1
|
Callegari S, Mena-Hurtado C, Smolderen KG, Thorn S, Sinusas AJ. New horizons in nuclear cardiology: Imaging of peripheral arterial disease. J Nucl Cardiol 2025; 46:102079. [PMID: 39549830 DOI: 10.1016/j.nuclcard.2024.102079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 11/18/2024]
Abstract
Lower extremity peripheral artery disease (PAD) is characterized by impairment of blood flow associated with arterial stenosis and frequently coexisting microvascular disease and is associated with high rates of morbidity and mortality. Current diagnostic modalities have limited accuracy in early diagnosis, risk stratification, preprocedural assessment, and evaluation of therapy and are focused on the detection of obstructive atherosclerotic disease. Early diagnosis and assessment of both large vessels and microcirculation may improve risk stratification and guide therapeutic interventions. Single-photon emission computed tomography and positron emission tomography imaging have been shown to be accurate to detect changes in perfusion in preclinical models and clinical disease, and have the potential to overcome limitations of existing diagnostic modalities, while offering novel information about perfusion, metabolic, and molecular processes. This review provides a comprehensive reassessment of radiotracer-based imaging of PAD in preclinical and clinical studies, emphasizing the challenges that arise due to the complex physiology in the peripheral vasculature. We will also highlight the latest advancements, underscoring emerging artificial intelligence and big data analysis, as well as clinically relevant areas where the field could advance in the next decade.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Kim G Smolderen
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Thorn
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Albert J Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Hashimoto T, Kumakura Y, Ichikawa K, Yamamoto S, Endo T, Sano M, Sato O, Deguchi J. Association Between the Effectiveness and Magnitude of Foot Microcirculation Assessed by Radionuclide Angiography and One Year Limb Outcomes in Patients with Chronic Limb Threatening Ischaemia. EJVES Vasc Forum 2025; 63:11-19. [PMID: 39925698 PMCID: PMC11803901 DOI: 10.1016/j.ejvsvf.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/31/2024] [Accepted: 11/14/2024] [Indexed: 02/11/2025] Open
Abstract
Objective Microcirculation focused evaluations may provide physiological insights that complement those of the established clinical criteria for patients with chronic limb threatening ischaemia (CLTI), since complex treatments are needed in this high risk population. However, current methods for quantitatively assessing foot microcirculation are limited. Thus, in this study, the aim was to demonstrate a proof of concept non-invasive method with novel parameters for assessing foot microcirculation. Methods This was a single centre prospective cohort pilot study. The lower limbs of 13 patients diagnosed with CLTI were evaluated by radionuclide (RN) angiography with 99mTc-tetrofosmin two weeks after revascularisation or non-revascularisation procedures. Novel parameters (pedal transit time and peak pedal count) were derived by processing the time-activity curves of the detected tracers in each region of interest in the limbs. The Mann-Whitney U test was used for the analysis of associations between these two parameters and limb fate at one year, and Pearson and Spearman tests were used to analyse associations with transcutaneous partial oxygen pressure (tcPO2), a conventional perfusion test result. Results The mean pedal transit time of the affected limbs in the non-healing group was longer than that in the healing group (19.1 ± 18.6 vs. 2.9 ± 2.1 seconds, p = .001). The mean peak pedal count of nucleotides in the non-healing group was lower than that in the healing group (24.4 ± 19.0 vs. 72.0 ± 36.1 counts/sec/GBq, p = .008). The pedal transit time and peak pedal count showed little to no correlation with the conventional tcPO2 at the midfoot (r = 0.26 for pedal transit time; r = -0.11 for peak pedal count). Conclusion Two novel microcirculation parameters derived from RN angiography were associated with one year limb outcomes in patients with CLTI. Non-invasive radiotracer imaging derived parameters may provide an additional dimension to indices of pathophysiological microcirculation in CLTI.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Department of Vascular Surgery, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Yoshitaka Kumakura
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
- Isotope Science Centre, the University of Tokyo, Tokyo, Japan
| | - Kenichi Ichikawa
- Department of Diagnostic Radiology and Nuclear Medicine, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Satoshi Yamamoto
- Department of Vascular Surgery, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Takashi Endo
- Department of Vascular Surgery, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Masaya Sano
- Department of Vascular Surgery, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Osamu Sato
- Department of Vascular Surgery, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| | - Juno Deguchi
- Department of Vascular Surgery, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
3
|
Esze R, Barna S, Fülöp P, Kempler P, Mikó M, Páll D, Paragh G, Somodi S, Emri M, Képes Z, Garai I, Káplár M. C-peptide: an essential ally in microvascular complications of type 2 diabetes mellitus and obesity. Diabetol Metab Syndr 2024; 16:211. [PMID: 39210480 PMCID: PMC11361105 DOI: 10.1186/s13098-024-01454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND In order to investigate microvascular complications in metabolic diseases, we aimed to investigate cerebral and peripheral microcirculation in relation to peripheral neuropathy and laboratory biomarkers in type 2 diabetes mellitus (T2DM) and obesity. METHODS Based on the degree of neuropathy (NP), study participants (40 T2DM and 30 obese individuals) were classified into no-NP, mild-NP and severe-NP subgroups. After the injection of Technetium-99 m hexamethylpropylene amine oxime, both T2DM and obese participants underwent single-photon emission computed tomography/computed tomography ([99mTc]Tc-HMPAO SPECT/CT) and SPECT-only examinations to assess lower limb and brain perfusion; respectively. Peripheral nerve function was evaluated with a neurometer and glycaemic markers were measured from plasma in both groups. RESULTS Compared to the obese individuals, lower extremity perfusion was significantly reduced in the diabetic subjects (p < 0.005), while it showed a positive correlation with C-peptide levels and negative association with HbA1c values. A U-shape pattern of peripheral microcirculation was observed between the NP groups, indicating a surprisingly better perfusion in the severe-NP group than in the mild one, with the highest levels in obese patients. Since changes in the C-peptide levels exhibited a similar U-shaped trend across the NP subgroups, we suggest a positive correlation between C-peptide levels and the extent of peripheral perfusion. Although, C-peptide values and cerebral microcirculation correlated positively (rho = 0.27), brain perfusion did not show any differences neither between the diabetic and the obese patients, nor between the NP subgroups (at p < 0.05). CONCLUSIONS Establishing the link between neuropathy and peripheral microcirculation, C-peptide seems to be a promising biomarker for the prediction of microvascular alterations in metabolic diseases. Of note, the dominance of metabolic factors over microvascular damage in the development of obesity-related neuropathy should be emphasized as well.
Collapse
Grants
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- GINOP-2.1.1-15-2015-00609 This research was supported by the National Grant No. GINOP-2.1.1-15-2015-00609.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- TKP2021-NKTA-34 Project no. TKP2021-NKTA-34 has been implemented with the support provided by the Ministry of Culture and Innovation of Hungary from the National Research, Development and Innovation Fund, financed under the TKP2021-NKTA funding scheme.
- University of Debrecen
Collapse
Affiliation(s)
- Regina Esze
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary.
- Kálmán Laki Doctoral School, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary.
| | - Sándor Barna
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Péter Fülöp
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Péter Kempler
- Department of Medicine and Oncology, Semmelweis University, Korányi Sándor U. 2/a, Budapest, 1083, Hungary
| | - Márton Mikó
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Dénes Páll
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
- Department of Medical Clinical Pharmacology, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - György Paragh
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Sándor Somodi
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Miklós Emri
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Zita Képes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Ildikó Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | - Miklós Káplár
- Division of Metabolic Diseases, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| |
Collapse
|
4
|
Rimmerman ET, Stacy MR. Applications of SPECT and PET Imaging for the Physiological Evaluation of Lower Extremity Peripheral Artery Disease. Int J Mol Sci 2024; 25:7474. [PMID: 39000580 PMCID: PMC11242786 DOI: 10.3390/ijms25137474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Peripheral artery disease (PAD) is classified as the narrowing or complete occlusion of the lower extremity arteries due to atherosclerosis. The risk of developing PAD increases with increased age and risk factors such as smoking, diabetes, hypertension, and hypercholesterolemia. Current treatment for PAD involves lifestyle and symptom management, statin and antiplatelet therapy, and/or surgical interventions to improve quality of life with varying efficacy. PAD affects approximately 5 to 6 percent of the global population, with this global burden continuing to increase. Despite the increase in disease prevalence, no gold standard functional diagnostic tool has been established for enabling early detection of the disease, appropriate medical management, and prediction of adverse outcomes for PAD patients. The visualization and quantification of the physiological consequences of PAD are possible by way of nuclear imaging: specifically, via scintigraphy, single-photon emission computed tomography (SPECT), and positron emission tomography (PET) imaging. These non-invasive modalities, when combined with targeted radionuclides, possess utility for detecting functional perfusion deficits and provide unique insight into muscle tissue- and vascular-level characteristics of PAD patients. This review discusses the past, present, and emerging applications of hybrid nuclear imaging modalities in the evaluation and monitoring of patients with PAD.
Collapse
Affiliation(s)
- Eleanor T. Rimmerman
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
| | - Mitchel R. Stacy
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Center for Regenerative Medicine, Research Institute at Nationwide Children’s Hospital, Columbus, OH 43215, USA
- Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Callegari S, Feher A, Smolderen KG, Mena-Hurtado C, Sinusas AJ. Multi-modality imaging for assessment of the microcirculation in peripheral artery disease: Bench to clinical practice. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2024; 42:100400. [PMID: 38779485 PMCID: PMC11108852 DOI: 10.1016/j.ahjo.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Peripheral artery disease (PAD) is a highly prevalent disorder with a high risk of mortality and amputation despite the introduction of novel medical and procedural treatments. Microvascular disease (MVD) is common among patients with PAD, and despite the established role as a predictor of amputations and mortality, MVD is not routinely assessed as part of current standard practice. Recent pre-clinical and clinical perfusion and molecular imaging studies have confirmed the important role of MVD in the pathogenesis and outcomes of PAD. The recent advancements in the imaging of the peripheral microcirculation could lead to a better understanding of the pathophysiology of PAD, and result in improved risk stratification, and our evaluation of response to therapies. In this review, we will discuss the current understanding of the anatomy and physiology of peripheral microcirculation, and the role of imaging for assessment of perfusion in PAD, and the latest advancements in molecular imaging. By highlighting the latest advancements in multi-modality imaging of the peripheral microcirculation, we aim to underscore the most promising imaging approaches and highlight potential research opportunities, with the goal of translating these approaches for improved and personalized management of PAD in the future.
Collapse
Affiliation(s)
- Santiago Callegari
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Attila Feher
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Kim G. Smolderen
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Mena-Hurtado
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Vascular Medicine Outcomes Program, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, USA
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Elsaid NMH, Peters DC, Galiana G, Sinusas AJ. Clinical physiology: the crucial role of MRI in evaluation of peripheral artery disease. Am J Physiol Heart Circ Physiol 2024; 326:H1304-H1323. [PMID: 38517227 PMCID: PMC11381027 DOI: 10.1152/ajpheart.00533.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
Peripheral artery disease (PAD) is a common vascular disease that primarily affects the lower limbs and is defined by the constriction or blockage of peripheral arteries and may involve microvascular dysfunction and tissue injury. Patients with diabetes have more prominent disease of microcirculation and develop peripheral neuropathy, autonomic dysfunction, and medial vascular calcification. Early and accurate diagnosis of PAD and disease characterization are essential for personalized management and therapy planning. Magnetic resonance imaging (MRI) provides excellent soft tissue contrast and multiplanar imaging capabilities and is useful as a noninvasive imaging tool in the comprehensive physiological assessment of PAD. This review provides an overview of the current state of the art of MRI in the evaluation and characterization of PAD, including an analysis of the many applicable MR imaging techniques, describing the advantages and disadvantages of each approach. We also present recent developments, future clinical applications, and future MRI directions in assessing PAD. The development of new MR imaging technologies and applications in preclinical models with translation to clinical research holds considerable potential for improving the understanding of the pathophysiology of PAD and clinical applications for improving diagnostic precision, risk stratification, and treatment outcomes in patients with PAD.
Collapse
Affiliation(s)
- Nahla M H Elsaid
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Dana C Peters
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Gigi Galiana
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
| | - Albert J Sinusas
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, United States
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
7
|
Min HD, Lee CH, Lee JH, Kim KY, Yoon CJ, Kim M. Development of a Rabbit Iliac Arterial Stenosis Model Using a Controlled Cholesterol Diet and Pullover Balloon Injury. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2024; 85:372-380. [PMID: 38617867 PMCID: PMC11009124 DOI: 10.3348/jksr.2023.0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/17/2023] [Accepted: 10/25/2023] [Indexed: 04/16/2024]
Abstract
Purpose This study aimed to develop a rabbit iliac stenosis model and evaluate the effects of different mechanical injury techniques on the degree of arterial stenosis. Materials and Methods Eighteen rabbits were divided into three groups: cholesterol-fed with pullover balloon injury (group A; n = 6), cholesterol-fed with localized balloon dilatation (group B; n = 6), and chow-diet with pullover balloon injury (group C; n = 6). After baseline angiography, the left iliac arteries of all rabbits were injured with a 3 × 10 mm noncompliant balloon using either a wide pullover technique (groups A and C) or a localized balloon dilatation technique (group B). A nine-week follow-up angiography was performed, and the angiographic late lumen loss and percentage of stenosis were compared. Results Group A exhibited the most severe late lumen loss (A vs. B, 0.67 ± 0.13 vs. 0.04 ± 0.13 mm, p < 0.0001; A vs. C, 0.67 ± 0.13 vs. 0.26 ± 0.29 mm, p < 0.05; stenosis percentage 32.02% ± 6.54%). In contrast, group B showed a minimal percentage of stenosis (1.75% ± 6.55%). Conclusion Pullover-balloon injury can lead to significant iliac artery stenosis in rabbits with controlled hypercholesterolemia. This model may be useful for elucidating the pathogenesis of atherosclerosis and for evaluating the efficacy of novel therapeutic interventions.
Collapse
|
8
|
Chou T, Nabavinia M, Tram NK, Rimmerman ET, Patel S, Musini KN, Eisert SN, Wolfe T, Wynveen MK, Matsuzaki Y, Kitsuka T, Iwaki R, Janse SA, Bobbey AJ, Breuer CK, Goodchild L, Malbrue R, Shinoka T, Atway SA, Go MR, Stacy MR. Quantification of Skeletal Muscle Perfusion in Peripheral Artery Disease Using 18F-Sodium Fluoride Positron Emission Tomography Imaging. J Am Heart Assoc 2024; 13:e031823. [PMID: 38353265 PMCID: PMC11010069 DOI: 10.1161/jaha.123.031823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/07/2023] [Indexed: 02/16/2024]
Abstract
BACKGROUND Perfusion deficits contribute to symptom severity, morbidity, and death in peripheral artery disease (PAD); however, no standard method for quantifying absolute measures of skeletal muscle perfusion exists. This study sought to preclinically test and clinically translate a positron emission tomography (PET) imaging approach using an atherosclerosis-targeted radionuclide, fluorine-18-sodium fluoride (18F-NaF), to quantify absolute perfusion in PAD. METHODS AND RESULTS Eight Yorkshire pigs underwent unilateral femoral artery ligation and dynamic 18F-NaF PET/computed tomography imaging on the day of and 2 weeks after occlusion. Following 2-week imaging, calf muscles were harvested to quantify microvascular density. PET methodology was validated with microspheres in 4 additional pig studies and translated to patients with PAD (n=39) to quantify differences in calf perfusion across clinical symptoms/stages and perfusion responses in a case of revascularization. Associations between PET perfusion, ankle-brachial index, toe-brachial index, and toe pressure were assessed in relation to symptoms. 18F-NaF PET/computed tomography quantified significant deficits in calf perfusion in pigs following arterial occlusion and perfusion recovery 2 weeks after occlusion that coincided with increased muscle microvascular density. Additional studies confirmed that PET-derived perfusion measures agreed with microsphere-derived perfusion measures. Translation of imaging methods demonstrated significant decreases in calf perfusion with increasing severity of PAD and quantified perfusion responses to revascularization. Perfusion measures were also significantly associated with symptom severity, whereas traditional hemodynamic measures were not. CONCLUSIONS 18F-NaF PET imaging quantifies perfusion deficits that correspond to clinical stages of PAD and represents a novel perfusion imaging strategy that could be partnered with atherosclerosis-targeted 18F-NaF PET imaging using a single radioisotope injection. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03622359.
Collapse
Affiliation(s)
- Ting‐Heng Chou
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Mahboubeh Nabavinia
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Nguyen K. Tram
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Eleanor T. Rimmerman
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
- Biophysics Graduate ProgramOhio State UniversityColumbusOH
| | - Surina Patel
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Kumudha Narayana Musini
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Susan Natalie Eisert
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Tatiana Wolfe
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Molly K. Wynveen
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Yuichi Matsuzaki
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Takahiro Kitsuka
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Ryuma Iwaki
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | | | - Adam J. Bobbey
- Department of RadiologyNationwide Children’s HospitalColumbusOH
| | - Christopher K. Breuer
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Laurie Goodchild
- Animal Resources CoreResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Raphael Malbrue
- Animal Resources CoreResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Toshiharu Shinoka
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
| | - Said A. Atway
- Department of OrthopaedicsOhio State University College of MedicineColumbusOH
| | - Michael R. Go
- Division of Vascular Diseases & Surgery, Department of SurgeryOhio State University College of MedicineColumbusOH
| | - Mitchel R. Stacy
- Center for Regenerative MedicineResearch Institute at Nationwide Children’s HospitalColumbusOH
- Biophysics Graduate ProgramOhio State UniversityColumbusOH
- Division of Vascular Diseases & Surgery, Department of SurgeryOhio State University College of MedicineColumbusOH
| |
Collapse
|
9
|
Rimmerman ET, Musini KN, Chou TH, Wynveen MK, Patel SA, Beall M, Bobbey AJ, Atway SA, Go MR, Stacy MR. Vessel-by-Vessel Computed Tomography Calcium Scoring of the Foot in Peripheral Artery Disease: Association with Patient-Level Factors. Adv Wound Care (New Rochelle) 2023; 12:603-610. [PMID: 36601736 PMCID: PMC10468542 DOI: 10.1089/wound.2022.0151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Objective: Peripheral artery disease (PAD) is associated with increased risk of nonhealing ulcers, amputation, and mortality due to occlusive atherosclerotic plaques. Computed tomography (CT) imaging detects vascular calcification in PAD; however, quantitative vessel-by-vessel analysis of calcium burden in the feet of PAD patients has not been assessed. This study sought to perform quantitative analysis of vessel-specific calcium burden and examine the patient-level determinants of foot calcium burden in PAD patients. Approach: PAD patients (n = 41) were prospectively enrolled and underwent CT imaging of the lower extremities. Manual segmentation of the medial plantar, lateral plantar, and dorsalis pedis arteries was performed. CT image Hounsfield units (HUs) were obtained for each artery to quantify vessel-by-vessel calcium mass using a cutoff value of ≥130 HU. Univariate analyses were performed to evaluate patient-level determinants of calcium burden for each foot artery. STROBE guidelines were used for reporting of data. Results: Univariate analyses revealed that body mass index, diabetes mellitus (DM), and chronic kidney disease (CKD) were significant determinants of foot calcium burden in PAD patients. Image analysis demonstrated that PAD patients with DM had significantly higher calcium mass for the medial plantar (p = 0.005), lateral plantar (p = 0.039), and dorsalis pedis (p = 0.001) arteries compared with PAD patients without DM. Innovation: This is the first study to use CT imaging to quantify vessel-specific calcium burden in the feet of patients with PAD and evaluate the patient-level determinants of foot calcium burden in the setting of PAD. Conclusion: CT imaging quantifies vessel-specific calcification in the feet of PAD patients, which is exacerbated with concomitant DM, CKD, and/or obesity.
Collapse
Affiliation(s)
- Eleanor T. Rimmerman
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, USA
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kumudha Narayana Musini
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Molly K. Wynveen
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Surina A. Patel
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Maren Beall
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Adam J. Bobbey
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Said A. Atway
- Department of Orthopaedics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Michael R. Go
- Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mitchel R. Stacy
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, Ohio, USA
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA
- Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
10
|
Karlas A, Fasoula NA, Katsouli N, Kallmayer M, Sieber S, Schmidt S, Liapis E, Halle M, Eckstein HH, Ntziachristos V. Skeletal muscle optoacoustics reveals patterns of circulatory function and oxygen metabolism during exercise. PHOTOACOUSTICS 2023; 30:100468. [PMID: 36950518 PMCID: PMC10025091 DOI: 10.1016/j.pacs.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Imaging skeletal muscle function and metabolism, as reported by local hemodynamics and oxygen kinetics, can elucidate muscle performance, severity of an underlying disease or outcome of a treatment. Herein, we used multispectral optoacoustic tomography (MSOT) to image hemodynamics and oxygen kinetics within muscle during exercise. Four healthy volunteers underwent three different hand-grip exercise challenges (60s isometric, 120s intermittent isometric and 60s isotonic). During isometric contraction, MSOT showed a decrease of HbO2, Hb and total blood volume (TBV), followed by a prominent increase after the end of contraction. Corresponding hemodynamic behaviors were recorded during the intermittent isometric and isotonic exercises. A more detailed analysis of MSOT readouts revealed insights into arteriovenous oxygen differences and muscle oxygen consumption during all exercise schemes. These results demonstrate an excellent capability of visualizing both circulatory function and oxygen metabolism within skeletal muscle under exercise, with great potential implications for muscle research, including relevant disease diagnostics.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sabine Sieber
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Halle
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
11
|
Tange FP, Ferrari BR, van den Hoven P, van Schaik J, Schepers A, van Rijswijk CSP, van der Meer RW, Putter H, Vahrmeijer AL, Hamming JF, van der Vorst JR. Evaluation of the Angiosome Concept Using Near-Infrared Fluorescence Imaging with Indocyanine Green. Ann Vasc Surg 2023:S0890-5096(23)00018-3. [PMID: 36642169 DOI: 10.1016/j.avsg.2023.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/29/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND The angiosome concept is defined as the anatomical territory of a source artery within all tissue layers. When applying this theory in vascular surgery, direct revascularization (DR) is preferred to achieve increased blood flow toward the targeted angiosome of the foot in patients with lower extremity arterial disease (LEAD). This study evaluates the applicability of the angiosome concept using quantified near-infrared (NIR) fluorescence imaging with indocyanine green (ICG). METHODS This study included patients undergoing an endovascular- or surgical revascularization of the leg between January 2019 and December 2021. Preinterventional and postinterventional ICG NIR fluorescence imaging was performed. Three angiosomes on the dorsum of the foot were determined: the posterior tibial artery (hallux), the anterior tibial artery (dorsum of the foot) and the combined angiosome (second to fifth digit). The angiosomes were classified from the electronic patient records and the degree of collateralization was classified based on preprocedural computed tomography angiography and/or X-ray angiography. Fluorescence intensity was quantified in all angiosomes. A subgroup analysis based on endovascular or surgical revascularized angiosomes, and within critical limb threatening ischemia (CLTI) patients was performed. RESULTS ICG NIR fluorescence measurements were obtained in 52 patients (54 limbs) including a total of 157 angiosomes (121 DR and 36 indirect revascularizations [IR]). A significant improvement of all perfusion parameters in both the directly and indirectly revascularized angiosomes was found (P-values between <0.001-0.007). Within the indirectly revascularized angiosomes, 90.6% of the scored collaterals were classified as significant. When comparing the percentual change in perfusion parameters between the directly and indirectly revascularized angiosomes, no significant difference was seen in all perfusion parameters (P-values between 0.253 and 0.881). Similar results were shown in the CLTI patients subgroup analysis, displaying a significant improvement of perfusion parameters in both the direct and indirect angiosome groups (P-values between <0.001 and 0.007), and no significant difference when comparing the percentual parameter improvement between both angiosome groups (P-values between 0.134 and 0.359). Furthermore, no significant differences were observed when comparing percentual changes of perfusion parameters in directly and indirectly revascularized angiosomes for both endovascular and surgical interventions (P-values between 0.053 and 0.899). CONCLUSIONS This study proves that both DR and IR of an angiosome leads to an improvement of perfusion. This suggests that interventional strategies should not only focus on creating in-line flow to the supplying angiosome. One can argue that the angiosome concept is not applicable in patients with LEAD.
Collapse
Affiliation(s)
- Floris P Tange
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Bien R Ferrari
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Pim van den Hoven
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Jan van Schaik
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | - Abbey Schepers
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Rutger W van der Meer
- Department of Interventional Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Hein Putter
- Department of Medical Statistics, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Jaap F Hamming
- Department of Surgery, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
12
|
Zhang Q, Liu X, Li Q, Liu Y, He H, Wang K, Yan Z. Quantitative model for assessment of lower-extremity perfusion in patients with diabetes. Med Phys 2023; 50:3019-3026. [PMID: 36617729 DOI: 10.1002/mp.16214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Although diabetic and atherosclerotic vascular diseases have different pathophysiological mechanisms, the screening methods currently used for diabetic lower-extremity vascular diseases are mainly based on the evaluation methods used for atherosclerotic vascular diseases. Thus, assessment of microvascular perfusion is of great importance in early detection of lower-extremity ischemia in diabetes. PURPOSE This cross-sectional study aimed to develop a quantitative model for evaluating lower-extremity perfusion. METHODS We recruited 57 participants (14 healthy participants and 43 diabetes patients, of which 16 had lower-extremity arterial disease [LEAD]). All participants underwent technetium-99 m sestamibi (99mTc-MIBI) scintigraphy and ankle-brachial index (ABI) examination. We derived two key perfusion kinetics indices named activity perfusion index (API) and basal perfusion index (BPI). This study was registered in ClinicalTrials.gov (URL: https://www. CLINICALTRIALS gov, NCT02752100). RESULTS The estimated limb perfusion values in our lower-extremity perfusion assessment (LEPA) model showed excellent consistency with the actual measured data. Diabetes patients showed reduced lower-extremity perfusion in comparison with the control group (BPI: 106.21 ± 11.99 vs. 141.56 ± 17.38, p < 0.05; API: 12.34 ± 3.27 vs. 14.56 ± 3.12, p < 0.05). Using our model, the reductions in lower-extremity perfusion could be detected early in approximately 96.30% of diabetes patients. Patients with LEAD showed more severe reductions in lower-extremity perfusion than diabetes patients without LEAD (BPI: 47.85 ± 20.30 vs. 106.21 ± 11.99, p < 0.05; API: 7.06 ± 1.70 vs. 12.34 ± 3.27, p < 0.05). Discriminant analysis using API and BPI could successfully screen all diabetes patients with LEAD with a sensitivity of 100% and specificity of 80.77%. CONCLUSIONS We established a LEPA model that could successfully assess lower-extremity microvascular perfusion in diabetes patients. This model has important application value for the recognition of early-stage LEAD in patients with diabetes.
Collapse
Affiliation(s)
- Qian Zhang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Xiaoxiao Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yushuang Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Hongbo He
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Kaifa Wang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China.,School of Mathematics and Statistics, Southwest University, Chongqing, PR China
| | - Zhencheng Yan
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Chongqing Institute of Hypertension, Daping Hospital, Army Medical University, Chongqing, PR China
| |
Collapse
|
13
|
Zorkaltsev MA, Zavadovskaya VD, Saprina TV, Zamyshevskaya MA, Udodov VD, Shestakov AV, Mikhailova AA, Loyko YN, Musina NN. Pathogen-specific molecular imaging and molecular testing methods in the prognosis of the complicated course of diabetic foot syndrome, the risk of amputation, and patient survival. BULLETIN OF SIBERIAN MEDICINE 2022. [DOI: 10.20538/1682-0363-2022-3-166-180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this review was to provide extended information on current trends in the diagnosis of complicated diabetic foot syndrome (DFS), the most frequent and severe complication of diabetes mellitus, including hightech medical imaging methods and instrumental and laboratory predictors of the complicated course and risk of amputation in DFS.The article provides an analytical review of modern publications over the past 5 years on diagnosis and therapy. Pilot data on the use of high-tech medical imaging methods, assessment of skin microbiota and ulcers in DFS, molecular testing methods in terms of predicting the amputation risk and survival of patients with DFS, as well as the effectiveness of biosensing systems have been systematized, summarized, and subjected to analytical evaluation.The review provides an expert assessment of the capabilities of pathogen-specific molecular imaging using modern positron emission tomography (PET), single-photon emission computed tomography (SPECT), and highenergy radionuclides in bacterial infection to understand its pathogenesis, minimize diagnostic problems, improve antimicrobial treatment, and address fundamental and applied aspects of DFS. Literature data on the assessment of foot perfusion in diabetic patients with varying degrees of limb ischemia by hybrid technologies (SPECT / CT and PET / CT) and new modalities of magnetic resonance imaging (MRI) are also systematized, which contributes to new understanding of the response to revascularization, surgical shunting, and stimulation of angiogenesis within ischemic tissue, as well as potentially to healing of foot ulcers.The review is aimed at substantiating a multidisciplinary approach in DFS, selection, development, and implementation of innovative strategies for diagnostic modalities to identify diabetic foot pathologies, and choice of an adequate method for treating and monitoring the results of therapy in the context of personalized medicine.
Collapse
|
14
|
Wang C, Chen J, Lei J, Shao J, Lai Z, Li K, Cao W, Liu X, Yuan J, Liu B. Angiosome-directed endovascular intervention and infrapopliteal disease: Intraoperative evaluation of distal hemodynamic changes and foot blood volume of lower extremity. Front Surg 2022; 9:988639. [PMID: 36189392 PMCID: PMC9520246 DOI: 10.3389/fsurg.2022.988639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesTo evaluate foot blood volume and hemodynamics and explore whether quantitative techniques can guide revascularization.Materials and methodsA prospective single-center cohort study included thirty-three patients with infrapopliteal artery occlusion who underwent percutaneous transluminal angioplasty (PTA) between November 2016 and May 2020. The time-to-peak (TTP) from color-coded quantitative digital subtraction angiography (CCQ-DSA) and parenchymal blood volume (PBV) were used to evaluate the blood volume and hemodynamic changes in different regions of the foot before and after the operation.ResultsAfter the intervention procedure, the overall blood volume significantly increased from 25.15 ± 21.1 ml/1,000 ml to 72.33 ± 29.3 ml/1,000 ml (p < 0.001, with an average increase of 47.18 ml/1,000 ml. The overall TTP decrease rate, postoperative blood flow time significantly faster than those preoperatively, from 22.93 ± 7.83 to 14.85 ± 5.9 s (p < 0.001, with an average decrease of 8.08 s). Direct revascularization (DR) resulted in significant blood volume improvement than compared with indirect revascularization (IR) [188% (28, 320) vs.51% (10, 110), p = 0.029]. Patients with DR had a significantly faster blood flow time than those with IR [80% (12, 180) vs. 26% (5, 80), p = 0.032]. The ankle-brachial index (ABI) of the affected extremity also showed an significant change from 0.49 ± 0.3 to 0.63 ± 0.24 (p < 0.001) after the intervention. The relative values of ΔTTP and ΔABI showed a weak correlation (r = −0.330).ConclusionsThe quantitative measurement results based on PBV and CCQ-DSA techniques showed that the overall blood volume increased significantly and that the foot distal hemodynamics were significantly improved after endovascular treatment. DR in the ischemic area could r improve foot perfusion.
Collapse
Affiliation(s)
- Chaonan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinsong Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jiang Shao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Kang Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenteng Cao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaolong Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jinghui Yuan
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Correspondence: Bao Liu
| |
Collapse
|
15
|
Ling Z, Li X, Wu G, Fadoul H. Radiomics of CTA is feasible in identifying muscle ischemia. Acta Radiol 2022; 64:1469-1475. [PMID: 36050936 DOI: 10.1177/02841851221119884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Advanced models based on computed tomography angiography (CTA) radiomics features in discriminating muscle ischemia from normal condition are lacking. PURPOSE To investigate the feasibility of radiomics of CTA in discriminating ischemic muscle from normal muscle. MATERIAL AND METHODS A total of 102 patients (51 ischemia and 51 non-ischemia) were analyzed using a CTA radiomics method. The radiomics features of muscle were compared between ischemic and normal cases. The maximum relevance minimum redundancy (mRMR) algorithm and least absolute shrinkage and selection operator (LASSO) logistic regression model were used. The receiver operating characteristic (ROC) curve was used to determine the performance of radiomics signature. RESULTS Thirty-nine CTA radiomics features were significantly different between the two groups (P < 0.05). By LASSO, six features were used to construct a model. The signature area under the curve was 0.92 and 0.91 in the training and validation cohorts, respectively. The sensitivity and specificity of the signature were 92% and 86% for the training cohort, and 80% and 94% for the validation cohort, respectively. CONCLUSION CTA radiomics signature is useful in identifying ischemic muscle in selected patients.
Collapse
Affiliation(s)
- Zhiyu Ling
- Department of Radiology, The first People's Hospital of Yongkang, Yongkang, Zhejiang, PR China
| | - Xiaoming Li
- Department of Radiology, 66375Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| | - Gang Wu
- Department of Radiology, 66375Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| | - Hissein Fadoul
- Department of Radiology, 66375Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, PR China
| |
Collapse
|
16
|
Bae SJ, Chun IK. Incidentally Found Soft Tissue 99mTc-DPD Uptake on Bone Scintigraphy Was Useful in an Early Diagnosis of Peripheral Arterial Disease. Nucl Med Mol Imaging 2022; 56:202-207. [PMID: 35846419 PMCID: PMC9276880 DOI: 10.1007/s13139-022-00750-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/24/2022] Open
Abstract
Peripheral arterial disease (PAD) is a critical disease which is presented by occlusion of peripheral arteries, while it could result in amputation of the involved limbs if it remained untreated before it would progress into tissue necrosis. It is usually diagnosed by CT angiography or conventional angiography, but its early diagnosis is challenging because its symptoms may be absent or like those of other diseases. In this case report, the authors showed that an atypical soft tissue uptake of lower limb incidentally found on a bone scintigraphy resulted in early diagnosis and successful treatment outcome of PAD.
Collapse
Affiliation(s)
- Seong Jae Bae
- Department of Radiology, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - In Kook Chun
- Department of Nuclear Medicine, Kangwon National University Hospital, Kangwon National University College of Medicine and School of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
17
|
Galanakis N, Maris TG, Kontopodis N, Tsetis K, Kehagias E, Tsetis D. Perfusion imaging techniques in lower extremity peripheral arterial disease. Br J Radiol 2022; 95:20211203. [PMID: 35522774 PMCID: PMC10996332 DOI: 10.1259/bjr.20211203] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022] Open
Abstract
Lower limb peripheral arterial disease (PAD) characterizes the impairment of blood flow to extremities caused by arterial stenoses or occlusions. Evaluation of PAD is based on clinical examination, calculation of ankle-brachial index and imaging studies such as ultrasound, CT, MRI and digital subtraction angiography. These modalities provide significant information about location, extension and severity of macrovasular lesions in lower extremity arterial system. However, they can be also used to evaluate limb perfusion, using appropriate techniques and protocols. This information may be valuable for assessment of the severity of ischemia and detection of hypoperfused areas. Moreover, they can be used for planning of revascularization strategy in patients with severe PAD and evaluation of therapeutic outcome. These techniques may also determine prognosis and amputation risk in patients with PAD. This review gives a basic overview of the perfusion techniques for lower limbs provided by imaging modalities such as ultrasound, CT, MRI, digital subtraction angiography and scintigraphy and their clinical applications for evaluation of PAD and revascularization outcome.
Collapse
Affiliation(s)
- Nikolaos Galanakis
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Thomas G Maris
- Department of Medical Physics, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Nikolaos Kontopodis
- Vascular Surgery Unit, Department of Cardiothoracic and
Vascular Surgery, University Hospital Heraklion, University of Crete
Medical School, Heraklion,
Greece
| | - Konstantinos Tsetis
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Elias Kehagias
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| | - Dimitrios Tsetis
- Department of Medical Imaging, University Hospital Heraklion,
University of Crete Medical School,
Heraklion, Greece
| |
Collapse
|
18
|
Min HD, Hur S, Lee JH, Yoon CJ, Choi WS, Lee S. Noninvasive assessment of foot perfusion in cholesterol-fed rabbits using dynamic volume perfusion CT with an upslope method. Sci Rep 2022; 12:8894. [PMID: 35614120 PMCID: PMC9132895 DOI: 10.1038/s41598-022-12756-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
To evaluate the feasibility of dynamic foot volume CT with the upslope method and to demonstrate macrovascular reactivity and microvascular perfusion during cuff-induced reactive hyperemia state in cholesterol-fed rabbits. 30 New Zealand male rabbits were divided into 2 groups: dietary hypercholesterolemia (n = 10) and normal diet control (n = 20). To measure for macrovascular reactivity, perfusion parameters of the left posterior tibial artery was measured at baseline and at reactive hyperemia state. For the evaluation of microvascular perfusion, color-coded perfusion map of the plantar dermis was generated for perfusion CT scan by an in-house developed dedicated analysis software based on upslope method. Dermal perfusion values were measured and analyzed before and after cuff-induced reactive hyperemia. Foot dynamic volume CT with the upslope method demonstrated significant impairment of both macrovascular reactivity and microvascular perfusion in cholesterol-fed rabbits without significant macrovascular lesions during cuff-induced reactive hyperemia (CRH) state. Arterial time-to-peak of cholesterol-fed rabbits failed to show acceleration while chow-fed rabbits showed significant decrease in time. Microvascular perfusion calculated by perfusion value (P < 0.01) and perfusion ratio (P = .014) showed decreased microvascular perfusion in cholesterol-fed rabbits compared to chow-fed rabbits during CRH state. Post-CT pathologic examination revealed decreased endothelial cell density in cholesterol-fed rabbits (P < 0.001). Foot perfusion CT using upslope method provides perfusion parameters for large arteries and a perfusion map of the foot during cuff-induced reactive hyperemia in cholesterol-fed rabbits. It may be a useful tool to assess microvascular reactivity in patients with peripheral artery disease but no apparent macrovascular lesions.
Collapse
Affiliation(s)
- Hooney Daniel Min
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Saebeom Hur
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jae Hwan Lee
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea.
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.
| | - Chang Jin Yoon
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Won Seok Choi
- Department of Radiology, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13620, South Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
- Department of Radiology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
19
|
Stendahl JC, Kwan JM, Pucar D, Sadeghi MM. Radiotracers to Address Unmet Clinical Needs in Cardiovascular Imaging, Part 1: Technical Considerations and Perfusion and Neuronal Imaging. J Nucl Med 2022; 63:649-658. [PMID: 35487563 PMCID: PMC12079752 DOI: 10.2967/jnumed.121.263506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
The development of new radiotracers for PET and SPECT is central to addressing unmet diagnostic needs related to systemwide trends toward molecular characterization and personalized therapies in cardiovascular medicine. In the following 2-part review, we discuss select emerging radiotracers that may help address important unmet diagnostic needs in central areas of cardiovascular medicine, such as heart failure, arrhythmias, valvular disease, atherosclerosis, and thrombosis. Part 1 examines key technical considerations pertaining to cardiovascular radiotracer development and reviews emerging radiotracers for perfusion and neuronal imaging. Highlights of this work include discussions on the development of 18F-flurpiridaz, an emerging PET perfusion tracer, and the development of 18F-based radiotracers for cardiovascular neuronal imaging, such as 18F-flubrobenguane. Part 2 of this review covers emerging radiotracers for the imaging of inflammation, fibrosis, thrombosis, calcification, and cardiac amyloidosis.
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Darko Pucar
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
20
|
Stacy MR. Molecular Imaging of Lower Extremity Peripheral Arterial Disease: An Emerging Field in Nuclear Medicine. Front Med (Lausanne) 2022; 8:793975. [PMID: 35096884 PMCID: PMC8789656 DOI: 10.3389/fmed.2021.793975] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic disorder of non-coronary arteries that is associated with vascular stenosis and/or occlusion. PAD affecting the lower extremities is characterized by a variety of health-related consequences, including lifestyle-limiting intermittent claudication, ulceration of the limbs and/or feet, increased risk for lower extremity amputation, and increased mortality. The diagnosis of lower extremity PAD is typically established by using non-invasive tests such as the ankle-brachial index, toe-brachial index, duplex ultrasound, and/or angiography imaging studies. While these common diagnostic tools provide hemodynamic and anatomical vascular assessments, the potential for non-invasive physiological assessment of the lower extremities has more recently emerged through the use of magnetic resonance- and nuclear medicine-based approaches, which can provide insight into the functional consequences of PAD-related limb ischemia. This perspectives article specifically highlights and discusses the emerging applications of clinical nuclear medicine techniques for molecular imaging investigations in the setting of lower extremity PAD.
Collapse
Affiliation(s)
- Mitchel R Stacy
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
21
|
Lauri C, Capriotti G, Uccioli L, Signore A. Gamma-camera imaging of diabetic foot infections. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
22
|
Alexandrescu VA, Brochier S, Schoenen S, Antonelli E, Azdad K, Zekhnini I, Nodit M. Grades of Below-the-Ankle Arterial Occlusive Disease following the Angiosome Perfusion: A New Morphological Assessment and Correlations with the Inframalleolar GVG Stratification in CLTI Patients. Ann Vasc Surg 2021; 81:358-377. [PMID: 34780951 DOI: 10.1016/j.avsg.2021.09.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess a specific classification of the foot atherosclerotic disease concerning the angiosomal source arteries, the connected foot arches and attached collaterals for Rutherford 5, CLTI patients. To compare eventual analogies of this novel grading system with previously reported GLASS/GVG inframalleolar patterns of occlusive disease (P0-P2). MATERIALS AND METHODS A series of 336 ischemic feet (221 diabetics) were selected and retrospectively analyzed. For each angiographic pattern of inframalleolar atherosclerotic disease, 4 severity classes of targeted angiosomal artery path (TAAP), associating 4 other classes concerning linked foot arches (LFA) and collaterals occlusive disease were described. By associating the 4 TAAP with the 4 others parallel LFA and collaterals classes, 4 novel anatomical "Grades" (A-D) of occlusive disease were described. Limb salvage was studied between groups of diabetic and non-diabetic patients. RESULTS Using a primary endovascular approach, limb preservation comparison of grade A/B proved without significance for diabetics (P = 0.032) and non-diabetics (P = 0.226). Comparison in diabetics and/or non-diabetics between A/C (P = 0.045 and 0.046), A/D (P = 0.027 and 0.030, B/C (P = 0.009 and 0.038), and B/D (P = 0.006 and P = 0.042), as well as C/D groups (P = 0.048 and P = 0.034) proved ponderous. Parallel analysis of similar grades (A/A, B/B, etc.) with, or without diabetes appeared without significance (P > 0.05). Further comparison between grades A+B (assigned as P0/GVG), versus C (P1), and D (P2), proved significant (P < 0.0001). CONCLUSION The present grading system proposes a useful correlation between the severity of foot angiosomal arteries, arches, and collaterals disease and limb salvage, confirming the clinical significance of P0-P2 GVG severity score. This analysis also points the limits of EVT to be probably avoided in grade D patients.
Collapse
Affiliation(s)
- Vlad Adrian Alexandrescu
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Sophie Brochier
- Department of Diabetology, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Sophie Schoenen
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Elisa Antonelli
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Khalid Azdad
- Department of Radiology, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Ines Zekhnini
- Department of Vascular and Thoracic Surgery, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| | - Mihaela Nodit
- Department of Geriatric care, Princess Paola Hospital Marche-en-Famenne, IFAC/Vivalia, Marche-en-Famenne, Belgium.
| |
Collapse
|
23
|
Zheng J, Sorensen C, Li R, An H, Hildebolt CF, Zayed MA, Mueller MJ, Hastings MK. Deteriorated regional calf microcirculation measured by contrast-free MRI in patients with diabetes mellitus and relation with physical activity. Diab Vasc Dis Res 2021; 18:14791641211029002. [PMID: 34313140 PMCID: PMC8481746 DOI: 10.1177/14791641211029002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate regional calf muscle microcirculation in people with diabetes mellitus (DM) with and without foot ulcers, compared to healthy control people without DM, using contrast-free magnetic resonance imaging methods. METHODS Three groups of subjects were recruited: non-DM controls, DM, and DM with foot ulcers (DM + ulcer), all with ankle brachial index (ABI) > 0.9. Skeletal muscle blood flow (SMBF) and oxygen extraction fraction (SMOEF) in calf muscle were measured at rest and during a 5-min isometric ankle plantarflexion exercise. Subjects completed the Yale physical activity survey. RESULTS The exercise SMBF (ml/min/100 g) of the medial gastrocnemius muscle were progressively impaired: 63.7 ± 18.9 for controls, 42.9 ± 6.7 for DM, and 36.2 ± 6.2 for DM + ulcer, p < 0.001. Corresponding exercise SMOEF was the lowest in DM + ulcers (0.48 ± 0.09). Exercise SMBF in the soleus muscle was correlated moderately with the Yale physical activity survey (r = 0.39, p < 0.01). CONCLUSIONS Contrast-free MR imaging identified progressively impaired regional microcirculation in medial gastrocnemius muscles of people with DM with and without foot ulcers. Exercise SMBF in the medial gastrocnemius muscle was the most sensitive index and was associated with HbA1c. Lower exercise SMBF in the soleus muscle was associated with lower Yale score.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Jie Zheng, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO 63130-4899, USA.
| | - Christopher Sorensen
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Ran Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Hildebolt
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Mueller
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary K Hastings
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Chou TH, Alvelo JL, Janse S, Papademetris X, Sumpio BE, Mena-Hurtado C, Sinusas AJ, Stacy MR. Prognostic Value of Radiotracer-Based Perfusion Imaging in Critical Limb Ischemia Patients Undergoing Lower Extremity Revascularization. JACC Cardiovasc Imaging 2020; 14:1614-1624. [PMID: 33221224 DOI: 10.1016/j.jcmg.2020.09.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The purpose of this study was to evaluate the prognostic value of single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of angiosome foot perfusion for predicting amputation outcomes in patients with critical limb ischemia (CLI) and diabetes mellitus (DM). BACKGROUND Radiotracer imaging can assess microvascular foot perfusion and identify regional perfusion abnormalities in patients with critical limb ischemia CLI and DM, but the relationship between perfusion response to revascularization and subsequent clinical outcomes has not been evaluated. METHODS Patients with CLI, DM, and nonhealing foot ulcers (n = 25) were prospectively enrolled for SPECT/CT perfusion imaging of the feet before and after revascularization. CT images were used to segment angiosomes (i.e., 3-dimensional vascular territories) of the foot. Relative changes in radiotracer uptake after revascularization were evaluated within the ulcerated angiosome. Incidence of amputation was assessed at 3 and 12 months after revascularization. RESULTS SPECT/CT detected a significantly lower microvascular perfusion response for patients who underwent amputation compared with those who remained amputation free at 3 (p = 0.01) and 12 (p = 0.01) months after revascularization. The cutoff percent change in perfusion for predicting amputation at 3 months was 7.55%, and 11.56% at 12 months. The area under the curve based on the amputation outcome was 0.799 at 3 months and 0.833 at 12 months. The probability of amputation-free survival was significantly higher at 3 (p = 0.002) and 12 months (p = 0.03) for high-perfusion responders than low-perfusion responders to revascularization. CONCLUSIONS SPECT/CT imaging detects regional perfusion responses to lower extremity revascularization and provides prognostic value in patients with CLI (Radiotracer-Based Perfusion Imaging of Patients With Peripheral Arterial Disease; NCT03622359).
Collapse
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jessica L Alvelo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sarah Janse
- Center for Biostatistics, The Ohio State University, Columbus, Ohio, USA
| | - Xenophon Papademetris
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Bauer E Sumpio
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Carlos Mena-Hurtado
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Albert J Sinusas
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA; Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio, USA.
| |
Collapse
|
25
|
Chou TH, Tram NK, Eisert SN, Bobbey AJ, Atway SA, Go MR, Stacy MR. Dual assessment of abnormal microvascular foot perfusion and lower extremity calcium burden in a patient with critical limb ischemia using hybrid SPECT/CT imaging. Vasc Med 2020; 26:225-227. [PMID: 33126838 DOI: 10.1177/1358863x20964563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Nguyen K Tram
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Susan Natalie Eisert
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University College of Medicine; Columbus, OH, USA
| | - Adam J Bobbey
- Department of Radiology, Nationwide Children's Hospital, Columbus, OH, USA
| | - Said A Atway
- Department of Orthopaedics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Michael R Go
- Department of Surgery, The Ohio State University College of Medicine; Columbus, OH, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.,Department of Surgery, The Ohio State University College of Medicine; Columbus, OH, USA
| |
Collapse
|
26
|
Low frequency oscillations assessed by diffuse speckle contrast analysis for foot angiosome concept. Sci Rep 2020; 10:17153. [PMID: 33051486 PMCID: PMC7553923 DOI: 10.1038/s41598-020-73604-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
An angiosome refers to a 3D tissue volume that is vascularized by a single artery and is a relatively new concept that is useful in vascular surgery; however, the direct relationship between arterial blood flow and micro-perfusion is still controversial. Here, we propose a diffuse speckle contrast analysis (DSCA), which is an emerging tissue perfusion monitoring modality, to investigate the correlations among low frequency oscillations (LFOs) measured from different areas on the feet of healthy subjects. We obtained reproducible results from the correlation analyses of LFOs, and their physiological implications were discussed. In order to confirm the changes in the frequency oscillations, we analyzed and compared the power spectral density changes due to heart rate variability in the electrocardiographic signal during reactive hyperemia and head-up tilt protocols.
Collapse
|
27
|
Ma J, Lai Z, Shao J, Lei J, Li K, Wang J, Xu L, Fang L, Yu X, Qi W, Wang C, Cao W, Liu X, Yuan J, Liu B. Infrapopliteal endovascular intervention and the angiosome concept: intraoperative real-time assessment of foot regions' blood volume guides and improves direct revascularization. Eur Radiol 2020; 31:2144-2152. [PMID: 33040222 DOI: 10.1007/s00330-020-07360-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE There is no consensus for determining which vessel should be revascularized in patients with multiple diseased infrapopliteal arteries. The angiosome concept may guide a more efficient targeted direct revascularization. Therefore, we conducted a study to assess whether the regional evaluation of foot blood volume may guide direct revascularization (DR) and if it will lead to better perfusion improvement than indirect revascularization (IR). METHODS We performed a prospective single-center observational cohort study in patients treated in the Department of Vascular Surgery of Peking Union Medical College Hospital from November 2016 to April 2019. Twenty-seven patients treated with endovascular intervention were included. The intraoperative parenchymal blood volume of different foot regions was obtained for each patient using C-arm CT before and after intervention. RESULTS The intervention procedure significantly increased the overall blood volume (48.95 versus 81.97 ml/1000 ml, p = 0.002). Patients with direct revascularization had a 197% blood volume increase while patients with indirect revascularization had a 39% increase (p = 0.028). The preoperative blood volume was higher in patients with mild symptoms than in patients with severe symptoms (58.20 versus 30.45 ml/1000 ml, p = 0.039). However, in regard to postoperative blood volume, no significant difference was discovered between these two groups (75.05 versus 95.01 ml/1000 ml, p = 0.275). CONCLUSION Based on quantitative measurements, we conclude that overall blood volume can rise significantly after the intervention. Revascularizing the supplying vessel of the ischemic area directly will result in better perfusion improvement than restoring blood supply through the collateral circulation. Preoperative blood volume is associated with preoperative symptoms. KEY POINTS • Flat panel detector CT can obtain intraoperative perfusion status and guide treatment in endovascular intervention. • Revascularizing the supplying vessel of the ischemic area directly will result in better perfusion improvement than restoring the blood supply through the collateral circulation. • Patients with severer clinical manifestations have lower blood volumes.
Collapse
Affiliation(s)
- Jiangyu Ma
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.,Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jiang Shao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jinsong Lei
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.,Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Kang Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jingjing Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Leyin Xu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.,Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Lijing Fang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.,Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Xiaoxi Yu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.,Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wanting Qi
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.,Eight-year Program of Clinical Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Chaonan Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Wenteng Cao
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xiaolong Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jinghui Yuan
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Shuaifuyuan 1st, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
28
|
Computed Tomography (CT) Protocols Associated with Cardiac and Bone Single-Photon Emission Computed Tomography/CT (SPECT/CT) in Korea. Nucl Med Mol Imaging 2020; 54:139-146. [PMID: 32582397 DOI: 10.1007/s13139-020-00644-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Single-photon emission computed tomography/computed tomography (SPECT/CT) is an advanced hybrid nuclear medicine technology that generates both functional and anatomical images in a single study. As utilization of SPECT/CT in Korea has been increasing, the purpose of this study was to survey its application of cardiac and skeletal SPECT/CT imaging for protocol optimization. METHODS We surveyed CT protocols established for cardiac and skeletal SPECT/CT. We searched the guidelines for the CT protocols for SPECT/CT and reviewed the literature recently published. RESULTS Among 36 hybrid SPECT scanners equipped with four or more multi-channel detector CTs (MDCTs), 18 scanners were used to perform cardiac studies at both very low current CT (30-80 mA; 11.1%) and ultra-low current CT (13-30 mA; 88.9%). Among the 33 canners, very low current (≤ 80 mA) CT or low current CT (80-130 mA) was used in 23.5%, and 41.8% for spine disorders, and in 36.4% or 30.3% for foot/ankle disorders, respectively. In the CT reconstructions, slice thickness of 5 mm for cardiac studies was most commonly used (94.4%); thinner slices (0.6-1.0 mm) for spine and foot/ankle studies were used in 24.2% and 45.5%, respectively. We also reviewed the international guidelines. CONCLUSIONS The results and current recommendations will be helpful for optimizing CT protocols for SPECT/CT. Optimization of SPECT/CT protocols will be required for generating the proper strategy for the specific lesions and clinical purpose.
Collapse
|
29
|
Chou TH, Atway SA, Bobbey AJ, Sarac TP, Go MR, Stacy MR. SPECT/CT Imaging: A Noninvasive Approach for Evaluating Serial Changes in Angiosome Foot Perfusion in Critical Limb Ischemia. Adv Wound Care (New Rochelle) 2020; 9:103-110. [PMID: 31993252 PMCID: PMC6985768 DOI: 10.1089/wound.2018.0924] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
Objective: To investigate the feasibility of serial radiotracer-based imaging as a noninvasive approach for quantifying volumetric changes in microvascular perfusion within angiosomes of the foot following lower extremity revascularization in the setting of critical limb ischemia (CLI). Approach: A CLI patient with a nonhealing foot ulcer underwent single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of the feet before and after balloon angioplasty of the superficial femoral artery (SFA) and popliteal artery. SPECT/CT imaging was used to evaluate serial changes in angiosome perfusion, which was compared to quantitative changes in peripheral vascular anatomy and hemodynamics, as assessed by standard clinical tools that included digital subtraction angiography (DSA), ankle-brachial index (ABI), and toe-brachial index (TBI). Results: Following revascularization, upstream quantitative improvements in stenosis of the SFA (pre: 35.4% to post: 11.9%) and popliteal artery (pre: 59.1% to post: 21.7%) shown by DSA were associated with downstream angiosome-dependent improvements in SPECT microvascular foot perfusion that ranged from 2% to 16%. ABI measurement was not possible due to extensive arterial calcification, while TBI values decreased from 0.26 to 0.16 following revascularization. Innovation: This is the first study to demonstrate the feasibility of assessing noninvasive volumetric changes in angiosome foot perfusion in response to lower extremity revascularization in a patient with CLI by utilizing radiotracer-based imaging. Conclusion: SPECT/CT imaging allows for quantification of serial perfusion changes within angiosomes containing nonhealing ulcers and provides physiological assessment that is complementary to conventional anatomical (DSA) and hemodynamic (ABI/TBI) measures in the evaluation of lower extremity revascularization.
Collapse
Affiliation(s)
- Ting-Heng Chou
- The Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Said A. Atway
- Department of Orthopaedics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Adam J. Bobbey
- Department of Radiology, Nationwide Children's Hospital, Columbus, Ohio
| | - Timur P. Sarac
- Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Michael R. Go
- Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mitchel R. Stacy
- The Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio
- Department of Surgery, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
30
|
Ruiz-Bedoya CA, Gordon O, Mota F, Abhishek S, Tucker EW, Ordonez AA, Jain SK. Molecular Imaging of Diabetic Foot Infections: New Tools for Old Questions. Int J Mol Sci 2019; 20:E5984. [PMID: 31795077 PMCID: PMC6928969 DOI: 10.3390/ijms20235984] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetic foot infections (DFIs) are a common, complex, and costly medical problem with increasing prevalence. Diagnosing DFIs is a clinical challenge due to the poor specificity of the available methods to accurately determine the presence of infection in these patients. However, failure to perform an opportune diagnosis and provide optimal antibiotic therapy can lead to higher morbidity for the patient, unnecessary amputations, and increased healthcare costs. Novel developments in bacteria-specific molecular imaging can provide a non-invasive assessment of the infection site to support diagnosis, determine the extension and location of the infection, guide the selection of antibiotics, and monitor the response to treatment. This is a review of recent research in molecular imaging of infections in the context of DFI. We summarize different clinical and preclinical methods and the translational implications aimed to improve the care of patients with DFI.
Collapse
Affiliation(s)
- Camilo A. Ruiz-Bedoya
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Oren Gordon
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Filipa Mota
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sudhanshu Abhishek
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Pediatric Critical Care, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (C.A.R.-B.); (O.G.); (F.M.); (S.A.); (E.W.T.); (A.A.O.)
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
31
|
Sommerset J, Karmy-Jones R, Dally M, Feliciano B, Vea Y, Teso D. Plantar Acceleration Time: A Novel Technique to Evaluate Arterial Flow to the Foot. Ann Vasc Surg 2019; 60:308-314. [DOI: 10.1016/j.avsg.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 02/18/2019] [Accepted: 03/26/2019] [Indexed: 01/17/2023]
|
32
|
Chou TH, Stacy MR. Clinical Applications for Radiotracer Imaging of Lower Extremity Peripheral Arterial Disease and Critical Limb Ischemia. Mol Imaging Biol 2019; 22:245-255. [PMID: 31482412 DOI: 10.1007/s11307-019-01425-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Peripheral arterial disease (PAD) is an atherosclerotic occlusive disease of the non-coronary vessels that is characterized by lower extremity tissue ischemia, claudication, increased prevalence of lower extremity wounds and amputations, and impaired quality of life. Critical limb ischemia (CLI) represents the severe stage of PAD and is associated with additional risk for wound formation, amputation, and premature death. Standard clinical tools utilized for assessing PAD and CLI primarily focus on anatomical evaluation of peripheral vascular lesions or hemodynamic assessment of the peripheral circulation. Evaluation of underlying pathophysiology has traditionally been achieved by radiotracer-based imaging, with many clinical investigations focusing on imaging of skeletal muscle perfusion and cases of foot infection/inflammation such as osteomyelitis and Charcot neuropathic osteoarthropathy. As advancements in hybrid imaging systems and radiotracers continue to evolve, opportunities for molecular imaging of PAD and CLI are also emerging that may offer novel insight into associated complications such as peripheral atherosclerosis, alterations in skeletal muscle metabolism, and peripheral neuropathy. This review summarizes the pros and cons of radiotracer-based techniques that have been utilized in the clinical environment for evaluating lower extremity ischemia and common pathologies associated with PAD and CLI.
Collapse
Affiliation(s)
- Ting-Heng Chou
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, WB4131, Columbus, OH, 43215, USA
| | - Mitchel R Stacy
- Center for Regenerative Medicine, The Research Institute at Nationwide Children's Hospital, 575 Children's Crossroad, WB4131, Columbus, OH, 43215, USA. .,Division of Vascular Diseases and Surgery, Department of Surgery, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
33
|
Haghighat L, Ionescu CN, Regan CJ, Altin SE, Attaran RR, Mena-Hurtado CI. Review of the Current Basic Science Strategies to Treat Critical Limb Ischemia. Vasc Endovascular Surg 2019; 53:316-324. [DOI: 10.1177/1538574419831489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Critical limb ischemia (CLI) is a highly morbid disease with many patients considered poor surgical candidates. The lack of treatment options for CLI has driven interest in developing molecular therapies within recent years. Through these translational medicine studies in CLI, much has been learned about the pathophysiology of the disease. Here, we present an overview of the macrovascular and microvascular changes that lead to the development of CLI, including impairment of angiogenesis, vasculogenesis, and arteriogenesis. We summarize the randomized clinical controlled trials that have used molecular therapies in CLI, and discuss the novel imaging modalities being developed to assess the efficacy of these therapies.
Collapse
Affiliation(s)
- Leila Haghighat
- Department of Internal Medicine, Yale New Haven Hospital, New Haven, CT, USA
| | - Costin N. Ionescu
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher J. Regan
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Sophia Elissa Altin
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Robert R. Attaran
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos I. Mena-Hurtado
- Department of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
34
|
Finn JP, Lawrence PF. Defining Anatomy and Blood Flow in the Threatened Limb: Rising to the Challenge With Noninvasive Imaging. Circ Cardiovasc Imaging 2018; 11:e007726. [PMID: 29748313 DOI: 10.1161/circimaging.118.007726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- J Paul Finn
- Department of Radiological Sciences and Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA (J.P.F.).
| | - Peter F Lawrence
- Division of Vascular and Endovascular Surgery, UCLA Gonda Vascular Center, David Geffen School of Medicine at UCLA, Los Angeles, CA (P.F.L.)
| |
Collapse
|