1
|
Totoń-Żurańska J, Sulicka-Grodzicka J, Seweryn MT, Pitera E, Kapusta P, Konieczny P, Drabik L, Kołton-Wróż M, Chyrchel B, Nowak E, Surdacki A, Grodzicki T, Wołkow PP. MicroRNA composition of plasma extracellular vesicles: a harbinger of late cardiotoxicity of doxorubicin. Mol Med 2022; 28:156. [PMID: 36517751 PMCID: PMC9753431 DOI: 10.1186/s10020-022-00588-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The use of doxorubicin is associated with an increased risk of acute and long-term cardiomyopathy. Despite the constantly growing number of cancer survivors, little is known about the transcriptional mechanisms which progress in the time leading to a severe cardiac outcome. It is also unclear whether long-term transcriptomic alterations related to doxorubicin use are similar to transcriptomic patterns present in patients suffering from other cardiomyopathies. METHODS We have sequenced miRNA from total plasma and extracellular vesicles (EVs) from 66 acute lymphoblastic leukemia (ALL) survivors and 61 healthy controls (254 samples in total). We then analyzed processes regulated by differentially expressed circulating miRNAs and cross-validated results with the data of patients with clinically manifested cardiomyopathies. RESULTS We found that especially miRNAs contained within EVs may be informative in terms of cardiomyopathy development and may regulate pathways related to neurotrophin signaling, transforming growth factor beta (TGFβ) or epidermal growth factor receptors (ErbB). We identified vesicular miR-144-3p and miR-423-3p as the most variable between groups and significantly correlated with echocardiographic parameters and, respectively, for plasma: let-7g-5p and miR-16-2-3p. Moreover, vesicular miR-144-3p correlates with the highest number of echocardiographic parameters and is differentially expressed in the circulation of patients with dilated cardiomyopathy. We also found that distribution of particular miRNAs between of plasma and EVs (proportion between compartments) e.g., miR-184 in ALL, is altered, suggesting changes within secretory and miRNA sorting mechanisms. CONCLUSIONS Our results show that transcriptomic changes resulting from doxorubicin induced myocardial injury are reflected in circulating miRNA levels and precede development of the late onset cardiomyopathy phenotype. Among miRNAs related to cardiac function, we found vesicular miR-144-3p and miR-423-3p, as well as let-7g-5p and miR-16-2-3p contained in the total plasma. Selection of source for such studies (plasma or EVs) is of critical importance, as distribution of some miRNA between plasma and EVs is altered in ALL survivors, in comparison to healthy people, which suggests that doxorubicin-induced changes include miRNA sorting and export to extracellular space.
Collapse
Affiliation(s)
- Justyna Totoń-Żurańska
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Joanna Sulicka-Grodzicka
- grid.5522.00000 0001 2162 9631Department of Rheumatology, Jagiellonian University Medical College, Krakow, Poland
| | - Michał T. Seweryn
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland ,grid.261331.40000 0001 2285 7943Department of Cancer Biology and Genetics, Center for Pharmacogenomics, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Ewelina Pitera
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Przemysław Kapusta
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Paweł Konieczny
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Leszek Drabik
- grid.5522.00000 0001 2162 9631Medical College and John Paul II Hospital, Jagiellonian University, Krakow, Poland ,grid.5522.00000 0001 2162 9631Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Kołton-Wróż
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland
| | - Bernadeta Chyrchel
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Ewelina Nowak
- grid.5522.00000 0001 2162 9631Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Andrzej Surdacki
- grid.5522.00000 0001 2162 9631Second Department of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Grodzicki
- grid.5522.00000 0001 2162 9631Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł P. Wołkow
- grid.5522.00000 0001 2162 9631Center for Medical Genomics OMICRON, Jagiellonian University Medical College, ul. Kopernika 7C, 31-034 Krakow, Poland ,grid.5522.00000 0001 2162 9631Department of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
2
|
Lipshultz SE, Anderson LM, Miller TL, Gerschenson M, Stevenson KE, Neuberg DS, Franco VI, LiButti DE, Silverman LB, Vrooman LM, Sallan SE, the Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium. Impaired mitochondrial function is abrogated by dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors. Cancer 2016; 122:946-53. [PMID: 26762648 PMCID: PMC4777628 DOI: 10.1002/cncr.29872] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/29/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Impaired cardiac function in doxorubicin-treated childhood cancer survivors is partly mediated by the disruption of mitochondrial energy production. Doxorubicin intercalates into mitochondrial DNA (mtDNA) and disrupts genes encoding for polypeptides that make adenosine triphosphate. METHODS This cross-sectional study examined mtDNA copy numbers per cell and oxidative phosphorylation (OXPHOS) in peripheral blood mononuclear cells (PBMCs) in 64 childhood survivors of high-risk acute lymphoblastic leukemia (ALL) who had been treated on Dana-Farber Cancer Institute childhood ALL protocols and had received doxorubicin alone (42%) or doxorubicin with the cardioprotectant dexrazoxane (58%). The number of mtDNA copies per cell and the OXPHOS enzyme activity of nicotinamide adenine dinucleotide dehydrogenase (complex I [CI]) and cytochrome c oxidase (complex IV [CIV]) were measured with quantitative real-time polymerase chain reaction immunoassays and thin-layer chromatography, respectively. RESULTS At a median follow-up of 7.8 years after treatment, the median number of mtDNA copies per cell for patients treated with doxorubicin alone (1106.3) was significantly higher than the median number for those who had also received dexrazoxane (310.5; P = .001). No significant differences were detected between the groups for CI or CIV activity. CONCLUSIONS Doxorubicin-treated survivors had an increased number of PBMC mtDNA copies per cell, and concomitant use of dexrazoxane was associated with a lower number of mtDNA copies per cell. Because of a possible compensatory increase in mtDNA copies per cell to maintain mitochondrial function in the setting of mitochondrial dysfunction, overall OXPHOS activity was not different between the groups. The long-term sustainability of this compensatory response in these survivors at risk for cardiac dysfunction over their lifespan is concerning.
Collapse
MESH Headings
- Adolescent
- Antibiotics, Antineoplastic/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cardiotonic Agents/therapeutic use
- Child
- Child, Preschool
- Chromatography, Thin Layer
- Cross-Sectional Studies
- DNA Copy Number Variations/drug effects
- DNA, Mitochondrial/drug effects
- Dexrazoxane/therapeutic use
- Doxorubicin/administration & dosage
- Doxorubicin/adverse effects
- Electron Transport Complex I/drug effects
- Electron Transport Complex I/metabolism
- Electron Transport Complex IV/drug effects
- Electron Transport Complex IV/metabolism
- Female
- Follow-Up Studies
- Humans
- Infant
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/metabolism
- Male
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/genetics
- Mitochondria, Heart/metabolism
- Oxidation-Reduction
- Phosphorylation
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Real-Time Polymerase Chain Reaction
- Sex Factors
- Survivors
Collapse
Affiliation(s)
- Steven E. Lipshultz
- Wayne State University School of Medicine and Children’s Hospital of Michigan, Detroit, MI
| | - Lynn M. Anderson
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI
| | | | - Mariana Gerschenson
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI
| | | | | | - Vivian I. Franco
- Wayne State University School of Medicine and Children’s Hospital of Michigan, Detroit, MI
| | - Daniel E. LiButti
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI
| | - Lewis B. Silverman
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Lynda M. Vrooman
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Stephen E. Sallan
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | | |
Collapse
|
3
|
Lipshultz SE, Adams MJ, Colan SD, Constine LS, Herman EH, Hsu DT, Hudson MM, Kremer LC, Landy DC, Miller TL, Oeffinger KC, Rosenthal DN, Sable CA, Sallan SE, Singh GK, Steinberger J, Cochran TR, Wilkinson JD. Long-term cardiovascular toxicity in children, adolescents, and young adults who receive cancer therapy: pathophysiology, course, monitoring, management, prevention, and research directions: a scientific statement from the American Heart Association. Circulation 2013; 128:1927-95. [PMID: 24081971 DOI: 10.1161/cir.0b013e3182a88099] [Citation(s) in RCA: 393] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
5
|
Orgel E, Zung L, Ji L, Finklestein J, Feusner J, Freyer DR. Early cardiac outcomes following contemporary treatment for childhood acute myeloid leukemia: a North American perspective. Pediatr Blood Cancer 2013; 60:1528-33. [PMID: 23441080 DOI: 10.1002/pbc.24498] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/17/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Anthracycline agents are used for treatment of acute myeloid leukemia (AML) but may cause late-onset cardiomyopathy. Current frontline therapy for AML in North America, as reflected in the approach of the Children's Oncology Group (COG) and other pediatric consortia, is adapted from the anthracyline-intensive Medical Research Council (MRC) regimen. The purpose of this study was to describe early post-treatment cardiac function as a potential indicator of acute and long-term risk associated with this approach. PROCEDURE A multi-center retrospective cohort analysis was conducted of AML survivors diagnosed from 2004 to 2009 and treated with MRC-based regimens. Change in left ventricular shortening fraction (LVSF) on echocardiogram was determined from baseline to latest post-treatment/pre-relapse value; associations with potential predictors were examined. RESULTS This cohort of pediatric survivors (n = 52) was assessed at a median interval of 13 months from end of treatment. Mean cumulative anthracycline dose was 339 ± 14 mg/m(2) . Mean baseline and post-treatment LVSF were 39.3 ± 0.8% and 35.4 ± 0.9%, respectively; mean percent change for individuals was -8.4 ± 2.8% (P < 0.001). Cardiac-directed medications were initiated in four patients (7.7%). Decline in LVSF was significantly associated with cumulative anthracycline dose, increasing BMI and Hispanic ethnicity. CONCLUSION Early, significant decline in LVSF was observed following treatment with these MRC-based regimens. Elevated BMI and Hispanic ethnicity were identified as new independent risk factors. Children and adolescents so treated are at substantial risk for late-onset cardiomyopathy, require monitoring with annual echocardiogram per current COG survivorship guidelines, and are good candidates for appropriate cardioprotection strategies.
Collapse
Affiliation(s)
- Etan Orgel
- Jonathan Jaques Children's Cancer Center, Miller Children's Hospital, Long Beach, California, USA
| | | | | | | | | | | |
Collapse
|
6
|
Schwartz RG, Jain D, Storozynsky E. Traditional and novel methods to assess and prevent chemotherapy-related cardiac dysfunction noninvasively. J Nucl Cardiol 2013; 20:443-64. [PMID: 23572315 DOI: 10.1007/s12350-013-9707-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The field of cardio-oncology is challenged to address an ever greater spectrum of cardiotoxicity associated with combination chemotherapy, greater dose intensity, extremes of age, and enhanced patient survival which exposes more protracted risk of developing congestive heart failure (CHF). Recent reports of chemotherapy-induced hypertension as a common adverse effect of angiogenesis inhibitors and immunosuppressants clarify the need for routine blood pressure (BP) monitoring and guideline-based management of hypertension as an integral strategy to preserve LV function. Serial monitoring of radionuclide left ventricular ejection fraction (LVEF) in adults and echocardiography in children continues to provide outcome based, cost-effective prevention of CHF in high risk patients receiving chemotherapy. To optimize treatment and monitoring strategies to eliminate late-onset LV dysfunction and CHF, traditional and novel candidate methods for assessment of chemotherapy-induced LV dysfunction are reviewed. These include serial assessment of LV volume indices by gated SPECT ERNA and gated SPECT MPI, 3D echocardiography and contrast 2D echocardiography; longitudinal strain imaging, diastolic functional parameters, (123)I-MIBG, (111)In-Antimyosin antibody imaging, and (99m)Tc-Annexin V apoptosis imaging, biomarkers including troponins and BNP; genetic markers, and both functional and tissue characterization techniques with T1 weighted and T2 weighted images with cardiac magnetic resonance imaging (CMR). In our quest to optimize strategies for long-term cancer survival and prevention of CHF for patients receiving chemotherapy, rigorous modality and guideline-specific clinical outcome trials are required. A new multi-modality monitoring approach is proposed, which integrates evidence-based strengths of CMR, echocardiography, ERNA, biomarkers, and BP management for surveillance and validation of cardiotoxicity and prevention of clinical heart failure in patients receiving a broad spectrum of cancer therapies.
Collapse
|