1
|
Maghraby N, El-Baz MAH, Hassan AMA, Abd-Elghaffar SK, Ahmed AS, Sabra MS. Metformin Alleviates Doxorubicin-Induced Cardiotoxicity via Preserving Mitochondrial Dynamics Balance and Calcium Homeostasis. Appl Biochem Biotechnol 2025; 197:2713-2733. [PMID: 39792339 PMCID: PMC11985558 DOI: 10.1007/s12010-024-05141-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca2+ homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects. The purpose of the study is to assess Met's possible cardioprotective benefits against DOX-induced cardiotoxicity. The study included 32 adult male rats. They were randomly divided into four groups: administered saline, DOX, Met, or DOX combined with Met respectively. Heart tissues were used for biochemical assays that measured oxidative stress markers, malondialdehyde (MDA), reduced glutathione (GSH), mitochondrial dynamics markers, optic atrophy-1(OPA-1) and dynamin-1-like protein (Drp1), calcineurin and caspase-3. Serum levels of myocardial injury markers, cardiac troponin I (cTn-I), and aspartate aminotransferase (AST), were also measured. The results revealed that DOX intoxication was associated with a significant increase in the levels of serum cTn-I and AST, increased cardiac MDA level, increased cardiac Drp1, calcineurin, and caspase-3 expressions, as well as reduced cardiac GSH level and cardiac OPA-1 expression. On the other hand, Met treatment significantly reduced DIC by decreasing oxidative stress, apoptosis, and improving mitochondrial and calcium balance. Finally, this study shows that Met may be able to protect the heart from damage caused by DOX by working as an antioxidant and anti-apoptotic agent and keeping the balance of calcium and mitochondria.
Collapse
Affiliation(s)
- Nashwa Maghraby
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Medical Biochemistry, Badr University of Assiut, New Nasser City, Assiut, Egypt.
| | - Mona A H El-Baz
- Department of Medical Biochemistry, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Athar M A Hassan
- Department of Biochemistry, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Sary Kh Abd-Elghaffar
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Badr University of Assiut, New Nasser City, Assiut, Egypt
| | - Amira S Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud S Sabra
- Department of Pharmacology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71516, Egypt
- Department of Pharmacology, Faculty of Veterinary Medicine, Badr University of Assiut, New Nasser City, Assiut, Egypt
| |
Collapse
|
2
|
Tanwar SS, Dwivedi S, Khan S, Sharma S. Cardiomyopathies and a brief insight into DOX-induced cardiomyopathy. Egypt Heart J 2025; 77:29. [PMID: 40064787 PMCID: PMC11893974 DOI: 10.1186/s43044-025-00628-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Cardiomyopathy is a heterogeneous group of myocardial disorders characterized by structural and functional abnormalities of the heart muscle. It is classified into primary (genetic, mixed, or acquired) and secondary categories, resulting in various phenotypes including dilated, hypertrophic, and restrictive patterns. Hypertrophic cardiomyopathy, the most common primary form, can cause exertional dyspnea, presyncope, and sudden cardiac death. Dilated cardiomyopathy typically presents with heart failure symptoms, while restrictive cardiomyopathy is rarer and often associated with systemic diseases. Diagnosis involves a comprehensive evaluation including history, physical examination, electrocardiography, and echocardiography. Treatment options range from pharmacotherapy and lifestyle modifications to implantable cardioverter-defibrillators and heart transplantation in refractory cases. MAIN BODY Anthracyclines, particularly doxorubicin, have emerged as crucial components in cancer treatment, demonstrating significant antitumor activity across various malignancies. These drugs have become standard in numerous chemotherapy regimens, improving patient outcomes. However, their use is associated with severe cardiotoxicity, including cardiomyopathy and heart failure. The mechanisms of anthracycline action and toxicity are complex, involving DNA damage, iron-mediated free radical production, and disruption of cardiovascular homeostasis. Doxorubicin-induced cardiomyopathy (DIC) is a severe complication of cancer treatment with a poor prognosis and limited effective treatments. The pathophysiology of DIC involves multiple mechanisms, including oxidative stress, inflammation, mitochondrial damage, and calcium homeostasis disorder. Despite extensive research, no effective treatment for established DIC is currently available. Dexrazoxane is the only FDA-approved protective agent, but it has limitations. Recent studies have explored various potential therapeutic approaches, including natural drugs, endogenous substances, new dosage forms, and herbal medicines. However, the lack of experimental models incorporating pre-existing cancer limits the understanding of DIC pathophysiology and treatment efficacy. CONCLUSION Cardiomyopathy, whether primary or secondary, poses a significant clinical challenge due to its varying etiologies and poor prognosis in advanced stages. Anthracycline-induced cardiomyopathy is a severe complication of chemotherapy, with doxorubicin being a notable contributor. Despite advancements in cancer therapies, the cardiotoxic effects of anthracyclines necessitate further investigation into effective preventive strategies and therapeutic interventions to improve patient outcomes.
Collapse
Affiliation(s)
| | - Sumeet Dwivedi
- Acropolis Institute of Pharmaceutical Education and Research, Indore, India
| | - Sheema Khan
- The University of Texas Rio Grande Valley, Edinburg, US
| | - Seema Sharma
- Shri Vaishnav Vidyapeeth Vishwadvidyalaya, Indore, India.
| |
Collapse
|
3
|
Hu F, Yan S, Lin L, Qiu X, Lin X, Wang W. Sacubitril/valsartan attenuated myocardial inflammation, fibrosis, apoptosis and promoted autophagy in doxorubicin-induced cardiotoxicity mice via regulating the AMPKα-mTORC1 signaling pathway. Mol Cell Biochem 2025; 480:1891-1908. [PMID: 39304614 PMCID: PMC11842497 DOI: 10.1007/s11010-024-05117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
This study aimed to investigate the potential cardioprotective effects of sacubitril/valsartan (Sac/Val) in mice with doxorubicin (DOX)-induced cardiomyopathy, a common manifestation of cancer therapy-related cardiac dysfunction (CTRCD) associated with DOX. A total of thirty-two mice were equally classified into 4 groups: control group, DOX (total 24 mg/kg), Sac/Val (80 mg/kg), and Sac/Val + DOX (Sac/Val was given from seven days before doxorubicin administration). Neonatal rat ventricular myocytes was exposed to 5 µM of DOX for 6 h in vitro to mimic the in vivo conditions. A variety of techniques were used to investigate cardiac inflammation, fibrosis, apoptosis, and autophagy, including western blot, real-time quantitative PCR (RT-qPCR), immunohistochemistry, and fluorescence. Mice with DOX-induced cardiotoxicity displayed impaired systolic and diastolic function, characterized by elevated levels of cardiac inflammation, fibrosis, cardiomyocyte hypertrophy, apoptosis, and autophagy inhibition in the heart. Treatment with Sac/Val partially reversed these effects. In comparison to the control group, the protein expression of NLRP3, caspase-1, collagen I, Bax, cleaved caspase-3, and P62 were significantly increased, while the protein expression of Bcl-2 and LC3-II were significantly decreased in the myocardial tissues of the Dox-induced cardiomyopathy group. The administration of Sac/Val demonstrated the potential to partially reverse alterations in protein expression within the myocardium of mice with DOX-induced cardiotoxicity by modulating the AMPKα-mTORC1 signaling pathway and suppressing oxidative stress. Additionally, Sac/Val treatment may mitigate Dox-induced apoptosis and inhibition of autophagy in primary cardiomyocytes. Sac/Val seems to be cardioprotective against DOX-induced cardiotoxicity in the pre-treatment mice model. These findings could be attributed to the anti-inflammatory, antioxidant, anti-apoptotic, and de-autophagy effects of Sac/Val through regulation of the AMPKα-mTORC1 signaling pathway.
Collapse
Affiliation(s)
- Feng Hu
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Senbo Yan
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Li Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Xiaoxia Qiu
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China
| | - Xinghe Lin
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China.
| | - Weiwei Wang
- Department of Cardiology, Fujian Medical University Union Hospital, Fujian Cardiovascular Medical Center, Fujian Institute of Coronary Artery Disease, Fujian Cardiovascular Research Center, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
4
|
Liu Y, Liu H. Prediction of chemotherapy-mediated cardiotoxicity in patients with cancer by cardiac troponin I: A systematic review and meta-analysis. INTERNATIONAL JOURNAL OF RISK & SAFETY IN MEDICINE 2025; 36:26-48. [PMID: 39973426 DOI: 10.1177/09246479241302586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundCardiac damage is a significant risk of chemotherapy. Elevated circulating cardiac troponin I was suggested as a marker for early detection of cardiac damage.ObjectiveWe aim to assess the predictive value of cardiac troponin I for chemotherapy-induced cardiotoxicity in cancer patients.MethodsWe searched PubMed, Web of Science, Embase, and CNKI. Nine prospective studies involving 2033 cancer patients (pts) were included in the meta-analysis. Troponin I (TnI) levels in patients who underwent chemotherapy were categorized into cardiac troponin I (cTnI) positive and negative groups based on the cutoff concentrations described in the included studies. The cumulative effects of chemotherapy-induced cardiotoxicity between the cTnI-positive and cTnI-negative patients were represented as a summarized risk difference (RD) value with a 95% confidence interval. Subgroup analysis and sensitivity analysis were employed to address heterogeneities. Stata software (version 12.0) was utilized for the analysis.ResultscTnI-positive pts represented significant cardiotoxicity compared to cTnI-negative pts, as a decline in left ventricular ejection fraction (LVEF): RD = 0.279 [95% CI (0.248-0.311), p = 0.000, I2 = 81.3%, 8 trials], heart failure (HF): RD = 0.117, [95% CI (0.090-0.144), p = 0.000, I2 = 77.8%, 6 trials], arrhythmias: RD = 0.057 [95% CI (0.028-0.086), p = 0.000, I2 = 0.0%, 3 trials], and cumulative events: RD = 0.318 [95% CI (0.272-0.364), p = 0.000, I2 = 73.5%, 3 trials]. No statistically significant difference in cardiac death, acute pulmonary edema, and acute coronary syndromes between cTnI-positive pts and cTnI-negative pts was identified.ConclusionsAn increase in circulating troponin I serve as a potential biomarker that reflecting the high risk of early cardiotoxicity in cancer patients who have undergone chemotherapy. The presence of intrinsic unadjusted confounding factors in the reports suggests the need for further study to address this question.
Collapse
Affiliation(s)
- Yang Liu
- Department of Internal and Pediatrics, School of Clinical Medicine, Qilu Medical University, Zibo, China
| | - Huanglong Liu
- Department of Cardiology, The Affiliated Tianyou Hospital of Tongji University, Shanghai, China
| |
Collapse
|
5
|
Lohr D, Thiele A, Stahnke M, Braun VM, Klopfleisch R, Klein O, Dresen S, Landmesser U, Foryst-Ludwig A, Kintscher U, Schreiber LM, Beyhoff N. Characterization of anthracycline-induced cardiotoxicity by diffusion tensor magnetic resonance imaging. Basic Res Cardiol 2025; 120:57-69. [PMID: 38483601 PMCID: PMC11790774 DOI: 10.1007/s00395-024-01039-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/04/2025]
Abstract
Anthracyclines are highly potent anti-cancer drugs, but their clinical use is limited by severe cardiotoxic side effects. The impact of anthracycline-induced cardiotoxicity (AIC) on left ventricular (LV) microarchitecture and diffusion properties remains unknown. This study sought to characterize AIC by cardiovascular magnetic resonance diffusion tensor imaging (DTI). Mice were treated with Doxorubicin (DOX; n = 16) for induction of AIC or saline as corresponding control (n = 15). Cardiac function was assessed via echocardiography at the end of the study period. Whole hearts (n = 8 per group) were scanned ex vivo by high-resolution DTI at 7 T. Results were correlated with histopathology and mass spectrometry imaging. Mice with AIC demonstrated systolic dysfunction (LVEF 52 ± 3% vs. 43 ± 6%, P < 0.001), impaired global longitudinal strain (-19.6 ± 2.0% vs. -16.6 ± 3.0%, P < 0.01), and cardiac atrophy (LV mass index [mg/mm], 4.3 ± 0.1 vs. 3.6 ± 0.2, P < 0.01). Regional sheetlet angles were significantly lower in AIC, whereas helix angle and relative helicity remained unchanged. In AIC, fractional anisotropy was increased (0.12 ± 0.01 vs. 0.14 ± 0.02, P < 0.05). DOX-treated mice displayed higher planar and less spherical anisotropy (CPlanar 0.07 ± 0.01 vs. 0.09 ± 0.01, P < 0.01; CSpherical 0.89 ± 0.01 vs. 0.87 ± 0.02, P < 0.05). CPlanar and CSpherical yielded good discriminatory power to distinguish between mice with and without AIC (c-index 0.91 and 0.84, respectively, P for both < 0.05). AIC is associated with regional changes in sheetlet angle but no major abnormalities of global LV microarchitecture. The geometric shape of the diffusion tensor is altered in AIC. DTI may provide a new tool for myocardial characterization in patients with AIC, which warrants future clinical studies to evaluate its diagnostic utility.
Collapse
Affiliation(s)
- David Lohr
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Arne Thiele
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Max Stahnke
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Vera M Braun
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Oliver Klein
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapy (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Dresen
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ulf Landmesser
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Anna Foryst-Ludwig
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Ulrich Kintscher
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Laura M Schreiber
- Chair of Molecular and Cellular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niklas Beyhoff
- Max Rubner Center for Cardiovascular Metabolic Renal Research, Institute of Pharmacology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Luo J, He M, Liang C, Huang X, Zhu Y, Hu D, Yan J, Li M, Lin H, Liao W, Bin J, Guan Z, Zheng C, Liao Y. Canagliflozin reverses doxorubicin-induced cardiotoxicity via restoration of autophagic homeostasis. Toxicol Appl Pharmacol 2025; 495:117183. [PMID: 39631538 DOI: 10.1016/j.taap.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have been reported as successful for preventing doxorubicin (DOX) -induced cardiotoxicity (DIC), but the underlying mechanisms are elusive. This study aimed to determine whether canagliflozin, an SGLT2i, protects against DIC by regulation of autophagic flux in cardiomyocytes through a mechanism independent of SGLT2. The differentially expressed autophagy-related genes (ARGs) in DIC were analyzed. Neonatal rat cardiomyocytes (NRCMs), H9C2 rat cardiomyocytes or C57BL/6 mice were treated with canagliflozin or vehicle. The effects on cellular apoptosis and autophagy were investigated using qRT-PCR, western blotting and immunofluorescence. Additionally, cardiac function, myocardial fibrosis, and apoptosis of cardiomyocytes were also assessed in mice. The potential molecular targets of canagliflozin were identified through molecular docking analysis. A total of 26 differentially expressed ARGs were identified. Canagliflozin significantly activated autophagic flux and inhibited apoptosis of cardiomyocytes in both DOX-treated H9C2 rat cardiomyocytes and NRCMs. In a murine model of DIC, canagliflozin improved cardiac dysfunction by suppressing cardiac remodeling, fibrosis, and apoptosis. Moreover, canagliflozin promoted autophagy by enhancing SIRT1 levels and inhibiting the PI3K/Akt/mTOR signaling pathway. Immunofluorescence assays revealed that canagliflozin promoted the translocation of LC3 from the nucleus to the cytoplasm. Molecular docking analysis confirmed that canagliflozin has high affinity for targets associated with DIC. These findings suggest that canagliflozin protects cardiomyocytes from DOX-induced cell death by activating SIRT1, inhibiting the PI3K/Akt/mTOR pathway, and enhancing autophagic flux.
Collapse
Affiliation(s)
- Jianping Luo
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Cardiology, Ganzhou People's Hospital, Ganzhou, China
| | - Mingyuan He
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Changzhu Liang
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoxia Huang
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Yingqi Zhu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Donghong Hu
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junyu Yan
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingjue Li
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hairuo Lin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianping Bin
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Ziyun Guan
- Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China
| | - Cankun Zheng
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yulin Liao
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China; Cardiovascular Center, the Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, Guangdong, China.
| |
Collapse
|
7
|
Al Khafaji AT, Barakat AM, Shayyal AJ, Taan AA, Aboqader Al-Aouadi RF. Managing Doxorubicin Cardiotoxicity: Insights Into Molecular Mechanisms and Protective Strategies. J Biochem Mol Toxicol 2025; 39:e70155. [PMID: 39887483 DOI: 10.1002/jbt.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Cancer ranks as the second leading cause of death in the United States and poses a significant health challenge globally. Numerous therapeutic options exist for treating cancer, with chemotherapy being one of the most prominent. Chemotherapy involves the use of antineoplastic drugs, either alone or in combination with other medications, to target and kill cancer cells. However, these drugs can also adversely affect healthy cells, leading to various side effects. Among the most commonly used chemotherapy agents are anthracyclines, which include doxorubicin, daunorubicin, and epirubicin. Doxorubicin is particularly notable for its effectiveness but is also associated with significant cardiotoxicity, a common concern for patients undergoing chemotherapy. Unfortunately, there is currently no definitive treatment to prevent or reverse this cardiotoxicity. The cardiac effects of doxorubicin can manifest in several ways, including changes in electrocardiograms, arrhythmias, myocarditis, pericarditis, myocardial infarction, cardiomyopathy, heart failure, and congestive heart failure. These complications may arise during treatment, shortly after it concludes, or even weeks later. Various mechanisms have been proposed to explain doxorubicin-induced cardiotoxicity. Key factors include the inhibition of topoisomerase IIβ, mitochondrial damage, reactive oxygen species (ROS) production due to iron metabolism, increased oxidative stress, heightened inflammatory responses, and elevated rates of apoptosis and necrosis within cardiac tissue. This review article will provide a comprehensive overview of the current state of knowledge regarding doxorubicin-induced cardiomyopathy. We will explore the underlying molecular mechanisms contributing to this condition and discuss emerging therapeutic strategies aimed at mitigating its impact on cancer survivors.
Collapse
Affiliation(s)
| | | | | | - Ali Adnan Taan
- Nasr City Hospital for Health Insurance, Ministry of Health, Cairo, Egypt
| | | |
Collapse
|
8
|
Zhang H, Ding X, Qiu Y, Xie M, Wang H, Li T, Bao H, Huang S, Xiong Y, Tang X. Preventive effect of imperatorin against doxorubicin-induced cardiotoxicity through suppression of NLRP3 inflammasome activation. J Nat Med 2025; 79:95-106. [PMID: 39436583 DOI: 10.1007/s11418-024-01850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024]
Abstract
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1β and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, pro‑caspase‑1, caspase‑1 p20, pro‑IL‑1β and IL‑1β in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1β and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 μg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Xiaoyun Ding
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yumei Qiu
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Mengdie Xie
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Hu Wang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Tingting Li
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Huiyun Bao
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Si Huang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
| | - Yinhua Xiong
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China
| | - Xilan Tang
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang, 330013, China.
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, Nanchang, 330013, China.
| |
Collapse
|
9
|
Alves PKN, Cruz A, Adams V, Moriscot AS, Labeit S. Small-molecule mediated MuRF1 inhibition protects from doxorubicin-induced cardiac atrophy and contractile dysfunction. Eur J Pharmacol 2024; 984:177027. [PMID: 39366504 DOI: 10.1016/j.ejphar.2024.177027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Cancer chemotherapy induces cell stress in rapidly dividing cancer cells to trigger their growth arrest and apoptosis. However, adverse effects related to cardiotoxicity underpinned by a limited regenerative potential of the heart limits clinical application: In particular, chemotherapy with doxorubicin (DOXO) causes acute heart injury that can transition to persisting cardiomyopathy (DOXO-CM). Here, we tested if MuRF1 inhibition ("MuRFi") was able to attenuate DOXO-CM. To mimic DOXO chemotherapy, we treated mice over four weeks with five DOXO injections, resulting in a cumulative dosage of 25 mg/kg. At day 28, mice had lower body and heart weights, reduced cardiac cross-sectional myofibrillar areas (CSAs), and disturbed functional ejection fractions (EFs) and fractional shortenings (FS) as indicated by echocardiography (ECHO). In contrast, mice with a 1 g/kg Myomed#205 spiked diet, a previously described experimental MuRFi therapy, showed lower DOXO-CM at day 28, and also reduced acute DOXO cardiac injury at day 7 (single DOXO dose; 15 mg/kg). Underlying molecular signatures using Western blot (WB) assays showed at day 28 reduced phospho-AKT (AKTp) and phospo-4EBP1 (4 EBP1p) levels following DOXO that were normalized following MuRFi treatment. Taken together, our data suggest that MuRFi treatment is suitable to attenuate DOXO-CM by preserving AKTp and 4 EBP1p levels in DOXO stressed cardiomyocytes, thereby supporting de novo protein translation and cardiomyocyte survival under translational arrest stress.
Collapse
Affiliation(s)
- Paula K N Alves
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - André Cruz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany.
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Siegfried Labeit
- DZHK Partnersite Mannheim-Heidelberg, Universitätsmedizin Mannheim, Mannheim 68169, Germany.
| |
Collapse
|
10
|
Hong D, Yin M, Li J, Deng Z, Ren Z, Zhou Y, Huang S, Yan X, Zhong W, Liu F, Yang C. Cardiovascular mortality among patients with diffuse large B-cell lymphoma: a population-based study. Leuk Lymphoma 2024; 65:1634-1644. [PMID: 38861618 DOI: 10.1080/10428194.2024.2364830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
We aim to investigate cardiovascular mortality risk among diffuse large B-cell lymphoma (DLBCL) patients and explore cardiovascular mortality trends in the past decades in United States. We extracted data from the Surveillance, Epidemiology, and End Results database for adult patients diagnosed with DLBCL between 1975 and 2019. Standardized mortality ratio, joinpoint regression analysis, and competing risk model were analyzed. Overall, 49,918 patients were enrolled, of whom 4167 (8.3%) cardiovascular deaths were observed, which was 1.22 times the number expected (95%CI, 1.19-1.26). During 1985-2019, the incidence-based cardiovascular mortality rate increased by 0.98% per year (95%CI, 0.58-1.39%), with statistically significant increases in age groups younger than 75 years. The cumulative mortality from cardiovascular disease increased by age but never exceeded that from DLBCL. Older age, male sex, earlier year of diagnosis, lower tumor stage at diagnosis, chemotherapy, radiotherapy, and surgery were all poor prognostic factors for cardiovascular mortality.
Collapse
Affiliation(s)
- Danhua Hong
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Mengzhuo Yin
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Jie Li
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Zhiyong Deng
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Zhilei Ren
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Yun Zhou
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Shuijin Huang
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuejun Yan
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
- School of Medicine, Institute of Clinical Medicine, Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Weijie Zhong
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Feng Liu
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chongzhe Yang
- Department of Geriatrics, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
11
|
Avagimyan A, Pogosova N, Kakturskiy L, Sheibani M, Challa A, Kogan E, Fogacci F, Mikhaleva L, Vandysheva R, Yakubovskaya M, Faggiano A, Carugo S, Urazova O, Jahanbin B, Lesovaya E, Polana S, Kirsanov K, Sattar Y, Trofimenko A, Demura T, Saghazadeh A, Koliakos G, Shafie D, Alizadehasl A, Cicero A, Costabel JP, Biondi-Zoccai G, Ottaviani G, Sarrafzadegan N. Doxorubicin-related cardiotoxicity: review of fundamental pathways of cardiovascular system injury. Cardiovasc Pathol 2024; 73:107683. [PMID: 39111556 DOI: 10.1016/j.carpath.2024.107683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Over the years, advancements in the field of oncology have made remarkable strides in enhancing the efficacy of medical care for patients with cancer. These modernizations have resulted in prolonged survival and improved the quality of life for these patients. However, this progress has also been accompanied by escalation in mortality rates associated with anthracycline chemotherapy. Anthracyclines, which are known for their potent antitumor properties, are notorious for their substantial cardiotoxic potential. Remarkably, even after 6 decades of research, a conclusive solution to protect the cardiovascular system against doxorubicin-induced damage has not yet been established. A comprehensive understanding of the pathophysiological processes driving cardiotoxicity combined with targeted research is crucial for developing innovative cardioprotective strategies. This review seeks to explain the mechanisms responsible for structural and functional alterations in doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Department of Internal Desiases Propedeutics, Yerevan State Medical University after M. Heratsi, Yerevan, Armenia.
| | - Nana Pogosova
- Deputy Director of Research and Preventive Cardiology, National Medical Research Centre of Cardiology named after E. Chazov, Moscow, Russia; Head of Evidence Based Medicine Department, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Lev Kakturskiy
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Teharan, Iran; Razi Drug Research Centre, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abhiram Challa
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Eugenia Kogan
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Federica Fogacci
- Atherosclerosis and Metabolic Disorders Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Liudmila Mikhaleva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Rositsa Vandysheva
- A. P. Avtsyn Research Institute of Human Morphology, Petrovskiy RNCS, Moscow, Russia
| | - Marianna Yakubovskaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Andrea Faggiano
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Stefano Carugo
- Department of Cardio-Thoracic-Vascular Area, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Olga Urazova
- Head of Pathophysiology Department, Siberian State Medical University, Tomsk, Russia
| | - Behnaz Jahanbin
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Ekaterina Lesovaya
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia; Department of Oncology, Ryazan State Medical University after I. P. Pavlov, Ryazan, Russia
| | | | - Kirill Kirsanov
- Chemical Cancerogenesis Department, Institute of Cancerogenesis, National Medical Research Center of Oncology after N. N. Blokhina, Moscow, Russia; Laboratory of Single Cell Biology, Patrice Lumumba Peoples' Friendship University of Russia (RUDN), Moscow, Russia
| | - Yasar Sattar
- Department of Cardiology, West Virginia University, Morgantown, WV, USA
| | - Artem Trofimenko
- Department of Pathophysiology, Kuban State Medical University, Krasnodar, Russia
| | - Tatiana Demura
- Institute of Clinical Morphology and Digital Pathology, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Amene Saghazadeh
- Department of Pathology, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - George Koliakos
- Head of Laboratory of Biological Chemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Davood Shafie
- Director of Heart Failure Centre, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azin Alizadehasl
- Head of Cardio-Oncology Department and Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arrigo Cicero
- Hypertension and Cardiovascular Risk Research Unit, Alma Mater Studiorum University of Bologna, Bologna, Italy; IRCCS Policlinico S. Orsola-Malpighi di Bologna, Bologna, Italy
| | - Juan Pablo Costabel
- Chief of Coronary Care Unit, Buenos Aires Institute of Cardiology, Buenos Aires, Argentina
| | - Giuseppe Biondi-Zoccai
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; Maria Cecilia Hospital, GVM Care and Research, Cotignola, Italy
| | - Giulia Ottaviani
- Anatomic Pathology, Lino Rossi Research Center, Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nizal Sarrafzadegan
- Director of Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; School of Population and Public Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Liu X, Wen Y, Lu Y. Targeting MuRF1 to Combat Skeletal Muscle Wasting in Cardiac Cachexia: Mechanisms and Therapeutic Prospects. Med Sci Monit 2024; 30:e945211. [PMID: 39434377 PMCID: PMC11512513 DOI: 10.12659/msm.945211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 09/04/2024] [Indexed: 10/23/2024] Open
Abstract
Cardiac cachexia, the terminal stage of chronic heart failure, is characterized by severe systemic metabolic imbalances and significant weight loss, primarily resulting from skeletal muscle mass depletion. Despite the detrimental consequences, there is no standardized and clinically-approved intervention currently available for cardiac cachexia. In the context of cardiac cachexia, accelerated protein turnover, that is, inhibited protein synthesis and enhanced protein degradation, plays a crucial role in skeletal muscle wasting. This process is primarily mediated by various proteins encoded by atrogenes. Among them, the atrogene Trim63 (tripartite motif family 63) and its encoded protein MuRF1 have been extensively studied. This review article aims to elucidate the pathogenic mechanisms underlying skeletal muscle wasting in cardiac cachexia, describe the biochemical characteristics of MuRF1, and provide an overview of the investigation into MuRF1-targeting inhibitors. The ultimate goal is to offer novel strategies for the clinical treatment for skeletal muscle wasting associated with cardiac cachexia.
Collapse
Affiliation(s)
- Xiaotong Liu
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| | - Ya Wen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Yanmei Lu
- Department of Cardiac Pacing and Electrophysiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, PR China
| |
Collapse
|
13
|
Tejera-Muñoz A, Cortés M, Rodriguez-Rodriguez A, Tejedor-Santamaria L, Marchant V, Rayego-Mateos S, Gimeno-Longas MJ, Leask A, Nguyen TQ, Martín M, Tuñón J, Rodríguez I, Ruiz-Ortega M, Rodrigues-Díez RR. Ccn2 Deletion Reduces Cardiac Dysfunction, Oxidative Markers, and Fibrosis Induced by Doxorubicin Administration in Mice. Int J Mol Sci 2024; 25:9617. [PMID: 39273564 PMCID: PMC11394698 DOI: 10.3390/ijms25179617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Cellular Communication Network Factor 2 (CCN2) is a matricellular protein implicated in cell communication and microenvironmental signaling. Overexpression of CCN2 has been documented in various cardiovascular pathologies, wherein it may exert either deleterious or protective effects depending on the pathological context, thereby suggesting that its role in the cardiovascular system is not yet fully elucidated. In this study, we aimed to investigate the effects of Ccn2 gene deletion on the progression of acute cardiac injury induced by doxorubicin (DOX), a widely utilized chemotherapeutic agent. To this end, we employed conditional knockout (KO) mice for the Ccn2 gene (CCN2-KO), which were administered DOX and compared to DOX-treated wild-type (WT) control mice. Our findings demonstrated that the ablation of CCN2 ameliorated DOX-induced cardiac dysfunction, as evidenced by improvements in ejection fraction (EF) and fractional shortening (FS) of the left ventricle. Furthermore, DOX-treated CCN2-KO mice exhibited a significant reduction in the gene expression and activation of oxidative stress markers (Hmox1 and Nfe2l2/NRF2) relative to DOX-treated WT controls. Additionally, the deletion of Ccn2 markedly attenuated DOX-induced cardiac fibrosis. Collectively, these results suggest that CCN2 plays a pivotal role in the pathogenesis of DOX-mediated cardiotoxicity by modulating oxidative stress and fibrotic pathways. These findings provide a novel avenue for future investigations to explore the therapeutic potential of targeting CCN2 in the prevention of DOX-induced cardiac dysfunction.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Research Unit, Complejo Hospitalario La Mancha Centro, 13600 Alcázar de San Juan, Spain
- Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45004 Toledo, Spain
| | - Marcelino Cortés
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | | | - Lucia Tejedor-Santamaria
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Vanessa Marchant
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Maria José Gimeno-Longas
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, 105 Wiggins Road, Saskatoon, SK S7N 5E4, Canada
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - María Martín
- Cardiology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jose Tuñón
- Cardiology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
| | - Isabel Rodríguez
- Cardiac Pathology Research Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular and Molecular Biology in Renal and Vascular Pathology Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, 28040 Madrid, Spain
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
| | - Raul R Rodrigues-Díez
- RICORS2040, Instituto de Salud Carlos III, 28040 Madrid, Spain
- Department of Cell Biology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
14
|
Ozcan M, Abdellatif M, Javaheri A, Sedej S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can J Cardiol 2024; 40:1445-1457. [PMID: 38354947 DOI: 10.1016/j.cjca.2024.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
Population aging and the associated increase in cardiovascular disease rates pose serious threats to global public health. Different forms of fasting have become an increasingly attractive strategy to directly address aging and potentially limit or delay the onset of cardiovascular diseases. A growing number of experimental studies and clinical trials indicate that the amount and timing of food intake as well as the daily time window during which food is consumed, are crucial determinants of cardiovascular health. Indeed, intermittent fasting counteracts the molecular hallmarks of cardiovascular aging and promotes different aspects of cardiometabolic health, including blood pressure and glycemic control, as well as body weight reduction. In this report, we summarize current evidence from randomized clinical trials of intermittent fasting on body weight and composition as well as cardiovascular and metabolic risk factors. Moreover, we critically discuss the preventive and therapeutic potential of intermittent fasting, but also possible detrimental effects in the context of cardiovascular aging and related disease. We delve into the physiological mechanisms through which intermittent fasting might improve cardiovascular health, and raise important factors to consider in the design of clinical trials on the efficacy of intermittent fasting to reduce major adverse cardiovascular events among aged individuals at high risk of cardiovascular disease. We conclude that despite growing evidence and interest among the lay and scientific communities in the cardiovascular health-improving effects of intermittent fasting, further research efforts and appropriate caution are warranted before broadly implementing intermittent fasting regimens, especially in elderly persons.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ali Javaheri
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA; John J. Cochran Veterans Affairs Medical Center, St. Louis, Missouri, USA
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| |
Collapse
|
15
|
Tiwari V, Gupta P, Malladi N, Salgar S, Banerjee SK. Doxorubicin induces phosphorylation of lamin A/C and loss of nuclear membrane integrity: A novel mechanism of cardiotoxicity. Free Radic Biol Med 2024; 218:94-104. [PMID: 38582228 DOI: 10.1016/j.freeradbiomed.2024.04.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 μM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.
Collapse
Affiliation(s)
- Vikas Tiwari
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Paras Gupta
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Navya Malladi
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay Salgar
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| | - Sanjay K Banerjee
- National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India.
| |
Collapse
|
16
|
Domínguez Romero Y, Montoya Ortiz G, Novoa Herrán S, Osorio Mendez J, Gomez Grosso LA. miRNA Expression Profiles in Isolated Ventricular Cardiomyocytes: Insights into Doxorubicin-Induced Cardiotoxicity. Int J Mol Sci 2024; 25:5272. [PMID: 38791311 PMCID: PMC11121573 DOI: 10.3390/ijms25105272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Doxorubicin (DOX), widely used as a chemotherapeutic agent for various cancers, is limited in its clinical utility by its cardiotoxic effects. Despite its widespread use, the precise mechanisms underlying DOX-induced cardiotoxicity at the cellular and molecular levels remain unclear, hindering the development of preventive and early detection strategies. To characterize the cytotoxic effects of DOX on isolated ventricular cardiomyocytes, focusing on the expression of specific microRNAs (miRNAs) and their molecular targets associated with endogenous cardioprotective mechanisms such as the ATP-sensitive potassium channel (KATP), Sirtuin 1 (SIRT1), FOXO1, and GSK3β. We isolated Guinea pig ventricular cardiomyocytes by retrograde perfusion and enzymatic dissociation. We assessed cell morphology, Reactive Oxygen Species (ROS) levels, intracellular calcium, and mitochondrial membrane potential using light microscopy and specific probes. We determined the miRNA expression profile using small RNAseq and validated it using stem-loop qRT-PCR. We quantified mRNA levels of some predicted and validated molecular targets using qRT-PCR and analyzed protein expression using Western blot. Exposure to 10 µM DOX resulted in cardiomyocyte shortening, increased ROS and intracellular calcium levels, mitochondrial membrane potential depolarization, and changes in specific miRNA expression. Additionally, we observed the differential expression of KATP subunits (ABCC9, KCNJ8, and KCNJ11), FOXO1, SIRT1, and GSK3β molecules associated with endogenous cardioprotective mechanisms. Supported by miRNA gene regulatory networks and functional enrichment analysis, these findings suggest that DOX-induced cardiotoxicity disrupts biological processes associated with cardioprotective mechanisms. Further research must clarify their specific molecular changes in DOX-induced cardiac dysfunction and investigate their diagnostic biomarkers and therapeutic potential.
Collapse
Affiliation(s)
- Yohana Domínguez Romero
- Doctorate in Biotechnology Program, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Gladis Montoya Ortiz
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Susana Novoa Herrán
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
| | - Jhon Osorio Mendez
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
- Master in Biochemistry Program, Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Luis A. Gomez Grosso
- Molecular Physiology Group, Sub-Direction of Scientific and Technological Research, Direction of Public, Health Research, National Institute of Health, Bogotá 111321, Colombia; (G.M.O.); (S.N.H.); (J.O.M.)
- Department of Physiological Sciences, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
17
|
Legault EP, Ribeiro PAB, Petrenyov DR, Drumeva GO, Leduc C, Khullar S, DaSilva JN, Comtois AS, Tournoux FB. Effect of acute high-intensity interval exercise on a mouse model of doxorubicin-induced cardiotoxicity: a pilot study. BMC Sports Sci Med Rehabil 2024; 16:95. [PMID: 38671464 PMCID: PMC11046902 DOI: 10.1186/s13102-024-00881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND It is unknown whether high-intensity interval exercise (HIIE) may potentiate or attenuate the cardiotoxic effect of chemotherapy agents such as doxorubicin (DOX) when performed shortly after treatment. The study aimed to investigate the effect of acute HIIE on cardiac function and structure performed either 1, 2 or 3 days after DOX injection in an animal model. METHODS Female C57bl/6 mice (n = 28), 70 days old, received a bolus 20 mg/kg intravenous tail vein DOX injection. Three exercise groups performed 1 HIIE session (16 sets of 1 min at 85-90% of peak running speed) at 1 (n = 7), 2 (n = 7), and 3 days (n = 8) following the DOX injection. A sedentary (SED) group of mice (n = 6) did not exercise. Animals underwent echocardiography under light anesthesia (isoflurane 0.5-1%) before and 7 days after the DOX injection. Animals were sacrificed on day 9 and hearts were collected for morphometric and histological analysis. RESULTS Animals exercising on day 3 had the smallest pre-post reduction in left ventricular fractional shortening (LVFS) (MΔ= -1.7 ± 3.3; p = 0.406) and the SED group had the largest reduction (MΔ=-6.8 ± 7.5; p = 0.009). After reclassification of animals according to their exercise compliance (performing > 8/16 of high-intensity bouts), LVFS in compliant mice was unchanged over time (LVFS MΔ= -1.3 ± 5.6; p = 0.396) while non-compliant animals had a LVFS reduction similar to sedentary animals. There were no significant differences in myocardial histology between groups. CONCLUSIONS In this pilot murine study, one single HIIE session did not exacerbate acute doxorubicin-induced cardiotoxicity. The timing of the HIIE session following DOX injection and the level of compliance to exercise could influence the negative impact of DOX on cardiac function.
Collapse
Affiliation(s)
- Elise P Legault
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada.
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada.
| | - Paula A B Ribeiro
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Daniil R Petrenyov
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
| | - Gergana O Drumeva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
| | - Charles Leduc
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Sharmila Khullar
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pathologie et biologie cellulaire de l'Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Département de pharmacologie et physiologie, Université de Montréal, Montréal, Québec, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Alain Steve Comtois
- Département des sciences de l'activité physique, Université du Québec à Montréal, Montréal, Québec, Canada
| | - François B Tournoux
- @coeurlab research unit, Centre de recherche du Centre Hospitalier de l'Université de Montréal, 900 St Denis Street, Montréal, Québec, Canada
- Service de Cardiologie du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
18
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: From molecular mechanisms to therapeutic strategies. Cell Stress Chaperones 2024; 29:349-357. [PMID: 38485043 PMCID: PMC10999808 DOI: 10.1016/j.cstres.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control, including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guoli Xing
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Fu
- Brandeis University, Waltham, MA, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Ying Tong
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
19
|
Kirkland LG, Jensen BC. (Less) Time and Energy: Toward a Better Understanding of the Chronology of Anthracycline-Induced Cardiotoxicity. JACC CardioOncol 2024; 6:233-235. [PMID: 38774013 PMCID: PMC11103019 DOI: 10.1016/j.jaccao.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Affiliation(s)
- Logan G. Kirkland
- University of North Carolina School of Medicine McAllister Heart Institute, Chapel Hill, North Carolina, USA
| | - Brian C. Jensen
- University of North Carolina School of Medicine McAllister Heart Institute, Chapel Hill, North Carolina, USA
- Division of Cardiology, Department of Medicine, UNC School of Medicine, Chapel Hill, North Carolina, USA
- Department of Pharmacology, UNC School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
20
|
Ma Y, Zhao HP, Yang LG, Li L, Wang AL, Zhang XJ, Wang K, Yang B, Zhu ZF, Zhang PJ, Wang JP, Chi RF, Li B, Qin FZ, Wang ZP. NADPH oxidase 2 mediates cardiac sympathetic denervation and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced cardiomyopathy. Sci Rep 2024; 14:6971. [PMID: 38521855 PMCID: PMC10960835 DOI: 10.1038/s41598-024-57090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Doxorubicin has been used extensively as a potent anticancer agent, but its clinical use is limited by its cardiotoxicity. However, the underlying mechanisms remain to be fully elucidated. In this study, we tested whether NADPH oxidase 2 (Nox2) mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, resulting in cardiac atrophy and dysfunction in doxorubicin-induced heart failure. Nox2 knockout (KO) and wild-type (WT) mice were randomly assigned to receive a single injection of doxorubicin (15 mg/kg, i.p.) or saline. WT doxorubicin mice exhibited the decreases in survival rate, left ventricular (LV) wall thickness and LV fractional shortening and the increase in the lung wet-to-dry weight ratio 1 week after the injections. These alterations were attenuated in Nox2 KO doxorubicin mice. In WT doxorubicin mice, myocardial oxidative stress was increased, myocardial noradrenergic nerve fibers were reduced, myocardial expression of PGP9.5, GAP43, tyrosine hydroxylase and norepinephrine transporter was decreased, and these changes were prevented in Nox2 KO doxorubicin mice. Myocyte autophagy was increased and myocyte size was decreased in WT doxorubicin mice, but not in Nox2 KO doxorubicin mice. Nox2 mediates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy-both of which contribute to cardiac atrophy and failure after doxorubicin treatment.
Collapse
Affiliation(s)
- Yuan Ma
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Lu Li
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ai-Lin Wang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ke Wang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bin Yang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Zong-Feng Zhu
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Pei-Jun Zhang
- Shanxi Datong University School of Medicine, Datong, 037009, Shanxi, People's Republic of China
| | - Jia-Pu Wang
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, Shanxi, People's Republic of China.
- Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| | - Zhi-Peng Wang
- Institute for Radiation Protection, Taiyuan, 030006, Shanxi, People's Republic of China
| |
Collapse
|
21
|
Zhao HP, Ma Y, Zhang XJ, Guo HX, Yang B, Chi RF, Zhang NP, Wang JP, Li B, Qin FZ, Yang LG. NADPH oxidase 2 inhibitor GSK2795039 prevents doxorubicin-induced cardiac atrophy by attenuating cardiac sympathetic nerve terminal abnormalities and myocyte autophagy. Eur J Pharmacol 2024; 967:176351. [PMID: 38290568 DOI: 10.1016/j.ejphar.2024.176351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Doxorubicin is widely used for the treatment of human cancer, but its clinical use is limited by a cumulative dose-dependent cardiotoxicity. However, the mechanism of doxorubicin-induced cardiac atrophy and failure remains to be fully understood. In this study, we tested whether the specific NADPH oxidase 2 (Nox2) inhibitor GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, leading to the amelioration of cardiac atrophy and dysfunction in chronic doxorubicin-induced cardiomyopathy. Mice were randomized to receive saline, doxorubicin (2.5 mg/kg, every other day, 6 times) or doxorubicin plus GSK2795039 (2.5 mg/kg, twice a day, 9 weeks). Left ventricular (LV) total wall thickness and LV ejection fraction were decreased in doxorubicin-treated mice compared with saline-treated mice and the decreases were prevented by the treatment of the specific Nox2 inhibitor GSK2795039. The ratio of total heart weight to tibia length and myocyte cross-sectional area were decreased in doxorubicin-treated mice, and the decreases were attenuated by the GSK2795039 treatment. In doxorubicin-treated mice, myocardial Nox2 and 4-hydroxynonenal levels were increased, myocardial expression of GAP43, tyrosine hydroxylase and norepinephrine transporter, markers of sympathetic nerve terminals, was decreased, and these changes were prevented by the GSK2795039 treatment. The ratio of LC3 II/I, a marker of autophagy, and Atg5, Atg12 and Atg12-Atg5 conjugate proteins were increased in doxorubicin-treated mice, and the increases were attenuated by the GSK2795039 treatment. These findings suggest that inhibition of Nox2 by GSK2795039 attenuates cardiac sympathetic nerve terminal abnormalities and myocyte autophagy, thereby ameliorating cardiac atrophy and dysfunction after chronic doxorubicin treatment.
Collapse
Affiliation(s)
- Hui-Ping Zhao
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Yuan Ma
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Xiao-Juan Zhang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Hong-Xia Guo
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Bin Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Rui-Fang Chi
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Nian-Ping Zhang
- Shanxi Datong University School of Medicine, Datong, 037009, Shanxi, PR China
| | - Jia-Pu Wang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Bao Li
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Fu-Zhong Qin
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China.
| | - Li-Guo Yang
- The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China; Shanxi Provincial People's Hospital, Taiyuan, 030001, Shanxi, PR China
| |
Collapse
|
22
|
Wang T, Xing G, Fu T, Ma Y, Wang Q, Zhang S, Chang X, Tong Y. Role of mitochondria in doxorubicin-mediated cardiotoxicity: from molecular mechanisms to therapeutic strategies. Int J Med Sci 2024; 21:809-816. [PMID: 38617011 PMCID: PMC11008476 DOI: 10.7150/ijms.94485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
This comprehensive review delves into the pivotal role of mitochondria in doxorubicin-induced cardiotoxicity, a significant complication limiting the clinical use of this potent anthracycline chemotherapeutic agent. Doxorubicin, while effective against various malignancies, is associated with dose-dependent cardiotoxicity, potentially leading to irreversible cardiac damage. The review meticulously dissects the molecular mechanisms underpinning this cardiotoxicity, particularly focusing on mitochondrial dysfunction, a central player in this adverse effect. Central to the discussion is the concept of mitochondrial quality control (MQC), including mitochondrial dynamics (fusion/fission balance) and mitophagy. The review presents evidence linking aberrations in these processes to cardiotoxicity in doxorubicin-treated patients. It elucidates how doxorubicin disrupts mitochondrial dynamics, leading to an imbalance between mitochondrial fission and fusion, and impairs mitophagy, culminating in the accumulation of dysfunctional mitochondria and subsequent cardiac cell damage. Furthermore, the review explores emerging therapeutic strategies targeting mitochondrial dysfunction. It highlights the potential of modulating mitochondrial dynamics and enhancing mitophagy to mitigate doxorubicin-induced cardiac damage. These strategies include pharmacological interventions with mitochondrial fission inhibitors, fusion promoters, and agents that modulate mitophagy. The review underscores the promising results from preclinical studies while advocating for more extensive clinical trials to validate these approaches in human patients. In conclusion, this review offers valuable insights into the intricate relationship between mitochondrial dysfunction and doxorubicin-mediated cardiotoxicity. It underscores the need for continued research into targeted mitochondrial therapies as a means to improve the cardiac safety profile of doxorubicin, thereby enhancing the overall treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Tianen Wang
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Guoli Xing
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tong Fu
- Brandeis University, Waltham, MA 02453, USA
| | - Yanchun Ma
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Qi Wang
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shuxiang Zhang
- Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Xing Chang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Ying Tong
- First Afliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
23
|
Feng XL, Qi WY, Xiao ZY, Zheng X, Zhang XY, Liu T, Kou XY, Chen J. Assessment of early anthracycline-induced cardiotoxicity and liver injury with T2 and T2* mapping in rabbit models. Eur Radiol 2024; 34:226-235. [PMID: 37552260 DOI: 10.1007/s00330-023-10027-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/09/2023] [Accepted: 06/13/2023] [Indexed: 08/09/2023]
Abstract
OBJECTIVES To evaluate the early prevalence of anthracycline-induced cardiotoxicity (AIC) and anthracycline-induced liver injury (AILI) using T2 and T2* mapping and to explore their correlations. MATERIALS AND METHODS The study included 17 cardiotoxic rabbits that received weekly injections of doxorubicin and magnetic resonance imaging (MRI) every 2 weeks for 10 weeks. Cardiac function and T2 and T2* values were measured on each period. Histopathological examinations for two to five rabbits were performed after each MRI scan. The earliest sensitive time and the threshold of MRI parameters for detecting AIC and AILI based on these MRI parameters were obtained. Moreover, the relationship between myocardial and liver damage was assessed. RESULTS Early AIC could be detected by T2 mapping as early as the second week and focused on the 7th, 11th, and 12th segments of left ventricle. The cutoff value of 46.64 for the 7th segment had the best diagnostic value, with an area under the curve (of 0.767, sensitivity of 100%, and specificity of 52%. T2* mapping could detect the change in iron content for early AIC at the middle interventricular septum and AILI as early as the sixth week (p = 0.014, p = 0.027). The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver (r = 0.39, p = 0.002). CONCLUSION T2 and T2* mapping showed value one-stop assessment of AIC and AILI and could obtain the earliest MRI diagnosis point and optimal parameter thresholds for these conditions. CLINICAL RELEVANCE STATEMENT Anthracycline-induced cardiotoxicity could be detected by T2 mapping as earlier as the second week, mainly focusing on the 7th, 11th, and 12th segments of left ventricle. Combined with T2* mapping, hepatoxicity and supplementary cardiotoxicity were assessed by one-stop scan. KEY POINTS • MRI screening time of cardiotoxicity was as early as the second week with focusing on T2 values of the 7th, 11th, and 12th segments of left ventricle. • T2* mapping could be used as a complement to T2 mapping to evaluate cardiotoxicity and as an effective index to detect iron change in the early stages of chemotherapy. • The T2* values of the middle interventricular septum showed a significant positive association with the T2* values of the liver, indicating that iron content in the liver and heart increased with an increase in the chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiao-Lan Feng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Wan-Yin Qi
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Zheng-Yuan Xiao
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xue Zheng
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xiao-Yong Zhang
- Department of Clinical Science, Philips Healthcare, Chengdu, 610000, China
| | - Tao Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Xing-Yuan Kou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China
| | - Jing Chen
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, 25# Tai Ping Street, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
24
|
Chen Y, Huang S, Cui Z, Sun X, Tang Y, Zhang H, Chen Z, Jiang R, Zhang W, Li X, Chen J, Liu B, Jiang Y, Wei K, Mao Z. Impaired end joining induces cardiac atrophy in a Hutchinson-Gilford progeria mouse model. Proc Natl Acad Sci U S A 2023; 120:e2309200120. [PMID: 37967221 PMCID: PMC10666128 DOI: 10.1073/pnas.2309200120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) present with a number of premature aging phenotypes, including DNA damage accumulation, and many of them die of cardiovascular complications. Although vascular pathologies have been reported, whether HGPS patients exhibit cardiac dysfunction and its underlying mechanism is unclear, rendering limited options for treating HGPS-related cardiomyopathy. In this study, we reported a cardiac atrophy phenotype in the LmnaG609G/G609G mice (hereafter, HGPS mice). Using a GFP-based reporter system, we demonstrated that the efficiency of nonhomologous end joining (NHEJ) declined by 50% in HGPS cardiomyocytes in vivo, due to the attenuated interaction between γH2AX and Progerin, the causative factor of HGPS. As a result, genomic instability in cardiomyocytes led to an increase of CHK2 protein level, promoting the LKB1-AMPKα interaction and AMPKα phosphorylation, which further led to the activation of FOXO3A-mediated transcription of atrophy-related genes. Moreover, inhibiting AMPK enlarged cardiomyocyte sizes both in vitro and in vivo. Most importantly, our proof-of-concept study indicated that isoproterenol treatment significantly reduced AMPKα and FOXO3A phosphorylation in the heart, attenuated the atrophy phenotype, and extended the mean lifespan of HGPS mice by ~21%, implying that targeting cardiac atrophy may be an approach to HGPS treatment.
Collapse
Affiliation(s)
- Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Shiqi Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhen Cui
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Xiaoxiang Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Yansong Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Hongjie Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Rui Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Xue Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Jiayu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Baohua Liu
- National Engineering Research Center for Biotechnology (Shenzhen), Carson International Cancer Center, Medical Research Center, Shenzhen University Health Science Center, Shenzhen518055, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Ke Wei
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao266071, China
| |
Collapse
|
25
|
Brandão SR, Reis-Mendes A, Neuparth MJ, Carvalho F, Ferreira R, Costa VM. The Metabolic Fingerprint of Doxorubicin-Induced Cardiotoxicity in Male CD-1 Mice Fades Away with Time While Autophagy Increases. Pharmaceuticals (Basel) 2023; 16:1613. [PMID: 38004479 PMCID: PMC10675798 DOI: 10.3390/ph16111613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The cardiotoxicity of doxorubicin (DOX) may manifest at the beginning/during treatment or years after, compromising patients' quality of life. We intended to study the cardiac pathways one week (short-term, control 1 [CTRL1] and DOX1 groups) or five months (long-term, CTRL2 and DOX2 groups) after DOX administration in adult male CD-1 mice. Control groups were given saline, and DOX groups received a 9.0 mg/Kg cumulative dose. In the short-term, DOX decreased the content of AMP-activated protein kinase (AMPK) while the electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) increased compared to CTRL1, suggesting the upregulation of fatty acids oxidation. Moreover, mitofusin1 (Mfn1) content was decreased in DOX1, highlighting decreased mitochondrial fusion. In addition, increased B-cell lymphoma-2 associated X-protein (BAX) content in DOX1 pointed to the upregulation of apoptosis. Conversely, in the long-term, DOX decreased the citrate synthase (CS) activity and the content of Beclin1 and autophagy protein 5 (ATG5) compared to CTRL2, suggesting decreased mitochondrial density and autophagy. Our study demonstrates that molecular mechanisms elicited by DOX are modulated at different extents over time, supporting the differences on clinic cardiotoxic manifestations with time. Moreover, even five months after DOX administration, meaningful heart molecular changes occurred, reinforcing the need for the continuous cardiac monitoring of patients and determination of earlier biomarkers before clinical cardiotoxicity is set.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Reis-Mendes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4585-116 Gandra, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vera Marisa Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (S.R.B.); (A.R.-M.); (F.C.)
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
26
|
Yang L, Guan J, Luo S, Yan J, Chen D, Zhang X, Zhong C, Yang P. Angiotensin IV ameliorates doxorubicin-induced cardiotoxicity by increasing glutathione peroxidase 4 and alleviating ferroptosis. Toxicol Appl Pharmacol 2023; 479:116713. [PMID: 37838222 DOI: 10.1016/j.taap.2023.116713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Doxorubicin (DOX)-induced cardiotoxicity is an important cause of poor prognosis in cancer patients treated with DOX. Angiotensin IV (Ang IV) has multiple protective effects against cardiovascular diseases, including diabetic cardiomyopathy and myocardial infarction, but its role in DOX-induced cardiotoxicity is currently unclear. In this study, we investigated the effects of Ang IV on DOX-induced cardiotoxicity. METHODS The viability of primary cardiomyocytes was measured by Cell Counting Kit-8 assays and Hoechst 33342/propidium iodide staining in vitro. ELISAs (serum cTnT and CK-MB) and echocardiography were performed to assess myocardial injury and cardiac function in vivo. Phalloidin staining, haematoxylin and eosin staining and wheat germ agglutinin staining were conducted to detect cardiomyocyte atrophy. We also performed C11 BODIPY staining, measured the levels of Ptgs2 and malondialdehyde and detected the concentrations of ferrous ions, glutathione and oxidized glutathione to indicate ferroptosis. RESULTS Ang IV not only attenuated DOX-induced atrophy and cardiomyocyte injury in vitro but also alleviated myocardial injury and improved cardiac function in DOX-treated mice in vivo. Moreover, Ang IV reversed DOX-induced downregulation of glutathione peroxidase 4 (GPX4) and inhibited ferroptosis both in vitro and in vivo. Knockdown of GPX4 by siRNA abolished the cardioprotective effects of Ang IV. Furthermore, Ang IV increased GPX4 levels and ameliorated ferroptosis in RAS-selective lethal 3-treated primary cardiomyocytes. CONCLUSIONS Ang IV ameliorates DOX-induced cardiotoxicity by upregulating GPX4 and inhibiting ferroptosis. Ang IV may be a promising candidate to protect against DOX-induced cardiotoxicity in the future.
Collapse
Affiliation(s)
- Li Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China; Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, People's Republic of China
| | - Junjie Guan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China
| | - Shen Luo
- Department of Cardiovascular Medicine, The Affiliated Zhuzhou Hospital Xiangya Medical College, Central South University, Zhuzhou, Hunan, People's Republic of China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China
| | - Deshu Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China
| | - Xuwei Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China
| | - Chongbin Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China.
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, Guangdong, People's Republic of China; Heart Center of Zhujiang Hospital, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Yi SL, Li ZL, Gong YC, Xiong XY. Inhibiting Multidrug Resistance with Transferrin-Targeted Polymersomes through Optimization of Ligand Density. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15920-15931. [PMID: 37922445 DOI: 10.1021/acs.langmuir.3c01726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Transferrin-conjugated polymersomes, transferrin-biotin/avidin/biotin-Pluronic F127-poly(lactic acid) (Tf-F127-PLA), were successfully prepared through a biotin-avidin bridging technique to study their ability to inhibit multidrug resistance of cancer cells. Hydrophilic doxorubicin (DOX) was selected as the model drug to be loaded into Tf-F127-PLA polymersomes. DOX loaded in Tf-F127-PLA polymersomes was released fast initially, followed by a slow release. The effect of the transferrin ligand density of Tf-F127-PLA/DOX polymersomes on their targeting properties was studied by both cytotoxicity and cellular uptake assays against A549 lung cancer cells. It was shown that Tf-F127-PLA/DOX polymersomes had better targeting ability than nontargeted drug-loaded polymersomes. Furthermore, Tf-F127-PLA/DOX polymersomes with 2% Tf molar content have more effective antitumor activity and a higher cellular uptake than those with 4 and 5% Tf molar content. 2% Tf-F127-PLA/DOX polymersomes also exhibited better anticancer ability in multidrug resistant cancer cells A549/ADR than nontargeted PLA-F127-PLA/DOX polymersomes. It was further proved that the endocytosis of polymersomes by A549/ADR cells was an energy-dependent endocytosis process, which was related to clathrin, macrocytosis, and caveolin. Also, the endocytosis of Tf-F127-PLA/DOX polymersomes was proven to be mediated by the transferrin receptor.
Collapse
Affiliation(s)
- Shui Ling Yi
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Zi Ling Li
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Yan Chun Gong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Xiang Yuan Xiong
- School of Life Science, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| |
Collapse
|
28
|
Wang TH, Ma Y, Gao S, Zhang WW, Han D, Cao F. Recent Advances in the Mechanisms of Cell Death and Dysfunction in Doxorubicin Cardiotoxicity. Rev Cardiovasc Med 2023; 24:336. [PMID: 39076437 PMCID: PMC11272847 DOI: 10.31083/j.rcm2411336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 06/12/2023] [Indexed: 07/31/2024] Open
Abstract
Despite recent advances in cancer therapy, anthracycline-based combination therapy remains the standardized first-line strategy and has been found to have effective antitumor actions. Anthracyclines are extremely cardiotoxic, which limits the use of these powerful chemotherapeutic agents. Although numerous studies have been conducted on the cardiotoxicity of anthracyclines, the precise mechanisms by which doxorubicin causes cardiomyocyte death and myocardial dysfunction remain incompletely understood. This review highlights recent updates in mechanisms and therapies involved in doxorubicin-induced cardiomyocyte death, including autophagy, ferroptosis, necroptosis, pyroptosis, and apoptosis, as well as mechanisms of cardiovascular dysfunction resulting in myocardial atrophy, defects in calcium handling, thrombosis, and cell senescence. We sought to uncover potential therapeutic approaches to manage anthracycline cardiotoxicity via manipulation of crucial targets involved in doxorubicin-induced cardiomyocyte death and dysfunction.
Collapse
Affiliation(s)
- Tian-Hu Wang
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Yan Ma
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Shan Gao
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Wei-Wei Zhang
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Dong Han
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, the Second Medical Center, Chinese PLA
General Hospital, 100853 Beijing, China
| |
Collapse
|
29
|
Nettersheim FS, Schlüter JD, Kreuzberg W, Mehrkens D, Grimm S, Nemade H, Braumann S, Hof A, Guthoff H, Peters V, Hoyer FF, Kargapolova Y, Lackmann JW, Müller S, Pallasch CP, Hallek M, Sachinidis A, Adam M, Winkels H, Baldus S, Geißen S, Mollenhauer M. Myeloperoxidase is a critical mediator of anthracycline-induced cardiomyopathy. Basic Res Cardiol 2023; 118:36. [PMID: 37656254 PMCID: PMC10474188 DOI: 10.1007/s00395-023-01006-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Cardiotoxicity is a major complication of anthracycline therapy that negatively impacts prognosis. Effective pharmacotherapies for prevention of anthracycline-induced cardiomyopathy (AICM) are currently lacking. Increased plasma levels of the neutrophil-derived enzyme myeloperoxidase (MPO) predict occurrence of AICM in humans. We hypothesized that MPO release causally contributes to AICM. Mice intravenously injected with the anthracycline doxorubicin (DOX) exhibited higher neutrophil counts and MPO levels in the circulation and cardiac tissue compared to saline (NaCl)-treated controls. Neutrophil-like HL-60 cells exhibited increased MPO release upon exposition to DOX. DOX induced extensive nitrosative stress in cardiac tissue alongside with increased carbonylation of sarcomeric proteins in wildtype but not in Mpo-/- mice. Accordingly, co-treatment of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with DOX and MPO aggravated loss of hiPSC-CM-contractility compared to DOX treatment alone. DOX-treated animals exhibited pronounced cardiac apoptosis and inflammation, which was attenuated in MPO-deficient animals. Finally, genetic MPO deficiency and pharmacological MPO inhibition protected mice from the development of AICM. The anticancer efficacy of DOX was unaffected by MPO deficiency. Herein we identify MPO as a critical mediator of AICM. We demonstrate that DOX induces cardiac neutrophil infiltration and release of MPO, which directly impairs cardiac contractility through promoting oxidation of sarcomeric proteins, cardiac inflammation and cardiomyocyte apoptosis. MPO thus emerges as a promising pharmacological target for prevention of AICM.
Collapse
Affiliation(s)
- Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| | - Johannes David Schlüter
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Wiebke Kreuzberg
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Dennis Mehrkens
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Grimm
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Harshal Nemade
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Braumann
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Alexander Hof
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Henning Guthoff
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Vera Peters
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Friedrich Felix Hoyer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Yulia Kargapolova
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Stefan Müller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christian P Pallasch
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Michael Hallek
- CECAD, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Agapios Sachinidis
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Neurophysiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matti Adam
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
30
|
Rihackova E, Rihacek M, Vyskocilova M, Valik D, Elbl L. Revisiting treatment-related cardiotoxicity in patients with malignant lymphoma-a review and prospects for the future. Front Cardiovasc Med 2023; 10:1243531. [PMID: 37711551 PMCID: PMC10499183 DOI: 10.3389/fcvm.2023.1243531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Treatment of malignant lymphoma has for years been represented by many cardiotoxic agents especially anthracyclines, cyclophosphamide, and thoracic irradiation. Although they are in clinical practice for decades, the precise mechanism of cardiotoxicity and effective prevention is still part of the research. At this article we discuss most routinely used anti-cancer drugs in chemotherapeutic regiments for malignant lymphoma with the focus on novel insight on molecular mechanisms of cardiotoxicity. Understanding toxicity at molecular levels may unveil possible targets of cardioprotective supportive therapy or optimization of current therapeutic protocols. Additionally, we review novel specific targeted therapy and its challenges in cardio-oncology.
Collapse
Affiliation(s)
- Eva Rihackova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Michal Rihacek
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maria Vyskocilova
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| | - Dalibor Valik
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
- Department of Laboratory Methods, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lubomir Elbl
- Department of Internal Medicine and Cardiology, University Hospital Brno and Faculty of Medicine of Masaryk University, Brno, Czech Republic
| |
Collapse
|
31
|
Veloso SRS, Marta ES, Rodrigues PV, Moura C, Amorim CO, Amaral VS, Correa-Duarte MA, Castanheira EMS. Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin. Pharmaceutics 2023; 15:2194. [PMID: 37765164 PMCID: PMC10538132 DOI: 10.3390/pharmaceutics15092194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, multicore-like iron oxide (Fe3O4) and manganese ferrite (MnFe2O4) nanoparticles were synthesized and combined with nanogels based on chitosan and alginate to obtain a multimodal drug delivery system. The nanoparticles exhibited crystalline structures and displayed sizes of 20 ± 3 nm (Fe3O4) and 11 ± 2 nm (MnFe2O4). The Fe3O4 nanoparticles showed a higher saturation magnetization and heating efficiency compared with the MnFe2O4 nanoparticles. Functionalization with citrate and bovine serum albumin was found to improve the stability and modified surface properties. The nanoparticles were encapsulated in nanogels, and provided high drug encapsulation efficiencies (~70%) using doxorubicin as a model drug. The nanogels exhibited sustained drug release, with enhanced release under near-infrared (NIR) laser irradiation and acidic pH. The nanogels containing BSA-functionalized nanoparticles displayed improved sustained drug release at physiological pH, and the release kinetics followed a diffusion-controlled mechanism. These results demonstrate the potential of synthesized nanoparticles and nanogels for controlled drug delivery, offering opportunities for targeted and on-demand release in biomedical applications.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Eva S. Marta
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Pedro V. Rodrigues
- Department of Polymer Engineering, Institute for Polymers and Composites (IPC), University of Minho, 4804-533 Guimarães, Portugal
| | - Cacilda Moura
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Carlos O. Amorim
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Vítor S. Amaral
- Physics Department and CICECO, Campus de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (C.O.A.); (V.S.A.)
| | - Miguel A. Correa-Duarte
- Centro de Investigación en Nanomateriais e Biomedicina (CINBIO), Universidad de Vigo, 36310 Vigo, Spain
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (S.R.S.V.)
- LaPMET Associate Laboratory, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
32
|
Lee EJ, Jang WB, Choi J, Lim HJ, Park S, Rethineswaran VK, Ha JS, Yun J, Hong YJ, Choi YJ, Kwon SM. The Protective Role of Glutathione against Doxorubicin-Induced Cardiotoxicity in Human Cardiac Progenitor Cells. Int J Mol Sci 2023; 24:12070. [PMID: 37569446 PMCID: PMC10419046 DOI: 10.3390/ijms241512070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.
Collapse
Affiliation(s)
- Eun Ji Lee
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Woong Bi Jang
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jaewoo Choi
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hye Ji Lim
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sangmi Park
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Vinoth Kumar Rethineswaran
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jong Seong Ha
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University School of Medicine, Chonnam National University Hospital, Gwangju 61469, Republic of Korea;
| | - Young Jin Choi
- Department of Hemato-Oncology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea; (E.J.L.); (W.B.J.); (J.C.); (H.J.L.); (S.P.); (V.K.R.); (J.S.H.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
33
|
Lax A, Soler F, Fernandez del Palacio MJ, Pascual-Oliver S, Ballester MR, Fuster JJ, Pascual-Figal D, Asensio-Lopez MDC. Silencing of microRNA-106b-5p prevents doxorubicin-mediated cardiotoxicity through modulation of the PR55α/YY1/sST2 signaling axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:704-720. [PMID: 37234747 PMCID: PMC10208836 DOI: 10.1016/j.omtn.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Clinical use of doxorubicin (Dox), an anthracycline with potent anti-tumor effects, is limited because of its highly chemotherapy-induced cardiotoxicity (CIC). After myocardial infarction (MI), we have recently identified Yin Yang-1 (YY1) and histone deacetylase 4 (HDAC4) as two factors involved in the overexpression of the isoform soluble suppression of tumorigenicity 2 (sST2) protein, which acts as a decoy receptor blocking the favorable effects of IL-33. Therefore, high levels of sST2 are associated with increased fibrosis, remodeling, and worse cardiovascular outcomes. No data exist on the role of the YY1/HDAC4/sST2 axis in CIC. This study aimed to evaluate the pathophysiological implication of the molecular YY1/HDAC4/sST2 axis in remodeling that is developed in patients treated with Dox as well as to suggest a novel molecular therapy to prevent anthracycline-induced cardiotoxicity. Here, we have characterized a novel nexus between miR106b-5p (miR-106b) levels and the YY1/HDAC4 axis in relation to the cardiac expression of sST2 using two experimental models with Dox-induced cardiotoxicity. The addition of Dox (5 μM) to human induced pluripotent stem cell-derived cardiomyocytes induced cellular apoptotic death via upregulation of miR-106b-5p (miR-106b), which was confirmed by specific mimic sequences. A functional blockage of miR-106b using the locked nucleic acid antagomir inhibited Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Antonio Lax
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Fernando Soler
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | | | - Silvia Pascual-Oliver
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Miriam Ruiz Ballester
- Biomedical Research Institute Virgen de la Arrixaca (IMIB-Arrixaca), University of Murcia, 30120 Murcia, Spain
| | - Jose Javier Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Domingo Pascual-Figal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Cardiology Department, Hospital Virgen de la Arrixaca, IMIB-Arrixaca and University of Murcia, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | | |
Collapse
|
34
|
Ozcan M, Guo Z, Valenzuela Ripoll C, Diab A, Picataggi A, Rawnsley D, Lotfinaghsh A, Bergom C, Szymanski J, Hwang D, Asnani A, Kosiborod M, Zheng J, Hayashi RJ, Woodard PK, Kovacs A, Margulies KB, Schilling J, Razani B, Diwan A, Javaheri A. Sustained alternate-day fasting potentiates doxorubicin cardiotoxicity. Cell Metab 2023; 35:928-942.e4. [PMID: 36868222 PMCID: PMC10257771 DOI: 10.1016/j.cmet.2023.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 11/24/2022] [Accepted: 02/07/2023] [Indexed: 03/05/2023]
Abstract
Fasting strategies are under active clinical investigation in patients receiving chemotherapy. Prior murine studies suggest that alternate-day fasting may attenuate doxorubicin cardiotoxicity and stimulate nuclear translocation of transcription factor EB (TFEB), a master regulator of autophagy and lysosomal biogenesis. In this study, human heart tissue from patients with doxorubicin-induced heart failure demonstrated increased nuclear TFEB protein. In mice treated with doxorubicin, alternate-day fasting or viral TFEB transduction increased mortality and impaired cardiac function. Mice randomized to alternate-day fasting plus doxorubicin exhibited increased TFEB nuclear translocation in the myocardium. When combined with doxorubicin, cardiomyocyte-specific TFEB overexpression provoked cardiac remodeling, while systemic TFEB overexpression increased growth differentiation factor 15 (GDF15) and caused heart failure and death. Cardiomyocyte TFEB knockout attenuated doxorubicin cardiotoxicity, while recombinant GDF15 was sufficient to cause cardiac atrophy. Our studies identify that both sustained alternate-day fasting and a TFEB/GDF15 pathway exacerbate doxorubicin cardiotoxicity.
Collapse
Affiliation(s)
- Mualla Ozcan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Zhen Guo
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - David Rawnsley
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Carmen Bergom
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jeff Szymanski
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Hwang
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aarti Asnani
- Beth Israel and Harvard Medical School, Boston, MA, USA
| | | | - Jie Zheng
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert J Hayashi
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pamela K Woodard
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Attila Kovacs
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kenneth B Margulies
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Schilling
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Washington University School of Medicine, St. Louis, MO 63110, USA; John Cochran Veterans Affairs Medical Center, Saint Louis, MO, USA
| | - Abhinav Diwan
- Washington University School of Medicine, St. Louis, MO 63110, USA; John Cochran Veterans Affairs Medical Center, Saint Louis, MO, USA
| | - Ali Javaheri
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
35
|
Xia P, Chen J, Sapkota Y, Scott EN, Liu Y, Hudson MM, Rassekh SR, Carleton BC, Ross CJ, Chow EJ, Cheng Z. RBL2 Regulates Cardiac Sensitivity to Anthracycline Chemotherapy. JACC CardioOncol 2023; 5:360-373. [PMID: 37397090 PMCID: PMC10308060 DOI: 10.1016/j.jaccao.2022.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 03/29/2023] Open
Abstract
Background Anthracycline chemotherapies cause heart failure in a subset of cancer patients. We previously reported that the anthracycline doxorubicin (DOX) induces cardiotoxicity through the activation of cyclin-dependent kinase 2 (CDK2). Objectives The aim of this study was to determine whether retinoblastoma-like 2 (RBL2/p130), an emerging CDK2 inhibitor, regulates anthracycline sensitivity in the heart. Methods Rbl2-/- mice and Rbl2+/+ littermates received DOX (5 mg/kg/wk for 4 weeks intraperitoneally, 20 mg/kg cumulative). Heart function was monitored with echocardiography. The association of RBL2 genetic variants with anthracycline cardiomyopathy was evaluated in the SJLIFE (St. Jude Lifetime Cohort Study) and CPNDS (Canadian Pharmacogenomics Network for Drug Safety) studies. Results The loss of endogenous Rbl2 increased basal CDK2 activity in the mouse heart. Mice lacking Rbl2 were more sensitive to DOX-induced cardiotoxicity, as evidenced by rapid deterioration of heart function and loss of heart mass. The disruption of Rbl2 exacerbated DOX-induced mitochondrial damage and cardiomyocyte apoptosis. Mechanistically, Rbl2 deficiency enhanced CDK2-dependent activation of forkhead box O1 (FOXO1), leading to up-regulation of the proapoptotic protein Bim. The inhibition of CDK2 desensitized Rbl2-depleted cardiomyocytes to DOX. In wild-type cardiomyocytes, DOX exposure induced Rbl2 expression in a FOXO1-dependent manner. Importantly, the rs17800727 G allele of the human RBL2 gene was associated with reduced anthracycline cardiotoxicity in childhood cancer survivors. Conclusions Rbl2 is an endogenous CDK2 inhibitor in the heart and represses FOXO1-mediated proapoptotic gene expression. The loss of Rbl2 increases sensitivity to DOX-induced cardiotoxicity. Our findings suggest that RBL2 could be used as a biomarker to predict the risk of cardiotoxicity before the initiation of anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Peng Xia
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Yadav Sapkota
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Erika N. Scott
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Yuening Liu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Shahrad R. Rassekh
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplantation, Department of Pediatrics, British Columbia Children’s Hospital and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce C. Carleton
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Pharmaceutical Outcomes Programme, British Columbia Children’s Hospital, Vancouver, British Columbia, Canada
| | - Colin J.D. Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric J. Chow
- Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA
| |
Collapse
|
36
|
Syamprasad NP, Jain S, Rajdev B, Panda SR, Gangasani JK, Challa VS, Vaidya JR, Kundu GC, Naidu VGM. AKR1B1 inhibition using NARI-29-an Epalrestat analogue-alleviates Doxorubicin-induced cardiotoxicity via modulating Calcium/CaMKII/MuRF-1 axis. Chem Biol Interact 2023; 381:110566. [PMID: 37257577 DOI: 10.1016/j.cbi.2023.110566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter). Further, breast cancer, cardiomyoblast (H9c2), and macrophage (RAW 264.7) cell lines were used to establish the in vitro combination effect of NARI-29 and Dox. To develop the cardiotoxicity model, mice were given Dox 2.5 mg/kg (i.p.), biweekly. The effect of AKR1B1 inhibition using NARI-29 on molecular and cardiac functional changes was measured using echocardiography, fluorescence-imaging, ELISA, immunoblotting, flowcytometry, High-Performance Liquid Chromatography with Fluorescence Detection (HPLC-FD) and cytokine-bead array methods. The bioinformatics data suggested that a high expression of AKR1B1 is associated with significantly low survival of breast cancer patients undergoing chemotherapy; hence, it could be a target for chemo-sensitization and chemo-prevention. Further, in vitro studies showed that AKR1B1 inhibition with NARI-29 has increased the accumulation and sensitized Dox to breast cancer cell lines. However, treatment with NARI-29 has alleviated the Dox-induced toxicity to cardiomyocytes and decreased the secretion of inflammatory cytokines from RAW 264.7 cells. In vivo studies revealed that the NARI-29 (25 and 50 mg/kg) has prevented the functional, histological, biochemical, and molecular alterations induced by Dox treatment. Moreover, we have shown that NARI-29 has prevented the carbonyl reduction of Dox to Doxol in the mouse heart, which reduced the calcium overload, prevented phosphorylation of CaMKII, and reduced the expression of MuRF1 to protect from cardiac injury and apoptosis. Hence in conclusion, AKR1B1 inhibitor NARI-29 could be used as an adjuvant therapeutic agent with Dox to prevent cardiotoxicity and synergize anti-breast cancer activity.
Collapse
Affiliation(s)
- N P Syamprasad
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Siddhi Jain
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Bishal Rajdev
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Samir Ranjan Panda
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Jagadeesh Kumar Gangasani
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Veerabhadra Swamy Challa
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India
| | - Jayathirtha Rao Vaidya
- Fluoro Agro Chemicals Department and AcSIR-Ghaziabad, CSIR-Indian Institute of Chemical Technology, Uppal Road Tarnaka, Hyderabad, Telangana, 500007, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune, 411007, India; School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, 751 024, India; Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to Be University, Bhubaneswar, 751024, India
| | - V G M Naidu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, Sila Village, Changsari, Assam, 781101, India.
| |
Collapse
|
37
|
Martin TG, Juarros MA, Leinwand LA. Regression of cardiac hypertrophy in health and disease: mechanisms and therapeutic potential. Nat Rev Cardiol 2023; 20:347-363. [PMID: 36596855 PMCID: PMC10121965 DOI: 10.1038/s41569-022-00806-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 01/05/2023]
Abstract
Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.
Collapse
Affiliation(s)
- Thomas G Martin
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Miranda A Juarros
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
38
|
Asnani A. New Insights Into Cardiac Wasting in Patients With Cancer. J Am Coll Cardiol 2023; 81:1587-1589. [PMID: 37076212 DOI: 10.1016/j.jacc.2023.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 04/21/2023]
Affiliation(s)
- Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
39
|
Leng B, Deng L, Tan J, Lee WT, Cao CR, Wang ZP, Huang DJ, Nie XW, Bian JS. Targeting the Na +/K + ATPase DR-region with DR-Ab improves doxorubicin-induced cardiotoxicity. Free Radic Biol Med 2023; 204:38-53. [PMID: 37100355 DOI: 10.1016/j.freeradbiomed.2023.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
Doxorubicin (DOX) is a potent chemotherapeutic drug for various cancers. Yet, the cardiotoxic side effects limit its application in clinical uses, in which ferroptosis serves as a crucial pathological mechanism in DOX-induced cardiotoxicity (DIC). A reduction of Na+/K + ATPase (NKA) activity is closely associated with DIC progression. However, whether abnormal NKA function was involved in DOX-induced cardiotoxicity and ferroptosis remains unknown. Here, we aim to decipher the cellular and molecular mechanisms of dysfunctional NKA in DOX-induced ferroptosis and investigate NKA as a potential therapeutic target for DIC. A decrease activity of NKA further aggravated DOX-triggered cardiac dysfunction and ferroptosis in NKAα1 haploinsufficiency mice. In contrast, antibodies against the DR-region of NKAα-subunit (DR-Ab) attenuated the cardiac dysfunction and ferroptosis induced by DOX. Mechanistically, NKAα1 interacted with SLC7A11 to form a novel protein complex, which was directly implicated in the disease progression of DIC. Furthermore, the therapeutic effect of DR-Ab on DIC was mediated by reducing ferroptosis by promoting the association of NKAα1/SLC7A11 complex and maintaining the stability of SLC7A11 on the cell surface. These results indicate that antibodies targeting the DR-region of NKA may serve as a novel therapeutic strategy to alleviate DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Bin Leng
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, 215123, Jiangsu, China
| | - Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianxin Tan
- Lung Transplant Group, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, 214023, China
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Cheng-Rui Cao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zi-Ping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - De-Jian Huang
- Department of Food Science and Technology, National University of Singapore, 2 Science Drive 2, Singapore, 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, 215123, Jiangsu, China.
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; National University of Singapore (Suzhou) Research Institute, 377 Linquan Street, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
40
|
Cicek B, Hacimuftuoglu A, Yeni Y, Danisman B, Ozkaraca M, Mokhtare B, Kantarci M, Spanakis M, Nikitovic D, Lazopoulos G, Tsarouhas K, Tsatsakis A, Taghizadehghalehjoughi A. Chlorogenic Acid Attenuates Doxorubicin-Induced Oxidative Stress and Markers of Apoptosis in Cardiomyocytes via Nrf2/HO-1 and Dityrosine Signaling. J Pers Med 2023; 13:jpm13040649. [PMID: 37109035 PMCID: PMC10140899 DOI: 10.3390/jpm13040649] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Doxorubicin (DOX) is extensively used for cancer treatments; however, its clinical application is limited because of its cardiotoxic adverse effects. A combination of DOX and agents with cardioprotective properties is an effective strategy to ameliorate DOX-related cardiotoxicity. Polyphenolic compounds are ideal for the investigation of novel cardioprotective agents. Chlorogenic acid (CGA), an essential dietary polyphenol found in plants, has been previously reported to exert antioxidant, cardioprotective, and antiapoptotic properties. The current research evaluated CGA's in vivo cardioprotective properties in DOX-induced cardiotoxicity and the probable mechanisms underlying this protection. (2) Methods: CGA's cardioprotective properties were investigated in rats that were treated with CGA (100 mg/kg, p.o.) for fourteen days. The experimental model of cardiotoxicity was induced with a single intraperitoneal (15 mg/kg i.p.) injection of DOX on the 10th day. (3) Results: Treatment with CGA significantly improved the DOX-caused altered cardiac damage markers (LDH, CK-MB, and cTn-T), and a marked improvement in cardiac histopathological features accompanied this. DOX downregulated the expression of Nrf2/HO-1 signaling pathways, and the CGA reversed this effect. Consistently, caspase-3, an apoptotic-related marker, and dityrosine expression were suppressed, while Nrf2 and HO-1 expressions were elevated in the cardiac tissues of DOX-treated rats after treatment with the CGA. Furthermore, the recovery was confirmed by the downregulation of 8-OHdG and dityrosine (DT) expressions in immunohistochemical findings. (4) Conclusions: CGA demonstrated a considerable cardioprotective effect against DOX-induced cardiotoxicity. One of the possible mechanisms for these protective properties was the upregulation of the Nrf2/HO-1-dependent pathway and the downregulation of DT, which may ameliorate oxidative stress and cardiomyocyte apoptosis. These findings suggest that CGA may be cardioprotective, particularly in patients receiving DOX-based chemotherapy.
Collapse
Affiliation(s)
- Betul Cicek
- Department of Physiology, Faculty of Medicine, Erzincan Binali Yildirim University, 24100 Erzincan, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Betul Danisman
- Department of Biophysics, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Mustafa Ozkaraca
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Behzad Mokhtare
- Department of Pathology, Faculty of Veterinary, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Mecit Kantarci
- Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey
| | - Marios Spanakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Dragana Nikitovic, Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Georgios Lazopoulos
- Department of Cardiac Surgery, University General Hospital of Heraklion, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ali Taghizadehghalehjoughi
- Department of Medical Pharmacology, Faculty of Medicine, Bilecik Seyh Edebali University, 11230 Bilecik, Turkey
| |
Collapse
|
41
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
42
|
Gaytan SL, Lawan A, Chang J, Nurunnabi M, Bajpeyi S, Boyle JB, Han SM, Min K. The beneficial role of exercise in preventing doxorubicin-induced cardiotoxicity. Front Physiol 2023; 14:1133423. [PMID: 36969584 PMCID: PMC10033603 DOI: 10.3389/fphys.2023.1133423] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Doxorubicin is a highly effective chemotherapeutic agent widely used to treat a variety of cancers. However, the clinical application of doxorubicin is limited due to its adverse effects on several tissues. One of the most serious side effects of doxorubicin is cardiotoxicity, which results in life-threatening heart damage, leading to reduced cancer treatment success and survival rate. Doxorubicin-induced cardiotoxicity results from cellular toxicity, including increased oxidative stress, apoptosis, and activated proteolytic systems. Exercise training has emerged as a non-pharmacological intervention to prevent cardiotoxicity during and after chemotherapy. Exercise training stimulates numerous physiological adaptations in the heart that promote cardioprotective effects against doxorubicin-induced cardiotoxicity. Understanding the mechanisms responsible for exercise-induced cardioprotection is important to develop therapeutic approaches for cancer patients and survivors. In this report, we review the cardiotoxic effects of doxorubicin and discuss the current understanding of exercise-induced cardioprotection in hearts from doxorubicin-treated animals.
Collapse
Affiliation(s)
- Samantha L. Gaytan
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Ahmed Lawan
- Department of Biological Sciences, College of Science, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Jongwha Chang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | - Sudip Bajpeyi
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Jason B. Boyle
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sung Min Han
- Department of Physiology and Aging, College of Medicine, Institute on Aging, University of Florida, Gainesville, FL, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| | - Kisuk Min
- Department of Kinesiology, College of Health Sciences, University of Texas at El Paso, El Paso, TX, United States
- *Correspondence: Kisuk Min, ; Sung Min Han,
| |
Collapse
|
43
|
Qian H, Qian Y, Liu Y, Cao J, Wang Y, Yang A, Zhao W, Lu Y, Liu H, Zhu W. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity, respectively, by integrated bioinformatics. Front Cardiovasc Med 2023; 9:996809. [PMID: 36712272 PMCID: PMC9874088 DOI: 10.3389/fcvm.2022.996809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background The mechanisms of doxorubicin (DOX) cardiotoxicity were complex and controversial, with various contradictions between experimental and clinical data. Understanding the differences in the molecular mechanism between DOX-induced acute and chronic cardiotoxicity may be an ideal entry point to solve this dilemma. Methods Mice were injected intraperitoneally with DOX [(20 mg/kg, once) or (5 mg/kg/week, three times)] to construct acute and chronic cardiotoxicity models, respectively. Survival record and ultrasound monitored the cardiac function. The corresponding left ventricular (LV) myocardium tissues were analyzed by RNA-seq to identify differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) found the key biological processes and signaling pathways. DOX cardiotoxicity datasets from the Gene expression omnibus (GEO) database were combined with RNA-seq to identify the common genes. Cytoscape analyzed the hub genes, which were validated by quantitative real-time PCR. ImmuCo and ImmGen databases analyzed the correlations between hub genes and immunity-relative markers in immune cells. Cibersort analyzed the immune infiltration and correlations between the hub genes and the immune cells. Logistic regression, receiver operator characteristic curve, and artificial neural network analysis evaluated the diagnosis ability of hub genes for clinical data in the GEO dataset. Results The survival curves and ultrasound monitoring demonstrated that cardiotoxicity models were constructed successfully. In the acute model, 788 DEGs were enriched in the activated metabolism and the suppressed immunity-associated signaling pathways. Three hub genes (Alas1, Atp5g1, and Ptgds) were upregulated and were negatively correlated with a colony of immune-activating cells. However, in the chronic model, 281 DEGs showed that G protein-coupled receptor (GPCR)-related signaling pathways were the critical events. Three hub genes (Hsph1, Abcb1a, and Vegfa) were increased in the chronic model. Furthermore, Hsph1 combined with Vegfa was positively correlated with dilated cardiomyopathy (DCM)-induced heart failure (HF) and had high accuracy in the diagnosis of DCM-induced HF (AUC = 0.898, P = 0.000). Conclusion Alas1, Atp5g1, and Ptgds were ideal biomarkers in DOX acute cardiotoxicity. However, Hsph1 and Vegfa were potential biomarkers in the myocardium in the chronic model. Our research, first, provided bioinformatics and clinical evidence for the discovery of the differences in mechanism and potential biomarkers of DOX-induced acute and chronic cardiotoxicity to find a therapeutic strategy precisely.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Jiaxin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yuhang Wang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Aihua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Wenjing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Huanxin Liu
- Shanghai Labway Medical Laboratory, Shanghai, China
| | - Weizhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,*Correspondence: Weizhong Zhu, ; orcid.org/0000-0002-8740-3210
| |
Collapse
|
44
|
Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells 2022; 12:cells12010108. [PMID: 36611902 PMCID: PMC9818647 DOI: 10.3390/cells12010108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (Doxo) is a widely used antineoplastic drug with limited clinical application due to its deleterious dose-related side effects. We investigated whether nicotinamide mononucleotide (NMN) could protect against Doxo-induced cardiotoxicity and physical dysfunction in vivo. To assess the short- and long-term toxicity, two Doxo regimens were tested, acute and chronic. In the acute study, C57BL6/J (B6) mice were injected intraperitoneally (i.p.) once with Doxo (20 mg/kg) and NMN (180 mg/kg/day, i.p.) was administered daily for five days before and after the Doxo injection. In the chronic study, B6 mice received a cumulative dose of 20 mg/kg Doxo administered in fractionated doses for five days. NMN (500 mg/kg/day) was supplied in the mice's drinking water beginning five days before the first injection of Doxo and continuing for 60 days after. We found that NMN significantly increased tissue levels of NAD+ and its metabolites and improved survival and bodyweight loss in both experimental models. In addition, NMN protected against Doxo-induced cardiotoxicity and loss of physical function in acute and chronic studies, respectively. In the heart, NMN prevented Doxo-induced transcriptomic changes related to mitochondrial function, apoptosis, oxidative stress, inflammation and p53, and promyelocytic leukemia nuclear body pathways. Overall, our results suggest that NMN could prevent Doxo-induced toxicity in heart and skeletal muscle.
Collapse
|
45
|
Hanna M, Seddiek H, Aboulhoda BE, Morcos GNB, Akabawy AMA, Elbaset MA, Ibrahim AA, Khalifa MM, Khalifah IM, Fadel MS, Shoukry T. Synergistic cardioprotective effects of melatonin and deferoxamine through the improvement of ferritinophagy in doxorubicin-induced acute cardiotoxicity. Front Physiol 2022; 13:1050598. [PMID: 36531171 PMCID: PMC9748574 DOI: 10.3389/fphys.2022.1050598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/09/2022] [Indexed: 11/08/2023] Open
Abstract
Ferritinophagy is one of the most recent molecular mechanisms affecting cardiac function. In addition, it is one of the pathways by which doxorubicin, one of the anticancer drugs commonly used, negatively impacts the cardiac muscle, leading to cardiac function impairment. This side effect limits the use of doxorubicin. Iron chelators play an important role in hindering ferritinophagy. Antioxidants can also impact ferritinophagy by improving oxidative stress. In this study, it was assumed that the antioxidant function of melatonin could promote the action of deferoxamine, an iron chelator, at the level of ferritinophagy. A total of 42 male Wistar rats (150-200 g) were divided into seven groups (n = 6) which consisted of group I: control normal, group II: doxorubicin (Dox), group III: melatonin (Mel), group IV: deferoxamine (Des), group V: Mel + Dox, group VI: Des + Dox, and group VII: Mel + Des + Dox. Groups III, V and VII were orally pretreated with melatonin 20 mg/kg/day for 7 days. Groups IV, VI and VII were treated with deferoxamine at a 250 mg/kg/dose once on D4 before Dox was given. Doxorubicin was given at a 20 mg/kg ip single dose. On the 8th day, the rats were lightly anaesthetized for electrocardiography analysis and echocardiography. Serum samples were collected and then sacrificed for tissue sampling. The following biochemical assessments were carried out: PCR of NCOA4, IREB2, FTH1, SLC7A11, and GPX4; and ELISA for serum cTnI, serum transferrin, tissue GSH, and malondialdehyde. In addition, histopathological assessment of heart injury; immunostaining of caspase-3, Bax, and Bcl2; and physiological function assessment by ECG and ECHO were carried out. Doxorubicin-induced acute significant cardiac injury with increased ferritinophagy and apoptosis responded to single and combined prophylactic treatment, in which the combined treatment showed mostly the best results. In conclusion, using melatonin as an antioxidant with an iron chelator, deferoxamine, could hinder the hazardous cardiotoxic effect of doxorubicin. However, further studies are needed to detect the impact of higher doses of melatonin and deferoxamine with a prolonged treatment period.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Hanan Seddiek
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - George N. B. Morcos
- Department of Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Ahmed M. A. Akabawy
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | | | - Mohamed Mansour Khalifa
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
- Department of Human Physiology, College of Medicine, King Saud University, Kingdom of Saudi Arabia, Riyadh, Saudi Arabia
| | - Ibtesam Mahmoud Khalifah
- Department of Internal Medicine, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Clinical Sciences, Faculty of Medicine, Fakeeh College for Medical Sciences, Riyadh, Saudi Arabia
| | - Mostafa Said Fadel
- Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - Tarek Shoukry
- Department of Human Physiology, Faculty of Medicine (Kasr Al-Ainy), Cairo University, Egypt
| |
Collapse
|
46
|
Muehlberg F, Kornfeld M, Zange L, Ghani S, Reichardt A, Reichardt P, Schulz‐Menger J. Early myocardial oedema can predict subsequent cardiomyopathy in high-dose anthracycline therapy. ESC Heart Fail 2022; 10:616-627. [PMID: 36404640 PMCID: PMC9871709 DOI: 10.1002/ehf2.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
AIMS This study aims to assess subclinical changes in functional and morphologic myocardial MR parameters very early into a repetitive high-dose anthracycline treatment (planned cumulative dose >650 mg/m2 ), which may predict subsequent development of anthracycline-induced cardiomyopathy (aCMP). METHODS Thirty sarcoma patients with previous exposition of 300-360 mg/m2 doxorubicin-equivalent chemotherapy who were planned for a second treatment of anthracycline-based chemotherapy (360 mg/m2 doxorubicin-equivalent) were recruited. Enrolled individuals received three CMR studies (before treatment, 48 h after first anthracycline treatment and upon completion of treatment). Native T1 mapping (MOLLI 5s(3s)3s), T2 mapping, and extracellular volume (ECV) maps were acquired in addition to a conventional CMR with SSFP-cine imaging at 1.5 T. Patients were given 0.2 mmol/kg gadoteridol for ECV quantification and LGE imaging. Blood samples for cardiac biomarkers were obtained before each scan. Development of relevant aCMP was defined as drop of left ventricular ejection fraction (LVEF) by >10% compared with baseline. RESULTS Twenty-three complete datasets were available for analysis. Median treatment time was 20.7 ± 3.0 weeks. Eight patients developed aCMP with LVEF reduction >10% until end of chemotherapy. Baseline LVEF was not different between patients with and without subsequent aCMP. Patients with aCMP had decreased LV mass upon completion of therapy (99.4 ± 26.5 g vs. 90.3 ± 24.8 g; P = 0.02), whereas patients without aCMP did not show a change in LV mass (91.5 ± 20.0 g vs. 89.0 ± 23.6 g; P > 0.05). On strain analysis, GLS (-15.3 ± 1.3 vs. -13.4 ± 1.6; P = 0.02) and GCS (-16.7 ± 2.1 vs. -14.9 ± 2.6; P = 0.04) were decreased in aCMP patients upon completion of therapy, whereas non-aCMP individuals showed no change in GLS (-15.4 ± 3.3 vs. -15.4 ± 3.4; P = 0.97). When assessed 48 h after first dose of anthracyclines, patients with subsequent aCMP had significantly elevated myocardial T2 times compared with before therapy (53.0 ± 2.8 ms vs. 49.3 ± 5.2 ms, P = 0.02) than patients who did not develop aCMP (50.7 ± 5.1 ms vs. 51.1 ± 3.9 ms, P > 0.05). Native T1 times decreased at 48 h after first dose irrespective of development of subsequent aCMP (1020.2 ± 28.4 ms vs. 973.5 ± 40.3 ms). Upon completion of therapy, patients with aCMP had increased native T1 compared with baseline (1050.8 ± 17.9 ms vs. 1022.4 ± 22.0 ms; P = 0.01), whereas non-aCMP patients did not (1034.5 ± 46.6 ms vs. 1018.4 ± 29.7 ms; P = 0.15). No patient developed new myocardial scars or compact myocardial fibrosis under chemotherapy. Cardiac biomarkers were elevated independent of development of aCMP. CONCLUSIONS With high cumulative anthracycline doses, early increase of T2 times 48 h after first treatment with anthracyclines can predict the development of subsequent aCMP after completion of chemotherapy. Early drop of native T1 times occurs irrespective of development of aCMP in high-dose anthracycline therapy.
Collapse
Affiliation(s)
- Fabian Muehlberg
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Markus Kornfeld
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Leonora Zange
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Saeed Ghani
- Department for Interdisciplinary Oncology and Sarcoma CenterHELIOS Hospital Berlin‐BuchBerlinGermany
| | - Annette Reichardt
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Peter Reichardt
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Jeanette Schulz‐Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| |
Collapse
|
47
|
Bacova BS, Andelova K, Sykora M, Egan Benova T, Barancik M, Kurahara LH, Tribulova N. Does Myocardial Atrophy Represent Anti-Arrhythmic Phenotype? Biomedicines 2022; 10:2819. [PMID: 36359339 PMCID: PMC9687767 DOI: 10.3390/biomedicines10112819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2023] Open
Abstract
This review focuses on cardiac atrophy resulting from mechanical or metabolic unloading due to various conditions, describing some mechanisms and discussing possible strategies or interventions to prevent, attenuate or reverse myocardial atrophy. An improved awareness of these conditions and an increased focus on the identification of mechanisms and therapeutic targets may facilitate the development of the effective treatment or reversion for cardiac atrophy. It appears that a decrement in the left ventricular mass itself may be the central component in cardiac deconditioning, which avoids the occurrence of life-threatening arrhythmias. The depressed myocardial contractility of atrophied myocardium along with the upregulation of electrical coupling protein, connexin43, the maintenance of its topology, and enhanced PKCƐ signalling may be involved in the anti-arrhythmic phenotype. Meanwhile, persistent myocardial atrophy accompanied by oxidative stress and inflammation, as well as extracellular matrix fibrosis, may lead to severe cardiac dysfunction, and heart failure. Data in the literature suggest that the prevention of heart failure via the attenuation or reversion of myocardial atrophy is possible, although this requires further research.
Collapse
Affiliation(s)
| | - Katarina Andelova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Matus Sykora
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Tamara Egan Benova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| | - Lin Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Miki-cho 761-0793, Japan
| | - Narcis Tribulova
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia
| |
Collapse
|
48
|
Mabudian L, Jordan JH, Bottinor W, Hundley WG. Cardiac MRI assessment of anthracycline-induced cardiotoxicity. Front Cardiovasc Med 2022; 9:903719. [PMID: 36237899 PMCID: PMC9551168 DOI: 10.3389/fcvm.2022.903719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 09/06/2022] [Indexed: 11/21/2022] Open
Abstract
The objective of this review article is to discuss how cardiovascular magnetic resonance (CMR) imaging measures left ventricular (LV) function, characterizes tissue, and identifies myocardial fibrosis in patients receiving anthracycline-based chemotherapy (Anth-bC). Specifically, CMR can measure LV ejection fraction (EF), volumes at end-diastole (LVEDV), and end-systole (LVESV), LV strain, and LV mass. Tissue characterization is accomplished through T1/T2-mapping, late gadolinium enhancement (LGE), and CMR perfusion imaging. Despite CMR’s accuracy and efficiency in collecting data about the myocardium, there are challenges that persist while monitoring a cardio-oncology patient undergoing Anth-bC, such as the presence of other cardiovascular risk factors and utility controversies. Furthermore, CMR can be a useful adjunct during cardiopulmonary exercise testing to pinpoint cardiovascular mediated exercise limitations, as well as to assess myocardial microcirculatory damage in patients undergoing Anth-bC.
Collapse
Affiliation(s)
- Leila Mabudian
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - Jennifer H. Jordan
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Wendy Bottinor
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
| | - W. Gregory Hundley
- Division of Cardiology, Department of Internal Medicine, VCU School of Medicine, Richmond, VA, United States
- *Correspondence: W. Gregory Hundley,
| |
Collapse
|
49
|
Abrahams C, Woudberg NJ, Lecour S. Anthracycline-induced cardiotoxicity: targeting high-density lipoproteins to limit the damage? Lipids Health Dis 2022; 21:85. [PMID: 36050733 PMCID: PMC9434835 DOI: 10.1186/s12944-022-01694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/02/2022] [Indexed: 12/30/2022] Open
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic frequently used against a wide range of cancers, including breast cancer. Although the drug is effective as a treatment against cancer, many patients develop heart failure (HF) months to years following their last treatment with DOX. The challenge in preventing DOX-induced cardiotoxicity is that symptoms present after damage has already occurred in the myocardium. Therefore, early biomarkers to assess DOX-induced cardiotoxicity are urgently needed. A better understanding of the mechanisms involved in the toxicity is important as this may facilitate the development of novel early biomarkers or therapeutic approaches. In this review, we discuss the role of high-density lipoprotein (HDL) particles and its components as possible key players in the early development of DOX-induced cardiotoxicity. HDL particles exist in different subclasses which vary in composition and biological functionality. Multiple cardiovascular risk factors are associated with a change in HDL subclasses, resulting in modifications of their composition and physiological functions. There is growing evidence in the literature suggesting that cancer affects HDL subclasses and that healthy HDL particles enriched with sphingosine-1-phosphate (S1P) and apolipoprotein A1 (ApoA1) protect against DOX-induced cardiotoxicity. Here, we therefore discuss associations and relationships between HDL, DOX and cancer and discuss whether assessing HDL subclass/composition/function may be considered as a possible early biomarker to detect DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Carmelita Abrahams
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Nicholas J Woudberg
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa
| | - Sandrine Lecour
- Cardioprotection Group, Cape Heart Institute and Hatter Institute for Cardiovascular Research in Africa, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, 7935, South Africa.
| |
Collapse
|
50
|
Yu Y, Guo D, Zhao L. MiR-199 Aggravates Doxorubicin-Induced Cardiotoxicity by Targeting TAF9b. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:4364779. [PMID: 35873641 PMCID: PMC9307339 DOI: 10.1155/2022/4364779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022]
Abstract
The clinical application of doxorubicin (DOX) is limited because of its cardiotoxicity. However, the pathogenic mechanism of DOX and the role of miRNA in DOX-induced cardiotoxicity remain to be further studied. This study aimed to investigate the role of miR-199 in DOX-mediated cardiotoxicity. A mouse model of myocardial cell injury induced by DOX was established. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression changes of miR-199 and TATA-binding protein associated factor 9B (TAF9b) in DOX-induced cardiac injury. Cell apoptosis was detected by TUNEL staining and flow cytometry. The expression levels of apoptosis-related proteins, namely, Bax and Bcl-2, were detected by qPCR. The expression of Beclin-1 and LC3b was detected by western blotting. The binding effect of miR-199 with TAF9b was verified by dual-luciferase reporter gene assay. In this study, overexpression of miR-199 could promote cardiotoxicity. Inhibition of miR-199 could alleviate DOX-mediated myocardial injury. Further studies showed that miR-199 targeted TAF9b. Moreover, miR-199 promoted apoptosis of myocardial cells and aggravated autophagy. Furthermore, we demonstrated that TAF9B knockdown reversed the myocardial protective effect of miR-199 inhibitors. Therefore, miR-199 promoted DOX-mediated cardiotoxicity by targeting TAF9b, thereby aggravating apoptosis and regulating autophagy.
Collapse
Affiliation(s)
- Yangsheng Yu
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Degang Guo
- Emergency Department, Third People's Hospital of Liaocheng City, Liaocheng 252000, China
| | - Lin Zhao
- Department of Cardiology, Sunshine Union Hospital of Weifang, Weifang 261000, Shandong, China
| |
Collapse
|