1
|
Newman NA, Burke MA. Dilated Cardiomyopathy: A Genetic Journey from Past to Future. Int J Mol Sci 2024; 25:11460. [PMID: 39519012 PMCID: PMC11546582 DOI: 10.3390/ijms252111460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by reduced systolic function and cardiac dilation. Cases without an identified secondary cause are classified as idiopathic dilated cardiomyopathy (IDC). Over the last 35 years, many cases of IDC have increasingly been recognized to be genetic in etiology with a core set of definitively causal genes in up to 40% of cases. While over 200 genes have been associated with DCM, the evidence supporting pathogenicity for most remains limited. Further, rapid advances in sequencing and bioinformatics have recently revealed a complex genetic spectrum ranging from monogenic to polygenic in DCM. These advances have also led to the discovery of causal and modifier genetic variants in secondary forms of DCM (e.g., alcohol-induced cardiomyopathy). Current guidelines recommend genetic counseling and screening, as well as endorsing a handful of genotype-specific therapies (e.g., device placement in LMNA cardiomyopathy). The future of genetics in DCM will likely involve polygenic risk scores, direct-to-consumer testing, and pharmacogenetics, requiring providers to have a thorough understanding of this rapidly developing field. Herein we outline three decades of genetics in DCM, summarize recent advances, and project possible future avenues for the field.
Collapse
Affiliation(s)
- Noah A. Newman
- Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael A. Burke
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Myers MC, Wang S, Zhong Y, Maruyama S, Bueno C, Bastien A, Fazeli MS, Golchin N. Prevalence of Genetically Associated Dilated Cardiomyopathy: A Systematic Literature Review and Meta-Analysis. Cardiol Res 2024; 15:233-245. [PMID: 39205965 PMCID: PMC11349141 DOI: 10.14740/cr1680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background Dilated cardiomyopathy (DCM) is a leading cause of heart failure and cardiac transplantation globally. Disease-associated genetic variants play a significant role in the development of DCM. Accurately determining the prevalence of genetically associated DCM (genetic DCM) is important for developing targeted prevention strategies. This review synthesized published literature on the global prevalence of genetic DCM across various populations, focusing on two of the most common variants: titin (TTN) and myosin heavy chain 7 (MYH7). Methods MEDLINE® and Embase were searched from database inception to September 19, 2022 for English-language studies reporting the prevalence of genetic DCM within any population. Studies using family history as a proxy for genetic DCM were excluded. Results Of 2,736 abstracts, 57 studies were included. Among the global adult or mixed (mostly adults with few pediatric patients) DCM population, median prevalence was 20.2% (interquartile range (IQR): 16.3-36.0%) for overall genetic DCM, 11.4% (IQR: 8.2-17.8%) for TTN-associated DCM, and 3.2% (IQR: 1.8-5.2%) for MYH7-associated DCM. Global prevalence of overall pediatric genetic DCM within the DCM population was similar (weighted mean: 21.3%). Few studies reported data on the prevalence of genetic DCM within the general population. Conclusions Our study identified variable prevalence estimates of genetic DCM across different populations and geographic locations. The current evidence may underestimate the genetic contributions due to limited screening and detection of potential DCM patients. Epidemiological studies using long-read whole genome sequencing to identify structural variants or non-coding variants are needed, as well as large cohort datasets with genotype-phenotype correlation analyses.
Collapse
Affiliation(s)
| | - Su Wang
- Evidinno Outcomes Research Inc., Vancouver, BC, Canada
| | - Yue Zhong
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | | |
Collapse
|
3
|
Arnautu DA, Cozma D, Lala IR, Arnautu SF, Tomescu MC, Andor M. Risk Assessment and Personalized Treatment Options in Inherited Dilated Cardiomyopathies: A Narrative Review. Biomedicines 2024; 12:1643. [PMID: 39200108 PMCID: PMC11351202 DOI: 10.3390/biomedicines12081643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the worldwide impact of heart failure, it is crucial to develop approaches that can help us comprehend its root cause and make accurate predictions about its outcome. This is essential for lowering the suffering and death rates connected with this widespread illness. Cardiomyopathies frequently result from genetic factors, and the study of heart failure genetics is advancing quickly. Dilated cardiomyopathy (DCM) is the most prevalent kind of cardiomyopathy, encompassing both genetic and nongenetic abnormalities. It is distinguished by the enlargement of the left ventricle or both ventricles, accompanied by reduced contractility. The discovery of the molecular origins and subsequent awareness of the molecular mechanism is broadening our knowledge of DCM development. Additionally, it emphasizes the complicated nature of DCM and the necessity to formulate several different strategies to address the diverse underlying factors contributing to this disease. Genetic variants that can be transmitted from one generation to another can be a significant contributor to causing family or sporadic hereditary DCM. Genetic variants also play a significant role in determining susceptibility for acquired triggers for DCM. The genetic causes of DCM can have a large range of phenotypic expressions. It is crucial to select patients who are most probable to gain advantages from genetic testing. The purpose of this research is to emphasize the significance of identifying genetic DCM, the relationships between genotype and phenotype, risk assessment, and personalized therapy for both those affected and their relatives. This approach is expected to gain importance once treatment is guided by genotype-specific advice and disease-modifying medications.
Collapse
Affiliation(s)
- Diana-Aurora Arnautu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Dragos Cozma
- Department of Cardiology, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Ioan-Radu Lala
- Department of Cardiology, Western University Vasile Goldis, 310025 Arad, Romania
| | - Sergiu-Florin Arnautu
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Mirela-Cleopatra Tomescu
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Minodora Andor
- Multidisciplinary Heart Research Center, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania; (D.-A.A.); (M.-C.T.)
- Department of Internal Medicine I, Victor Babes University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
4
|
León P, Franco P, Hinojosa N, Torres K, Moreano A, Romero VI. TTN novel splice variant in familial dilated cardiomyopathy and splice variants review: a case report. Front Cardiovasc Med 2024; 11:1387063. [PMID: 38938651 PMCID: PMC11210389 DOI: 10.3389/fcvm.2024.1387063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 06/29/2024] Open
Abstract
This case report details the identification of a novel likely pathogenic splicing variant in the TTN gene, associated with dilated cardiomyopathy (DCM), in a 42-year-old male patient presenting with early-onset heart failure and reduced ejection fraction. DCM is a nonischemic heart condition characterized by left biventricular dilation and systolic dysfunction, with approximately one-third of cases being familial and often linked to genetic mutations. The TTN gene, encoding the largest human protein essential for muscle contraction and sarcomere structure, is implicated in about 25% of DCM cases through mutations, especially truncating variants. Our investigation revealed a previously unreported G > C mutation at the splice acceptor site in intron 356 of TTN, confirmed by Sanger sequencing and not found in population databases, suggesting a novel contribution to the understanding of DCM etiology. The case emphasizes the critical role of the TTN gene in cardiac function and the genetic complexity underlying DCM. A comprehensive literature review highlighted the prevalence and significance of splice variants in the TTN gene, particularly those affecting the titin A-band, which is known for its role in muscle contraction and stability. This variant's identification underscores the importance of genetic screening in patients with DCM, offering insights into the disease's familial transmission and potential therapeutic targets. Our findings contribute to the expanding knowledge of genetic factors in DCM, demonstrating the necessity of integrating genetic diagnostics in cardiovascular medicine. This case supports the growing evidence linking splicing mutations in specific regions of the TTN gene to DCM development and underscores the importance of genetic counseling and testing in managing heart disease.
Collapse
Affiliation(s)
- Paul León
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
| | - Paula Franco
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Nicole Hinojosa
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Kevin Torres
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Andrés Moreano
- Department of Cardiology, Universidad de Sao Paulo, Sao Paulo, Brazil
| | - Vanessa I. Romero
- College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Quito, Ecuador
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
5
|
Jolfayi AG, Kohansal E, Ghasemi S, Naderi N, Hesami M, MozafaryBazargany M, Moghadam MH, Fazelifar AF, Maleki M, Kalayinia S. Exploring TTN variants as genetic insights into cardiomyopathy pathogenesis and potential emerging clues to molecular mechanisms in cardiomyopathies. Sci Rep 2024; 14:5313. [PMID: 38438525 PMCID: PMC10912352 DOI: 10.1038/s41598-024-56154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/01/2024] [Indexed: 03/06/2024] Open
Abstract
The giant protein titin (TTN) is a sarcomeric protein that forms the myofibrillar backbone for the components of the contractile machinery which plays a crucial role in muscle disorders and cardiomyopathies. Diagnosing TTN pathogenic variants has important implications for patient management and genetic counseling. Genetic testing for TTN variants can help identify individuals at risk for developing cardiomyopathies, allowing for early intervention and personalized treatment strategies. Furthermore, identifying TTN variants can inform prognosis and guide therapeutic decisions. Deciphering the intricate genotype-phenotype correlations between TTN variants and their pathologic traits in cardiomyopathies is imperative for gene-based diagnosis, risk assessment, and personalized clinical management. With the increasing use of next-generation sequencing (NGS), a high number of variants in the TTN gene have been detected in patients with cardiomyopathies. However, not all TTN variants detected in cardiomyopathy cohorts can be assumed to be disease-causing. The interpretation of TTN variants remains challenging due to high background population variation. This narrative review aimed to comprehensively summarize current evidence on TTN variants identified in published cardiomyopathy studies and determine which specific variants are likely pathogenic contributors to cardiomyopathy development.
Collapse
Affiliation(s)
- Amir Ghaffari Jolfayi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Erfan Kohansal
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Serwa Ghasemi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Naderi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahshid Hesami
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Hosseini Moghadam
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Verdonschot JAJ, Heymans SRB. Dilated cardiomyopathy: second hits knock-down the heart. Eur Heart J 2024; 45:500-501. [PMID: 38085575 DOI: 10.1093/eurheartj/ehad778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Affiliation(s)
- Job A J Verdonschot
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), P. Debeyelaan 25, 6202AZ Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Centre, P. Debeyelaan 25, Maastricht 6202AZ, The Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht (CARIM), P. Debeyelaan 25, 6202AZ Maastricht, The Netherlands
- European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart)
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Herestraat 49, University of Leuven, Belgium
| |
Collapse
|
7
|
Gregorich ZR, Yanghai Z, Kamp TJ, Granzier H, Guo W. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004355. [PMID: 38288598 PMCID: PMC10923161 DOI: 10.1161/circgen.123.004355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Zhang Yanghai
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
8
|
Hammersley DJ, Jones RE, Owen R, Mach L, Lota AS, Khalique Z, De Marvao A, Androulakis E, Hatipoglu S, Gulati A, Reddy RK, Yoon WY, Talukder S, Shah R, Baruah R, Guha K, Pantazis A, Baksi AJ, Gregson J, Cleland JG, Tayal U, Pennell DJ, Ware JS, Halliday BP, Prasad SK. Phenotype, outcomes and natural history of early-stage non-ischaemic cardiomyopathy. Eur J Heart Fail 2023; 25:2050-2059. [PMID: 37728026 PMCID: PMC10946699 DOI: 10.1002/ejhf.3037] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
AIMS To characterize the phenotype, clinical outcomes and rate of disease progression in patients with early-stage non-ischaemic cardiomyopathy (early-NICM). METHODS AND RESULTS We conducted a prospective observational cohort study of patients with early-NICM assessed by late gadolinium enhancement cardiovascular magnetic resonance (CMR). Cases were classified into the following subgroups: isolated left ventricular dilatation (early-NICM H-/D+), non-dilated left ventricular cardiomyopathy (early-NICM H+/D-), or early dilated cardiomyopathy (early-NICM H+/D+). Clinical follow-up for major adverse cardiovascular events (MACE) included non-fatal life-threatening arrhythmia, unplanned cardiovascular hospitalization or cardiovascular death. A subset of patients (n = 119) underwent a second CMR to assess changes in cardiac structure and function. Of 254 patients with early-NICM (median age 46 years [interquartile range 36-58], 94 [37%] women, median left ventricular ejection fraction [LVEF] 55% [52-59]), myocardial fibrosis was present in 65 (26%). There was no difference in the prevalence of fibrosis between subgroups (p = 0.90), however fibrosis mass was lowest in early-NICM H-/D+, higher in early-NICM H+/D- and highest in early-NICM H+/D+ (p = 0.03). Over a median follow-up of 7.9 (5.5-10.0) years, 28 patients (11%) experienced MACE. Non-sustained ventricular tachycardia (hazard ratio [HR] 5.1, 95% confidence interval [CI] 2.36-11.00, p < 0.001), myocardial fibrosis (HR 3.77, 95% CI 1.73-8.20, p < 0.001) and diabetes mellitus (HR 5.12, 95% CI 1.73-15.18, p = 0.003) were associated with MACE in a multivariable model. Only 8% of patients progressed from early-NICM to dilated cardiomyopathy with LVEF <50% over a median of 16 (11-34) months. CONCLUSION Early-NICM is not benign. Fibrosis develops early in the phenotypic course. In-depth characterization enhances risk stratification and might aid clinical management.
Collapse
Affiliation(s)
- Daniel J. Hammersley
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Richard E. Jones
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- Anglia Ruskin Medical School, UKCambridgeUK
- Essex Cardiothoracic CentreBasildonUK
| | - Ruth Owen
- London School of Hygiene and Tropical MedicineLondonUK
| | - Lukas Mach
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Amrit S. Lota
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Zohya Khalique
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Antonio De Marvao
- Department of Women and Children's HealthKing's College LondonLondonUK
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and SciencesKing's College LondonLondonUK
| | - Emmanuel Androulakis
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Suzan Hatipoglu
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | | | - Rohin K. Reddy
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Won Young Yoon
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Suprateeka Talukder
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Riya Shah
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Resham Baruah
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | | | - Antonis Pantazis
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - A. John Baksi
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - John Gregson
- London School of Hygiene and Tropical MedicineLondonUK
| | - John G.F. Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic HealthUniversity of GlasgowGlasgowUK
| | - Upasana Tayal
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Dudley J. Pennell
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - James S. Ware
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
- MRC London Institute of Medical SciencesImperial College LondonLondonUK
| | - Brian P. Halliday
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Sanjay K. Prasad
- National Heart and Lung InstituteImperial College LondonLondonUK
- Royal Brompton & Harefield HospitalGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
9
|
Bui QM, Ding J, Hong KN, Adler EA. The Genetic Evaluation of Dilated Cardiomyopathy. STRUCTURAL HEART : THE JOURNAL OF THE HEART TEAM 2023; 7:100200. [PMID: 37745678 PMCID: PMC10512006 DOI: 10.1016/j.shj.2023.100200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 09/26/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure and is the primary indication for heart transplantation. A genetic etiology can be found in 20-35% of patients with DCM, especially in those with a family history of cardiomyopathy or sudden cardiac death at an early age. With advancements in genome sequencing, the understanding of genotype-phenotype relationships in DCM has expanded with over 60 genes implicated in the disease. Subsequently, these findings have increased adoption of genetic testing in the management of DCM, which has allowed for improved risk stratification and identification of at risk family members. In this review, we discuss the genetic evaluation of DCM with a focus on practical genetic testing considerations, genotype-phenotype associations, and insights into upcoming personalized therapies.
Collapse
Affiliation(s)
- Quan M. Bui
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jeffrey Ding
- University of California San Diego School of Medicine, La Jolla, California, USA
| | - Kimberly N. Hong
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Eric A. Adler
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
García-Hernandez S, Iglesias LM. Genetic Testing as a Guide for Treatment in Dilated Cardiomyopathies. Curr Cardiol Rep 2022; 24:1537-1546. [PMID: 35994197 DOI: 10.1007/s11886-022-01772-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy (DCM) is one of the most prevalent primary cardiomyopathies and may be caused by genetic and non-genetic etiologies. DCM may also be the final common pathway of other cardiomyopathies such as hypertrophic, arrhythmogenic, or non-compaction cardiomyopathy. We review the main DCM genetic substrates, specific genotype-phenotype aspects, the role of genetic testing in risk stratification, and advances regarding genotype-based precision medicine. RECENT FINDINGS Performing a comprehensive genetic study could have a diagnostic yield up to 40% in DCM, and it is considered a cost-effective approach nowadays. The detection of a specific underlying genetic substrate explaining the disease can have important consequences for clinical management, especially for familial cascade screening, optimizing medical treatment, and improving the arrhythmic risk stratification. The identification of the genetic substrate underlying dilated cardiomyopathy makes possible the genotype-phenotype correlation analysis and a better understanding of the natural history of this disease. Nowadays, there are many promising targeting-gene therapies in different developing phases.
Collapse
Affiliation(s)
- Soledad García-Hernandez
- Scientific Department, Health in Code S.L., A Coruña, Spain.,Inherited Cardiac Diseases Unit, Hospital Universitario San Cecilio, Granada, Spain
| | | |
Collapse
|
11
|
Yang Q, Berkman AM, Ezekian JE, Rosamilia M, Rosenfeld JA, Liu P, Landstrom AP. Determining the Likelihood of Disease Pathogenicity Among Incidentally Identified Genetic Variants in Rare Dilated Cardiomyopathy-Associated Genes. J Am Heart Assoc 2022; 11:e025257. [PMID: 36129056 DOI: 10.1161/jaha.122.025257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background As utilization of clinical exome sequencing (ES) has expanded, criteria for evaluating the diagnostic weight of incidentally identified variants are critical to guide clinicians and researchers. This is particularly important in genes associated with dilated cardiomyopathy (DCM), which can cause heart failure and sudden death. We sought to compare the frequency and distribution of incidentally identified variants in DCM-associated genes between a clinical referral cohort with those in control and known case cohorts to determine the likelihood of pathogenicity among those undergoing genetic testing for non-DCM indications. Methods and Results A total of 39 rare, non-TTN DCM-associated genes were identified and evaluated from a clinical ES testing referral cohort (n=14 005, Baylor Genetic Laboratories) and compared with a DCM case cohort (n=9442) as well as a control cohort of population variants (n=141 456) derived from the gnomAD database. Variant frequencies in each cohort were compared. Signal-to-noise ratios were calculated comparing the DCM and ES cohort with the gnomAD cohort. The likely pathogenic/pathogenic variant yield in the DCM cohort (8.2%) was significantly higher than in the ES cohort (1.9%). Based on signal-to-noise and correlation analysis, incidental variants found in FLNC, RBM20, MYH6, DSP, ABCC9, JPH2, and NEXN had the greatest chance of being DCM-associated. Conclusions The distribution of pathogenic variants between the ES cohort and the DCM case cohort was gene specific, and variants found in the ES cohort were similar to variants found in the control cohort. Incidentally identified variants in specific genes are more associated with DCM than others.
Collapse
Affiliation(s)
- Qixin Yang
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC.,Department of Cardiology The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou China
| | - Amy M Berkman
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Jordan E Ezekian
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Michael Rosamilia
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics Baylor College of Medicine and Baylor Genetics Laboratories Houston TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics Baylor College of Medicine and Baylor Genetics Laboratories Houston TX
| | - Andrew P Landstrom
- Department of Pediatrics, Division of Cardiology Duke University School of Medicine Durham NC.,Department of Cell Biology Duke University School of Medicine Durham NC
| |
Collapse
|
12
|
Escobar-Lopez L, Ochoa JP, Royuela A, Verdonschot JAJ, Dal Ferro M, Espinosa MA, Sabater-Molina M, Gallego-Delgado M, Larrañaga-Moreira JM, Garcia-Pinilla JM, Basurte-Elorz MT, Rodríguez-Palomares JF, Climent V, Bermudez-Jimenez FJ, Mogollón-Jiménez MV, Lopez J, Peña-Peña ML, Garcia-Alvarez A, López-Abel B, Ripoll-Vera T, Palomino-Doza J, Bayes-Genis A, Brugada R, Idiazabal U, Mirelis JG, Dominguez F, Henkens MTHM, Krapels IPC, Brunner HG, Paldino A, Zaffalon D, Mestroni L, Sinagra G, Heymans SRB, Merlo M, Garcia-Pavia P. Clinical Risk Score to Predict Pathogenic Genotypes in Patients With Dilated Cardiomyopathy. J Am Coll Cardiol 2022; 80:1115-1126. [PMID: 36109106 PMCID: PMC10804447 DOI: 10.1016/j.jacc.2022.06.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Although genotyping allows family screening and influences risk-stratification in patients with nonischemic dilated cardiomyopathy (DCM) or isolated left ventricular systolic dysfunction (LVSD), its result is negative in a significant number of patients, limiting its widespread adoption. OBJECTIVES This study sought to develop and externally validate a score that predicts the probability for a positive genetic test result (G+) in DCM/LVSD. METHODS Clinical, electrocardiogram, and echocardiographic variables were collected in 1,015 genotyped patients from Spain with DCM/LVSD. Multivariable logistic regression analysis was used to identify variables independently predicting G+, which were summed to create the Madrid Genotype Score. The external validation sample comprised 1,097 genotyped patients from the Maastricht and Trieste registries. RESULTS A G+ result was found in 377 (37%) and 289 (26%) patients from the derivation and validation cohorts, respectively. Independent predictors of a G+ result in the derivation cohort were: family history of DCM (OR: 2.29; 95% CI: 1.73-3.04; P < 0.001), low electrocardiogram voltage in peripheral leads (OR: 3.61; 95% CI: 2.38-5.49; P < 0.001), skeletal myopathy (OR: 3.42; 95% CI: 1.60-7.31; P = 0.001), absence of hypertension (OR: 2.28; 95% CI: 1.67-3.13; P < 0.001), and absence of left bundle branch block (OR: 3.58; 95% CI: 2.57-5.01; P < 0.001). A score containing these factors predicted a G+ result, ranging from 3% when all predictors were absent to 79% when ≥4 predictors were present. Internal validation provided a C-statistic of 0.74 (95% CI: 0.71-0.77) and a calibration slope of 0.94 (95% CI: 0.80-1.10). The C-statistic in the external validation cohort was 0.74 (95% CI: 0.71-0.78). CONCLUSIONS The Madrid Genotype Score is an accurate tool to predict a G+ result in DCM/LVSD.
Collapse
Affiliation(s)
- Luis Escobar-Lopez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain
| | - Juan Pablo Ochoa
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain
| | - Ana Royuela
- Biostatistics Unit, Puerta de Hierro Biomedical Research Institute (IDIPHISA), CIBERESP, Madrid, Spain
| | - Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matteo Dal Ferro
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Maria Angeles Espinosa
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria Sabater-Molina
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Inherited Cardiac Disease Unit, University Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Maria Gallego-Delgado
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Diseases Unit, Department of Cardiology, Instituto de Investigación Biomédica de Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), Salamanca, Spain
| | - Jose M Larrañaga-Moreira
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Diseases Unit, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña, Servizo Galego de Saúde (SERGAS), Universidade da Coruña, A Coruña, Spain
| | - Jose M Garcia-Pinilla
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Heart Failure and Familial Heart Diseases Unit, Cardiology Department, Hospital Universitario Virgen de la Victoria, IBIMA, Malaga, Spain
| | | | - José F Rodríguez-Palomares
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiovascular Diseases Unit, Department of Cardiology, Hospital Universitari Vall d´Hebron, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicente Climent
- Inherited Cardiovascular Diseases Unit, Department of Cardiology, Hospital General Universitario de Alicante, Institute of Health and Biomedical Research, Alicante, Spain
| | | | | | - Javier Lopez
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Department of Cardiology, Instituto de Ciencias Del Corazón (ICICOR), Hospital Clínico Universitario Valladolid, Valladolid, Spain
| | - Maria Luisa Peña-Peña
- Inherited Cardiac Diseases Unit, Hospital Universitario Virgen Del Rocío, Seville, Spain
| | - Ana Garcia-Alvarez
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; IDIBAPS, Hospital Clínic, Department of Cardiology, Universitat de Barcelona, Barcelona, Spain; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Bernardo López-Abel
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Diseases Unit, Department of Cardiology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Tomas Ripoll-Vera
- Inherited Cardiac Diseases Unit, Cardiology Department, Hospital Universitario Son Llatzer and IdISBa, Palma de Mallorca, Spain
| | - Julian Palomino-Doza
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Diseases Unit, Cardiology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación i+12. Madrid, Spain
| | - Antoni Bayes-Genis
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ramon Brugada
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitari Dr Josep Trueta, Girona, Spain
| | - Uxua Idiazabal
- Department of Cardiology, Clinica San Miguel, Pamplona, Spain
| | - Jesus G Mirelis
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain
| | - Fernando Dominguez
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain
| | - Michiel T H M Henkens
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands; GROW Institute for Developmental Biology and Cancer, Maastricht University, Maastricht, the Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alessia Paldino
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Denise Zaffalon
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Luisa Mestroni
- CU Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gianfranco Sinagra
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Stephane R B Heymans
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Belgium
| | - Marco Merlo
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Pablo Garcia-Pavia
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, IDIPHISA, Madrid, Spain; CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain; European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN-GUARDHEART), Madrid, Spain; Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain.
| |
Collapse
|
13
|
Badshah N, Mattison KA, Ahmad S, Chopra P, Johnston HR, Ahmad S, Khan SH, Sarwar MT, Cutler DJ, Taylor M, Vadlamani G, Zwick ME, Escayg A. Novel Missense CNTNAP2 Variant Identified in Two Consanguineous Pakistani Families With Developmental Delay, Epilepsy, Intellectual Disability, and Aggressive Behavior. Front Neurol 2022; 13:918022. [PMID: 35911904 PMCID: PMC9329621 DOI: 10.3389/fneur.2022.918022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
We report the genetic analysis of two consanguineous pedigrees of Pakistani ancestry in which two siblings in each family exhibited developmental delay, epilepsy, intellectual disability and aggressive behavior. Whole-genome sequencing was performed in Family 1, and we identified ~80,000 variants located in regions of homozygosity. Of these, 615 variants had a minor allele frequency ≤ 0.001, and 21 variants had CADD scores ≥ 15. Four homozygous exonic variants were identified in both affected siblings: PDZD7 (c.1348_1350delGAG, p.Glu450del), ALG6 (c.1033G>C, p.Glu345Gln), RBM20 (c.1587C>G, p.Ser529Arg), and CNTNAP2 (c.785G>A, p.Gly228Arg). Sanger sequencing revealed co-segregation of the PDZD7, RBM20, and CNTNAP2 variants with disease in Family 1. Pathogenic variants in PDZD7 and RBM20 are associated with autosomal recessive non-syndromic hearing loss and autosomal dominant dilated cardiomyopathy, respectively, suggesting that these variants are unlikely likely to contribute to the clinical presentation. Gene panel analysis was performed on the two affected siblings in Family 2, and they were found to also be homozygous for the p.Gly228Arg CNTNAP2 variant. Together these families provide a LOD score 2.9 toward p.Gly228Arg CNTNAP2 being a completely penetrant recessive cause of this disease. The clinical presentation of the affected siblings in both families is also consistent with previous reports from individuals with homozygous CNTNAP2 variants where at least one allele was a nonsense variant, frameshift or small deletion. Our data suggests that homozygous CNTNAP2 missense variants can also contribute to disease, thereby expanding the genetic landscape of CNTNAP2 dysfunction.
Collapse
Affiliation(s)
- Noor Badshah
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Kari A. Mattison
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- Genetics and Molecular Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, United States
| | - Sohail Ahmad
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Pankaj Chopra
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | | | - Shakoor Ahmad
- Department of Animal Health, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Sher Hayat Khan
- Institute of Biotechnology and Genetic Engineering, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Muhammad Tahir Sarwar
- Department of Molecular Biology and Genetics, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - David J. Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Micheal Taylor
- Department of Pediatric Neurology, Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
| | - Gayatri Vadlamani
- Department of Pediatric Neurology, Leeds Teaching Hospital NHS Trust, Leeds, United Kingdom
| | - Michael E. Zwick
- Department of Human Genetics, Emory University, Atlanta, GA, United States
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States
- *Correspondence: Andrew Escayg
| |
Collapse
|
14
|
Castelletti S, Zorzi A, Ballardini E, Basso C, Biffi A, Bracati F, Cavarretta E, Crotti L, Contursi M, D'Aleo A, D'Ascenzi F, Delise P, Dello Russo A, Gazale G, Mos L, Novelli V, Palamà Z, Palermi S, Palmieri V, Patrizi G, Pelliccia A, Pilichou K, Romano S, Sarto P, Schwartz PJ, Tiberi M, Zeppilli P, Corrado D, Sciarra L. Molecular genetic testing in athletes: Why and when a position statement from the Italian society of sports cardiology. Int J Cardiol 2022; 364:169-177. [PMID: 35662561 DOI: 10.1016/j.ijcard.2022.05.071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 12/31/2022]
Abstract
Molecular genetic testing is an increasingly available test to support the clinical diagnosis of inherited cardiovascular diseases through identification of pathogenic gene variants and to make a preclinical genetic diagnosis among proband's family members (so-called "cascade family screening"). In athletes, the added value of molecular genetic testing is to assist in discriminating between physiological adaptive changes of the athlete's heart and inherited cardiovascular diseases, in the presence of overlapping phenotypic features such as ECG changes, imaging abnormalities or arrhythmias ("grey zone"). Additional benefits of molecular genetic testing in the athlete include the potential impact on the disease risk stratification and the implications for eligibility to competitive sports. This position statement of the Italian Society of Sports Cardiology aims to guide general sports medical physicians and sports cardiologists on clinical decision as why and when to perform a molecular genetic testing in the athlete, highlighting strengths and weaknesses for each inherited cardiovascular disease at-risk of sudden cardiac death during sport. The importance of early (preclinical) diagnosis to prevent the negative effects of exercise on phenotypic expression, disease progression and worsening of the arrhythmogenic substrate is also addressed.
Collapse
Affiliation(s)
- Silvia Castelletti
- Cardiomyopathy Center and Rehabilitation Unit, Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Enrico Ballardini
- Sports Medicine Centre, Gruppo Mantova Salus, Ospedale San Pellegrino, Mantova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Alessandro Biffi
- Med-Ex, Medicine and Exercise srl, Medical Partner Scuderia Ferrari, Rome, Italy
| | - Francesco Bracati
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Mediterranea Cardiocentro, Naples, Italy
| | - Lia Crotti
- Cardiomyopathy Center and Rehabilitation Unit, Department of Cardiovascular, Neural and Metabolic Sciences, IRCCS Istituto Auxologico Italiano, Milan, Italy; Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Maurizio Contursi
- Sports Cardiology Unit, Centro Polidiagnostico Check-up, Salerno, Italy
| | | | - Flavio D'Ascenzi
- Division of Cardiology, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Pietro Delise
- Division of Cardiology, Hospital of Peschiera del Garda, Veneto, Italy
| | - Antonio Dello Russo
- Cardiology and Arrhythmology Clinic, University Hospital "Lancisi-Umberto I- Salesi", Ancona, Italy, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Gazale
- Center of Sport Medicine and Sports Cardiology, ASL 1, Sassari, Italy
| | - Lucio Mos
- San Antonio Hospital, San Daniele del Friuli, Udine, Italy
| | | | - Zefferino Palamà
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy; Casa di Cura Villa Verde, Taranto, Italy
| | - Stefano Palermi
- Med-Ex, Medicine and Exercise srl, Medical Partner Scuderia Ferrari, Rome, Italy
| | - Vincenzo Palmieri
- Sports Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | | | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Silvio Romano
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| | | | - Peter J Schwartz
- Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Monica Tiberi
- Department of Public Health, Azienda Sanitaria Unica Regionale Marche AV 1, Pesaro, Italy
| | - Paolo Zeppilli
- Sports Medicine Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy.
| | - Luigi Sciarra
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Aquila, Italy
| |
Collapse
|
15
|
Smith E, Thompson PD, Burke-Martindale C, Weissler-Snir A. Establishment of a Dedicated Inherited Cardiomyopathy Clinic: From Challenges to Improved Patients' Outcome. J Am Heart Assoc 2022; 11:e024501. [PMID: 35470680 PMCID: PMC9238612 DOI: 10.1161/jaha.121.024501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Inherited cardiomyopathies (ICs) are relatively rare. General cardiologists have little experience in diagnosing and managing these conditions. International societies have recognized the need for dedicated IC clinics. However, only few reports on such clinics are available. Methods and Results Clinical data of patients referred to our clinic during its first 2 years for a personal or family history of (possible) IC were analyzed. A total of 207 patients from 196 families were seen; 13% of probands had their diagnosis changed. Diagnosis was most commonly altered in patients referred for possible arrhythmogenic dominant right ventricular cardiomyopathy (62.5%). A total of 90% of probands had genetic testing, of whom 27.3% harbored a likely pathogenic or pathogenic variant. Of patients with confirmed hypertrophic cardiomyopathy, 31 (28.7%) were treated for left ventricular outflow tract obstruction, including septal reduction in 13. Patients with either hypertrophic cardiomyopathy or left ventricular noncompaction and a history of atrial fibrillation were started on oral anticoagulation. Oral anticoagulation was also discussed with all patients with hypertrophic cardiomyopathy and apical aneurysm. Patients with a definite diagnosis of arrhythmogenic dominant right ventricular cardiomyopathy were started on β‐blockers and given restrictive exercise prescriptions. A total of 17 patients with hypertrophic cardiomyopathy and 5 patients with likely pathogenic or likely variants in arrhythmogenic genes received primary prevention implantable cardioverter‐defibrillators. No implantable cardioverter‐defibrillators were warranted for arrhythmogenic dominant right ventricular cardiomyopathy. A total of 76 family members from 24 families had cascade screening, 32 of whom carried the familial variant. A total of 21 members from 13 gene‐elusive families were evaluated by clinical screening, 3 of whom had positive screening. Conclusions Specialized IC clinics may improve diagnosis, management, and outcomes of patients with (possible) IC and their family members.
Collapse
Affiliation(s)
- Emily Smith
- Hartford HealthCare, Heart and Vascular Institute Hartford CT
| | - Paul D Thompson
- Hartford HealthCare, Heart and Vascular Institute Hartford CT.,Department of Medicine University of Connecticut Farmington CT
| | | | - Adaya Weissler-Snir
- Hartford HealthCare, Heart and Vascular Institute Hartford CT.,Department of Medicine University of Connecticut Farmington CT
| |
Collapse
|
16
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JG, Coats AJ, Crespo-Leiro MG, Farmakis D, Gilard M, Heyman S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CS, Lyon AR, McMurray JJ, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GM, Ruschitzka F, Skibelund AK. Guía ESC 2021 sobre el diagnóstico y tratamiento de la insuficiencia cardiaca aguda y crónica. Rev Esp Cardiol 2022. [DOI: 10.1016/j.recesp.2021.11.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 2022; 24:4-131. [PMID: 35083827 DOI: 10.1002/ejhf.2333] [Citation(s) in RCA: 1218] [Impact Index Per Article: 406.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Document Reviewers: Rudolf A. de Boer (CPG Review Coordinator) (Netherlands), P. Christian Schulze (CPG Review Coordinator) (Germany), Magdy Abdelhamid (Egypt), Victor Aboyans (France), Stamatis Adamopoulos (Greece), Stefan D. Anker (Germany), Elena Arbelo (Spain), Riccardo Asteggiano (Italy), Johann Bauersachs (Germany), Antoni Bayes-Genis (Spain), Michael A. Borger (Germany), Werner Budts (Belgium), Maja Cikes (Croatia), Kevin Damman (Netherlands), Victoria Delgado (Netherlands), Paul Dendale (Belgium), Polychronis Dilaveris (Greece), Heinz Drexel (Austria), Justin Ezekowitz (Canada), Volkmar Falk (Germany), Laurent Fauchier (France), Gerasimos Filippatos (Greece), Alan Fraser (United Kingdom), Norbert Frey (Germany), Chris P. Gale (United Kingdom), Finn Gustafsson (Denmark), Julie Harris (United Kingdom), Bernard Iung (France), Stefan Janssens (Belgium), Mariell Jessup (United States of America), Aleksandra Konradi (Russia), Dipak Kotecha (United Kingdom), Ekaterini Lambrinou (Cyprus), Patrizio Lancellotti (Belgium), Ulf Landmesser (Germany), Christophe Leclercq (France), Basil S. Lewis (Israel), Francisco Leyva (United Kingdom), AleVs Linhart (Czech Republic), Maja-Lisa Løchen (Norway), Lars H. Lund (Sweden), Donna Mancini (United States of America), Josep Masip (Spain), Davor Milicic (Croatia), Christian Mueller (Switzerland), Holger Nef (Germany), Jens-Cosedis Nielsen (Denmark), Lis Neubeck (United Kingdom), Michel Noutsias (Germany), Steffen E. Petersen (United Kingdom), Anna Sonia Petronio (Italy), Piotr Ponikowski (Poland), Eva Prescott (Denmark), Amina Rakisheva (Kazakhstan), Dimitrios J. Richter (Greece), Evgeny Schlyakhto (Russia), Petar Seferovic (Serbia), Michele Senni (Italy), Marta Sitges (Spain), Miguel Sousa-Uva (Portugal), Carlo G. Tocchetti (Italy), Rhian M. Touyz (United Kingdom), Carsten Tschoepe (Germany), Johannes Waltenberger (Germany/Switzerland) All experts involved in the development of these guidelines have submitted declarations of interest. These have been compiled in a report and published in a supplementary document simultaneously to the guidelines. The report is also available on the ESC website www.escardio.org/guidelines For the Supplementary Data which include background information and detailed discussion of the data that have provided the basis for the guidelines see European Heart Journal online.
Collapse
|
18
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- gadu] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
19
|
2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
20
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- -] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
21
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- #] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
22
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42:3599-3726. [PMID: 34447992 DOI: 10.1093/eurheartj/ehab368] [Citation(s) in RCA: 6970] [Impact Index Per Article: 1742.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
23
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 1-- -] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
24
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 and 1880=1880] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
25
|
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, et alMcDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, de Boer RA, Christian Schulze P, Abdelhamid M, Aboyans V, Adamopoulos S, Anker SD, Arbelo E, Asteggiano R, Bauersachs J, Bayes-Genis A, Borger MA, Budts W, Cikes M, Damman K, Delgado V, Dendale P, Dilaveris P, Drexel H, Ezekowitz J, Falk V, Fauchier L, Filippatos G, Fraser A, Frey N, Gale CP, Gustafsson F, Harris J, Iung B, Janssens S, Jessup M, Konradi A, Kotecha D, Lambrinou E, Lancellotti P, Landmesser U, Leclercq C, Lewis BS, Leyva F, Linhart A, Løchen ML, Lund LH, Mancini D, Masip J, Milicic D, Mueller C, Nef H, Nielsen JC, Neubeck L, Noutsias M, Petersen SE, Sonia Petronio A, Ponikowski P, Prescott E, Rakisheva A, Richter DJ, Schlyakhto E, Seferovic P, Senni M, Sitges M, Sousa-Uva M, Tocchetti CG, Touyz RM, Tschoepe C, Waltenberger J, Adamo M, Baumbach A, Böhm M, Burri H, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gardner RS, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Piepoli MF, Price S, Rosano GMC, Ruschitzka F, Skibelund AK, ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021. [DOI: 10.1093/eurheartj/ehab368 order by 8029-- awyx] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
26
|
Tayal U, Ware JS, Lakdawala NK, Heymans S, Prasad SK. Understanding the genetics of adult-onset dilated cardiomyopathy: what a clinician needs to know. Eur Heart J 2021; 42:2384-2396. [PMID: 34153989 DOI: 10.1093/eurheartj/ehab286] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 12/28/2022] Open
Abstract
There is increasing understanding of the genetic basis to dilated cardiomyopathy and in this review, we offer a practical primer for the practising clinician. We aim to help all clinicians involved in the care of patients with dilated cardiomyopathy to understand the clinical relevance of the genetic basis of dilated cardiomyopathy, introduce key genetic concepts, explain which patients and families may benefit from genetic testing, which genetic tests are commonly performed, how to interpret genetic results, and the clinical applications of results. We conclude by reviewing areas for future research in this dynamic field.
Collapse
Affiliation(s)
- Upasana Tayal
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| | - James S Ware
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK.,MRC London Institute of Medical Sciences, London, UK
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, Leuven, KU, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| | - Sanjay K Prasad
- National Heart Lung Institute, Imperial College London, UK.,Cardiovascular Research Centre, Royal Brompton & Harefield Hospitals, London, UK
| |
Collapse
|
27
|
Sinha A, Gupta DK, Yancy CW, Shah SJ, Rasmussen-Torvik LJ, McNally EM, Greenland P, Lloyd-Jones DM, Khan SS. Risk-Based Approach for the Prediction and Prevention of Heart Failure. Circ Heart Fail 2021; 14:e007761. [PMID: 33535771 DOI: 10.1161/circheartfailure.120.007761] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Targeted prevention of heart failure (HF) remains a critical need given the high prevalence of HF morbidity and mortality. Similar to risk-based prevention of atherosclerotic cardiovascular disease, optimal HF prevention strategies should include quantification of risk in the individual patient. In this review, we discuss incorporation of a quantitative risk-based approach into the existing HF staging landscape and the clinical opportunity that exists to translate available data on risk estimation to help guide personalized decision making. We first summarize the recent development of key HF risk prediction tools that can be applied broadly at a population level to estimate risk of incident HF. Next, we provide an in-depth description of the clinical utility of biomarkers to personalize risk estimation in select patients at the highest risk of developing HF. We also discuss integration of genomics-enhanced approaches (eg, Titin [TTN]) and other risk-enhancing features to reclassify risk with a precision medicine approach to HF prevention. Although sequential testing is very likely to identify low and high-risk individuals with excellent accuracy, whether or not interventions based on these risk models prevent HF in clinical practice requires prompt attention including randomized placebo-controlled trials of candidate therapies in risk-enriched populations. We conclude with a summary of unanswered questions and gaps in evidence that must be addressed to move the field of HF risk assessment forward.
Collapse
Affiliation(s)
- Arjun Sinha
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL.,Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN (D.K.G.)
| | - Clyde W Yancy
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Laura J Rasmussen-Torvik
- Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Elizabeth M McNally
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Philip Greenland
- Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Donald M Lloyd-Jones
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL.,Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| | - Sadiya S Khan
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine (A.S., C.W.Y., S.J.S., E.M.N., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL.,Department of Preventive Medicine, Feinberg School of Medicine (A.S., L.J.R.-T., P.G., D.M.L.-J., S.S.K.), Northwestern University, Chicago, IL
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy (DCM) frequently involves an underlying genetic etiology, but the clinical approach for genetic diagnosis and application of results in clinical practice can be complex. RECENT FINDINGS International sequence databases described the landscape of genetic variability across populations, which informed guidelines for the interpretation of DCM gene variants. New evidence indicates that loss-of-function mutations in filamin C (FLNC) contribute to DCM and portend high risk of ventricular arrhythmia. A clinical framework aids in referring patients for DCM genetic testing and applying results to patient care. Results of genetic testing can change medical management, particularly in a subset of genes that increase risk for life-threatening ventricular arrhythmias, and can influence decisions for defibrillator therapy. Clinical screening and cascade genetic testing of family members should be diligently pursued to identify those at risk of developing DCM.
Collapse
Affiliation(s)
- Lisa D Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Simpson Querrey Biomedical Research Center 8-404, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
29
|
Verdonschot JAJ, Hazebroek MR, Krapels IPC, Henkens MTHM, Raafs A, Wang P, Merken JJ, Claes GRF, Vanhoutte EK, van den Wijngaard A, Heymans SRB, Brunner HG. Implications of Genetic Testing in Dilated Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:476-487. [PMID: 32880476 DOI: 10.1161/circgen.120.003031] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic analysis is a first-tier test in dilated cardiomyopathy (DCM). Electrical phenotypes are common in genetic DCM, but their exact contribution to the clinical course and outcome is unknown. We determined the prevalence of pathogenic gene variants in a large unselected DCM population and determined the role of electrical phenotypes in association with outcome. METHODS This study included 689 patients with DCM from the Maastricht Cardiomyopathy Registry, undergoing genetic evaluation using a 48 cardiomyopathy-associated gene-panel, echocardiography, endomyocardial biopsies, and Holter monitoring. Upon detection of a pathogenic variant in a patient with DCM, familial segregation was performed. Outcome was defined as cardiovascular death, heart transplantation, heart failure hospitalization, and/or occurrence of life-threatening arrhythmias. RESULTS A (likely) pathogenic gene variant was found in 19% of patients, varying from 36% in familial to 13% in nonfamilial DCM. Family segregation analysis showed familial disease in 46% of patients with DCM who were initially deemed nonfamilial by history. Overall, 18% of patients with a nongenetic risk factor had a pathogenic gene variant. Almost all pathogenic gene variants occurred in just 12 genes previously shown to have robust disease association with DCM. Genetic DCM was independently associated with electrical phenotypes such as atrial fibrillation, nonsustained ventricular tachycardia, and atrioventricular block and inversely correlated with the presence of a left bundle branch block (P<0.01). After a median follow-up of 4 years, event-free survival was reduced in genetic versus patients with nongenetic DCM (P=0.01). This effect on outcome was mediated by the associated electrical phenotypes of genetic DCM (P<0.001). CONCLUSIONS One in 5 patients with an established nongenetic risk factor or a nonfamilial disease still carries a pathogenic gene variant. Genetic DCM is characterized by a profile of electrical phenotypes (atrial fibrillation, nonsustained ventricular tachycardia, and atrioventricular block), which carries increased risk for adverse outcomes. Based on these findings, we envisage a broader role for genetic testing in DCM.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Cardiology (J.A.J.V., M.R.H., M.T.H.M.H., A.R., J.J.M., S.R.B.H.)
- Department of Clinical Genetics (J.A.J.V., I.P.C.K., P.W., G.R.F.C., E.K.V., A.v.d.W., H.G.B.)
| | - Mark R Hazebroek
- Department of Cardiology (J.A.J.V., M.R.H., M.T.H.M.H., A.R., J.J.M., S.R.B.H.)
| | - Ingrid P C Krapels
- Department of Clinical Genetics (J.A.J.V., I.P.C.K., P.W., G.R.F.C., E.K.V., A.v.d.W., H.G.B.)
| | | | - Anne Raafs
- Department of Cardiology (J.A.J.V., M.R.H., M.T.H.M.H., A.R., J.J.M., S.R.B.H.)
| | - Ping Wang
- Department of Clinical Genetics (J.A.J.V., I.P.C.K., P.W., G.R.F.C., E.K.V., A.v.d.W., H.G.B.)
| | - Jort J Merken
- Department of Cardiology (J.A.J.V., M.R.H., M.T.H.M.H., A.R., J.J.M., S.R.B.H.)
| | - Godelieve R F Claes
- Department of Clinical Genetics (J.A.J.V., I.P.C.K., P.W., G.R.F.C., E.K.V., A.v.d.W., H.G.B.)
| | - Els K Vanhoutte
- Department of Clinical Genetics (J.A.J.V., I.P.C.K., P.W., G.R.F.C., E.K.V., A.v.d.W., H.G.B.)
| | | | - Stephane R B Heymans
- Department of Cardiology (J.A.J.V., M.R.H., M.T.H.M.H., A.R., J.J.M., S.R.B.H.)
- Department of Cardiovascular Research, University of Leuven, Belgium (S.R.B.H.)
- Netherlands Heart Institute (ICIN), Utrecht (S.R.B.H.)
| | - Han G Brunner
- Department of Clinical Genetics (J.A.J.V., I.P.C.K., P.W., G.R.F.C., E.K.V., A.v.d.W., H.G.B.)
- GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Center (H.G.B.)
- Department of Human Genetics and Donders Center for Neuroscience, Radboudumc Nijmegen, the Netherlands (H.G.B.)
| |
Collapse
|
30
|
Kolokotronis K, Kühnisch J, Klopocki E, Dartsch J, Rost S, Huculak C, Mearini G, Störk S, Carrier L, Klaassen S, Gerull B. Biallelic mutation in MYH7 and MYBPC3 leads to severe cardiomyopathy with left ventricular noncompaction phenotype. Hum Mutat 2019; 40:1101-1114. [PMID: 30924982 DOI: 10.1002/humu.23757] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/21/2019] [Accepted: 03/26/2019] [Indexed: 01/11/2023]
Abstract
Dominant mutations in the MYH7 and MYBPC3 genes are common causes of inherited cardiomyopathies, which often demonstrate variable phenotypic expression and incomplete penetrance across family members. Biallelic inheritance is rare but allows gaining insights into the genetic mode of action of single variants. Here, we present three cases carrying a loss-of-function (LoF) variant in a compound heterozygous state with a missense variant in either MYH7 or MYBPC3 leading to severe cardiomyopathy with left ventricular noncompaction. Most likely, MYH7 haploinsufficiency due to one LoF allele results in a clinical phenotype only in compound heterozygous form with a missense variant. In contrast, haploinsufficiency in MYBPC3 results in a severe early-onset ventricular noncompaction phenotype requiring heart transplantation when combined with a de novo missense variant on the second allele. In addition, the missense variant may lead to an unstable protein, as overall only 20% of the MYBPC3 protein remain detectable in affected cardiac tissue compared to control tissue. In conclusion, in patients with early disease onset and atypical clinical course, biallelic inheritance or more complex variants including copy number variations and de novo mutations should be considered. In addition, the pathogenic consequence of variants may differ in heterozygous versus compound heterozygous state.
Collapse
Affiliation(s)
| | - Jirko Kühnisch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Biocenter, Julius-Maximilians-University, Würzburg, Germany
| | - Josephine Dartsch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Simone Rost
- Institute of Human Genetics, Biocenter, Julius-Maximilians-University, Würzburg, Germany
| | - Cathleen Huculak
- Department of Medical Genetics, Alberta Health Services, Calgary, Alberta, Canada
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Stefan Störk
- Comprehensive Heart Failure Center (CHFC) and Department of Medicine I, University and University Hospital Würzburg, Würzburg, Germany
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sabine Klaassen
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC), a Joint Cooperation between the Charité Medical Faculty and the Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Cardiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Brenda Gerull
- Comprehensive Heart Failure Center (CHFC) and Department of Medicine I, University and University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
31
|
Einthoven dissertation prizes 2017. Neth Heart J 2018; 26:461-464. [PMID: 30046986 PMCID: PMC6115308 DOI: 10.1007/s12471-018-1136-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|