Clinical Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Steven R Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
27
|
Jiang W, Agrawal DK, Boosani CS. Non-coding RNAs as Epigenetic Gene Regulators in Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:133-148. [PMID: 32285409 DOI: 10.1007/978-981-15-1671-9_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epigenetic gene regulations can be considered as de-novo initiation of abnormal molecular signaling events whose regulation is otherwise required during normal or specific developmental stages of the organisms. Primarily, three different mechanisms have been identified to participate in epigenetic gene regulations which include, DNA methylation, non-coding RNA species (microRNAs [miRNA], and long non-coding RNAs [LNC-RNA]) and histone modifications. These de-novo epigenetic mechanisms have been associated with altered normal cellular functions which eventually facilitate normal cells to transition into an abnormal phenotype. Among the three modes of regulation, RNA species which are usually considered to be less stable, can be speculated to initiate instant alterations in gene expression compared to DNA methylation or histone modifications. However, LNC-RNAs appear to be more stable in the cells than the other RNA species. Moreover, there is increasing literature which clearly suggests that a single specific LNC-RNA can regulate multiple mechanisms and disease phenotypes. With specific focus on cardiovascular diseases, here we attempt to provide UpToDate information on the functional role of miRNAs and LNC-RNAs. Here we discuss the role of these epigenetic mediators in different components of cardiovascular disease which include physiopathological heart development, athersclerosis, retenosis, diabetic hearts, myocardial infarction, ischemia-reperfusion, heart valve disease, aortic aneurysm, osteogenesis, angiogenesis and hypoxia in the heart. While there is abundant literature support that shows the involvement of many LNC-RNAs and miRNAs in cardiovascular diseases, very few RNA species have been identified which regulate epigenetic mechanisms which is the current focus in this article. Understanding the role of these RNA species in regulating epigenetic mechanisms in different cell types causing cardiovascular disease, would advance the field and promote disease prevention approaches that are aimed to target epigenetic mechanisms.
Collapse
Affiliation(s)
- Wanlin Jiang
- Department of Clinical & Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Devendra K Agrawal
- Department of Clinical & Translational Research, Western University of Health Sciences, Pomona, CA, USA
| | - Chandra Shekhar Boosani
- Department of Clinical & Translational Research, Western University of Health Sciences, Pomona, CA, USA.
| |
Collapse
|
28
|
Cowling RT, Kupsky D, Kahn AM, Daniels LB, Greenberg BH. Mechanisms of cardiac collagen deposition in experimental models and human disease. Transl Res 2019; 209:138-155. [PMID: 30986384 PMCID: PMC6996650 DOI: 10.1016/j.trsl.2019.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/19/2022]
Abstract
The inappropriate deposition of extracellular matrix within the heart (termed cardiac fibrosis) is associated with nearly all types of heart disease, including ischemic, hypertensive, diabetic, and valvular. This alteration in the composition of the myocardium can physically limit cardiomyocyte contractility and relaxation, impede electrical conductivity, and hamper regional nutrient diffusion. Fibrosis can be grossly divided into 2 types, namely reparative (where collagen deposition replaces damaged myocardium) and reactive (where typically diffuse collagen deposition occurs without myocardial damage). Despite the widespread association of fibrosis with heart disease and general understanding of its negative impact on heart physiology, it is still not clear when collagen deposition becomes pathologic and translates into disease symptoms. In this review, we have summarized the current knowledge of cardiac fibrosis in human patients and experimental animal models, discussing the mechanisms that have been deduced from the latter in relation to the former. Because assessment of the extent of fibrosis is paramount both as a research tool to further understanding and as a clinical tool to assess patients, we have also summarized the current state of noninvasive/minimally invasive detection systems for cardiac fibrosis. Albeit not exhaustive, our aim is to provide an overview of the current understanding of cardiac fibrosis, both clinically and experimentally.
Collapse
Affiliation(s)
- Randy T Cowling
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California.
| | - Daniel Kupsky
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Andrew M Kahn
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Lori B Daniels
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| | - Barry H Greenberg
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, California
| |
Collapse
|
29
|
Romanick SS, Ferguson BS. The nonepigenetic role for small molecule histone deacetylase inhibitors in the regulation of cardiac function. Future Med Chem 2019; 11:1345-1356. [PMID: 31161804 PMCID: PMC6714070 DOI: 10.4155/fmc-2018-0311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 02/07/2019] [Indexed: 12/12/2022] Open
Abstract
Eight million US adults are projected to suffer from heart failure (HF) by 2030. Of concern, 5-year mortality rates following HF diagnosis approximate 40%. Small molecule histone deacetylase (HDAC) inhibitors have demonstrated efficacy for the treatment and reversal of HF. Historically, HDACs were studied as regulators of nucleosomal histones, in which lysine deacetylation on histone tails changed DNA-histone protein electrostatic interactions, leading to chromatin condensation and changes in gene expression. However, recent proteomics studies have demonstrated that approximately 4500 proteins can be acetylated in various tissues; the function of most of these remains unknown. This Review will focus on the nonepigenetic role for lysine acetylation in the heart, with a focus on nonepigenetic actions for HDAC inhibitors on cardiac function.
Collapse
Affiliation(s)
- Samantha S Romanick
- Department of Pharmacology, University of Nevada Reno, Reno, NV 89557, USA
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA
- COBRE Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA
- COBRE Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
30
|
Habibian J, Ferguson BS. The Crosstalk between Acetylation and Phosphorylation: Emerging New Roles for HDAC Inhibitors in the Heart. Int J Mol Sci 2018; 20:E102. [PMID: 30597863 PMCID: PMC6337125 DOI: 10.3390/ijms20010102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/20/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
Approximately five million United States (U.S.) adults are diagnosed with heart failure (HF), with eight million U.S. adults projected to suffer from HF by 2030. With five-year mortality rates following HF diagnosis approximating 50%, novel therapeutic treatments are needed for HF patients. Pre-clinical animal models of HF have highlighted histone deacetylase (HDAC) inhibitors as efficacious therapeutics that can stop and potentially reverse cardiac remodeling and dysfunction linked with HF development. HDACs remove acetyl groups from nucleosomal histones, altering DNA-histone protein electrostatic interactions in the regulation of gene expression. However, HDACs also remove acetyl groups from non-histone proteins in various tissues. Changes in histone and non-histone protein acetylation plays a key role in protein structure and function that can alter other post translational modifications (PTMs), including protein phosphorylation. Protein phosphorylation is a well described PTM that is important for cardiac signal transduction, protein activity and gene expression, yet the functional role for acetylation-phosphorylation cross-talk in the myocardium remains less clear. This review will focus on the regulation and function for acetylation-phosphorylation cross-talk in the heart, with a focus on the role for HDACs and HDAC inhibitors as regulators of acetyl-phosphorylation cross-talk in the control of cardiac function.
Collapse
Affiliation(s)
- Justine Habibian
- Cellular and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| | - Bradley S Ferguson
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
- Center for Cardiovascular Research, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
31
|
Ye Y, Zhao X, Lu Y, Long B, Zhang S. Varinostat Alters Gene Expression Profiles in Aortic Tissues from ApoE -/- Mice. HUM GENE THER CL DEV 2018; 29:214-225. [PMID: 30284929 DOI: 10.1089/humc.2018.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis (AS) is a complex, chronic inflammatory disease that is characterized by plaque buildup within arterial vessel walls. Preclinical trials have suggested that vorinostat, a pan-histone deacetylase inhibitor (HDACi), reduces vascular inflammation and AS, but the underlying protective mechanism has not been fully elucidated. The present study aimed to identify altered gene expression profiles in aortic tissues from ApoE-/- mice after vorinostat treatment. Male ApoE-/- mice fed a high-fat diet were treated with either vorinostat or vehicle, and the aortic plaque area was quantified 8 weeks after treatment. Aortic tissues were collected from both the vorinostat group (n = 3) and vehicle group (n = 3) for deep sequencing of the cDNA to construct sRNA libraries. Oral administration of vorinostat significantly reduced plaque size in the ApoE-/- mice (p < 0.05). In total, 1,550 differentially expressed mRNAs, 56 differentially expressed miRNAs, and 381 differentially expressed lncRNAs were identified in the vorinostat group compared to the vehicle group. Subsequently, a global lncRNA-miRNA-mRNA triple network was constructed based on the competitive endogenous RNA (ceRNA) theory. The hepatitis C signaling pathway was significantly enriched among the differentially expressed mRNAs from the ceRNA network, which suggests that vorinostat has anti-inflammatory properties. Importantly, the identified target pair of mmu-miR-3075-5p/lncRNA-A330023F24Rik/Ldlr may regulate drug response. Upregulation of low-density lipid receptor (Ldlr) and lncRNA-A330023F24Rik and downregulation of mmu-miR-3075-5p were further verified by quantitative real-time polymerase chain reaction. To conclude, vorinostat reduced AS in ApoE-/- mice. Differentially expressed mRNA, lncRNAs, and miRNAs, as well as their interactions and pathways, were identified, which partially explain vorinostat's anti-atherosclerotic effects.
Collapse
Affiliation(s)
- Yicong Ye
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China.,2 Department of Department of Cardiology, Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| | - Xiliang Zhao
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| | - Yiyun Lu
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| | - Bo Long
- 3 Department of Central Laboratory, Chinese Academy of Medical College and Peking Union Medical College Hospital, Peking Union Medical College Hospital, Beijing, P.R. China
| | - Shuyang Zhang
- 1 Department of Cardiology and Beijing Anzhen Hospital and Capital Medical University, Beijing, P.R. China
| |
Collapse
|
32
|
Chen L, He X, Xie Y, Huang Y, Wolff DW, Abel PW, Tu Y. Up-regulated miR-133a orchestrates epithelial-mesenchymal transition of airway epithelial cells. Sci Rep 2018; 8:15543. [PMID: 30341388 PMCID: PMC6195555 DOI: 10.1038/s41598-018-33913-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) contributes to epithelial-mesenchymal transition (EMT) of cancer, but the pathological roles of miRNAs in airway EMT of lung diseases remains largely unknown. We performed sequencing and real-time PCR analysis of the miRNA expression profile of human airway epithelial cells undergoing EMT, and revealed miR-133a to be one of the most common up-regulated miRNAs. MiR-133a was previously reported to be persistently up-regulated in airway epithelial cells of smokers. We found that mice exposed to cigarette smoke (CS) showed airway hyper-responsiveness, a typical symptom occurring in CS-related lung diseases, up-regulation of miR-133a and EMT marker protein N-cadherin in airway epithelium. Importantly, miR-133a overexpression induces airway epithelial cells to undergo spontaneous EMT via down-regulation of grainyhead-like 2 (GRHL2), an epithelial specific transcriptional factor. Loss of GRHL2 causes down-regulation of epithelial splicing regulatory protein 1 (ESRP1), a central coordinator of alternative splicing processes that are critical in the regulation of EMT. Down-regulation of ESRP1 induces isoform switching of adherens junction-associated protein p120-catenin, and leads to the loss of E-cadherin. Our study is the first to demonstrate that up-regulated miR-133a orchestrates airway EMT via alternative splicing processes, which points to novel therapeutic possibilities for the treatment of CS-related lung disease.
Collapse
Affiliation(s)
- Linjie Chen
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Xiaobai He
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Yan Xie
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yapei Huang
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Dennis W Wolff
- Kansas City University of Medicine and Biosciences-Joplin, Joplin, MO, USA
| | - Peter W Abel
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA
| | - Yaping Tu
- Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
33
|
Li N, Zhou H, Tang Q. miR-133: A Suppressor of Cardiac Remodeling? Front Pharmacol 2018; 9:903. [PMID: 30174600 PMCID: PMC6107689 DOI: 10.3389/fphar.2018.00903] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/23/2018] [Indexed: 01/28/2023] Open
Abstract
Cardiac remodeling, which is characterized by mechanical and electrical remodeling, is a significant pathophysiological process involved in almost all forms of heart diseases. MicroRNAs (miRNAs) are a group of non-coding RNAs of 20–25 nucleotides in length that primarily regulate gene expression by promoting mRNA degradation or post-transcriptional repression in a sequence-specific manner. Three miR-133 genes have been identified in the human genome, miR-133a-1, miR-133a-2, and miR-133b, which are located on chromosomes 18, 20, and 6, respectively. These miRNAs are mainly expressed in muscle tissues and appear to repress the expression of non-muscle genes. Based on accumulating evidence, miR-133 participates in the proliferation, differentiation, survival, hypertrophic growth, and electrical conduction of cardiac cells, which are essential for cardiac fibrosis, cardiac hypertrophy, and arrhythmia. Nevertheless, the roles of miR-133 in cardiac remodeling are ambiguous, and the mechanisms are also sophisticated, involving many target genes and signaling pathways, such as RhoA, MAPK, TGFβ/Smad, and PI3K/Akt. Therefore, in this review, we summarize the critical roles of miR-133 and its potential mechanisms in cardiac remodeling.
Collapse
Affiliation(s)
- Ning Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Heng Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
34
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 559] [Impact Index Per Article: 79.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
35
|
Tao H, Song ZY, Ding XS, Yang JJ, Shi KH, Li J. Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification. Heart Fail Rev 2018; 23:789-799. [DOI: 10.1007/s10741-018-9694-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Duong TE, Hagood JS. Epigenetic Regulation of Myofibroblast Phenotypes in Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2018; 6:79-96. [PMID: 30271681 DOI: 10.1007/s40139-018-0155-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose of Review Myofibroblasts are the fundamental drivers of fibrosing disorders; there is great value in better defining epigenetic networks involved in myofibroblast behavior. Complex epigenetic paradigms, which are likely organ and/or disease specific, direct pathologic myofibroblast phenotypes. In this review, we highlight epigenetic regulators and the mechanisms through which they shape myofibroblast phenotype in fibrotic diseases of different organs. Recent Findings Hundreds of genes and their expression contribute to the myofibroblast transcriptional regime influencing myofibroblast phenotype. An increasingly large number of epigenetic modifications have been identified in the regulation of these signaling pathways driving myofibroblast activation and disease progression. Drugs that inhibit or reverse profibrotic epigenetic modifications have shown promise in vitro and in vivo; however, no current epigenetic therapies have been approved to treat fibrosis. Newly described epigenetic mechanisms will be mentioned, along with potential therapeutic targets and innovative strategies to further understand myofibroblast-directed fibrosis. Summary Epigenetic regulators that direct myofibroblast behavior and differentiation into pathologic myofibroblast phenotypes in fibrotic disorders comprise both overlapping and organ-specific epigenetic mechanisms.
Collapse
Affiliation(s)
- Thu Elizabeth Duong
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| | - James S Hagood
- Division of Pediatric Respiratory Medicine, University of California-San Diego, La Jolla, California.,Division of Respiratory Medicine, Rady Children's Hospital of San Diego, San Diego, California
| |
Collapse
|
37
|
De Majo F, Calore M. Chromatin remodelling and epigenetic state regulation by non-coding RNAs in the diseased heart. Noncoding RNA Res 2018; 3:20-28. [PMID: 30159436 PMCID: PMC6084839 DOI: 10.1016/j.ncrna.2018.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023] Open
Abstract
Epigenetics refers to all the changes in phenotype and gene expression which are not due to alterations in the DNA sequence. These mechanisms have a pivotal role not only in the development but also in the maintenance during adulthood of a physiological phenotype of the heart. Because of the crucial role of epigenetic modifications, their alteration can lead to the arise of pathological conditions. Heart failure affects an estimated 23 million people worldwide and leads to substantial numbers of hospitalizations and health care costs: ischemic heart disease, hypertension, rheumatic fever and other valve diseases, cardiomyopathy, cardiopulmonary disease, congenital heart disease and other factors may all lead to heart failure, either alone or in concert with other risk factors. Epigenetic alterations have recently been included among these risk factors as they can affect gene expression in response to external stimuli. In this review, we provide an overview of all the major classes of chromatin remodellers, providing examples of how their disregulation in the adult heart alters specific gene programs with subsequent development of major cardiomyopathies. Understanding the functional significance of the different epigenetic marks as points of genetic control may be useful for developing promising future therapeutic tools.
Collapse
Affiliation(s)
| | - M. Calore
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
38
|
Hathaway QA, Pinti MV, Durr AJ, Waris S, Shepherd DL, Hollander JM. Regulating microRNA expression: at the heart of diabetes mellitus and the mitochondrion. Am J Physiol Heart Circ Physiol 2018; 314:H293-H310. [PMID: 28986361 PMCID: PMC5867655 DOI: 10.1152/ajpheart.00520.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/20/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus is a major risk factor for cardiovascular disease and mortality. Uncontrolled type 2 diabetes mellitus results in a systemic milieu of increased circulating glucose and fatty acids. The development of insulin resistance in cardiac tissue decreases cellular glucose import and enhances mitochondrial fatty acid uptake. While triacylglycerol and cytotoxic lipid species begin to accumulate in the cardiomyocyte, the energy substrate utilization ratio of free fatty acids to glucose changes to almost entirely free fatty acids. Accumulating evidence suggests a role of miRNA in mediating this metabolic transition. Energy substrate metabolism, apoptosis, and the production and response to excess reactive oxygen species are regulated by miRNA expression. The current momentum for understanding the dynamics of miRNA expression is limited by a lack of understanding of how miRNA expression is controlled. While miRNAs are important regulators in both normal and pathological states, an additional layer of complexity is added when regulation of miRNA regulators is considered. miRNA expression is known to be regulated through a number of mechanisms, which include, but are not limited to, epigenetics, exosomal transport, processing, and posttranscriptional sequestration. The purpose of this review is to outline how mitochondrial processes are regulated by miRNAs in the diabetic heart. Furthermore, we will highlight the regulatory mechanisms, such as epigenetics, exosomal transport, miRNA processing, and posttranslational sequestration, that participate as regulators of miRNA expression. Additionally, current and future treatment strategies targeting dysfunctional mitochondrial processes in the diseased myocardium, as well as emerging miRNA-based therapies, will be summarized.
Collapse
Affiliation(s)
- Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Mark V Pinti
- Division of Pharmaceutical and Pharmacological Sciences, West Virginia School of Pharmacy , Morgantown, West Virginia
| | - Andrya J Durr
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| | - Shanawar Waris
- Department of Biomedical Engineering, West Virginia College of Engineering , Morgantown, West Virginia
| | - Danielle L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine , Morgantown, West Virginia
- Mitochondria, Metabolism, and Bioenergetics Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
- Toxicology Working Group, West Virginia University School of Medicine , Morgantown, West Virginia
| |
Collapse
|
39
|
Renaud L, Silveira WAD, Hazard ES, Simpson J, Falcinelli S, Chung D, Carnevali O, Hardiman G. The Plasticizer Bisphenol A Perturbs the Hepatic Epigenome: A Systems Level Analysis of the miRNome. Genes (Basel) 2017; 8:genes8100269. [PMID: 29027980 PMCID: PMC5664119 DOI: 10.3390/genes8100269] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/18/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023] Open
Abstract
Ubiquitous exposure to bisphenol A (BPA), an endocrine disruptor (ED), has raised concerns for both human and ecosystem health. Epigenetic factors, including microRNAs (miRNAs), are key regulators of gene expression during cancer. The effect of BPA exposure on the zebrafish epigenome remains poorly characterized. Zebrafish represents an excellent model to study cancer as the organism develops a disease that resembles human cancer. Using zebrafish as a systems toxicology model, we hypothesized that chronic BPA-exposure impacts the miRNome in adult zebrafish and establishes an epigenome more susceptible to cancer development. After a 3 week exposure to 100 nM BPA, RNA from the liver was extracted to perform high throughput mRNA and miRNA sequencing. Differential expression (DE) analyses comparing BPA-exposed to control specimens were performed using established bioinformatics pipelines. In the BPA-exposed liver, 6188 mRNAs and 15 miRNAs were differently expressed (q ≤ 0.1). By analyzing human orthologs of the DE zebrafish genes, signatures associated with non-alcoholic fatty liver disease (NAFLD), oxidative phosphorylation, mitochondrial dysfunction and cell cycle were uncovered. Chronic exposure to BPA has a significant impact on the liver miRNome and transcriptome in adult zebrafish with the potential to cause adverse health outcomes including cancer.
Collapse
Affiliation(s)
- Ludivine Renaud
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC),Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
| | - Willian A da Silveira
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - E Starr Hazard
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Library Science and Informatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Jonathan Simpson
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Silvia Falcinelli
- Dipartimento Scienze della Vita e dell'Ambiente, Universita Politecnica delle Marche, 60131 Ancona, Italy.
| | - Dongjun Chung
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| | - Oliana Carnevali
- Dipartimento Scienze della Vita e dell'Ambiente, Universita Politecnica delle Marche, 60131 Ancona, Italy.
| | - Gary Hardiman
- Division of Nephrology, Department of Medicine, Medical University of South Carolina (MUSC),Charleston, SC 29425, USA.
- Laboratory for Marine Systems Biology, Hollings Marine Laboratory, Charleston, SC 29412, USA.
- Center for Genomic Medicine, Bioinformatics, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
- Department of Medicine, University of California, La Jolla, CA 92093, USA.
- Department of Public Health Sciences, Medical University of South Carolina (MUSC), Charleston, SC 29425, USA.
| |
Collapse
|
40
|
Gošev I, Zeljko M, Đurić Ž, Nikolić I, Gošev M, Ivčević S, Bešić D, Legčević Z, Paić F. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenetics 2017; 9:106. [PMID: 29026447 PMCID: PMC5627415 DOI: 10.1186/s13148-017-0406-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Aortic valve stenosis is the most common cardiac valve disease, and with current trends in the population demographics, its prevalence is likely to rise, thus posing a major health and economic burden facing the worldwide societies. Over the past decade, it has become more than clear that our traditional genetic views do not sufficiently explain the well-known link between AS, proatherogenic risk factors, flow-induced mechanical forces, and disease-prone environmental influences. Recent breakthroughs in the field of epigenetics offer us a new perspective on gene regulation, which has broadened our perspective on etiology of aortic stenosis and other aortic valve diseases. Since all known epigenetic marks are potentially reversible this perspective is especially exciting given the potential for development of successful and non-invasive therapeutic intervention and reprogramming of cells at the epigenetic level even in the early stages of disease progression. This review will examine the known relationships between four major epigenetic mechanisms: DNA methylation, posttranslational histone modification, ATP-dependent chromatin remodeling, and non-coding regulatory RNAs, and initiation and progression of AS. Numerous profiling and functional studies indicate that they could contribute to endothelial dysfunctions, disease-prone activation of monocyte-macrophage and circulatory osteoprogenitor cells and activation and osteogenic transdifferentiation of aortic valve interstitial cells, thus leading to valvular inflammation, fibrosis, and calcification, and to pressure overload-induced maladaptive myocardial remodeling and left ventricular hypertrophy. This is especcialy the case for small non-coding microRNAs but was also, although in a smaller scale, convincingly demonstrated for other members of cellular epigenome landscape. Equally important, and clinically most relevant, the reported data indicate that epigenetic marks, particularly certain microRNA signatures, could represent useful non-invasive biomarkers that reflect the disease progression and patients prognosis for recovery after the valve replacement surgery.
Collapse
Affiliation(s)
- Igor Gošev
- Department of Surgery, University of Rochester Medical center, Rochester, NY USA
| | - Martina Zeljko
- Department of Cardiology, Clinical Unit of Internal Medicine, Clinical Hospital Merkur, Zajćeva 19, 10 000 Zagreb, Croatia
| | - Željko Đurić
- Department of Cardiac Surgery, University Hospital Center Zagreb, Kišpatićeva 12, 10 000 Zagreb, Croatia
| | - Ivana Nikolić
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115 USA
| | - Milorad Gošev
- School of Medicine, University of Josip Juraj Strossmayer, Trg Svetog trojstva 3, 31 000 Osijek, Croatia
| | - Sanja Ivčević
- Department of Physiology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Dino Bešić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Zoran Legčević
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Frane Paić
- Laboratory for Epigenetics and Molecular Medicine, Department of Biology, School of Medicine, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
41
|
Blakeslee WW, Lin YH, Stratton MS, Tatman PD, Hu T, Ferguson BS, McKinsey TA. Class I HDACs control a JIP1-dependent pathway for kinesin-microtubule binding in cardiomyocytes. J Mol Cell Cardiol 2017; 112:74-82. [PMID: 28886967 DOI: 10.1016/j.yjmcc.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 01/01/2023]
Abstract
Class I histone deacetylase (HDAC) inhibitors block hypertrophy and fibrosis of the heart by suppressing pathological signaling and gene expression programs in cardiac myocytes and fibroblasts. The impact of HDAC inhibition in unstressed cardiac cells remains poorly understood. Here, we demonstrate that treatment of cultured cardiomyocytes with small molecule HDAC inhibitors leads to dramatic induction of c-Jun amino-terminal kinase (JNK)-interacting protein-1 (JIP1) mRNA and protein expression. In contrast to prior findings, elevated levels of endogenous JIP1 in cardiomyocytes failed to significantly alter JNK signaling or cardiomyocyte hypertrophy. Instead, HDAC inhibitor-mediated induction of JIP1 was required to stimulate expression of the kinesin heavy chain family member, KIF5A. We provide evidence for an HDAC-dependent regulatory circuit that promotes formation of JIP1:KIF5A:microtubule complexes that regulate intracellular transport of cargo such as autophagosomes. These findings define a novel role for class I HDACs in the control of the JIP1/kinesin axis in cardiomyocytes, and suggest that HDAC inhibitors could be used to alter microtubule transport in the heart.
Collapse
Affiliation(s)
- Weston W Blakeslee
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Ying-Hsi Lin
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew S Stratton
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Philip D Tatman
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Medical Scientist Training Program, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Tianjing Hu
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Bradley S Ferguson
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Timothy A McKinsey
- Department of Medicine, Division of Cardiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA; Consortium for Fibrosis Research & Translation, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
42
|
Hawley ZCE, Campos-Melo D, Droppelmann CA, Strong MJ. MotomiRs: miRNAs in Motor Neuron Function and Disease. Front Mol Neurosci 2017; 10:127. [PMID: 28522960 PMCID: PMC5415563 DOI: 10.3389/fnmol.2017.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
MiRNAs are key regulators of the mammalian transcriptome that have been increasingly linked to degenerative diseases of the motor neurons. Although many of the miRNAs currently incriminated as participants in the pathogenesis of these diseases are also important to the normal development and function of motor neurons, at present there is no knowledge of the complete miRNA profile of motor neurons. In this review, we examine the current understanding with respect to miRNAs that are specifically required for motor neuron development, function and viability, and provide evidence that these should be considered as a functional network of miRNAs which we have collectively termed MotomiRs. We will also summarize those MotomiRs currently known to be associated with both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), and discuss their potential use as biomarkers.
Collapse
Affiliation(s)
- Zachary C E Hawley
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Danae Campos-Melo
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Cristian A Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| | - Michael J Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Pathology, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western UniversityLondon, ON, Canada
| |
Collapse
|
43
|
Ghosh AK, Rai R, Flevaris P, Vaughan DE. Epigenetics in Reactive and Reparative Cardiac Fibrogenesis: The Promise of Epigenetic Therapy. J Cell Physiol 2017; 232:1941-1956. [PMID: 27883184 DOI: 10.1002/jcp.25699] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/20/2022]
Abstract
Epigenetic changes play a pivotal role in the development of a wide spectrum of human diseases including cardiovascular diseases, cancer, diabetes, and intellectual disabilities. Cardiac fibrogenesis is a common pathophysiological process seen during chronic and stress-induced accelerated cardiac aging. While adequate production of extracellular matrix (ECM) proteins is necessary for post-injury wound healing, excessive synthesis and accumulation of extracellular matrix protein in the stressed or injured hearts causes decreased or loss of lusitropy that leads to cardiac failure. This self-perpetuating deposition of collagen and other matrix proteins eventually alter cellular homeostasis; impair tissue elasticity and leads to multi-organ failure, as seen during pathogenesis of cardiovascular diseases, chronic kidney diseases, cirrhosis, idiopathic pulmonary fibrosis, and scleroderma. In the last 25 years, multiple studies have investigated the molecular basis of organ fibrosis and highlighted its multi-factorial genetic, epigenetic, and environmental regulation. In this minireview, we focus on five major epigenetic regulators and discuss their central role in cardiac fibrogenesis. Additionally, we compare and contrast the epigenetic regulation of hypertension-induced reactive fibrogenesis and myocardial infarction-induced reparative or replacement cardiac fibrogenesis. As microRNAs-one of the major epigenetic regulators-circulate in plasma, we also advocate their potential diagnostic role in cardiac fibrosis. Lastly, we discuss the evolution of novel epigenetic-regulating drugs and predict their clinical role in the suppression of pathological cardiac remodeling, cardiac aging, and heart failure. J. Cell. Physiol. 232: 1941-1956, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Asish K Ghosh
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rahul Rai
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Panagiotis Flevaris
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Douglas E Vaughan
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
44
|
Al-Mohanna F. The Cardiokines. ENDOCRINOLOGY OF THE HEART IN HEALTH AND DISEASE 2017:87-114. [DOI: 10.1016/b978-0-12-803111-7.00004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
45
|
Piletič K, Kunej T. MicroRNA epigenetic signatures in human disease. Arch Toxicol 2016; 90:2405-19. [DOI: 10.1007/s00204-016-1815-7] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/04/2016] [Indexed: 01/27/2023]
|
46
|
Stratton MS, Lin CY, Anand P, Tatman PD, Ferguson BS, Wickers ST, Ambardekar AV, Sucharov CC, Bradner JE, Haldar SM, McKinsey TA. Signal-Dependent Recruitment of BRD4 to Cardiomyocyte Super-Enhancers Is Suppressed by a MicroRNA. Cell Rep 2016; 16:1366-1378. [PMID: 27425608 PMCID: PMC4972677 DOI: 10.1016/j.celrep.2016.06.074] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 12/20/2022] Open
Abstract
BRD4 governs pathological cardiac gene expression by binding acetylated chromatin, resulting in enhanced RNA polymerase II (Pol II) phosphorylation and transcription elongation. Here, we describe a signal-dependent mechanism for the regulation of BRD4 in cardiomyocytes. BRD4 expression is suppressed by microRNA-9 (miR-9), which targets the 3' UTR of the Brd4 transcript. In response to stress stimuli, miR-9 is downregulated, leading to derepression of BRD4 and enrichment of BRD4 at long-range super-enhancers (SEs) associated with pathological cardiac genes. A miR-9 mimic represses stimulus-dependent targeting of BRD4 to SEs and blunts Pol II phosphorylation at proximal transcription start sites, without affecting BRD4 binding to SEs that control constitutively expressed cardiac genes. These findings suggest that dynamic enrichment of BRD4 at SEs genome-wide serves a crucial role in the control of stress-induced cardiac gene expression and define a miR-dependent signaling mechanism for the regulation of chromatin state and Pol II phosphorylation.
Collapse
Affiliation(s)
- Matthew S Stratton
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Charles Y Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Priti Anand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Philip D Tatman
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado Denver, Aurora, CO 80045, USA
| | - Bradley S Ferguson
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Sean T Wickers
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Saptarsi M Haldar
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, UCSF School of Medicine, San Francisco, CA 94143, USA
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA; Medical Scientist Training Program, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
47
|
Lother A, Hein L. Pharmacology of heart failure: From basic science to novel therapies. Pharmacol Ther 2016; 166:136-49. [PMID: 27456554 DOI: 10.1016/j.pharmthera.2016.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 01/10/2023]
Abstract
Chronic heart failure is one of the leading causes for hospitalization in the United States and Europe, and is accompanied by high mortality. Current pharmacological therapy of chronic heart failure with reduced ejection fraction is largely based on compounds that inhibit the detrimental action of the adrenergic and the renin-angiotensin-aldosterone systems on the heart. More than one decade after spironolactone, two novel therapeutic principles have been added to the very recently released guidelines on heart failure therapy: the HCN-channel inhibitor ivabradine and the combined angiotensin and neprilysin inhibitor valsartan/sacubitril. New compounds that are in phase II or III clinical evaluation include novel non-steroidal mineralocorticoid receptor antagonists, guanylate cyclase activators or myosine activators. A variety of novel candidate targets have been identified and the availability of gene transfer has just begun to accelerate translation from basic science to clinical application. This review provides an overview of current pharmacology and pharmacotherapy in chronic heart failure at three stages: the updated clinical guidelines of the American Heart Association and the European Society of Cardiology, new drugs which are in clinical development, and finally innovative drug targets and their mechanisms in heart failure which are emerging from preclinical studies will be discussed.
Collapse
Affiliation(s)
- Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Heart Center, Department of Cardiology and Angiology I, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
48
|
|
49
|
Lkhagva B, Kao YH, Chen YC, Chao TF, Chen SA, Chen YJ. Targeting histone deacetylases: A novel therapeutic strategy for atrial fibrillation. Eur J Pharmacol 2016; 781:250-7. [PMID: 27089819 DOI: 10.1016/j.ejphar.2016.04.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/18/2016] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia associated with high mortality and morbidity. Current treatments of AF have limited efficacy and considerable side effects. Histone deacetylases (HDACs) play critical roles in the pathophysiology of cardiovascular diseases and contribute to the genesis of AF. Therefore, HDAC inhibition may prove a novel therapeutic strategy for AF through upstream therapy and modifications of AF electrical and structural remodeling. In this review, we provide an update of the knowledge of the effects of HDACs and HDAC inhibitors on AF, and dissect potential underlying mechanisms.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei, Taiwan
| | - Tze-Fan Chao
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Ann Chen
- Division of Cardiology and Cardiovascular Research Center, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
50
|
Chen YP, Wang J, Zhao K, Shang XJ, Wu HQ, Qing XR, Fang F, Zhang Y, Shang J, Li HG, Zhang HP, Guan HT, Zhou YZ, Gu YQ, Wu WX, Xiong CL. The plasma miR-125a, miR-361 and miR-133a are promising novel biomarkers for Late-Onset Hypogonadism. Sci Rep 2016; 6:23531. [PMID: 27000524 PMCID: PMC4802305 DOI: 10.1038/srep23531] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/08/2016] [Indexed: 12/27/2022] Open
Abstract
Circulating miRNAs have been shown to serve as diagnostic/prognostic biomarkers in cancers and other diseases. However, the role of plasma miRNAs in Late-onset hypogonadism (LOH) diagnosis is still unknown. Using Illumina HiSeq2000 sequencing at discovery phase, and then two-step validated by reverse transcriptase polymerase chain reaction (RT-PCR) assays in verification phases. We verified that the expression levels of miR-125a-5p, miR-361-5p and miR-133a-3p were significantly altered in LOH group compared to the control group. The area under the receiver operating characteristic (ROC) curve (AUC) is 0.682, 0.698 and 0.765, respectively. The combination of three miRNAs showed a larger AUC (0.835) that was more efficient for the diagnosis of LOH. Among three miRNAs, miR-133a-3p had the best diagnostic value for LOH with 68.2% sensitivity and 77.3% specificity. Regression analyses show that miR-133a-3p level was negatively associated with the ageing males’ symptoms (AMS) scale. However, miR-361-5p level was positively associated with serum testosterone concentrations. In summary, plasma miRNAs are differentially expressed between LOH and healthy controls. We validated three miRNAs that could act as novel biomarkers for diagnosis of LOH. These miRNAs may be involved in the development of LOH. However, further large and functional studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Yao-Ping Chen
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Center of Reproductive Medicine, General Hospital of Ningxia Medical University, Shengli South Street 804, Yinchuan, Ningxia 750004, China
| | - Ju Wang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Department of Histology and Embryology, School of Medicine, Shihezi University, North 2nd Road 59, Shihezi, Xinjiang 832002, China
| | - Kai Zhao
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Xue-Jun Shang
- Department of Andrology, Jinling Hospital, School of Medicine, Nanjing University, East Zhongshan Road 305, Nanjing 210002, China
| | - Hui-Qin Wu
- Emergency Department, General Hospital of Ningxia Medical University, Shengli South Street 804, Yinchuan, Ningxia 750004, China
| | - Xing-Rong Qing
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Fang Fang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yan Zhang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Jin Shang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| | - Hui-Ping Zhang
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| | - Huang-Tao Guan
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| | - Yuan-Zhong Zhou
- School of Public Health, Zunyi Medical University, Dalian Road 201, Zunyi, Guizhou 563099, China
| | - Yi-Qun Gu
- Key Laboratory of Male Reproductive Health, National Health and Family Planning Commission, National Research Institute for Family Planning, Da Hui Si Rd 12, Hai Dian District, Beijing 100081, China
| | - Wei-Xiong Wu
- Guangzhou Institute for Population and Family Planning, Xin Shi Xin Da road 93, Baiyun District, Guangzhou 510410, China
| | - Cheng-Liang Xiong
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, Sanyang Road 128, Wuhan 430013, China
| |
Collapse
|