1
|
Borger J, Zweck E, Moos C, Horn P, Voß F, Schultheiss H, Møller JE, Boeken U, Aubin H, Lichtenberg A, Kelm M, Roden M, Polzin A, Westenfeld R, Szendroedi J, Scheiber D. Myocardial inflammation is associated with impaired mitochondrial oxidative capacity in ischaemic cardiomyopathy. ESC Heart Fail 2025; 12:1246-1255. [PMID: 39477690 PMCID: PMC11911639 DOI: 10.1002/ehf2.15133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/29/2024] [Accepted: 10/05/2024] [Indexed: 03/18/2025] Open
Abstract
AIMS Myocardial inflammation and impaired mitochondrial oxidative capacity are hallmarks of heart failure (HF) pathophysiology. The extent of myocardial inflammation in patients suffering from ischaemic cardiomyopathy (ICM) or dilated cardiomyopathy (DCM) and its association with mitochondrial energy metabolism are unknown. We aimed at establishing a relevant role of cardiac inflammation in the impairment of mitochondrial energy production in advanced ischaemic and non-ischaemic HF. METHODS We included 81 patients with stage D HF (ICM, n = 44; DCM, n = 37) undergoing left ventricular assist device implantation (n = 59) or heart transplantation (n = 22) and obtained left ventricular tissue samples during open heart surgery. We quantified mitochondrial oxidative capacity, citrate synthase activity (CSA) and fibrosis and lymphocytic infiltration. We considered infiltration of >14 CD3+ cells/mm2 relevant inflammation. RESULTS Patients with ICM or DCM did not differ regarding age (61.5 ± 5.7 vs. 56.5 ± 12.7 years, P = 0.164), sex (86% vs. 84% male, P = 0.725), type 2 diabetes mellitus (34% vs. 18%, P = 0.126) or chronic kidney disease (8% vs. 11%, P = 0.994). ICM exhibited oxidative capacity reduced by 23% compared to DCM (108.6 ± 41.4 vs. 141.9 ± 59.9 pmol/(s*mg), P = 0.006). Maximum production of reactive oxygen species was not significantly different between ICM and DCM (0.59 ± 0.28 vs. 0.69 ± 0.36 pmol/(s*ml), P = 0.196). Mitochondrial content, detected by CSA, was lower in ICM (359.6 ± 164.1 vs. 503.0 ± 198.5 nmol/min/mg protein, P = 0.002). Notably, relevant inflammation was more common in ICM (27% vs. 6%, P = 0.024), and the absolute number of infiltrating leucocytes correlated with lower oxidative capacity (r = -0.296, P = 0.019). Fibrosis was more prevalent in ICM (20.9 ± 21.2 vs. 7.2 ± 5.6% of area, P = 0.002), but not associated with oxidative capacity (r = -0.13, P = 0.327). CONCLUSIONS More than every fourth ICM patient with advanced HF displays myocardial inflammation in the range of inflammatory cardiomyopathy associated with reduced mitochondrial oxidative capacity. Future studies may evaluate inflammation in ICM at earlier stages in standardised fashion to explore the therapeutic potential of immunosuppression to influence trajectories of HF in ICM.
Collapse
Affiliation(s)
- Julius Borger
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Department of Cardiovascular Surgery, University Heart Centre Freiburg, University Hospital Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
| | - Elric Zweck
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
| | - Constanze Moos
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Patrick Horn
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Fabian Voß
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | | | - Jacob Eifer Møller
- Department of Cardiology, Odense University Hospital, Odense, Denmark; Faculty of Health ScienceUniversity of Southern DenmarkOdenseDenmark
- The Heart Centre, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Udo Boeken
- Department of Cardiac Surgery, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Hug Aubin
- Department of Cardiac Surgery, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Malte Kelm
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Amin Polzin
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Ralf Westenfeld
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes ResearchHeinrich Heine UniversityDüsseldorfGermany
- German Centre for Diabetes Research (DZD e.V.), München‐Neuherberg, Partner DüsseldorfNeuherbergGermany
- Cardiovascular Research Institute Düsseldorf, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Division of Endocrinology and Diabetology, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
- Department of Internal Medicine I and Clinical ChemistryUniversity Hospital of HeidelbergHeidelbergGermany
- Institute for Diabetes and Cancer (IDC) & Joint Heidelberg‐IDC Translational Diabetes Program, Helmholtz Centre MunichNeuherbergGermany
| | - Daniel Scheiber
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich‐Heine UniversityDüsseldorfGermany
| |
Collapse
|
2
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
3
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2025; 22:183-198. [PMID: 39394525 PMCID: PMC12046608 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
4
|
Drazner MH, Bozkurt B, Cooper LT, Aggarwal NR, Basso C, Bhave NM, Caforio ALP, Ferreira VM, Heidecker B, Kontorovich AR, Martín P, Roth GA, Van Eyk JE. 2024 ACC Expert Consensus Decision Pathway on Strategies and Criteria for the Diagnosis and Management of Myocarditis: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2025; 85:391-431. [PMID: 39665703 DOI: 10.1016/j.jacc.2024.10.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
|
5
|
Vicenzetto C, Giordani AS, Menghi C, Baritussio A, Scognamiglio F, Pontara E, Bison E, Peloso-Cattini MG, Marcolongo R, Caforio ALP. Cellular Immunology of Myocarditis: Lights and Shades-A Literature Review. Cells 2024; 13:2082. [PMID: 39768171 PMCID: PMC11674465 DOI: 10.3390/cells13242082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium with heterogeneous etiology, clinical presentation, and prognosis; when it is associated with myocardial dysfunction, this identifies the entity of inflammatory cardiomyopathy. In the last few decades, the relevance of the immune system in myocarditis onset and progression has become evident, thus having crucial clinical relevance in terms of treatment and prognostic stratification. In fact, the advances in cardiac immunology have led to a better characterization of the cellular subtypes involved in the pathogenesis of inflammatory cardiomyopathy, whether the etiology is infectious or autoimmune/immune-mediated. The difference in the clinical course between spontaneous recovery to acute, subacute, or chronic progression to end-stage heart failure may be explained not only by classical prognostic markers but also through immune-pathological mechanisms at a cellular level. Nevertheless, much still needs to be clarified in terms of immune characterization and molecular mechanisms especially in biopsy-proven myocarditis. The aims of this review are to (1) describe inflammatory cardiomyopathy etiology, especially immune-mediated/autoimmune forms, (2) analyze recent findings on the role of different immune cells subtypes in myocarditis, (3) illustrate the potential clinical relevance of such findings, and (4) highlight the need of further studies in pivotal areas of myocarditis cellular immunology.
Collapse
Affiliation(s)
- Cristina Vicenzetto
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Caterina Menghi
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Federico Scognamiglio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Elena Pontara
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Elisa Bison
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Maria Grazia Peloso-Cattini
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Renzo Marcolongo
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alida Linda Patrizia Caforio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
6
|
Wen J, Li H, Zhou Y, Du H, Hu G, Wen Z, Tang D, Wang Y, Cui X, Zhou Z, Wang DW, Chen C. Immunoglobin attenuates fulminant myocarditis by inhibiting overactivated innate immune response. Br J Pharmacol 2024. [PMID: 39442535 DOI: 10.1111/bph.17372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/08/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND AND PURPOSE Fulminant myocarditis (FM) is a myocardial inflammatory disease that can result from either viral diseases or autoimmune diseases. In this study, we have determined the treatment effects of immunomodulatory drugs on FM. EXPERIMENTAL APPROACH FM was induced in A/JGpt mice by intraperitoneal administration of coxsackievirus B3, after which immunoglobins were administered daily by intraperitoneal injection. On the seventh day, the cardiac structure and function were determined using echocardiography and cardiac catheterisation. Single-cell RNA sequencing (scRNA-seq) was performed to evaluate CD45+ cells in the heart. KEY RESULTS Immunoglobin, a typical immunomodulatory drug, dramatically reduced mortality and significantly improved cardiac function in mice with FM. ScRNA-seq revealed that immunoglobin treatment effectively modulated cardiac immune homeostasis, particularly by attenuating overactivated innate immune responses. At the cellular level, immunoglobin predominantly targeted Plac8+ monocytes and S100a8+ neutrophils, suppressing their proinflammatory activities, and enhancing antigen processing and presentation capabilities, thereby amplifying the efficiency and potency of the immune response against the virus. Immunoglobin benefits are mediated by the modulation of multiple signalling pathways, including relevant receptors on immune cells, direction of inflammatory cell chemotaxis, antigen presentation and anti-viral effects. Subsequently, Bst2-ILT7 ligand-receptor-mediated cellular interactions manipulated by immunoglobin were further confirmed in vivo. CONCLUSIONS AND IMPLICATIONS Immunoglobin treatment significantly attenuated FM-induced cardiac inflammation and improved cardiac function by inhibiting overactivated innate immune responses.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Huihui Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yufei Zhou
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Hengzhi Du
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guo Hu
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Du Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Yanwen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xinwu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| |
Collapse
|
7
|
Verdonschot JAJ, Fuster JJ, Walsh K, Heymans SRB. The emerging role of clonal haematopoiesis in the pathogenesis of dilated cardiomyopathy. Eur Heart J 2024; 45:ehae682. [PMID: 39417710 PMCID: PMC11638724 DOI: 10.1093/eurheartj/ehae682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The increased sensitivity of novel DNA sequencing techniques has made it possible to identify somatic mutations in small circulating clones of haematopoietic stem cells. When the mutation affects a 'driver' gene, the mutant clone gains a competitive advantage and has the potential to expand over time, a phenomenon referred to as clonal haematopoiesis (CH), which is emerging as a new risk factor for various non-haematological conditions, most notably cardiovascular disease (e.g. heart failure). Dilated cardiomyopathy (DCM) is a form of non-ischaemic heart failure that is characterized by a heterogeneous aetiology. The first evidence is arising that CH plays an important role in the disease course in patients with DCM, and a strong association of CH with multiple aetiologies of DCM has been described (e.g. inflammation, chemotherapy, and atrial fibrillation). The myocardial inflammation induced by CH may be an important trigger for DCM development for an already susceptible heart, e.g. in the presence of genetic variants, environmental triggers, and comorbidities. Studies investigating the role of CH in the pathogenesis of DCM are expected to increase rapidly. To move the field forward, it will be important to report the methodology and results in a standardized manner, so results can be combined and compared. The accurate measurement of CH in patients with DCM can provide guidance of specific (anti-inflammatory) therapies, as mutations in the CH driver genes prime the inflammasome pathway.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, the Netherlands
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Jose J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, 28029 Madrid, Spain
- CIBER en Enfermedades Cardiovasculares (CIBER-CV), Av. Monforte de Lemos, 3-5. Pabellón 11, Planta 0, 28029 Madrid, Spain
| | - Kenneth Walsh
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, Hematovascular Biology Center, University of Virginia School of Medicine, 415 Lane Rd, Suite 1010, PO Box 801394, Charlottesville, VA, USA
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University, Cardiovascular Research Institute Maastricht (CARIM), P.O. Box 616, 6200 MD Maastricht, the Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Science, Katholieke Universiteit Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
8
|
McNamara DM, Cooper LT, Arbel Y, Bhimaraj A, Bocchi E, Friedrich MG, Kerneis M, Liu P, Parker AB, Smith ER, Tang WHW, Torre‐Amione G, Tschöpe C. Impact of cannabidiol on myocardial recovery in patients with acute myocarditis: Rationale & design of the ARCHER trial. ESC Heart Fail 2024; 11:3416-3424. [PMID: 38937900 PMCID: PMC11424368 DOI: 10.1002/ehf2.14889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
AIMS Acute myocarditis, although a rare disease, can be associated with sudden cardiac death or the need for transplantation in both children and young adults. To date, there is no definitive evidence to support the routine use of immunosuppressive therapy or treatment targeting inflammation in patients with myocarditis. Animal models of cardiovascular (CV), as well as neurological diseases, have demonstrated that cannabidiol has significant anti-inflammatory properties and may represent a promising therapy in acute myocarditis. This efficacy has been shown in a murine model of autoimmune myocarditis as well as in in vitro and in vivo models of heart failure (HF). METHODS AND RESULTS We present the rationale and design of the ARCHER Trial, an international multicentre, double-blind, randomized, placebo-controlled, phase II study examining the safety and efficacy of a pharmaceutically produced cannabidiol formulation, in patients with mild to moderate acute myocarditis. Eligible patients are those with acute myocarditis, randomized within 10 days of the diagnostic cardiac MRI (CMR), which has met defined diagnostic criteria for myocarditis. Oral treatment (cannabidiol or placebo) is titrated from 2.5 mg/kg of body weight up to 10 mg/kg of body weight b.i.d. (or highest tolerated dose) and taken for 12 weeks in addition to standard of care therapy for HF. The primary endpoints are defined as changes in global longitudinal strain (GLS) and extra cellular volume (ECV), measured by CMR at 12 weeks. Assuming 80% power, a 5% alpha risk and 25% missing CMR follow-up data at Week 12, 100 patients are required to demonstrate the desired treatment effect of 18%. The change in left ventricular ejection fraction (LVEF) from baseline to Week 12 was selected as the secondary endpoint. Additional exploratory endpoints include changes in hs-troponin, NT-proBNP, markers of inflammation and endothelial function during the 12-week treatment period. The trial is ongoing but is now more than 50% recruited. As enrolment in the trial continues, no interim data are available for inclusion in this Design paper. CONCLUSIONS The ongoing ARCHER Trial is an international, multicentre, double-blind, randomized, placebo-controlled phase II study, designed to determine the effect of a pharmaceutically produced cannabidiol formulation on CMR parameters in patients presenting with acute myocarditis. Enrolment of 100 patients is expected to conclude in Q3 2024. Study results will be available in early 2025.
Collapse
Affiliation(s)
- Dennis M. McNamara
- Center for Heart FailureUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Leslie T. Cooper
- Department of Cardiovascular MedicineMayo Clinic College of Medicine and ScienceJacksonvilleFloridaUSA
| | - Yaron Arbel
- Sourasky Medical CenterTel Aviv UniversityTel AvivIsrael
| | - Arvind Bhimaraj
- Houston Methodist HospitalHoustonTexasUSA
- Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Edimar Bocchi
- Instituto do Coração Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Matthias G. Friedrich
- Departments of Medicine and Diagnostic Radiology, Research Institute of the McGill University Health CentreMcGill UniversityMontrealCanada
- Department of CardiologyUniversitätsklinikum HeidelbergHeidelbergGermany
- Department of Cardiac Sciences and RadiologyUniversity of CalgaryCalgaryCanada
| | - Matthieu Kerneis
- Pitié Salpêtrière HospitalParisFrance
- Sorbonne UniversityParisFrance
- ACTION Study GroupParisFrance
| | - Peter Liu
- University of Ottawa Heart InstituteOttawaCanada
| | | | | | - W. H. Wilson Tang
- Heart Vascular and Thoracic InstituteCleveland ClinicClevelandOhioUSA
| | - Guillermo Torre‐Amione
- Instituto de Cardiologia, Hospital Zambrano‐HellionEscuela de Medicina y Ciencias de la Salud, Tecnologico de MonterreyMonterreyMexico
| | - Carsten Tschöpe
- Department of Cardiology, Angiology and Intensive Medicine, Deutsches Herzzentrum der Charité (DHZC)Campus Virchow (CVK)BerlinGermany
- Berlin Institute of Health (BIH) at Charité – Center for Regenerative Therapies (BCRT)BerlinGermany
- German Center for Cardiovascular Research (DZHK); Partner Site BerlinCharité UniversityBerlinGermany
| | | |
Collapse
|
9
|
Shirozu H, Ishikawa Y, Kan N. Genetic dilated cardiomyopathy with inflammation in an infant that responded to immunosuppressive therapy evaluated using cardiovascular magnetic resonance. Cardiol Young 2024; 34:1352-1354. [PMID: 38604751 DOI: 10.1017/s1047951124000751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Cardiovascular magnetic resonance T1 and T2 mapping reflects inflammation, fibrosis, and myocardial oedema. However, its application in infants remains uncertain. Herein, we report a three-month-old boy with dilated cardiomyopathy successfully treated with steroids. Cardiovascular magnetic resonance was useful for diagnosis based on the elevated native T1, T2, and extracellular volume and evaluation of response to immunosuppressive therapy in infantile inflammatory dilated cardiomyopathy.
Collapse
Affiliation(s)
- Hiromitsu Shirozu
- Department of Pediatric Cardiology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Yuichi Ishikawa
- Department of Pediatric Cardiology, Fukuoka Children's Hospital, Fukuoka, Japan
| | - Nobuhiko Kan
- Department of Pediatric Cardiology, Fukuoka Children's Hospital, Fukuoka, Japan
| |
Collapse
|
10
|
Vicenzetto C, Giordani AS, Menghi C, Baritussio A, Peloso Cattini MG, Pontara E, Bison E, Rizzo S, De Gaspari M, Basso C, Thiene G, Iliceto S, Marcolongo R, Caforio ALP. The Role of the Immune System in Pathobiology and Therapy of Myocarditis: A Review. Biomedicines 2024; 12:1156. [PMID: 38927363 PMCID: PMC11200507 DOI: 10.3390/biomedicines12061156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/18/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
The role of the immune system in myocarditis onset and progression involves a range of complex cellular and molecular pathways. Both innate and adaptive immunity contribute to myocarditis pathogenesis, regardless of its infectious or non-infectious nature and across different histological and clinical subtypes. The heterogeneity of myocarditis etiologies and molecular effectors is one of the determinants of its clinical variability, manifesting as a spectrum of disease phenotype and progression. This spectrum ranges from a fulminant presentation with spontaneous recovery to a slowly progressing, refractory heart failure with ventricular dysfunction, to arrhythmic storm and sudden cardiac death. In this review, we first examine the updated definition and classification of myocarditis at clinical, biomolecular and histopathological levels. We then discuss recent insights on the role of specific immune cell populations in myocarditis pathogenesis, with particular emphasis on established or potential therapeutic applications. Besides the well-known immunosuppressive agents, whose efficacy has been already demonstrated in human clinical trials, we discuss the immunomodulatory effects of other drugs commonly used in clinical practice for myocarditis management. The immunological complexity of myocarditis, while presenting a challenge to simplistic understanding, also represents an opportunity for the development of different therapeutic approaches with promising results.
Collapse
Affiliation(s)
- Cristina Vicenzetto
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Andrea Silvio Giordani
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Caterina Menghi
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Anna Baritussio
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Maria Grazia Peloso Cattini
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Elena Pontara
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Elisa Bison
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Stefania Rizzo
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Monica De Gaspari
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Gaetano Thiene
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy (G.T.)
| | - Sabino Iliceto
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Renzo Marcolongo
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| | - Alida Linda Patrizia Caforio
- Cardiology and Cardioimmunology Laboratory, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy; (C.V.); (R.M.)
| |
Collapse
|
11
|
Kuchynka P, Krejci J, Palecek T. Tailored immunosuppression in biopsy-proven immune-mediated myocarditis. Eur J Heart Fail 2024; 26:1186-1188. [PMID: 38700444 DOI: 10.1002/ejhf.3276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Petr Kuchynka
- 2nd Department of Medicine, Department of Cardiovascular Medicine, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| | - Jan Krejci
- Department of Cardiovascular Diseases, St. Anne's University Hospital and Masaryk University Brno, Brno, Czech Republic
| | - Tomas Palecek
- 2nd Department of Medicine, Department of Cardiovascular Medicine, First Faculty of Medicine, General University Hospital in Prague, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Jiang J, Shu H, Wang DW, Hui R, Li C, Ran X, Wang H, Zhang J, Nie S, Cui G, Xiang D, Shao Q, Xu S, Zhou N, Li Y, Gao W, Chen Y, Bian Y, Wang G, Xia L, Wang Y, Zhao C, Zhang Z, Zhao Y, Wang J, Chen S, Jiang H, Chen J, Du X, Chen M, Sun Y, Li S, Ding H, Ma X, Zeng H, Lin L, Zhou S, Ma L, Tao L, Chen J, Zhou Y, Guo X. Chinese Society of Cardiology guidelines on the diagnosis and treatment of adult fulminant myocarditis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:913-939. [PMID: 38332216 DOI: 10.1007/s11427-023-2421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/25/2023] [Indexed: 02/10/2024]
Abstract
Fulminant myocarditis is an acute diffuse inflammatory disease of myocardium. It is characterized by acute onset, rapid progress and high risk of death. Its pathogenesis involves excessive immune activation of the innate immune system and formation of inflammatory storm. According to China's practical experience, the adoption of the "life support-based comprehensive treatment regimen" (with mechanical circulation support and immunomodulation therapy as the core) can significantly improve the survival rate and long-term prognosis. Special emphasis is placed on very early identification,very early diagnosis,very early prediction and very early treatment.
Collapse
Affiliation(s)
- Jiangang Jiang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hongyang Shu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dao Wen Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rutai Hui
- Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Chenze Li
- Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
| | - Xiao Ran
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Zhang
- Fuwai Huazhong Cardiovascular Hospital, Zhengzhou, 450003, China
| | - Shaoping Nie
- Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Guanglin Cui
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingcheng Xiang
- Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, 510010, China
| | - Qun Shao
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shengyong Xu
- Union Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ning Zhou
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuming Li
- Taida Hospital, Tianjin, 300457, China
| | - Wei Gao
- Peking University Third Hospital, Beijing, 100191, China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yuan Bian
- Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Guoping Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liming Xia
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chunxia Zhao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiren Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yuhua Zhao
- Kanghua Hospital, Dongguan, Guangzhou, 523080, China
| | - Jianan Wang
- Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shaoliang Chen
- Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Hong Jiang
- Renmin Hospital of Wuhan University, Wuhan, 430060, Wuhan, China
| | - Jing Chen
- Renmin Hospital of Wuhan University, Wuhan, 430060, Wuhan, China
| | - Xianjin Du
- Renmin Hospital of Wuhan University, Wuhan, 430060, Wuhan, China
| | - Mao Chen
- West China Hospital, Sichuan University, Chengdu, 610044, China
| | - Yinxian Sun
- First Hospital of China Medical University, Shenyang, 110002, China
| | - Sheng Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hu Ding
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xueping Ma
- General Hospital of Ningxia Medical University, Yinchuan, 750003, China
| | - Hesong Zeng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Lin
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shenghua Zhou
- The Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Likun Ma
- The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230002, China
| | - Ling Tao
- The First Affiliated Hospital of Air Force Medical University, Xi'an, 710032, China
| | - Juan Chen
- Central Hospital of Wuhan City, Wuhan, 430014, China
| | - Yiwu Zhou
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Guo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
13
|
Caforio ALP, Giordani AS, Baritussio A, Marcolongo D, Vicenzetto C, Tarantini G, Napodano M, Toscano G, Gregori D, Brigiari G, Bartolotta P, Carturan E, De Gaspari M, Rizzo S, Basso C, Iliceto S, Marcolongo R. Long-term efficacy and safety of tailored immunosuppressive therapy in immune-mediated biopsy-proven myocarditis: A propensity-weighted study. Eur J Heart Fail 2024; 26:1175-1185. [PMID: 38629741 DOI: 10.1002/ejhf.3220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 06/27/2024] Open
Abstract
AIMS Standardized immunosuppressive therapy (IS) had been previously investigated in biopsy-proven (BP) lymphocytic myocarditis with heart failure (HF). This study evaluated efficacy and safety of tailored IS in BP immune-mediated myocarditis, irrespective of histology and clinical presentation. METHODS AND RESULTS Consecutive BP myocarditis patients treated with long-term tailored IS on top of optimal medical therapy (OMT), were compared with OMT non-IS controls using propensity-score weighting. The primary outcome was a composite of death or heart transplant, the secondary outcome was a composite of biventricular function, New York Heart Association (NYHA) class variation, and relapse. IS was managed by a multidisciplinary Cardioimmunology Team, involved a safety checklist and active patients' education. Ninety-one IS patients were compared with 267 non-IS patients. IS patients more frequently had systemic immune-mediated diseases (35% vs. 9.7%), lower baseline echocardiographic left ventricular ejection fraction (35% vs. 43%), lower right ventricular fractional area change (34% vs. 41%) and higher frequency of active lymphocytic, eosinophilic and giant cell myocarditis (71% vs. 58%, 12% vs. 1.1%, and 6.6% vs. 1.5%, respectively). At 5-year follow up, no difference was observed in the primary outcome (survival rate 93% in IS vs. 87% in non-IS), but IS patients had a higher relapse rate. Thus, IS patients, with a lower biventricular function and a higher risk profile at baseline, presented similar biventricular function and NYHA class to non-IS patients at follow-up. Minor adverse drug reactions occurred in 13% of patients, all resolved with therapy switch. CONCLUSIONS Prolonged tailored IS is effective and safe in BP immune-mediated myocarditis irrespective of histology and clinical presentation.
Collapse
Affiliation(s)
- Alida Linda Patrizia Caforio
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Davide Marcolongo
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Cristina Vicenzetto
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giuseppe Tarantini
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Massimo Napodano
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giuseppe Toscano
- Cardiac Surgery, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dario Gregori
- Statistics, Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Gloria Brigiari
- Statistics, Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Patrizia Bartolotta
- Statistics, Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Elisa Carturan
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Monica De Gaspari
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Stefania Rizzo
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Sabino Iliceto
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Renzo Marcolongo
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
14
|
Scheel PJ, Cartella I, Murray B, Gilotra NA, Ammirati E. Role of genetics in inflammatory cardiomyopathy. Int J Cardiol 2024; 400:131777. [PMID: 38218248 DOI: 10.1016/j.ijcard.2024.131777] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Traditional cardiomyopathy paradigms segregate inflammatory etiologies from those caused by genetic variants. An identified or presumed trigger is implicated in acute myocarditis or chronic inflammatory cardiomyopathy but growing evidence suggests a significant proportion of patients have an underlying cardiomyopathy-associated genetic variant often even when a clear inflammatory trigger is identified. Recognizing a possible genetic contribution to inflammatory cardiomyopathy may have major downstream implications for both the patient and family. The presenting features of myocarditis (i.e. chest pain, arrhythmia, and/or heart failure) may provide insight into diagnostic considerations. One example is isolated cardiac sarcoidosis, a distinct inflammatory cardiomyopathy that carries diagnostic challenges and clinical overlap; genetic testing has increasingly reclassified cases of isolated cardiac sarcoidosis as genetic cardiomyopathy, notably altering management. On the other side, inflammatory presentations of genetic cardiomyopathies are likewise underappreciated and a growing area of investigation. Inflammation plays an important role in the pathogenesis of several familial cardiomyopathies, especially arrhythmogenic phenotypes. Given these clinical scenarios, and the implications on clinical decision making such as initiation of immunosuppression, sudden cardiac death prevention, and family screening, it is important to recognize when genetics may be playing a role.
Collapse
Affiliation(s)
- Paul J Scheel
- Division of Cardiology, Department of Medicine, Johns Hopkins University, USA.
| | - Iside Cartella
- De Gasperis Cardio Center, Transplant Center, Niguarda Hospital, Milano, Italy; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, USA
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University, USA
| | - Enrico Ammirati
- De Gasperis Cardio Center, Transplant Center, Niguarda Hospital, Milano, Italy; Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
15
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
16
|
Baritussio A, Cheng CY, Simeti G, Ocagli H, Lorenzoni G, Giordani AS, Basso C, Rizzo S, De Gaspari M, Motta R, De Conti G, Perazzolo Marra M, Tarantini G, Iliceto S, Gregori D, Marcolongo R, Caforio ALP. CMR Predictors of Favorable Outcome in Myocarditis: A Single-Center Experience. J Clin Med 2024; 13:1229. [PMID: 38592081 PMCID: PMC10932433 DOI: 10.3390/jcm13051229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Cardiovascular magnetic resonance (CMR) has emerged as the most accurate, non-invasive method to support the diagnosis of clinically suspected myocarditis and as a risk-stratification tool in patients with cardiomyopathies. We aim to assess the diagnostic and prognostic role of CMR at diagnosis in patients with myocarditis. Methods: We enrolled consecutive single-center patients with 2013 ESC consensus-based endomyocardial biopsy (EMB)-proven or clinically suspected myocarditis undergoing CMR at diagnosis. The pre-specified outcome was defined as NYHA class > I and echocardiographic left ventricular ejection fraction (LVEF) < 50% at follow-up. Results: We included 207 patients (74% male, median age 36 years; 25% EMB-proven). CMR showed the highest sensitivity in myocarditis with infarct-like presentation. Patients with EMB-proven myocarditis were more likely to have diffuse LGE and right ventricular LGE (p < 0.001), which was also more common among patients with arrhythmic presentation (p = 0.001). The outcome was met in 17 patients at any follow-up time point, more commonly in those with larger biventricular volumes (p < 0.001), CMR-based diagnosis of dilated cardiomyopathy (p < 0.001), and ischemic LGE (p = 0.005). Higher biventricular systolic function (p < 0.001) and greater LGE extent (p = 0.033) at diagnosis had a protective effect. Conclusions: In our single-center cohort of rigorously defined myocarditis patients, higher biventricular systolic function and greater LGE extent on CMR at diagnosis identified patients with better functional class and higher left ventricular ejection fraction at follow-up. Conversely, larger biventricular volumes, CMR-based DCM features, and the presence of an ischemic LGE pattern at diagnosis were predictors of worse functional class and LV systolic dysfunction at follow-up. Larger prospective studies are warranted to extend our findings to multi-center cohorts.
Collapse
Affiliation(s)
- Anna Baritussio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Chun-Yan Cheng
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Giuseppe Simeti
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Honoria Ocagli
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy
| | - Giulia Lorenzoni
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy
| | - Andrea Silvio Giordani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Cristina Basso
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Stefania Rizzo
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Monica De Gaspari
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Raffaella Motta
- Radiology Unit, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy
| | - Giorgio De Conti
- Radiology Unit, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Giuseppe Tarantini
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Dario Gregori
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35131 Padua, Italy
| | - Renzo Marcolongo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| | - Alida Linda Patrizia Caforio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua and Azienda Ospedale Università Padova, 35128 Padua, Italy; (A.B.); (R.M.)
| |
Collapse
|
17
|
Panagiotides NG, Poledniczek M, Andreas M, Hülsmann M, Kocher AA, Kopp CW, Piechota-Polanczyk A, Weidenhammer A, Pavo N, Wadowski PP. Myocardial Oedema as a Consequence of Viral Infection and Persistence-A Narrative Review with Focus on COVID-19 and Post COVID Sequelae. Viruses 2024; 16:121. [PMID: 38257821 PMCID: PMC10818479 DOI: 10.3390/v16010121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microvascular integrity is a critical factor in myocardial fluid homeostasis. The subtle equilibrium between capillary filtration and lymphatic fluid removal is disturbed during pathological processes leading to inflammation, but also in hypoxia or due to alterations in vascular perfusion and coagulability. The degradation of the glycocalyx as the main component of the endothelial filtration barrier as well as pericyte disintegration results in the accumulation of interstitial and intracellular water. Moreover, lymphatic dysfunction evokes an increase in metabolic waste products, cytokines and inflammatory cells in the interstitial space contributing to myocardial oedema formation. This leads to myocardial stiffness and impaired contractility, eventually resulting in cardiomyocyte apoptosis, myocardial remodelling and fibrosis. The following article reviews pathophysiological inflammatory processes leading to myocardial oedema including myocarditis, ischaemia-reperfusion injury and viral infections with a special focus on the pathomechanisms evoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In addition, clinical implications including potential long-term effects due to viral persistence (long COVID), as well as treatment options, are discussed.
Collapse
Affiliation(s)
- Noel G. Panagiotides
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Martin Hülsmann
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Alfred A. Kocher
- Department of Cardiac Surgery, Medical University of Vienna, 1090 Vienna, Austria; (M.A.); (A.A.K.)
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Annika Weidenhammer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Noemi Pavo
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (N.G.P.); (M.P.); (M.H.); (A.W.); (N.P.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria;
| |
Collapse
|
18
|
Dawi J, Affa S, Misakyan Y, Fardeheb S, Kades S, Kiriaki A, Mohan AS, Norris B, Yoon S, Venketaraman V. Exploring cardiovascular implications in systemic lupus erythematosus: A holistic analysis of complications, diagnostic criteria, and therapeutic modalities, encompassing pharmacological and adjuvant approaches. Biomol Concepts 2024; 15:bmc-2022-0051. [PMID: 39603656 PMCID: PMC11994118 DOI: 10.1515/bmc-2022-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Systemic lupus erythematosus (SLE) poses a diagnostic challenge due to its heterogeneity. This study examines the cardiac complications of SLE comprehensively, covering pericarditis, myocarditis, pleural effusion, valvular disease, atherosclerosis, and cardiac arrhythmias. Nearly one-third of SLE-related deaths are attributed to cardiovascular diseases, necessitating a deeper understanding of cardiac pathophysiology. The impact of SLE on the cardiovascular system manifests in various ways, including recurrent and resistant pericarditis, severe myocarditis, and pleural effusion. Valvular diseases, atherosclerosis, and cardiac arrhythmias are prevalent, with immune complex deposition playing a role in atherosclerosis. Diagnostic criteria involve clinical features, laboratory findings, and autoantibodies, emphasizing the need for early diagnosis and a multidisciplinary diagnostic approach. The review explores pharmacological and non-pharmacological modalities for managing cardiac manifestations in SLE. Recommendations include NSAIDs, colchicine, and proton pump inhibitors for acute pericarditis, while selective immunosuppressive therapy is emerging for myocarditis. Valvular diseases require individualized treatment approaches, and careful corticosteroid management is crucial to avoid increased cardiovascular events. Anti-malarial therapy, particularly hydroxychloroquine, shows promise in mitigating cardiovascular risk factors. Non-pharmacological modifications, such as diet, exercise, and smoke cessation, significantly contribute to cardiovascular health in SLE patients. Adjuvant therapies involving glutathione and glutathione peroxidase focus on redox balance, offering potential interventions. This integrated approach combines diagnostic insights with diverse treatment modalities, providing a holistic strategy for managing cardiac complications in SLE. Ongoing research is essential to refine these strategies and optimize individualized treatment plans for improved patient outcomes.
Collapse
Affiliation(s)
- John Dawi
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Scarlet Affa
- Los Angeles Valley College, Valley Glen, CA, 91401, United States of America
| | - Yura Misakyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Sabrina Fardeheb
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Samuel Kades
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Anthony Kiriaki
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Aishvaryaa Shree Mohan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Brandon Norris
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Sonyeol Yoon
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, 91766, United States of America
| |
Collapse
|
19
|
Aleshcheva G, Baumeier C, Harms D, Bock C, Escher F, Schultheiss H. MicroRNAs as novel biomarkers and potential therapeutic options for inflammatory cardiomyopathy. ESC Heart Fail 2023; 10:3410-3418. [PMID: 37679968 PMCID: PMC10682862 DOI: 10.1002/ehf2.14523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/09/2023] Open
Abstract
AIMS Inflammation of the heart is a complex biological and pathophysiological response of the immune system to a variety of injuries leading to tissue damage and heart failure. MicroRNAs (miRNAs) emerge as pivotal players in the development of numerous diseases, suggesting their potential utility as biomarkers for inflammation and as viable candidates for therapeutic interventions. The primary aim of this investigation was to pinpoint and assess particular miRNAs in individuals afflicted by virus-negative inflammatory dilated cardiomyopathy (DCMi). METHODS AND RESULTS The study involved the analysis of 152 serum samples sourced from patients diagnosed with unexplained heart failure through endomyocardial biopsy. Among these samples, 38 belonged to DCMi patients, 24 to DCM patients, 44 to patients displaying inflammation alongside diverse viral infections, and 46 to patients solely affected by viral infections without concurrent inflammation. Additionally, serum samples from 10 healthy donors were included. The expression levels of 754 distinct miRNAs were evaluated using TaqMan OpenArray. MiR-1, miR-23, miR-142-5p, miR-155, miR-193, and miR-195 exhibited exclusive down-regulation solely in DCMi patients (P < 0.005). These miRNAs enabled effective differentiation between individuals with inflammation unlinked to viruses (DCMi) and all other participant groups (P < 0.005), boasting a specificity surpassing 86%. CONCLUSIONS The identification of specific miRNAs offers a novel diagnostic perspective for recognizing intramyocardial inflammation within virus-negative DCMi patients. Furthermore, these miRNAs hold promise as potential candidates for tailored therapeutic strategies in the context of virus-negative DCMi.
Collapse
Affiliation(s)
- Ganna Aleshcheva
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - Christian Baumeier
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - Dominik Harms
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
| | - C.‐Thomas Bock
- Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Department of Infectious DiseasesRobert Koch InstituteBerlinGermany
| | - Felicitas Escher
- Institute for Cardiac Diagnostics and Therapy (IKDT)Moltkestr. 31BerlinGermany
- Department of Cardiology, Campus VirchowCharité – University Hospital BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research), partner site BerlinBerlinGermany
| | | |
Collapse
|
20
|
Seferović PM, Polovina M, Rosano G, Bozkurt B, Metra M, Heymans S, Mullens W, Bauersachs J, Sliwa K, de Boer RA, Farmakis D, Thum T, Olivotto I, Rapezzi C, Linhart A, Corrado D, Tschöpe C, Milinković I, Bayes Genis A, Filippatos G, Keren A, Ašanin M, Krljanac G, Maksimović R, Skouri H, Ben Gal T, Moura B, Volterrani M, Abdelhamid M, Lopatin Y, Chioncel O, Coats AJS. State-of-the-art document on optimal contemporary management of cardiomyopathies. Eur J Heart Fail 2023; 25:1899-1922. [PMID: 37470300 DOI: 10.1002/ejhf.2979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Cardiomyopathies represent significant contributors to cardiovascular morbidity and mortality. Over the past decades, a progress has occurred in characterization of the genetic background and major pathophysiological mechanisms, which has been incorporated into a more nuanced diagnostic approach and risk stratification. Furthermore, medications targeting core disease processes and/or their downstream adverse effects have been introduced for several cardiomyopathies. Combined with standard care and prevention of sudden cardiac death, these novel and emerging targeted therapies offer a possibility of improving the outcomes in several cardiomyopathies. Therefore, the aim of this document is to summarize practical approaches to the treatment of cardiomyopathies, which includes the evidence-based novel therapeutic concepts and established principles of care, tailored to the individual patient aetiology and clinical presentation of the cardiomyopathy. The scope of the document encompasses contemporary treatment of dilated, hypertrophic, restrictive and arrhythmogenic cardiomyopathy. It was based on an expert consensus reached at the Heart Failure Association online Workshop, held on 18 March 2021.
Collapse
Affiliation(s)
- Petar M Seferović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Marija Polovina
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Biykem Bozkurt
- Section of Cardiology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Section of Cardiology, Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Marco Metra
- Cardiology, ASST Spedali Civili, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Wilfried Mullens
- Hasselt University, Hasselt, Belgium
- Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Karen Sliwa
- Cape Heart Institute, Division of Cardiology, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rudolf A de Boer
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children's Hospital and Careggi University Hospital, Florence, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Aleš Linhart
- Second Department of Medicine-Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carsten Tschöpe
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- German Centre for Cardiovascular Research, Berlin, Germany
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ivan Milinković
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Antoni Bayes Genis
- Servicio de Cardiología, Hospital Universitari Germans Trias i Pujol, CIBERCV, Universidad Autónoma de Barcelona, Badalona, Spain
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Attikon University Hospital, Athens, Greece
| | - Andre Keren
- Heart Institute, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Milika Ašanin
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Gordana Krljanac
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Department of Cardiology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Ružica Maksimović
- Faculty of Medicine, Belgrade University, Belgrade, Serbia
- Center for Radiology and Magnetic Resonance, University Clinical Center of Serbia, Belgrade, Serbia
| | - Hadi Skouri
- Division of Cardiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Tuvia Ben Gal
- Heart Failure Unit, Cardiology Department, Rabin Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Brenda Moura
- Armed Forces Hospital, Porto, & Faculty of Medicine, University of Porto, Porto, Portugal
| | - Maurizio Volterrani
- IRCCS San Raffaele Pisana, Rome, Italy
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Rome, Italy
| | - Magdy Abdelhamid
- Department of Cardiovascular Medicine, Faculty of Medicine, Kasr Al Ainy, Cairo University, Giza, Egypt
| | - Yuri Lopatin
- Volgograd Medical University, Cardiology Centre, Volgograd, Russian Federation
| | - Ovidiu Chioncel
- Emergency Institute for Cardiovascular Diseases 'Prof. Dr. C.C. Iliescu' Bucharest; University for Medicine and Pharmacy 'Carol Davila' Bucharest, Bucharest, Romania
| | | |
Collapse
|
21
|
Jeyalan V, Austin D, Loh SX, Wangsaputra VK, Spyridopoulos I. Fractalkine/CX 3CR1 in Dilated Cardiomyopathy: A Potential Future Target for Immunomodulatory Therapy? Cells 2023; 12:2377. [PMID: 37830591 PMCID: PMC10571889 DOI: 10.3390/cells12192377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac condition with structural and functional impairment, where either the left ventricle or both ventricular chambers are enlarged, coinciding with reduced systolic pump function (reduced ejection fraction, rEF). The prevalence of DCM is more than 1:250 individuals, and mortality largely due to heart failure in two-third of cases, and sudden cardiac death in one-third of patients. Damage to the myocardium, whether from a genetic or environmental cause such as viruses, triggers inflammation and recruits immune cells to the heart to repair the myocardium. Examination of myocardial biopsy tissue often reveals an inflammatory cell infiltrate, T lymphocyte (T cell) infiltration, or other activated immune cells. Despite medical therapy, adverse outcomes for DCM remain. The evidence base and existing literature suggest that upregulation of CX3CR1, migration of immune cells, together with cytomegalovirus (CMV) seropositivity is associated with worse outcomes in patients with dilated cardiomyopathy. We hypothesise that this potentially occurs through cardiac inflammation and fibrosis, resulting in adverse remodelling. Immune modulators to target this pathway may potentially improve outcomes above and beyond current guideline-recommended therapy.
Collapse
Affiliation(s)
- Visvesh Jeyalan
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough TS4 3BW, UK; (V.J.); (D.A.)
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - David Austin
- Academic Cardiovascular Unit, The James Cook University Hospital, Middlesbrough TS4 3BW, UK; (V.J.); (D.A.)
- Population Health Science Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Shu Xian Loh
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| | - Vincent Kharisma Wangsaputra
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Faculty of Medicine, Universitas Indonesia, Central Jakarta 10430, Indonesia
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK;
| |
Collapse
|
22
|
Heymans S, Lakdawala NK, Tschöpe C, Klingel K. Dilated cardiomyopathy: causes, mechanisms, and current and future treatment approaches. Lancet 2023; 402:998-1011. [PMID: 37716772 DOI: 10.1016/s0140-6736(23)01241-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/20/2023] [Accepted: 06/13/2023] [Indexed: 09/18/2023]
Abstract
Dilated cardiomyopathy is conventionally defined as the presence of left ventricular or biventricular dilatation or systolic dysfunction in the absence of abnormal loading conditions (eg, primary valve disease) or significant coronary artery disease sufficient to cause ventricular remodelling. This definition has been recognised as overly restrictive, as left ventricular hypokinesis without dilation could be the initial presentation of dilated cardiomyopathy. The causes of dilated cardiomyopathy comprise genetic (primary dilated cardiomyopathy) or acquired factors (secondary dilated cardiomyopathy). Acquired factors include infections, toxins, cancer treatment, endocrinopathies, pregnancy, tachyarrhythmias, and immune-mediated diseases. 5-15% of patients with acquired dilated cardiomyopathy harbour a likely pathogenic or pathogenic gene variant (ie, gene mutation). Therefore, the diagnostic tests and therapeutic approach should always consider both genetic and acquired factors. This Seminar will focus on the current multidimensional diagnostic and therapeutic approach and discuss the underlying pathophysiology that could drive future treatments aiming to repair or replace the existing gene mutation, or target the specific inflammatory, metabolic, or pro-fibrotic drivers of genetic or acquired dilated cardiomyopathy.
Collapse
Affiliation(s)
- Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht, University of Maastricht & Maastricht University Medical Centre, Maastricht, Netherlands; Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Leuven, Belgium
| | - Neal K Lakdawala
- Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carsten Tschöpe
- Department of Cardiology, Angiology, and Intensive Medicine (CVK), German Heart Center of the Charité (DHZC), Charité Universitätsmedizin, Berlin, Germany; Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Berlin, Germany; German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Blagova O, Rud’ R, Kogan E, Zaitsev A, Nedostup A. Comparative Efficacy and Safety of Mycophenolate Mofetil and Azathioprine in Combination with Corticosteroids in the Treatment of Lymphocytic Myocarditis. J Clin Med 2023; 12:4913. [PMID: 37568313 PMCID: PMC10420198 DOI: 10.3390/jcm12154913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
AIMS This paper aimed to study the efficacy and safety of mycophenolate mofetil (MM) in combination with corticosteroids in the treatment of lymphocytic myocarditis (LM) when compared to the standard combination of corticosteroids and azathioprine. METHODS The study included 50 adult patients (47.8 ± 10.8 y.o.) in a NYHA III functional class due to LM who were verified using endomyocardial biopsy. The main group included 29 patients who received MM at 2 g/day. The comparison group comprised 21 patients who received azathioprine at 150 [50; 150] mg/day. Both groups were administered with methylprednisolone. The average follow-up period was 30 [22; 35] months, but no less than 6 months. RESULTS The groups were comparable in the baseline parameters and standard drug therapy. In both groups, there was a comparable significant increase in the ejection fraction (from 30.6 ± 7.7% to 44.0 ± 9.4% vs. 29.2 ± 7.7% to 46.2 ± 11.8%, p < 0.001), and a decrease in systolic pressure in the pulmonary artery and the dimensions of the left ventricle and atrium. The frequency of death was two (6.9%) and two (9.5%), transplantation was one (3.4%) and one (4.8%) patient and the "death + transplantation" endpoint was three (10.3%) and three (14.3%) without differences between the groups. The presence of the parvovirus B19 in the myocardium in 6/5 patients did not affect the results. The incidence of infectious complications was comparable. The most severe infectious complications were pneumonia and fatal purulent encephalitis (both cases in the azathioprine group), leptospirosis meningitis (in the mycophenolate mofetil group). CONCLUSIONS In the patients with LM, the combination of corticosteroids with MM at a dose of 2 g/day was at least no less effective than with azathioprine. There was a tendency toward a better tolerance using MM.
Collapse
Affiliation(s)
- Olga Blagova
- Department of Faculty Therapy No.1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 6, B. Pirogovskaya St., 119992 Moscow, Russia; (R.R.); (A.N.)
| | - Ruslan Rud’
- Department of Faculty Therapy No.1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 6, B. Pirogovskaya St., 119992 Moscow, Russia; (R.R.); (A.N.)
| | - Evgeniya Kogan
- Department of Pathology, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia;
| | - Alexander Zaitsev
- Department of Endovascular Methods of Diagnostics and Treatment, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia;
| | - Alexander Nedostup
- Department of Faculty Therapy No.1, N.V. Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 6, B. Pirogovskaya St., 119992 Moscow, Russia; (R.R.); (A.N.)
| |
Collapse
|
24
|
Peters SA. Undefined Arrhythmic Cardiomyopathy Presentations: Is it Time to Dig a Little Deeper? JACC Clin Electrophysiol 2023; 9:962-964. [PMID: 37438045 DOI: 10.1016/j.jacep.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 07/14/2023]
Affiliation(s)
- Stacey A Peters
- Department of Genomic Medicine, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
25
|
Barreiro-Pérez M, Pastor Pueyo P, Raposeiras-Roubín S, Montero Corominas D, Uribarri A, Eiros Bachiller R, Rozado Castaño J, García-Cuenllas Álvarez L, Serratosa Fernández L, Domínguez F, Pascual Figal D. Myocarditis related SARS-CoV-2 infection or vaccination: an expert consensus statement on its diagnosis and management. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2023; 76:555-563. [PMID: 36914023 PMCID: PMC10008093 DOI: 10.1016/j.rec.2023.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 03/13/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has revealed several cardiovascular complications, including myocarditis caused by SARS-CoV-2 infection (COVID-19) or after messenger RNA vaccine administration. Because of the high prevalence of COVID-19, the expansion of vaccination programs, and the appearance of new information on myocarditis in these contexts, there is a need to condense the knowledge acquired since the start of the pandemic. To meet this need, this document was drafted by the Myocarditis Working Group of the Heart Failure Association of the Spanish Society of Cardiology, with the collaboration of the Spanish Agency for Medicines and Health Products (AEMPS). The document aims to address the diagnosis and treatment of cases of myocarditis associated with SARS-CoV-2 infection or messenger RNA vaccine administration.
Collapse
Affiliation(s)
- Manuel Barreiro-Pérez
- Servicio de Cardiología, Hospital Universitario Álvaro Cunqueiro, Vigo, Pontevedra, Spain; Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Pontevedra, Spain.
| | - Pablo Pastor Pueyo
- Unidad de Cardiología Clínica y Cuidados Agudos Cardiovasculares, Hospital Universitario Arnau de Vilanova, Lleida, Spain; Institut de Reserca Biomèdica Lleida (IRB-Lleida), Lleida, Spain. https://twitter.com/@PolSheperd
| | - Sergio Raposeiras-Roubín
- Servicio de Cardiología, Hospital Universitario Álvaro Cunqueiro, Vigo, Pontevedra, Spain; Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Pontevedra, Spain. https://twitter.com/@S_Raposeiras
| | - Dolores Montero Corominas
- División de Farmacoepidemiología y Farmacovigilancia, Departamento de Medicamentos de Uso Humano, Agencia Española de Medicamentos y Productos Sanitarios, Madrid, Spain
| | - Aitor Uribarri
- Servicio de Cardiología, Hospital Universitario Vall d'Hebron, Barcelona, Spain. https://twitter.com/@Auribarri
| | - Rocío Eiros Bachiller
- Servicio de Cardiología, Hospital Clínico Universitario de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain. https://twitter.com/@reirosbachiller
| | - José Rozado Castaño
- Servicio de Cardiología, Hospital Universitario Central de Asturias, Oviedo, Asturias, Spain. https://twitter.com/@rozado_jose
| | | | - Luis Serratosa Fernández
- Unidad de Cardiología del Deporte, Hospital Universitario Quirónsalud Madrid, Madrid, Spain; Unidad de Cardiología del Deporte, Centro de Medicina Deportiva Olympia Quirónsalud, Madrid, Spain. https://twitter.com/@LSerratosa
| | - Fernando Domínguez
- Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain. https://twitter.com/@fernidom
| | - Domingo Pascual Figal
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain. https://twitter.com/@DomingoPascualF
| |
Collapse
|
26
|
Barreiro-Pérez M, Pastor Pueyo P, Raposeiras-Roubín S, Montero Corominas D, Uribarri A, Eiros Bachiller R, Rozado Castaño J, García-Cuenllas Álvarez L, Serratosa Fernández L, Domínguez F, Pascual Figal D. [Myocarditis related SARS-CoV-2 infection or vaccination: an expert consensus statement on its diagnosis and management]. Rev Esp Cardiol 2023; 76:555-563. [PMID: 36743295 PMCID: PMC9884510 DOI: 10.1016/j.recesp.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has revealed several cardiovascular complications, including myocarditis caused by SARS-CoV-2 infection (COVID-19) or after messenger RNA vaccine administration. Because of the high prevalence of COVID-19, the expansion of vaccination programs, and the appearance of new information on myocarditis in these contexts, there is a need to condense the knowledge acquired since the start of the pandemic. To meet this need, this document was drafted by the Myocarditis Working Group of the Heart Failure Association of the Spanish Society of Cardiology, with the collaboration of the Spanish Agency for Medicines and Health Products (AEMPS). The document aims to address the diagnosis and treatment of cases of myocarditis associated with SARS-CoV-2 infection or messenger RNA vaccine administration.
Collapse
Affiliation(s)
- Manuel Barreiro-Pérez
- Servicio de Cardiología, Hospital Universitario Álvaro Cunqueiro, Vigo, Pontevedra, España
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Pontevedra, España
| | - Pablo Pastor Pueyo
- Unidad de Cardiología Clínica y Cuidados Agudos Cardiovasculares, Hospital Universitario Arnau de Vilanova, Lleida, España
- Institut de Reserca Biomèdica Lleida (IRB-Lleida), Lleida, España
| | - Sergio Raposeiras-Roubín
- Servicio de Cardiología, Hospital Universitario Álvaro Cunqueiro, Vigo, Pontevedra, España
- Instituto de Investigación Sanitaria Galicia Sur (IISGS), Vigo, Pontevedra, España
| | - Dolores Montero Corominas
- División de Farmacoepidemiología y Farmacovigilancia, Departamento de Medicamentos de Uso Humano, Agencia Española de Medicamentos y Productos Sanitarios, Madrid, España
| | - Aitor Uribarri
- Servicio de Cardiología, Hospital Universitario Vall d'Hebron, Barcelona, España
| | - Rocío Eiros Bachiller
- Servicio de Cardiología, Hospital Clínico Universitario de Salamanca, Salamanca, España
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, España
| | - José Rozado Castaño
- Servicio de Cardiología, Hospital Universitario Central de Asturias, Oviedo, Asturias, España
| | | | - Luis Serratosa Fernández
- Unidad de Cardiología del Deporte, Hospital Universitario Quirónsalud Madrid, Madrid, España
- Unidad de Cardiología del Deporte, Centro de Medicina Deportiva Olympia Quirónsalud, Madrid, España
| | - Fernando Domínguez
- Servicio de Cardiología, Hospital Universitario Puerta de Hierro, Madrid, España
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), España
| | - Domingo Pascual Figal
- Servicio de Cardiología, Hospital Universitario Virgen de la Arrixaca, El Palmar, Murcia, España
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, España
| |
Collapse
|
27
|
Blagova OV, Alieva IN, Kulikova VA, Nedostup AV, Kogan EA, Sedov VP, Parfenov DA, Volovchenko AN, Sarkisova ND. [Long-term treatment of morphologically verified myocarditis: successes and probable errors. Case report]. TERAPEVT ARKH 2023; 95:327-334. [PMID: 38158981 DOI: 10.26442/00403660.2023.04.202156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2024]
Abstract
Diagnosis and treatment of myocarditis can be challenging, including determining indications for heart transplantation. We present a 6-year medical history of a 54 years old patient with severe morphologically verified viral-negative lymphocytic myocarditis and systemic manifestations (onset of hemorrhagic vasculitis) combined with moderate coronary atherosclerosis, which regressed according to repeated coronary angiography. For 5 years, the patient received immunosuppressive therapy with methylprednisolone and azathioprine with a significant improvement. Repeated relapses of atrial fibrillation required correction of basic therapy and plasmapheresis. The disease was complicated by thyrotoxicosis and multi-organ dysfunction; the autopsy showed persistent myocarditis activity. The myocarditis is a chronic condition and requires a review of the treatment strategy at each stage.
Collapse
Affiliation(s)
- O V Blagova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - I N Alieva
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V A Kulikova
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Nedostup
- Sechenov First Moscow State Medical University (Sechenov University)
| | - E A Kogan
- Sechenov First Moscow State Medical University (Sechenov University)
| | - V P Sedov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - D A Parfenov
- Sechenov First Moscow State Medical University (Sechenov University)
| | - A N Volovchenko
- Sechenov First Moscow State Medical University (Sechenov University)
| | - N D Sarkisova
- Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
28
|
Paul T, Klingel K, Tschöpe C, Bertram H, Seidel F. Leitlinie Myokarditis der Deutschen Gesellschaft für
Pädiatrische Kardiologie. KLINISCHE PADIATRIE 2023; 235:e1-e15. [PMID: 37094605 PMCID: PMC10191740 DOI: 10.1055/a-2039-2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
This consensus statement presents updated recommendations on diagnosis and treatment of myocarditis in childhood.
Collapse
Affiliation(s)
- Thomas Paul
- Universitätsmedizin Göttingen Klinik für
Pädiatrische Kardiologie und Intensivmedizin, Göttingen,
Deutschland
| | - Karin Klingel
- Universitätshospital Tübingen, Institut für
Pathologie und Neuropathologie, Tübingen, Deutschland
| | - Carsten Tschöpe
- Charité Universitätsmedizin Berlin, Kardiologie,
Berlin, Deutschland
| | - Harald Bertram
- Medizinische Hochschule Hannover, Klinik für
Pädiatrische Kardiologie und Pädiatrische Intensivmedizin,
Hannover, Deutschland
| | - Franziska Seidel
- Charité Universitätsmedizn Berlin, Pädiatrische
Kardiologie, Berlin, Deutschland
| |
Collapse
|
29
|
Strand ME, Vanhaverbeke M, Henkens MTHM, Sikking MA, Rypdal KB, Braathen B, Almaas VM, Tønnessen T, Christensen G, Heymans S, Lunde IG. Inflammation and Syndecan-4 Shedding from Cardiac Cells in Ischemic and Non-Ischemic Heart Disease. Biomedicines 2023; 11:biomedicines11041066. [PMID: 37189684 DOI: 10.3390/biomedicines11041066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Circulating biomarkers reflecting cardiac inflammation are needed to improve the diagnostics and guide the treatment of heart failure patients. The cardiac production and shedding of the transmembrane proteoglycan syndecan-4 is upregulated by innate immunity signaling pathways. Here, we investigated the potential of syndecan-4 as a blood biomarker of cardiac inflammation. Serum syndecan-4 was measured in patients with (i) non-ischemic, non-valvular dilated cardiomyopathy (DCM), with (n = 71) or without (n = 318) chronic inflammation; (ii) acute myocarditis (n = 15), acute pericarditis (n = 3) or acute perimyocarditis (23) and (iii) acute myocardial infarction (MI) at day 0, 3 and 30 (n = 119). Syndecan-4 was investigated in cultured cardiac myocytes and fibroblasts (n = 6–12) treated with the pro-inflammatory cytokines interleukin (IL)-1β and its inhibitor IL-1 receptor antagonist (IL-1Ra), or tumor necrosis factor (TNF)α and its specific inhibitor infliximab, an antibody used in treatment of autoimmune diseases. The levels of serum syndecan-4 were comparable in all subgroups of patients with chronic or acute cardiomyopathy, independent of inflammation. Post-MI, syndecan-4 levels were increased at day 3 and 30 vs. day 0. IL-1Ra attenuated IL-1β-induced syndecan-4 production and shedding in vitro, while infliximab had no effect. In conclusion, syndecan-4 shedding from cardiac myocytes and fibroblasts was attenuated by immunomodulatory therapy. Although its circulating levels were increased post-MI, syndecan-4 did not reflect cardiac inflammatory status in patients with heart disease.
Collapse
Affiliation(s)
- Mari E. Strand
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | | | - Michiel T. H. M. Henkens
- Netherlands Heart Institute (NLHI), 3511 EP Utrecht, The Netherlands
- Department of Pathology, CARIM, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
- Department of Cardiology, CARIM, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Maurits A. Sikking
- Department of Cardiology, CARIM, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | - Karoline B. Rypdal
- Institute of Clinical Medicine, University of Oslo, 0315 Oslo, Norway
- K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, 0315 Oslo, Norway
- Division of Diagnostics and Technology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Bjørn Braathen
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Vibeke M. Almaas
- Department of Cardiology, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway
| | - Theis Tønnessen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- Department of Cardiothoracic Surgery, Oslo University Hospital Ullevål, 0450 Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Stephane Heymans
- Department of Cardiovascular Science, University of Leuven, 3000 Leuven, Belgium
| | - Ida G. Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
- K.G. Jebsen Center for Cardiac Biomarkers, University of Oslo, 0315 Oslo, Norway
- Division of Diagnostics and Technology, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
30
|
Grzechocińska J, Tymińska A, Giordani AS, Wysińska J, Ostrowska E, Baritussio A, Caforio ALP, Grabowski M, Marcolongo R, Ozierański K. Immunosuppressive Therapy of Biopsy-Proven, Virus-Negative, Autoimmune/Immune-Mediated Myocarditis-Focus on Azathioprine: A Review of Existing Evidence and Future Perspectives. BIOLOGY 2023; 12:356. [PMID: 36979048 PMCID: PMC10044979 DOI: 10.3390/biology12030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
The use of immunosuppressive therapy (IT) in biopsy-proven, autoimmune/immune-mediated (AI), virus-negative myocarditis has become the standard of care. In particular, according to recent guidelines, azathioprine (AZA), in association with steroids, is a cornerstone of first-line therapy regimens. IT may have a crucial impact on the natural history of AI myocarditis, preventing its progression to end-stage heart failure, cardiovascular death, or heart transplantation, provided that strict appropriateness and safety criteria are observed. In particular, AZA treatment for AI virus-negative myocarditis requires the consideration of some crucial aspects regarding its pharmacokinetics and pharmacodynamics, as well as a high index of suspicion to detect its overt and/or subclinical side effects. Importantly, besides a tight teamwork with a clinical immunologist/immuno-rheumatologist, before starting IT, it is also necessary to carry out a careful "safety check-list" in order to rule out possible contraindications to IT and minimize patient's risk. The aim of this review is to describe the pharmacological properties of AZA, as well as to discuss practical aspects of its clinical use, in the light of existing evidence, with particular regard to the new field of cardioimmunology.
Collapse
Affiliation(s)
- Justyna Grzechocińska
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| | - Agata Tymińska
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35-100 Padova, Italy
| | - Julia Wysińska
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| | - Ewa Ostrowska
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35-100 Padova, Italy
| | - Alida Linda Patrizia Caforio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35-100 Padova, Italy
| | - Marcin Grabowski
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| | - Renzo Marcolongo
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35-100 Padova, Italy
| | - Krzysztof Ozierański
- First Department of Cardiology, Medical University of Warsaw, 1a Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
31
|
Brala D, Thevathasan T, Grahl S, Barrow S, Violano M, Bergs H, Golpour A, Suwalski P, Poller W, Skurk C, Landmesser U, Heidecker B. Application of Magnetocardiography to Screen for Inflammatory Cardiomyopathy and Monitor Treatment Response. J Am Heart Assoc 2023; 12:e027619. [PMID: 36744683 PMCID: PMC10111485 DOI: 10.1161/jaha.122.027619] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/12/2022] [Indexed: 02/07/2023]
Abstract
Background Inflammatory cardiomyopathy is one of the most common causes of sudden cardiac death in young adults. Diagnosis of inflammatory cardiomyopathy remains challenging, and better monitoring tools are needed. We present magnetocardiography as a method to diagnose myocardial inflammation and monitor treatment response. Methods and Results A total of 233 patients were enrolled, with a mean age of 45 (±18) years, and 105 (45%) were women. The primary analysis included 209 adult subjects, of whom 66 (32%) were diagnosed with inflammatory cardiomyopathy, 17 (8%) were diagnosed with cardiac amyloidosis, and 35 (17%) were diagnosed with other types of nonischemic cardiomyopathy; 91 (44%) did not have cardiomyopathy. The second analysis included 13 patients with inflammatory cardiomyopathy who underwent immunosuppressive therapy after baseline magnetocardiography measurement. Finally, diagnostic accuracy of magnetocardiography was tested in 3 independent cohorts (total n=23) and 1 patient, who developed vaccine-related myocarditis. First, we identified a magnetocardiography vector to differentiate between patients with cardiomyopathy versus patients without cardiomyopathy (vector of ≥0.051; sensitivity, 0.59; specificity, 0.95; positive predictive value, 93%; and negative predictive value, 64%). All patients with inflammatory cardiomyopathy, including a patient with mRNA vaccine-related myocarditis, had a magnetocardiography vector ≥0.051. Second, we evaluated the ability of the magnetocardiography vector to reflect treatment response. We observed a decrease of the pathologic magnetocardiography vector toward normal in all 13 patients who were clinically improving under immunosuppressive therapy. Magnetocardiography detected treatment response as early as day 7, whereas echocardiographic detection of treatment response occurred after 1 month. The magnetocardiography vector decreased from 0.10 at baseline to 0.07 within 7 days (P=0.010) and to 0.03 within 30 days (P<0.001). After 30 days, left ventricular ejection fraction improved from 42.2% at baseline to 53.8% (P<0.001). Conclusions Magnetocardiography has the potential to be used for diagnostic screening and to monitor early treatment response. The method is valuable in inflammatory cardiomyopathy, where there is a major unmet need for early diagnosis and monitoring response to immunosuppressive therapy.
Collapse
Affiliation(s)
- Debora Brala
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Tharusan Thevathasan
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Simon Grahl
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Steve Barrow
- Division of Instrumentation at Space Telescope Science InstituteBaltimoreMD
| | - Michele Violano
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Hendrikje Bergs
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Ainoosh Golpour
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Phillip Suwalski
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Wolfgang Poller
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Carsten Skurk
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| | - Ulf Landmesser
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
- Berlin Institute of Health at CharitéBerlinGermany
| | - Bettina Heidecker
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu BerlinBerlinGermany
| |
Collapse
|
32
|
A Machine-Learning Model for the Prognostic Role of C-Reactive Protein in Myocarditis. J Clin Med 2022; 11:jcm11237068. [PMID: 36498643 PMCID: PMC9738618 DOI: 10.3390/jcm11237068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Aims: The role of inflammation markers in myocarditis is unclear. We assessed the diagnostic and prognostic correlates of C-reactive protein (CRP) at diagnosis in patients with myocarditis. Methods and results: We retrospectively enrolled patients with clinically suspected (CS) or biopsy-proven (BP) myocarditis, with available CRP at diagnosis. Clinical, laboratory and imaging data were collected at diagnosis and at follow-up visits. To evaluate predictors of death/heart transplant (Htx), a machine-learning approach based on random forest for survival data was employed. We included 409 patients (74% males, aged 37 ± 15, median follow-up 2.9 years). Abnormal CRP was reported in 288 patients, mainly with CS myocarditis (p < 0.001), recent viral infection, shorter symptoms duration (p = 0.001), chest pain (p < 0.001), better functional class at diagnosis (p = 0.018) and higher troponin I values (p < 0.001). Death/Htx was reported in 13 patients, of whom 10 had BP myocarditis (overall 10-year survival 94%). Survival rates did not differ according to CRP levels (p = 0.23). The strongest survival predictor was LVEF, followed by anti-nuclear auto-antibodies (ANA) and BP status. Conclusions: Raised CRP at diagnosis identifies patients with CS myocarditis and less severe clinical features, but does not contribute to predicting survival. Main death/Htx predictors are reduced LVEF, BP diagnosis and positive ANA.
Collapse
|
33
|
Affiliation(s)
- Cristina Basso
- From the Cardiovascular Pathology Unit, Azienda Ospedaliera, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
34
|
Chimenti C, Russo MA, Frustaci A. Immunosuppressive therapy in virus-negative inflammatory cardiomyopathy: 20-year follow-up of the TIMIC trial. Eur Heart J 2022; 43:3463-3473. [PMID: 35831932 PMCID: PMC9492235 DOI: 10.1093/eurheartj/ehac348] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 01/05/2023] Open
Abstract
AIMS Long-term results of the Tailored IMmunosuppression in virus-negative Inflammatory Cardiomyopathy (TIMIC) trial protocol have been evaluated. METHODS AND RESULTS Eighty-five patients with endomyocardial biopsy-proven virus-negative chronic inflammatory cardiomyopathy were enrolled in the randomized, double-blind, placebo-controlled TIMIC trial and received prednisone and azathioprine (n = 43) vs. placebo (n = 42) for 6 months. Immunosuppressive treatment promoted an improvement in cardiac function in 88% of the cases compared with none of the patients in the placebo group, which were switched to a 6-month immunosuppressive therapy at the end of the 6-month study period. Long-term (up to 20 years) clinical outcomes of the whole cohort of 85 patients originally enrolled in the TIMIC trial (Group A) were compared with those of a 1:2 propensity score-matched control cohort of patients untreated with the TIMIC protocol (Group B) and followed for a comparable period of time. The primary outcome was a composite of cardiovascular death and heart transplantation. At long-term follow-up, the risk of cardiovascular death [hazard ratio (HR) 6.77; 95% confidence interval (CI) 2.36-19.45] and heart transplantation (HR 7.92; 95% CI 1.80-34.88) was significantly higher in Group B patients. Group A showed a persistent improvement in the left ventricular ejection fraction compared with Group B (HR 7.24; 95% CI 3.05-17.18). A higher number of Group B patients underwent implantable cardioverter defibrillator implantation. The incidence of recurrent myocarditis was similar between groups, and patients with evidence of a recurrent cardiac inflammatory process promptly responded to a TIMIC protocol application. CONCLUSION Virus-negative inflammatory cardiomyopathy benefits from immunosuppressive therapy even after long-term follow-up. Recurrence appears to respond to a new TIMIC protocol application.
Collapse
Affiliation(s)
- Cristina Chimenti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy,Molecular and Cellular Cardiology Lab, IRCCS ‘L. Spallanzani’, Rome, Italy
| | | | | |
Collapse
|
35
|
Montera MW, Marcondes-Braga FG, Simões MV, Moura LAZ, Fernandes F, Mangine S, Oliveira Júnior ACD, Souza ALADAGD, Ianni BM, Rochitte CE, Mesquita CT, de Azevedo Filho CF, Freitas DCDA, Melo DTPD, Bocchi EA, Horowitz ESK, Mesquita ET, Oliveira GH, Villacorta H, Rossi Neto JM, Barbosa JMB, Figueiredo Neto JAD, Luiz LF, Hajjar LA, Beck-da-Silva L, Campos LADA, Danzmann LC, Bittencourt MI, Garcia MI, Avila MS, Clausell NO, Oliveira NAD, Silvestre OM, Souza OFD, Mourilhe-Rocha R, Kalil Filho R, Al-Kindi SG, Rassi S, Alves SMM, Ferreira SMA, Rizk SI, Mattos TAC, Barzilai V, Martins WDA, Schultheiss HP. Brazilian Society of Cardiology Guideline on Myocarditis - 2022. Arq Bras Cardiol 2022; 119:143-211. [PMID: 35830116 PMCID: PMC9352123 DOI: 10.36660/abc.20220412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - Fabiana G Marcondes-Braga
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Marcus Vinícius Simões
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, São Paulo, SP - Brasil
| | | | - Fabio Fernandes
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Sandrigo Mangine
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | - Bárbara Maria Ianni
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração (InCor) - Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
- Hospital do Coração (HCOR), São Paulo, SP - Brasil
| | - Claudio Tinoco Mesquita
- Hospital Pró-Cardíaco, Rio de Janeiro, RJ - Brasil
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- Hospital Vitória, Rio de Janeiro, RJ - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | - Evandro Tinoco Mesquita
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- Centro de Ensino e Treinamento Edson de Godoy Bueno / UHG, Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | - Ludhmila Abrahão Hajjar
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
| | - Luis Beck-da-Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, RS - Brasil
- Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS - Brasil
| | | | | | - Marcelo Imbroise Bittencourt
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Pedro Ernesto, Rio de Janeiro, RJ - Brasil
| | - Marcelo Iorio Garcia
- Hospital Universitário Clementino Fraga Filho (HUCFF) da Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brasil
| | - Monica Samuel Avila
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | - Sadeer G Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals and Case Western Reserve University,Cleveland, Ohio - EUA
| | | | - Silvia Marinho Martins Alves
- Pronto Socorro Cardiológico de Pernambuco (PROCAPE), Recife, PE - Brasil
- Universidade de Pernambuco (UPE), Recife, PE - Brasil
| | - Silvia Moreira Ayub Ferreira
- Instituto do Coração (InCor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brasil
| | - Stéphanie Itala Rizk
- Instituto do Câncer do Estado de São Paulo da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brasil
- Hospital Sírio Libanês, São Paulo, SP - Brasil
| | | | - Vitor Barzilai
- Instituto de Cardiologia do Distrito Federal, Brasília, DF - Brasil
| | - Wolney de Andrade Martins
- Universidade Federal Fluminense,Rio de Janeiro, RJ - Brasil
- DASA Complexo Hospitalar de Niterói, Niterói, RJ - Brasil
| | | |
Collapse
|
36
|
Ohta-Ogo K, Sugano Y, Ogata S, Nakayama T, Komori T, Eguchi K, Dohi K, Yokokawa T, Kanamori H, Nishimura S, Nakamura K, Ikeda Y, Nishimura K, Takemura G, Anzai T, Hiroe M, Hatakeyama K, Ishibashi-Ueda H, Imanaka-Yoshida K. Myocardial T-Lymphocytes as a Prognostic Risk-Stratifying Marker of Dilated Cardiomyopathy - Results of the Multicenter Registry to Investigate Inflammatory Cell Infiltration in Dilated Cardiomyopathy in Tissues of Endomyocardial Biopsy (INDICATE Study). Circ J 2022; 86:1092-1101. [PMID: 35264513 DOI: 10.1253/circj.cj-21-0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) associated with inflammation is diagnosed by endomyocardial biopsy; patients with this have a poorer prognosis than patients without inflammation. To date, standard diagnostic criteria have not been established. METHODS AND RESULTS This study analyzed clinical records and endomyocardial biopsy samples of 261 patients with DCM (201 males, median left ventricular ejection fraction; 28%) from 8 institutions in a multicenter retrospective study. Based on the European Society of Cardiology criteria and CD3 (T-lymphocytes) and CD68 (macrophages) immunohistochemistry, 48% of patients were categorized as having inflammatory DCM. For risk-stratification, we divided patients into 3 groups using Akaike Information Criterion/log-rank tests, which can determine multiple cut-off points: CD3+-Low, <13/mm2(n=178, 68%); CD3+-Moderate, 13-24/mm2(n=58, 22%); and CD3+-High, ≥24/mm2(n=25, 10%). The survival curves for cardiac death or left ventricular assist device implantation differed significantly among the 3 groups (10-year survival rates: CD3+-Low: 83.4%; CD3+-Moderate: 68.4%; CD3+-High: 21.1%; Log-rank P<0.001). Multivariate Cox analysis revealed CD3+count as a potent independent predictive factor for survival (fully adjusted hazard ratio: CD3+-High: 5.70, P<0.001; CD3+-Moderate: 2.64, P<0.01). CD3+-High was also associated with poor left ventricular functional and morphological recovery at short-term follow up. CONCLUSIONS Myocardial CD3+T-lymphocyte infiltration has a significant prognostic impact in DCM and a 3-tiered risk-stratification model could be helpful to refine patient categorization.
Collapse
Affiliation(s)
- Keiko Ohta-Ogo
- Department of Pathology, National Cerebral and Cardiovascular Center
| | | | - Soshiro Ogata
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center
| | - Takafumi Nakayama
- Department of Cardiology, Nagoya City University Graduate School of Medical Sciences
| | - Takahiro Komori
- Department of Cardiovascular Medicine, Jichi Medical University School of Medicine
| | - Kazuo Eguchi
- Department of General Internal Medicine, Saitama Red Cross Hospital
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine
| | - Tetsuro Yokokawa
- Department of Cardiovascular Medicine, Fukushima Medical University
| | | | - Shigeyuki Nishimura
- Department of Cardiology, Saitama Medical University International Medical Center
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceuticals
| | - Yoshihiko Ikeda
- Department of Pathology, National Cerebral and Cardiovascular Center
| | - Kunihiro Nishimura
- Department of Preventive Medicine and Epidemiology, National Cerebral and Cardiovascular Center
| | - Genzou Takemura
- Department of Internal Medicine, Asahi University School of Dentistry
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
- Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine
| | - Michiaki Hiroe
- Department of Cardiology, National Center for Global Health and Medicine
| | - Kinta Hatakeyama
- Department of Pathology, National Cerebral and Cardiovascular Center
| | | | - Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine
| |
Collapse
|
37
|
Baritussio A, Schiavo A, Basso C, Giordani AS, Cheng CY, Pontara E, Cattini MG, Bison E, Gallo N, De Gaspari M, Carturan E, Thiene G, Tarantini G, Plebani M, Rizzo S, Gregori D, Iliceto S, Marcolongo R, Caforio ALP. Predictors of relapse, death or heart transplantation in myocarditis before the introduction of immunosuppression: negative prognostic impact of female gender, fulminant onset, lower ejection fraction and serum autoantibodies. Eur J Heart Fail 2022; 24:1033-1044. [PMID: 35377503 DOI: 10.1002/ejhf.2496] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022] Open
Abstract
AIMS Outcome predictors in myocarditis are not well defined; we aimed at identifying predictors of death, heart transplantation (HTx) and relapse before the introduction of immunosuppression. METHODS AND RESULTS From 1992 to 2012 we consecutively included 466 patients (68% male, 37±17 years, single centre recruitment, median follow-up 50 months), 216 with clinically suspected and 250 with biopsy (Bx)-proven myocarditis. Serum anti heart (AHA) and antiintercalated disk (AIDA) auto-antibodies were measured by indirect immunofluorescence. We performed univariable and multivariable analysis of clinical and diagnostic features at diagnosis. Survival free from death or HTx at 10 years was 83% in the whole group and was lower in Bx- proven vs. clinically suspected myocarditis (76% vs 94% respectively, p<0.001). Female gender (hazard ratio (HR) 2.7, 95% Confidence Intervals (CI) 1.1-6.5), fulminant presentation (HR 13.77, CI 9.7-261.73), high-titre organ-specific AHA (HR 4.2, CI 1.2-14.7) and anti-nuclear antibodies (ANA) (HR 5.2, CI 2.1-12.8) were independent predictors of death or HTx; higher echocardiographic left ventricular ejection fraction (LVEF) at diagnosis was protective, with a 0.93 times risk reduction for each 1% LVEF increase (CI 0.89-0.96). History of myocarditis at diagnosis (HR 8.5, CI 3.5-20.7) was independent predictor of myocarditis relapse at follow-up; older age was protective (HR 0.95, CI 0.91-0.99). Predictors of death, HTx and relapse did not differ in Bx-proven vs. clinically suspected myocarditis. CONCLUSIONS Young age and a previous myocarditis were independent relapse predictors; female gender, fulminant onset, lower LVEF at presentation and high-titre organ-specific AHA and ANA were independent predictors of death and HTx, suggesting that autoimmune features predict worse prognosis.
Collapse
Affiliation(s)
- Anna Baritussio
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Alessandro Schiavo
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Cristina Basso
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Chun-Yan Cheng
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Elena Pontara
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Maria Grazia Cattini
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Elisa Bison
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Nicoletta Gallo
- Department of Laboratory Medicine, University of Padua, Padua, Italy
| | - Monica De Gaspari
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Elisa Carturan
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Gaetano Thiene
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Giuseppe Tarantini
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Mario Plebani
- Department of Laboratory Medicine, University of Padua, Padua, Italy
| | - Stefania Rizzo
- Cardiac Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dario Gregori
- Statistics, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Sabino Iliceto
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Renzo Marcolongo
- Haematology and Clinical Immunology, Department of Medicine, University of Padua, Padua, Italy
| | - Alida Linda Patrizia Caforio
- Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
38
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JG, Coats AJ, Crespo-Leiro MG, Farmakis D, Gilard M, Heyman S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CS, Lyon AR, McMurray JJ, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GM, Ruschitzka F, Skibelund AK. Guía ESC 2021 sobre el diagnóstico y tratamiento de la insuficiencia cardiaca aguda y crónica. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2022; 24:4-131. [PMID: 35083827 DOI: 10.1002/ejhf.2333] [Citation(s) in RCA: 1203] [Impact Index Per Article: 401.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Document Reviewers: Rudolf A. de Boer (CPG Review Coordinator) (Netherlands), P. Christian Schulze (CPG Review Coordinator) (Germany), Magdy Abdelhamid (Egypt), Victor Aboyans (France), Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Elena Arbelo (Spain), Riccardo Asteggiano (Italy), Johann Bauersachs (Germany), Antoni Bayes-Genis (Spain), Michael A. Borger (Germany), Werner Budts (Belgium), Maja Cikes (Croatia), Kevin Damman (Netherlands), Victoria Delgado (Netherlands), Paul Dendale (Belgium), Polychronis Dilaveris (Greece), Heinz Drexel (Austria), Justin Ezekowitz (Canada), Volkmar Falk (Germany), Laurent Fauchier (France), Gerasimos Filippatos (Greece), Alan Fraser (United Kingdom), Norbert Frey (Germany), Chris P. Gale (United Kingdom), Finn Gustafsson (Denmark), Julie Harris (United Kingdom), Bernard Iung (France), Stefan Janssens (Belgium), Mariell Jessup (United States of America), Aleksandra Konradi (Russia), Dipak Kotecha (United Kingdom), Ekaterini Lambrinou (Cyprus), Patrizio Lancellotti (Belgium), Ulf Landmesser (Germany), Christophe Leclercq (France), Basil S. Lewis (Israel), Francisco Leyva (United Kingdom), AleVs Linhart (Czech Republic), Maja-Lisa Løchen (Norway), Lars H. Lund (Sweden), Donna Mancini (United States of America), Josep Masip (Spain), Davor Milicic (Croatia), Christian Mueller (Switzerland), Holger Nef (Germany), Jens-Cosedis Nielsen (Denmark), Lis Neubeck (United Kingdom), Michel Noutsias (Germany), Steffen E. Petersen (United Kingdom), Anna Sonia Petronio (Italy), Piotr Ponikowski (Poland), Eva Prescott (Denmark), Amina Rakisheva (Kazakhstan), Dimitrios J. Richter (Greece), Evgeny Schlyakhto (Russia), Petar Seferovic (Serbia), Michele Senni (Italy), Marta Sitges (Spain), Miguel Sousa-Uva (Portugal), Carlo G. Tocchetti (Italy), Rhian M. Touyz (United Kingdom), Carsten Tschoepe (Germany), Johannes Waltenberger (Germany/Switzerland) All experts involved in the development of these guidelines have submitted declarations of interest. These have been compiled in a report and published in a supplementary document simultaneously to the guidelines. The report is also available on the ESC website www.escardio.org/guidelines For the Supplementary Data which include background information and detailed discussion of the data that have provided the basis for the guidelines see European Heart Journal online.
Collapse
|
40
|
Castiello T, Georgiopoulos G, Finocchiaro G, Claudia M, Gianatti A, Delialis D, Aimo A, Prasad S. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev 2022; 27:251-261. [PMID: 33761041 PMCID: PMC7988375 DOI: 10.1007/s10741-021-10087-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Myocardial inflammation in COVID-19 has been documented. Its pathogenesis is not fully elucidated, but the two main theories foresee a direct role of ACE2 receptor and a hyperimmune response, which may also lead to isolated presentation of COVID-19-mediated myocarditis. The frequency and prognostic impact of COVID-19-mediated myocarditis is unknown. This review aims to summarise current evidence on this topic. We performed a systematic review of MEDLINE and Cochrane Library (1/12/19-30/09/20). We also searched clinicaltrials.gov for unpublished studies testing therapies with potential implication for COVID-19-mediated cardiovascular complication. Eligible studies had laboratory confirmed COVID-19 and a clinical and/or histological diagnosis of myocarditis by ESC or WHO/ISFC criteria. Reports of 38 cases were included (26 male patients, 24 aged < 50 years). The first histologically proven case was a virus-negative lymphocytic myocarditis; however, biopsy evidence of myocarditis secondary to SARS-CoV-2 cardiotropism has been recently demonstrated. Histological data was found in 12 cases (8 EMB and 4 autopsies) and CMR was the main imaging modality to confirm a diagnosis of myocarditis (25 patients). There was a substantial variability in biventricular systolic function during the acute episode and in therapeutic regimen used. Five patients died in hospital. Cause-effect relationship between SARS-CoV-2 infection and myocarditis is difficult to demonstrate. However, current evidence demonstrates myocardial inflammation with or without direct cardiomyocyte damage, suggesting different pathophysiology mechanisms responsible of COVID-mediated myocarditis. Established clinical approaches should be pursued until future evidence support different actions. Large multicentre registries are advisable to elucidate further.
Collapse
Affiliation(s)
- Teresa Castiello
- Department of Cardiology, Croydon Health Service, London, UK
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | | | - Gherardo Finocchiaro
- School of Biomedical Engineering and Imaging Sciences, Kings College London, London, UK
| | - Monaco Claudia
- The Kennedy Institute of Rheumatology University of Oxford, Oxford, UK
| | - Andrea Gianatti
- Anatomic Pathology Unit, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Dimitrios Delialis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens School of Medicine, Athens, Greece
| | - Alberto Aimo
- Scuola Superiore Sant'Anna, Pisa, Italy.
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy.
| | - Sanjay Prasad
- Royal Brompton Hospital, Imperial College London, London, UK
| |
Collapse
|
41
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- gadu] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
42
|
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
43
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- -] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
44
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- #] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
45
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42:3599-3726. [PMID: 34447992 DOI: 10.1093/eurheartj/ehab368] [Citation(s) in RCA: 6906] [Impact Index Per Article: 1726.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
46
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- -] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
47
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 and 1880=1880] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
48
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- awyx] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
49
|
Caforio ALP, Baritussio A, Basso C, Marcolongo R. Clinically Suspected and Biopsy-Proven Myocarditis Temporally Associated with SARS-CoV-2 Infection. Annu Rev Med 2021; 73:149-166. [PMID: 34506211 DOI: 10.1146/annurev-med-042220-023859] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We review current data on clinically suspected [European Society of Cardiology (ESC) 2013 criteria] and biopsy-proven [ESC and World Health Organization (WHO) criteria] myocarditis that is temporally associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. ESC/WHO etiological diagnosis of viral myocarditis is based on histological, and immunohistological evidence of nonischemic myocyte necrosis and monolymphocytic infiltration, i.e., myocarditis, plus the identification of a specific cardiotropic virus by molecular techniques, in particular polymerase chain reaction (PCR)/in-situ hybridization, on endomyocardial biopsy (EMB)/autopsy tissue. There is not yet definitive EMB/autopsy proof that SARS-CoV-2 causes direct cardiomyocyte damage in association with histological myocarditis. Clinical epidemiology data suggest that myocarditis is uncommon for both SARS-CoV-2-positive and -negative PCR cases. We hypothesize that the rare virus-negative biopsy-proven cases may represent new-onset immune-mediated or latent pre-existing autoimmune forms, triggered or fostered by the hyperinflammatory state of severe COVID-19. We recommend the application of the ESC/WHO definitions and diagnostic criteria in future reports to avoid low-quality scientific information leading to an inaccurate estimate of myocarditis incidence based on misdiagnosis. Expected final online publication date for the Annual Review of Medicine, Volume 73 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Alida L P Caforio
- Division of Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | - Anna Baritussio
- Division of Cardiology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy;
| | - Cristina Basso
- Division of Cardiovascular Pathology, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Renzo Marcolongo
- Hematology and Clinical Immunology, Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
50
|
Lampejo T, Durkin SM, Bhatt N, Guttmann O. Acute myocarditis: aetiology, diagnosis and management. Clin Med (Lond) 2021; 21:e505-e510. [PMID: 38594854 DOI: 10.7861/clinmed.2021-0121] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Acute myocarditis is a serious, likely underdiagnosed condition affecting people of all ages and for which the number of UK hospital admissions is rising. A primary diagnosis of myocarditis accounted for 0.04% (36.5 per 100,000) of all hospital admissions in England between 1998 and 2017, although this is likely to be an underestimate of the true burden of myocarditis. The aetiology is broad, including infective and inflammatory conditions as well as exposure to toxic agents. Clinical features are varied and overlap with other acute cardiac conditions making diagnosis a challenge. Cardiovascular magnetic resonance imaging currently serves as the gold standard non-invasive diagnostic modality. If an underlying aetiological process is identified, then therapy may be directed at the cause; however, for most, treatment is supportive and aimed at managing any complications such as heart failure or arrhythmias. There is emerging evidence for immunosuppressive therapy in certain cases. Prognosis is generally good with recovery in most; however, up to 30% with biopsy-proven myocarditis progress to develop a dilated cardiomyopathy and its potential associated complications. All-cause mortality in the UK for patients presenting to hospital with acute myocarditis is approximately 4%.
Collapse
Affiliation(s)
- Temi Lampejo
- Imperial College Healthcare NHS Trust, London, UK.
| | | | - Naman Bhatt
- London North West University Healthcare NHS Trust, London, UK
| | | |
Collapse
|