1
|
McDonald KS, Kalogeris TJ, Veteto AB, Davis DJ, Hanft LM. Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes. J Gen Physiol 2025; 157:e202413678. [PMID: 40126337 PMCID: PMC11932042 DOI: 10.1085/jgp.202413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025] Open
Abstract
During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Daniel J. Davis
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
2
|
Milburn GN, Bell J, Wellette-Hunsucker AG, Ruml H, Yackzan AT, Campbell KS. Myocardium From Patients With ATTR Amyloidosis Produces Less Force Secondary to Increased Fibrosis. JACC Basic Transl Sci 2025:S2452-302X(25)00124-X. [PMID: 40338773 DOI: 10.1016/j.jacbts.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/10/2025]
Abstract
Amyloid transthyretin cardiac amyloidosis is one of the most common infiltrative cardiomyopathies. Contractile, biochemical, and histological assays were performed on myocardium from patients with and without amyloid transthyretin amyloidosis. Force was reduced in amyloidosis, but calcium sensitivity was increased. The change in calcium sensitivity may reflect dephosphorylation of troponin I. The proportion of stiffness attributable to the extracellular matrix was larger in amyloidosis. Septal fibrosis and amyloid burden correlated with measurements from LV samples. Technetium pyrophosphate scans may detect increased microcalcifications in amyloidosis myocardium. Replacement of myocytes with extracellular matrix is the most important factor depressing contractile force in amyloidosis myocardium.
Collapse
Affiliation(s)
- Gregory N Milburn
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA.
| | - Jania Bell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Austin G Wellette-Hunsucker
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hollings Ruml
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Andrew T Yackzan
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA; Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Antoniou CK, Chrysohoou C, Manolakou P, Tsiachris D, Kordalis A, Tsioufis K, Gatzoulis KA. Multipoint Left Ventricular Pacing as Alternative Approach in Cases of Biventricular Pacing Failure. J Clin Med 2025; 14:1065. [PMID: 40004595 PMCID: PMC11856938 DOI: 10.3390/jcm14041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiac resynchronization therapy (CRT) is a cornerstone in the treatment of dyssynchronous heart failure with reduced ejection fraction. However, the phenomenon of non-response has plagued CRT since its initial application. Notwithstanding issues such as failure to capture the left ventricle, lower-than-required pacing delivery percent, and failure to optimize atrioventricular and interventricular delays, there are patients who fail to exhibit an adequate response to CRT in its classical biventricular pacing (BiVP) form. Several modalities have been proposed as a means to remedy this issue, including pacing the conduction system itself-His or left bundle branch pacing, allowing for intrinsic conduction in some myocardial segments, pacing the left ventricle from multiple points in the coronary sinus (multipoint pacing), or even combining the above (e.g., His/left bundle pacing and BiVP leading to His/left bundle-optimized CRT). In the present review, we present recent evidence for the advantages and disadvantages of each modality and attempt to formulate a pathophysiology and simulation-based strategy to determine the best way forward for delivering CRT in non-responders to BiVP.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Konstantinos A. Gatzoulis
- First Department of Cardiology, National and Kapodistrian University of Athens, Hippokration General Hospital of Athens, 114 Vasilissis Sofias Avenue, 11527 Athens, Greece; (C.-K.A.); (C.C.); (P.M.); (D.T.); (A.K.); (K.T.)
| |
Collapse
|
5
|
Choi J, Wood PT, Holmes JB, Dominic KL, Dos Remedios CG, Campbell KS, Stelzer JE. Differential effects of myosin activators on myocardial contractile function in nonfailing and failing human hearts. Am J Physiol Heart Circ Physiol 2025; 328:H161-H173. [PMID: 39453428 DOI: 10.1152/ajpheart.00252.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
The second-generation myosin activator danicamtiv (DN) has shown improved function compared with the first-generation myosin activator omecamtiv mecarbil (OM) in nonfailing myocardium by enhancing cardiac force generation but attenuating slowed relaxation. However, whether the functional improvement with DN compared with OM persists in remodeled failing myocardium remains unknown. Therefore, this study aimed to investigate the differential contractile responses to myosin activators in nonfailing and failing myocardium. Mechanical measurements were performed in detergent-skinned myocardium isolated from donor and failing human hearts. Steady-state force, stretch activation responses and loaded shortening velocity were analyzed at submaximal [Ca2+] in the absence or presence of 0.5 µmol/L OM or 2 µmol/L DN. The effects of DN and OM on Ca2+ sensitivity of force generation were determined by incubating myocardial preparations at various [Ca2+]. The inherent impairment in force generation and cross-bridge behavior sensitized the failing myocardium to the effects of myosin activators. Specifically, increased Ca2+ sensitivity of force generation, slowed rates of cross-bridge recruitment and detachment following acute stretch, slowed loaded shortening velocity, and diminished power output were more prominent following treatment with OM or DN in failing myocardium compared with donor myocardium. Although these effects were less pronounced with DN compared with OM in failing myocardium, DN impaired contractile properties in failing myocardium that were not affected in donor myocardium. Our results indicate that similar to first-generation myosin activators, the DN-induced slowing of cross-bridge kinetics may result in a prolongation of systolic ejection and delayed diastolic relaxation in the heart failure setting.NEW & NOTEWORTHY This is the first study to provide a detailed mechanistic comparison of omecamtiv mecarbil (OM) and danicamtiv (DN) in failing and nonfailing human myocardium. These findings have clinical implications and the potential to inform the clinical utility of myosin activators in the heart failure setting.
Collapse
Affiliation(s)
- Joohee Choi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Patrick T Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | - Katherine L Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| | | | - Kenneth S Campbell
- Division of Cardiovascular Medicine, University of Kentucky, Lexington, Kentucky, United States
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
6
|
Mertens J, De Lange WJ, Farrell ET, Harbaugh EC, Gauchan A, Fitzsimons DP, Moss RL, Ralphe JC. The W792R HCM missense mutation in the C6 domain of cardiac myosin binding protein-C increases contractility in neonatal mouse myocardium. J Mol Cell Cardiol 2024; 195:14-23. [PMID: 39059462 DOI: 10.1016/j.yjmcc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.
Collapse
Affiliation(s)
- Jasmine Mertens
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Willem J De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Ella C Harbaugh
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Angeela Gauchan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Daniel P Fitzsimons
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Richard L Moss
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America.
| |
Collapse
|
7
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
8
|
Algül S, Schuldt M, Manders E, Jansen V, Schlossarek S, de Goeij-de Haas R, Henneman AA, Piersma SR, Jimenez CR, Michels M, Carrier L, Helmes M, van der Velden J, Kuster DWD. EGFR/IGF1R Signaling Modulates Relaxation in Hypertrophic Cardiomyopathy. Circ Res 2023; 133:387-399. [PMID: 37477020 DOI: 10.1161/circresaha.122.322133] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Diastolic dysfunction is central to diseases such as heart failure with preserved ejection fraction and hypertrophic cardiomyopathy (HCM). However, therapies that improve cardiac relaxation are scarce, partly due to a limited understanding of modulators of cardiomyocyte relaxation. We hypothesized that cardiac relaxation is regulated by multiple unidentified proteins and that dysregulation of kinases contributes to impaired relaxation in patients with HCM. METHODS We optimized and increased the throughput of unloaded shortening measurements and screened a kinase inhibitor library in isolated adult cardiomyocytes from wild-type mice. One hundred fifty-seven kinase inhibitors were screened. To assess which kinases are dysregulated in patients with HCM and could contribute to impaired relaxation, we performed a tyrosine and global phosphoproteomics screen and integrative inferred kinase activity analysis using HCM patient myocardium. Identified hits from these 2 data sets were validated in cardiomyocytes from a homozygous MYBPC3c.2373insG HCM mouse model. RESULTS Screening of 157 kinase inhibitors in wild-type (N=33) cardiomyocytes (n=24 563) resulted in the identification of 17 positive inotropes and 21 positive lusitropes, almost all of them novel. The positive lusitropes formed 3 clusters: cell cycle, EGFR (epidermal growth factor receptor)/IGF1R (insulin-like growth factor 1 receptor), and a small Akt (α-serine/threonine protein kinase) signaling cluster. By performing phosphoproteomic profiling of HCM patient myocardium (N=24 HCM and N=8 donors), we demonstrated increased activation of 6 of 8 proteins from the EGFR/IGFR1 cluster in HCM. We validated compounds from this cluster in mouse HCM (N=12) cardiomyocytes (n=2023). Three compounds from this cluster were able to improve relaxation in HCM cardiomyocytes. CONCLUSIONS We showed the feasibility of screening for functional modulators of cardiomyocyte relaxation and contraction, parameters that we observed to be modulated by kinases involved in EGFR/IGF1R, Akt, cell cycle signaling, and FoxO (forkhead box class O) signaling, respectively. Integrating the screening data with phosphoproteomics analysis in HCM patient tissue indicated that inhibition of EGFR/IGF1R signaling is a promising target for treating impaired relaxation in HCM.
Collapse
Affiliation(s)
- Sila Algül
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Maike Schuldt
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Emmy Manders
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Valentijn Jansen
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Saskia Schlossarek
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Richard de Goeij-de Haas
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Alex A Henneman
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Sander R Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Connie R Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC and Vrije Universiteit Amsterdam, the Netherlands (R.d.G.-d.H., A.A.H., S.R.P., C.R.J.)
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center Rotterdam, the Netherlands (M.M.)
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Germany (S.S., L.C.)
- German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Lübeck, Germany (S.S., L.C.)
| | - Michiel Helmes
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
- CytoCypher BV, Wageningen, the Netherlands (E.M., M.H.)
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| | - Diederik W D Kuster
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, the Netherlands (S.A., M.S., E.M., V.J., M.H., J.v.d.V., D.W.D.K.)
| |
Collapse
|
9
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
10
|
De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC. cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 2023; 155:e202213204. [PMID: 36893011 PMCID: PMC10038829 DOI: 10.1085/jgp.202213204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.
Collapse
Affiliation(s)
- Willem J. De Lange
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily T. Farrell
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan J. Hernandez
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alana Stempien
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline R. Kreitzer
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derek R. Jacobs
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dominique L. Petty
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard L. Moss
- Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendy C. Crone
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J. Carter Ralphe
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
11
|
Salhi HE, Shettigar V, Salyer L, Sturgill S, Brundage EA, Robinett J, Xu Z, Abay E, Lowe J, Janssen PML, Rafael-Fortney JA, Weisleder N, Ziolo MT, Biesiadecki BJ. The lack of Troponin I Ser-23/24 phosphorylation is detrimental to in vivo cardiac function and exacerbates cardiac disease. J Mol Cell Cardiol 2023; 176:84-96. [PMID: 36724829 PMCID: PMC10074981 DOI: 10.1016/j.yjmcc.2023.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Troponin I (TnI) is a key regulator of cardiac contraction and relaxation with TnI Ser-23/24 phosphorylation serving as a myofilament mechanism to modulate cardiac function. Basal cardiac TnI Ser-23/24 phosphorylation is high such that both increased and decreased TnI phosphorylation may modulate cardiac function. While the effects of increasing TnI Ser-23/24 phosphorylation on heart function are well established, the effects of decreasing TnI Ser-23/24 phosphorylation are not clear. To understand the in vivo role of decreased TnI Ser-23/24 phosphorylation, mice expressing TnI with Ser-23/24 mutated to alanine (TnI S23/24A) that lack the ability to be phosphorylated at these residues were subjected to echocardiography and pressure-volume hemodynamic measurements in the absence or presence of physiological (pacing increasing heart rate or adrenergic stimulation) or pathological (transverse aortic constriction (TAC)) stress. In the absence of pathological stress, the lack of TnI Ser-23/24 phosphorylation impaired systolic and diastolic function. TnI S23/24A mice also had an impaired systolic and diastolic response upon stimulation increased heart rate and an impaired adrenergic response upon dobutamine infusion. Following pathological cardiac stress induced by TAC, TnI S23/24A mice had a greater increase in ventricular mass, worse diastolic function, and impaired systolic and diastolic function upon increasing heart rate. These findings demonstrate that mice lacking the ability to phosphorylate TnI at Ser-23/24 have impaired in vivo systolic and diastolic cardiac function, a blunted cardiac reserve and a worse response to pathological stress supporting decreased TnI Ser23/24 phosphorylation is a modulator of these processes in vivo.
Collapse
Affiliation(s)
- Hussam E Salhi
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Vikram Shettigar
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Lorien Salyer
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Sarah Sturgill
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Elizabeth A Brundage
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Joel Robinett
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Zhaobin Xu
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Eaman Abay
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Jeovanna Lowe
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Paul M L Janssen
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Noah Weisleder
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Mark T Ziolo
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology and Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
12
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Robinett JC, Hanft LM, Biesiadecki B, McDonald KS. Molecular regulation of stretch activation. Am J Physiol Cell Physiol 2022; 323:C1728-C1739. [PMID: 36280392 PMCID: PMC9744651 DOI: 10.1152/ajpcell.00101.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2022]
Abstract
Stretch activation is defined as a delayed increase in force after rapid stretches. Although there is considerable evidence for stretch activation in isolated cardiac myofibrillar preparations, few studies have measured mechanisms of stretch activation in mammalian skeletal muscle fibers. We measured stretch activation following rapid step stretches [∼1%-4% sarcomere length (SL)] during submaximal Ca2+ activations of rat permeabilized slow-twitch skeletal muscle fibers before and after protein kinase A (PKA), which phosphorylates slow myosin binding protein-C. PKA significantly increased stretch activation during low (∼25%) Ca2+ activation and accelerated rates of delayed force development (kef) during both low and half-maximal Ca2+ activation. Following the step stretches and subsequent force development, fibers were rapidly shortened to original sarcomere length, which often elicited a shortening-induced transient force overshoot. After PKA, step shortening-induced transient force overshoot increased ∼10-fold following an ∼4% SL shortening during low Ca2+ activation levels. kdf following step shortening also increased after PKA during low and half-maximal Ca2+ activations. We next investigated thin filament regulation of stretch activation. We tested the interplay between cardiac troponin I (cTnI) phosphorylation at the canonical PKA and novel tyrosine kinase sites on stretch activation. Native slow-skeletal Tn complexes were exchanged with recombinant human cTn complex with different human cTnI N-terminal pseudo-phosphorylation molecules: 1) nonphosphorylated wild type (WT), 2) the canonical S22/23D PKA sites, 3) the tyrosine kinase Y26E site, and 4) the combinatorial S22/23D + Y26E cTnI. All three pseudo-phosphorylated cTnIs elicited greater stretch activation than WT. Following stretch activation, a new, elevated stretch-induced steady-state force was reached with pseudo-phosphorylated cTnI. Combinatorial S22/23D + Y26E pseudo-phosphorylated cTnI increased kdf. These results suggest that slow-skeletal myosin binding protein-C (sMyBP-C) phosphorylation modulates stretch activation by a combination of cross-bridge recruitment and faster cycling kinetics, whereas cTnI phosphorylation regulates stretch activation by both redundant and synergistic mechanisms; and, taken together, these sarcomere phosphoproteins offer precision targets for enhanced contractility.
Collapse
Affiliation(s)
- Joel C Robinett
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Laurin M Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| | - Brandon Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
14
|
Desai DA, Rao VJ, Jegga AG, Dhandapany PS, Sadayappan S. Heterogeneous Distribution of Genetic Mutations in Myosin Binding Protein-C Paralogs. Front Genet 2022; 13:896117. [PMID: 35832193 PMCID: PMC9272480 DOI: 10.3389/fgene.2022.896117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
Myosin binding protein-C (MyBP-C) is a sarcomeric protein which regulates the force of contraction in striated muscles. Mutations in the MYBPC family of genes, including slow skeletal (MYBPC1), fast skeletal (MYBPC2) and cardiac (MYBPC3), can result in cardiac and skeletal myopathies. Nonetheless, their evolutionary pattern, pathogenicity and impact on MyBP-C protein structure remain to be elucidated. Therefore, the present study aimed to systematically assess the evolutionarily conserved and epigenetic patterns of MYBPC family mutations. Leveraging a machine learning (ML) approach, the Genome Aggregation Database (gnomAD) provided variants in MYBPC1, MYBPC2, and MYBPC3 genes. This was followed by an analysis with Ensembl’s variant effect predictor (VEP), resulting in the identification of 8,618, 3,871, and 3,071 variants in MYBPC1, MYBPC2, and MYBPC3, respectively. Missense variants comprised 61%–66% of total variants in which the third nucleotide positions in the codons were highly altered. Arginine was the most mutated amino acid, important because most disease-causing mutations in MyBP-C proteins are arginine in origin. Domains C5 and C6 of MyBP-C were found to be hotspots for most mutations in the MyBP-C family of proteins. A high percentage of truncated mutations in cMyBP-C cause cardiomyopathies. Arginine and glutamate were the top hits in fMyBP-C and cMyBP-C, respectively, and tryptophan and tyrosine were the most common among the three paralogs changing to premature stop codons and causing protein truncations at the carboxyl terminus. A heterogeneous epigenetic pattern was identified among the three MYBP-C paralogs. Overall, it was shown that databases using computational approaches can facilitate diagnosis and drug discovery to treat muscle disorders caused by MYBPC mutations.
Collapse
Affiliation(s)
- Darshini A. Desai
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
| | - Vinay J. Rao
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Perundurai S. Dhandapany
- Cardiovascular Biology and Disease Theme, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
- The Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, United States
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Sakthivel Sadayappan,
| |
Collapse
|
15
|
Hanft LM, Fitzsimons DP, Hacker TA, Moss RL, McDonald KS. Cardiac MyBP-C phosphorylation regulates the Frank-Starling relationship in murine hearts. J Gen Physiol 2021; 153:e202012770. [PMID: 33646280 PMCID: PMC7927661 DOI: 10.1085/jgp.202012770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023] Open
Abstract
The Frank-Starling relationship establishes that elevated end-diastolic volume progressively increases ventricular pressure and stroke volume in healthy hearts. The relationship is modulated by a number of physiological inputs and is often depressed in human heart failure. Emerging evidence suggests that cardiac myosin-binding protein-C (cMyBP-C) contributes to the Frank-Starling relationship. We measured contractile properties at multiple levels of structural organization to determine the role of cMyBP-C and its phosphorylation in regulating (1) the sarcomere length dependence of power in cardiac myofilaments and (2) the Frank-Starling relationship in vivo. We compared transgenic mice expressing wild-type cMyBP-C on the null background, which have ∼50% phosphorylated cMyBP-C (Controls), to transgenic mice lacking cMyBP-C (KO) and to mice expressing cMyBP-C that have serine-273, -282, and -302 mutated to aspartate (cMyBP-C t3SD) or alanine (cMyBP-C t3SA) on the null background to mimic either constitutive PKA phosphorylation or nonphosphorylated cMyBP-C, respectively. We observed a continuum of length dependence of power output in myocyte preparations. Sarcomere length dependence of power progressively increased with a rank ordering of cMyBP-C KO = cMyBP-C t3SA < Control < cMyBP-C t3SD. Length dependence of myofilament power translated, at least in part, to hearts, whereby Frank-Starling relationships were steepest in cMyBP-C t3SD mice. The results support the hypothesis that cMyBP-C and its phosphorylation state tune sarcomere length dependence of myofibrillar power, and these regulatory processes translate across spatial levels of myocardial organization to control beat-to-beat ventricular performance.
Collapse
Affiliation(s)
- Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| | - Daniel P. Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Timothy A. Hacker
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Richard L. Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO
| |
Collapse
|
16
|
Singh RR, McNamara JW, Sadayappan S. Mutations in myosin S2 alter cardiac myosin-binding protein-C interaction in hypertrophic cardiomyopathy in a phosphorylation-dependent manner. J Biol Chem 2021; 297:100836. [PMID: 34051236 PMCID: PMC8239744 DOI: 10.1016/j.jbc.2021.100836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited cardiovascular disorder primarily caused by mutations in the β-myosin heavy-chain gene. The proximal subfragment 2 region (S2), 126 amino acids of myosin, binds with the C0-C2 region of cardiac myosin-binding protein-C to regulate cardiac muscle contractility in a manner dependent on PKA-mediated phosphorylation. However, it is unknown if HCM-associated mutations within S2 dysregulate actomyosin dynamics by disrupting its interaction with C0-C2, ultimately leading to HCM. Herein, we study three S2 mutations known to cause HCM: R870H, E924K, and E930Δ. First, experiments using recombinant proteins, solid-phase binding, and isothermal titrating calorimetry assays independently revealed that mutant S2 proteins displayed significantly reduced binding with C0-C2. In addition, CD revealed greater instability of the coiled-coil structure in mutant S2 proteins compared with S2Wt proteins. Second, mutant S2 exhibited 5-fold greater affinity for PKA-treated C0-C2 proteins. Third, skinned papillary muscle fibers treated with mutant S2 proteins showed no change in the rate of force redevelopment as a measure of actin–myosin cross-bridge kinetics, whereas S2Wt showed increased the rate of force redevelopment. In summary, S2 and C0-C2 interaction mediated by phosphorylation is altered by mutations in S2, which augment the speed and force of contraction observed in HCM. Modulating this interaction could be a potential strategy to treat HCM in the future.
Collapse
Affiliation(s)
- Rohit R Singh
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - James W McNamara
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
17
|
Tanner BCW, Previs MJ, Wang Y, Robbins J, Palmer BM. Cardiac myosin binding protein-C phosphorylation accelerates β-cardiac myosin detachment rate in mouse myocardium. Am J Physiol Heart Circ Physiol 2021; 320:H1822-H1835. [PMID: 33666504 PMCID: PMC8163640 DOI: 10.1152/ajpheart.00673.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 11/22/2022]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a thick filament protein that influences sarcomere stiffness and modulates cardiac contraction-relaxation through its phosphorylation. Phosphorylation of cMyBP-C and ablation of cMyBP-C have been shown to increase the rate of MgADP release in the acto-myosin cross-bridge cycle in the intact sarcomere. The influence of cMyBP-C on Pi-dependent myosin kinetics has not yet been examined. We investigated the effect of cMyBP-C, and its phosphorylation, on myosin kinetics in demembranated papillary muscle strips bearing the β-cardiac myosin isoform from nontransgenic and homozygous transgenic mice lacking cMyBP-C. We used quick stretch and stochastic length-perturbation analysis to characterize rates of myosin detachment and force development over 0-12 mM Pi and at maximal (pCa 4.8) and near-half maximal (pCa 5.75) Ca2+ activation. Protein kinase A (PKA) treatment was applied to half the strips to probe the effect of cMyBP-C phosphorylation on Pi sensitivity of myosin kinetics. Increasing Pi increased myosin cross-bridge detachment rate similarly for muscles with and without cMyBP-C, although these rates were higher in muscle without cMyBP-C. Treating myocardial strips with PKA accelerated detachment rate when cMyBP-C was present over all Pi, but not when cMyBP-C was absent. The rate of force development increased with Pi in all muscles. However, Pi sensitivity of the rate force development was reduced when cMyBP-C was present versus absent, suggesting that cMyBP-C inhibits Pi-dependent reversal of the power stroke or stabilizes cross-bridge attachment to enhance the probability of completing the power stroke. These results support a functional role for cMyBP-C in slowing myosin detachment rate, possibly through a direct interaction with myosin or by altering strain-dependent myosin detachment via cMyBP-C-dependent stiffness of the thick filament and myofilament lattice. PKA treatment reduces the role for cMyBP-C to slow myosin detachment and thus effectively accelerates β-myosin detachment in the intact myofilament lattice.NEW & NOTEWORTHY Length perturbation analysis was used to demonstrate that β-cardiac myosin characteristic rates of detachment and recruitment in the intact myofilament lattice are accelerated by Pi, phosphorylation of cMyBP-C, and the absence of cMyBP-C. The results suggest that cMyBP-C normally slows myosin detachment, including Pi-dependent detachment, and that this inhibition is released with phosphorylation or absence of cMyBP-C.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Yuan Wang
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Jeffrey Robbins
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Bradley M Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| |
Collapse
|
18
|
Mamidi R, Holmes JB, Doh CY, Dominic KL, Madugula N, Stelzer JE. cMyBPC phosphorylation modulates the effect of omecamtiv mecarbil on myocardial force generation. J Gen Physiol 2021; 153:211867. [PMID: 33688929 PMCID: PMC7953254 DOI: 10.1085/jgp.202012816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Omecamtiv mecarbil (OM), a direct myosin motor activator, is currently being tested as a therapeutic replacement for conventional inotropes in heart failure (HF) patients. It is known that HF patients exhibit dysregulated β-adrenergic signaling and decreased cardiac myosin-binding protein C (cMyBPC) phosphorylation, a critical modulator of myocardial force generation. However, the functional effects of OM in conditions of altered cMyBPC phosphorylation have not been established. Here, we tested the effects of OM on force generation and cross-bridge (XB) kinetics using murine myocardial preparations isolated from wild-type (WT) hearts and from hearts expressing S273A, S282A, and S302A substitutions (SA) in the M domain, between the C1 and C2 domains of cMyBPC, which cannot be phosphorylated. At submaximal Ca2+ activations, OM-mediated force enhancements were less pronounced in SA than in WT myocardial preparations. Additionally, SA myocardial preparations lacked the dose-dependent increases in force that were observed in WT myocardial preparations. Following OM incubation, the basal differences in the rate of XB detachment (krel) between WT and SA myocardial preparations were abolished, suggesting that OM differentially affects the XB behavior when cMyBPC phosphorylation is reduced. Similarly, in myocardial preparations pretreated with protein kinase A to phosphorylate cMyBPC, incubation with OM significantly slowed krel in both the WT and SA myocardial preparations. Collectively, our data suggest there is a strong interplay between the effects of OM and XB behavior, such that it effectively uncouples the sarcomere from cMyBPC phosphorylation levels. Our findings imply that OM may significantly alter the in vivo cardiac response to β-adrenergic stimulation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Katherine L Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Nikhil Madugula
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
19
|
McCabe KJ, Rangamani P. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J Mol Cell Cardiol 2021; 154:32-40. [PMID: 33548239 DOI: 10.1016/j.yjmcc.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
The cAMP/PKA pathway is a fundamental regulator of excitation-contraction coupling in cardiomyocytes. Activation of cAMP has a variety of downstream effects on cardiac function including enhanced contraction, accelerated relaxation, adaptive stress response, mitochondrial regulation, and gene transcription. Experimental advances have shed light on the compartmentation of cAMP and PKA, which allow for control over the varied targets of these second messengers and is disrupted in heart failure conditions. Computational modeling is an important tool for understanding the spatial and temporal complexities of this system. In this review article, we outline the advances in computational modeling that have allowed for deeper understanding of cAMP/PKA dynamics in the cardiomyocyte in health and disease, and explore new modeling frameworks that may bring us closer to a more complete understanding of this system. We outline various compartmental and spatial signaling models that have been used to understand how β-adrenergic signaling pathways function in a variety of simulation conditions. We also discuss newer subcellular models of cardiovascular function that may be used as templates for the next phase of computational study of cAMP and PKA in the heart, and outline open challenges which are important to consider in future models.
Collapse
Affiliation(s)
- Kimberly J McCabe
- Simula Research Laboratory, Department of Computational Physiology, PO Box 134, 1325 Lysaker, Norway.
| | - Padmini Rangamani
- University of California San Diego, Department of Mechanical and Aerospace Engineering, 9500 Gilman Drive MC 0411, La Jolla, CA 92093, United States of America
| |
Collapse
|
20
|
Mullins PD, Bondarenko VE. Mathematical model for β1-adrenergic regulation of the mouse ventricular myocyte contraction. Am J Physiol Heart Circ Physiol 2020; 318:H264-H282. [DOI: 10.1152/ajpheart.00492.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The β1-adrenergic regulation of cardiac myocyte contraction plays an important role in regulating heart function. Activation of this system leads to an increased heart rate and stronger myocyte contraction. However, chronic stimulation of the β1-adrenergic signaling system can lead to cardiac hypertrophy and heart failure. To understand the mechanisms of action of β1-adrenoceptors, a mathematical model of cardiac myocyte contraction that includes the β1-adrenergic system was developed and studied. The model was able to simulate major experimental protocols for measurements of steady-state force-calcium relationships, cross-bridge release rate and force development rate, force-velocity relationship, and force redevelopment rate. It also reproduced quite well frequency and isoproterenol dependencies for intracellular Ca2+ concentration ([Ca2+]i) transients, total contraction force, and sarcomere shortening. The mathematical model suggested the mechanisms of increased contraction force and myocyte shortening on stimulation of β1-adrenergic receptors is due to phosphorylation of troponin I and myosin-binding protein C and increased [Ca2+]i transient resulting from activation of the β1-adrenergic signaling system. The model was used to simulate work-loop contractions and estimate the power during the cardiac cycle as well as the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The developed mathematical model can be used further for simulations of contraction of ventricular myocytes from genetically modified mice and myocytes from mice with chronic cardiac diseases. NEW & NOTEWORTHY A new mathematical model of mouse ventricular myocyte contraction that includes the β1-adrenergic system was developed. The model simulated major experimental protocols for myocyte contraction and predicted the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The model also allowed for simulations of work-loop contractions and estimation of the power during the cardiac cycle.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics, University of North Georgia, Blue Ridge, Georgia
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
21
|
Bers DM, Xiang YK, Zaccolo M. Whole-Cell cAMP and PKA Activity are Epiphenomena, Nanodomain Signaling Matters. Physiology (Bethesda) 2020; 34:240-249. [PMID: 31165682 DOI: 10.1152/physiol.00002.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Novel targeted fluorescent biosensors provide key insights into very local nanodomains of cAMP and PKA activity, and how they respond differently to β-adrenergic activation in cardiac myocytes. This unique spatiotemporal detail in living cells is not available with biochemical measurements of total cellular cAMP and PKA, and provides unique physiological insights.
Collapse
Affiliation(s)
- Donald M Bers
- Department of Pharmacology, University of California , Davis, California
| | - Yang K Xiang
- Department of Pharmacology, University of California , Davis, California
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford , Oxford , United Kingdom
| |
Collapse
|
22
|
Munro JC, Physick-Sheard PW, Pyle WG, Schenkel FS, Miller SP, Montanholi YR. Cardiac function and feed efficiency: Increased right-heart workload in feed inefficient beef cattle. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.09.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Fernandes RD, Hall A, Ferguson M, Lorenzen‐Schmidt I, Balasubramaniam V, Pyle WG. Cardiac changes during the peri-menopausal period in a VCD-induced murine model of ovarian failure. Acta Physiol (Oxf) 2019; 227:e13290. [PMID: 31050200 PMCID: PMC7379283 DOI: 10.1111/apha.13290] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/30/2023]
Abstract
AIM Cardiovascular disease (CVD) risk is lower in pre-menopausal females vs age matched males. After menopause risk equals or exceeds that of males. CVD protection of pre-menopausal females is ascribed to high circulating oestrogen levels. Despite experimental evidence that oestrogen are cardioprotective, oestrogen replacement therapy trials have not shown clear benefits. One hypothesis to explain the discrepancy proposed hearts remodel during peri-menopause. Peri-menopasual myocardial changes have never been investigated, nor has the ability of oestrogen to regulate heart function during peri-menopause. METHODS We injected female mice with 4-vinylcyclohexene diepoxide (VCD, 160 mg/kg/d IP) to cause gradual ovarian failure over 120d and act as a peri-menopausal model RESULTS: Left ventricular function assessed by Langendorff perfusion found no changes in VCD-injected mice at 60 or 120 days compared to intact mice. Cardiac myofilament activity was altered at 60 and 120 days indicating a molecular remodelling in peri-menopause. Myocardial TGF-β1 increased at 60 days post-VCD treatment along with reduced Akt phosphorylation. Acute activation of oestrogen receptor-α (ERα) or -β (ERβ) depressed left ventricular contractility in hearts from intact mice. ER-regulation of myocardial and myofilament function, and myofilament phosphorylation, were disrupted in the peri-menopausal model. Disruption occurred without alterations in total ERα or ERβ expression. CONCLUSIONS This is the first study to demonstrate remodelling of the heart in a model of peri-menopause, along with a disruption in ER-dependent regulation of the heart. These data indicate that oestrogen replacement therapy initiated after menopause affects a heart that is profoundly different from that found in reproductively intact animals.
Collapse
Affiliation(s)
| | - Alexandra Hall
- Department of Biomedical Sciences University of Guelph Guelph Ontario Canada
| | - Melissa Ferguson
- Department of Biomedical Sciences University of Guelph Guelph Ontario Canada
| | | | | | - W. Glen Pyle
- Department of Biomedical Sciences University of Guelph Guelph Ontario Canada
| |
Collapse
|
24
|
Stathopoulou K, Schobesberger S, Bork NI, Sprenger JU, Perera RK, Sotoud H, Geertz B, David JP, Christ T, Nikolaev VO, Cuello F. Divergent off-target effects of RSK N-terminal and C-terminal kinase inhibitors in cardiac myocytes. Cell Signal 2019; 63:109362. [PMID: 31344438 DOI: 10.1016/j.cellsig.2019.109362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022]
Abstract
P90 ribosomal S6 kinases (RSK) are ubiquitously expressed and regulate responses to neurohumoral stimulation. To study the role of RSK signalling on cardiac myocyte function and protein phosphorylation, pharmacological RSK inhibitors were tested. Here, the ATP competitive N-terminal kinase domain-targeting compounds D1870 and SL0101 and the allosteric C-terminal kinase domain-targeting FMK were evaluated regarding their ability to modulate cardiac myocyte protein phosphorylation. Exposure to D1870 and SL0101 significantly enhanced phospholamban (PLN) Ser16 and cardiac troponin I (cTnI) Ser22/23 phosphorylation in response to D1870 and SL0101 upon exposure to phenylephrine (PE) that activates RSK. In contrast, FMK pretreatment significantly reduced phosphorylation of both proteins in response to PE. D1870-mediated enhancement of PLN Ser16 phosphorylation was also observed after exposure to isoprenaline or noradrenaline (NA) stimuli that do not activate RSK. Inhibition of β-adrenoceptors by atenolol or cAMP-dependent protein kinase (PKA) by H89 prevented the D1870-mediated increase in PLN phosphorylation, suggesting that PKA is the kinase responsible for the observed phosphorylation. Assessment of changes in cAMP formation by FRET measurements revealed increased cAMP formation in vicinity to PLN after exposure to D1870 and SL0101. D1870 inhibited phosphodiesterase activity similarly as established PDE inhibitors rolipram or 3-isobutyl-1-methylxanthine. Assessment of catecholamine-mediated force development in rat ventricular muscle strips revealed significantly reduced EC50 for NA after D1870 pretreatment (DMSO/NA: 2.33 μmol/L vs. D1870/NA: 1.30 μmol/L). The data reveal enhanced cardiac protein phosphorylation by D1870 and SL0101 that was not detectable in response to FMK. This disparate effect might be attributed to off-target inhibition of PDEs with impact on muscle function as demonstrated for D1870.
Collapse
Affiliation(s)
- Konstantina Stathopoulou
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sophie Schobesberger
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nadja I Bork
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Julia U Sprenger
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Ruwan K Perera
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hannieh Sotoud
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Birgit Geertz
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Jean-Pierre David
- Institute of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Friederike Cuello
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
25
|
Mamidi R, Li J, Doh CY, Holmes JB, Stelzer JE. Lost in translation: Interpreting cardiac muscle mechanics data in clinical practice. Arch Biochem Biophys 2019; 662:213-218. [PMID: 30576628 PMCID: PMC6345594 DOI: 10.1016/j.abb.2018.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/25/2018] [Accepted: 12/17/2018] [Indexed: 01/10/2023]
Abstract
Current inotropic therapies improve systolic function in heart failure patients but also elicit undesirable side effects such as arrhythmias and increased intracellular Ca2+ transients. In order to maintain myocyte Ca2+ homeostasis, the increased cytosolic Ca2+ needs to be actively transported back to sarcoplasmic reticulum leading to depleted ATP reserves. Thus, an emerging approach is to design sarcomere-based treatments to correct impaired contractility via a direct and allosteric modulation of myosin's intrinsic force-generating behavior -a concept that potentially avoids the "off-target" effects. To achieve this goal, various biophysical approaches are utilized to investigate the mechanistic impact of sarcomeric modulators but information derived from diverse approaches is not fully integrated into therapeutic applications. This is in part due to the lack of information that provides a coherent connecting link between biophysical data to in vivo function. Hence, our ability to clearly discern the drug-mediated impact on whole-heart function is diminished. Reducing this translational barrier can significantly accelerate clinical progress related to sarcomere-based therapies by optimizing drug-dosing and treatment duration protocols based on information obtained from biophysical studies. Therefore, we attempt to link biophysical mechanical measurements obtained in isolated cardiac muscle and in vivo contractile function.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
26
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
27
|
Gregorich ZR, Patel JR, Cai W, Lin Z, Heurer R, Fitzsimons DP, Moss RL, Ge Y. Deletion of Enigma Homologue from the Z-disc slows tension development kinetics in mouse myocardium. J Gen Physiol 2019; 151:670-679. [PMID: 30642915 PMCID: PMC6504290 DOI: 10.1085/jgp.201812214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022] Open
Abstract
Enigma Homologue (ENH) is a component of the Z-disc, a structure that anchors actin filaments in the contractile unit of muscle, the sarcomere. Cardiac-specific ablation of ENH protein expression causes contractile dysfunction that ultimately culminates in dilated cardiomyopathy. However, whether ENH is involved in the regulation of myocardial contractility is unknown. To determine if ENH is required for the mechanical activity of cardiac muscle, we analyze muscle mechanics of isolated trabeculae from the hearts of ENH +/+ and ENH -/- mice. We detected no differences in steady-state mechanical properties but show that when muscle fibers are allowed to relax and then are restretched, the rate at which tension redevelops is depressed in ENH -/- mouse myocardium relative to that in ENH +/+ myocardium. SDS-PAGE analysis demonstrated that the expression of β-myosin heavy chain is increased in ENH -/- mouse myocardium, which could partially, but not completely, account for the depression in tension redevelopment kinetics. Using top-down proteomics analysis, we found that the expression of other thin/thick filament regulatory proteins is unaltered, although the phosphorylation of a cardiac troponin T isoform, cardiac troponin I, and myosin regulatory light chain is decreased in ENH -/- mouse myocardium. Nevertheless, these alterations are very small and thus insufficient to explain slowed tension redevelopment kinetics in ENH -/- mouse myocardium. These data suggest that the ENH protein influences tension redevelopment kinetics in mouse myocardium, possibly by affecting cross-bridge cycling kinetics. Previous studies also indicate that ablation of specific Z-disc proteins in myocardium slows contraction kinetics, which could also be a contributing factor in this study.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI
| | - Jitandrakumar R Patel
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| | - Rachel Heurer
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Daniel P Fitzsimons
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Richard L Moss
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI .,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI .,Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI.,University of Wisconsin-Madison Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI.,Human Proteomics Program, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
28
|
Risi C, Belknap B, Forgacs-Lonart E, Harris SP, Schröder GF, White HD, Galkin VE. N-Terminal Domains of Cardiac Myosin Binding Protein C Cooperatively Activate the Thin Filament. Structure 2018; 26:1604-1611.e4. [PMID: 30270174 PMCID: PMC6281772 DOI: 10.1016/j.str.2018.08.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/25/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Muscle contraction relies on interaction between myosin-based thick filaments and actin-based thin filaments. Myosin binding protein C (MyBP-C) is a key regulator of actomyosin interactions. Recent studies established that the N'-terminal domains (NTDs) of MyBP-C can either activate or inhibit thin filaments, but the mechanism of their collective action is poorly understood. Cardiac MyBP-C (cMyBP-C) harbors an extra NTD, which is absent in skeletal isoforms of MyBP-C, and its role in regulation of cardiac contraction is unknown. Here we show that the first two domains of human cMyPB-C (i.e., C0 and C1) cooperate to activate the thin filament. We demonstrate that C1 interacts with tropomyosin via a positively charged loop and that this interaction, stabilized by the C0 domain, is required for thin filament activation by cMyBP-C. Our data reveal a mechanism by which cMyBP-C can modulate cardiac contraction and demonstrate a function of the C0 domain.
Collapse
Affiliation(s)
- Cristina Risi
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Betty Belknap
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Eva Forgacs-Lonart
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| | - Gunnar F Schröder
- Institute of Complex Systems ICS-6, Forschungszentrum Jülich, 52425 Jülich, Germany; Physics Department, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Howard D White
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, 700 West Olney Road, Lewis Hall, Room 3126, Norfolk, VA 23507, USA.
| |
Collapse
|
29
|
Özakca I, Özçelikay AT. Chronic inhibition of nitric oxide synthase modulates calcium handling in rat heart 1. Can J Physiol Pharmacol 2018; 97:313-319. [PMID: 30388373 DOI: 10.1139/cjpp-2018-0388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic infusion of nitric oxide synthase (NOS) inhibitors increases peripheral vascular resistance due to inhibition of endothelial NOS leading to the activation of the arterial baroreceptor mechanisms and inhibition of central sympathetic outflow. In the current study, we explored that systemic NOS blockage activates protein kinase A (PKA)-mediated signaling pathway through maintained cGMP-dependent protein kinase (PKG) activation. Rats were treated with 3 different concentrations of N(ω)-nitro-l-arginine methyl ester (L-NAME) for 14 days. Systemic L-NAME treatment induced a dose-dependent increase in blood pressure and increased mRNA levels of atrial natriuretic peptide (ANP) and phosphorylation levels of p44/42 MAPK without any change in cardiac mass. The cardiac cGMP levels and PKG-mediated phosphorylation of vasodilator-stimulated phosphoprotein (VASP) (Ser239) did not alter in any group. At the highest dose of treatment (100 mg/kg per day), PKA-mediated phosphorylations of VASP (Ser157) and troponin I (TnI) (Ser23/24) were enhanced significantly indicating the increase in PKA activation in response to chronic NOS blockage. Alterations in both phosphorylated phospholamban (Ser16/Thr17) and sarcoplasmic/endoplasmic Ca2+-ATPase (SERCA2) levels can increase cytosolic Ca2+ load and impair Ca2+ handling. Our data suggest that the increased PKA activation in response to chronic NOS blockage appears to be responsible for cardiac abnormalities that occur due to prolonged L-NAME treatment.
Collapse
Affiliation(s)
- Işıl Özakca
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - A Tanju Özçelikay
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey.,Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
30
|
Bunch TA, Lepak VC, Kanassatega RS, Colson BA. N-terminal extension in cardiac myosin-binding protein C regulates myofilament binding. J Mol Cell Cardiol 2018; 125:140-148. [PMID: 30359561 DOI: 10.1016/j.yjmcc.2018.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/22/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE Mutations in the gene encoding the sarcomeric protein cardiac myosin-binding protein C (cMyBP-C) are a leading cause of hypertrophic cardiomyopathy (HCM). Mouse models targeting cMyBP-C and use of recombinant proteins have been effective in studying its roles in contractile function and disease. Surprisingly, while the N-terminus of cMyBP-C is important to regulate myofilament binding and contains many HCM mutations, an incorrect sequence, lacking the N-terminal 8 amino acids has been used in many studies. OBJECTIVES To determine the N-terminal cMyBP-C sequences in ventricles and investigate the roles of species-specific differences in cMyBP-C on myofilament binding. METHODS AND RESULTS We determined cMyBP-C sequences in mouse and human by inspecting available sequence databases. N-terminal differences were confirmed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Cosedimentation assays with actin or myosin were used to examine binding in mouse, human and chimeric fusion proteins of cMyBP-C. Time-resolved FRET (TR-FRET) with site-directed probes on cMyBP-C was employed to measure structural dynamics. LC-MS/MS supported the sequencing data that mouse cMyBP-C contains an eight-residue N-terminal extension (NTE) not found in human. Cosedimentation assays revealed that cardiac myosin binding was strongly influenced by the presence of the NTE, which reduced binding by 60%. 75% more human C0-C2 than mouse bound to myosin. Actin binding of mouse C0-C2 was not affected by the NTE. 50% more human C0-C2 than mouse bound to actin. TR-FRET indicates that the NTE did not significantly affect structural dynamics across domains C0 and C1. CONCLUSIONS Our functional results are consistent with the idea that cardiac myosin binding of N-terminal cMyBP-C is reduced in the mouse protein due to the presence of the NTE, which is proposed to interfere with myosin regulatory light chain (RLC) binding. The NTE is a critical component of mouse cMyBP-C, and should be considered in extrapolation of studies to cMyBP-C and HCM mechanisms in human.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Rhye-Samuel Kanassatega
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
31
|
Wang X, Fitts RH. Effects of regular exercise on ventricular myocyte biomechanics and KATP channel function. Am J Physiol Heart Circ Physiol 2018; 315:H885-H896. [DOI: 10.1152/ajpheart.00130.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exercise training is known to protect the heart from ischemia and improve function during exercise by reducing cardiomyocyte action potential duration (APD) and increasing contractility. The cellular mechanisms involve β-adrenergic regulation and the ATP-sensitive K+ (KATP) channel, but how each alters function of the left ventricle and sex specificity is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to wheel-running (TRN) or sedentary (SED) groups. After 6–8 wk of training, myocytes were isolated from the left ventricle and field stimulated at 1, 2, and 5 Hz. TRN significantly increased cardiomyocyte contractility, the kinetics of the Ca2+ transient, and responsiveness to the adrenergic receptor agonist isoproterenol (ISO), as reflected by an increased sarcomere shortening. Importantly, we demonstrated a TRN-induced upregulation of KATP channels, which was reflected by elevated content, current density, and the channel’s contribution to APD shortening at high activation rates and in the presence of the activator pinacidil. TRN induced increase in KATP current occurred throughout the left ventricle, but channel subunit content showed regional specificity with increases in Kir6.2 in the apex and SUR2A in base regions. In summary, TRN elevated cardiomyocyte cross-bridge kinetics, Ca2+ sensitivity, and the responsiveness of contractile function to β-adrenergic receptor stimulation in both sexes. Importantly, upregulation of the KATP channel accelerates repolarization and shortens APD during stress and exercise. These adaptations have clinical importance, as increased contractility and reduced APD would help protect cardiac output and reduce intracellular Ca2+ overload during stresses such as regional ischemia. NEW & NOTEWORTHY Our results demonstrate that regular exercise significantly increased ventricular myocyte shortening and relaxation velocity and the rate of rise in intracellular Ca2+ transient and enhanced the response of biomechanics and Ca2+ reuptake to β-adrenergic stimulation. Importantly, exercise training upregulated the cardiomyocyte sarcolemma ATP-sensitive K+ channel across the left ventricle in both sexes, as reflected by elevated channel subunit content, current density, and the channel’s contribution to reduced action potential duration at high activation rates.
Collapse
Affiliation(s)
- Xinrui Wang
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Robert H. Fitts
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
32
|
Tsukamoto S, Fujii T, Oyama K, Shintani SA, Shimozawa T, Kobirumaki-Shimozawa F, Ishiwata S, Fukuda N. Simultaneous imaging of local calcium and single sarcomere length in rat neonatal cardiomyocytes using yellow Cameleon-Nano140. J Gen Physiol 2017; 148:341-55. [PMID: 27670899 PMCID: PMC5037341 DOI: 10.1085/jgp.201611604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/23/2016] [Indexed: 01/07/2023] Open
Abstract
In cardiac muscle, contraction is triggered by sarcolemmal depolarization, resulting in an intracellular Ca(2+) transient, binding of Ca(2+) to troponin, and subsequent cross-bridge formation (excitation-contraction [EC] coupling). Here, we develop a novel experimental system for simultaneous nano-imaging of intracellular Ca(2+) dynamics and single sarcomere length (SL) in rat neonatal cardiomyocytes. We achieve this by expressing a fluorescence resonance energy transfer (FRET)-based Ca(2+) sensor yellow Cameleon-Nano (YC-Nano) fused to α-actinin in order to localize to the Z disks. We find that, among four different YC-Nanos, α-actinin-YC-Nano140 is best suited for high-precision analysis of EC coupling and α-actinin-YC-Nano140 enables quantitative analyses of intracellular calcium transients and sarcomere dynamics at low and high temperatures, during spontaneous beating and with electrical stimulation. We use this tool to show that calcium transients are synchronized along the length of a myofibril. However, the averaging of SL along myofibrils causes a marked underestimate (∼50%) of the magnitude of displacement because of the different timing of individual SL changes, regardless of the absence or presence of positive inotropy (via β-adrenergic stimulation or enhanced actomyosin interaction). Finally, we find that β-adrenergic stimulation with 50 nM isoproterenol accelerated Ca(2+) dynamics, in association with an approximately twofold increase in sarcomere lengthening velocity. We conclude that our experimental system has a broad range of potential applications for the unveiling molecular mechanisms of EC coupling in cardiomyocytes at the single sarcomere level.
Collapse
Affiliation(s)
- Seiichi Tsukamoto
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Teruyuki Fujii
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Kotaro Oyama
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Seine A Shintani
- Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Togo Shimozawa
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Sinjuku-ku, Tokyo 162-8480, Japan
| | - Fuyu Kobirumaki-Shimozawa
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| | - Shin'ichi Ishiwata
- Department of Physics, Faculty of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Norio Fukuda
- Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
33
|
Soetkamp D, Raedschelders K, Mastali M, Sobhani K, Bairey Merz CN, Van Eyk J. The continuing evolution of cardiac troponin I biomarker analysis: from protein to proteoform. Expert Rev Proteomics 2017; 14:973-986. [PMID: 28984473 DOI: 10.1080/14789450.2017.1387054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION The troponin complex consists of three proteins that fundamentally couple excitation with contraction. Circulating cardiac-specific Troponin I (cTnI) serves as diagnostic biomarker tools for risk stratification of acute coronary syndromes and acute myocardial infarction (MI). Within the heart, cTnI oscillates between inactive and active conformations to either block or disinhibit actinomyosin formation. This molecular mechanism is fine-tuned through extensive protein modifications whose profiles are maladaptively altered with co-morbidities including hypertrophic cardiomyopathy, diabetes, and heart failure. Technological advances in analytical platforms over the last decade enable routine baseline cTnI analysis in patients without cardiovascular complications, and hold potential to expand cTnI readouts that include modified cTnI proteoforms. Areas covered: This review covers the current state, advances, and prospects of analytical platforms that now enable routine baseline cTnI analysis in patients. In parallel, improved mass spectrometry instrumentation and workflows already reveal an array of modified cTnI proteoforms with promising diagnostic implications. Expert commentary: New analytical capabilities provide clinicians and researchers with an opportunity to address important questions surrounding circulating cTnI in the improved diagnosis of specific patient cohorts. These techniques also hold considerable promise for new predictive and prescriptive applications for individualized profiling and improve patient care.
Collapse
Affiliation(s)
- Daniel Soetkamp
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Koen Raedschelders
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Mitra Mastali
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Kimia Sobhani
- b Pathology and Laboratory Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - C Noel Bairey Merz
- c Women's Heart Center , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Jennifer Van Eyk
- a Heart Institute , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| |
Collapse
|
34
|
Ngkelo A, Richart A, Kirk JA, Bonnin P, Vilar J, Lemitre M, Marck P, Branchereau M, Le Gall S, Renault N, Guerin C, Ranek MJ, Kervadec A, Danelli L, Gautier G, Blank U, Launay P, Camerer E, Bruneval P, Menasche P, Heymes C, Luche E, Casteilla L, Cousin B, Rodewald HR, Kass DA, Silvestre JS. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction. J Exp Med 2017; 213:1353-74. [PMID: 27353089 PMCID: PMC4925026 DOI: 10.1084/jem.20160081] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/12/2016] [Indexed: 11/24/2022] Open
Abstract
Ngkelo et al. use a mast cell–deficient mouse model to reveal a protective role of mast cells in myocardial infarction, through regulation of the cardiac contractile machinery. Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit–independent MC-deficient (Cpa3Cre/+) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca2+ desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force–Ca2+ interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators.
Collapse
Affiliation(s)
- Anta Ngkelo
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Adèle Richart
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Jonathan A Kirk
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Philippe Bonnin
- INSERM, U965, Hôpital Lariboisière-Fernand-Widal, Assistance Publique Hôpitaux de Paris, F-75010 Paris, France
| | - Jose Vilar
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Mathilde Lemitre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Pauline Marck
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Maxime Branchereau
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Sylvain Le Gall
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Nisa Renault
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Coralie Guerin
- National Cytometry Platform, Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg
| | - Mark J Ranek
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Anaïs Kervadec
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Luca Danelli
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Gregory Gautier
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Ulrich Blank
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France Centre National de la Recherche Scientifique (CNRS) ERL 8252, F-75018 Paris, France
| | - Pierre Launay
- Laboratoire d'Excellence INFLAMEX, Université Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France INSERM, U1149, F-75018 Paris, France
| | - Eric Camerer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| | - Patrick Bruneval
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Philippe Menasche
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France Hôpital European George Pompidou, Assistance Publique Hôpitaux de Paris, F-75015 Paris, France
| | - Christophe Heymes
- INSERM, UMR-1048, Institut des Maladies Métaboliques et Cardiovasculaires, F-31004 Toulouse, France
| | - Elodie Luche
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Louis Casteilla
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Béatrice Cousin
- STROMALab, Etablissement Français du Sang, INSERM U1031, CNRS ERL 5311, Université de Toulouse, F-31004 Toulouse, France
| | - Hans-Reimer Rodewald
- Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - David A Kass
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, MD 212015
| | - Jean-Sébastien Silvestre
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS-970, Centre de Recherche Cardiovasculaire, Université Paris Descartes, Sorbonne Paris Cité, F-75015 Paris, France
| |
Collapse
|
35
|
Mamidi R, Gresham KS, Li J, Stelzer JE. Cardiac myosin binding protein-C Ser 302 phosphorylation regulates cardiac β-adrenergic reserve. SCIENCE ADVANCES 2017; 3:e1602445. [PMID: 28345052 PMCID: PMC5345928 DOI: 10.1126/sciadv.1602445] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 02/02/2017] [Indexed: 05/22/2023]
Abstract
Phosphorylation of cardiac myosin binding protein-C (MyBP-C) modulates cardiac contractile function; however, the specific roles of individual serines (Ser) within the M-domain that are targets for β-adrenergic signaling are not known. Recently, we demonstrated that significant accelerations in in vivo pressure development following β-agonist infusion can occur in transgenic (TG) mouse hearts expressing phospho-ablated Ser282 (that is, TGS282A) but not in hearts expressing phospho-ablation of all three serines [that is, Ser273, Ser282, and Ser302 (TG3SA)], suggesting an important modulatory role for other Ser residues. In this regard, there is evidence that Ser302 phosphorylation may be a key contributor to the β-agonist-induced positive inotropic responses in the myocardium, but its precise functional role has not been established. Thus, to determine the in vivo and in vitro functional roles of Ser302 phosphorylation, we generated TG mice expressing nonphosphorylatable Ser302 (that is, TGS302A). Left ventricular pressure-volume measurements revealed that TGS302A mice displayed no accelerations in the rate of systolic pressure rise and an inability to maintain systolic pressure following dobutamine infusion similar to TG3SA mice, implicating Ser302 phosphorylation as a critical regulator of enhanced systolic performance during β-adrenergic stress. Dynamic strain-induced cross-bridge (XB) measurements in skinned myocardium isolated from TGS302A hearts showed that the molecular basis for impaired β-adrenergic-mediated enhancements in systolic function is due to the absence of protein kinase A-mediated accelerations in the rate of cooperative XB recruitment. These results demonstrate that Ser302 phosphorylation regulates cardiac contractile reserve by enhancing contractile responses during β-adrenergic stress.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Kenneth S. Gresham
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Corresponding author.
| |
Collapse
|
36
|
Gresham KS, Mamidi R, Li J, Kwak H, Stelzer JE. Sarcomeric protein modification during adrenergic stress enhances cross-bridge kinetics and cardiac output. J Appl Physiol (1985) 2016; 122:520-530. [PMID: 27909224 DOI: 10.1152/japplphysiol.00306.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 10/21/2016] [Accepted: 11/23/2016] [Indexed: 12/23/2022] Open
Abstract
Molecular adaptations to chronic neurohormonal stress, including sarcomeric protein cleavage and phosphorylation, provide a mechanism to increase ventricular contractility and enhance cardiac output, yet the link between sarcomeric protein modifications and changes in myocardial function remains unclear. To examine the effects of neurohormonal stress on posttranslational modifications of sarcomeric proteins, mice were administered combined α- and β-adrenergic receptor agonists (isoproterenol and phenylephrine, IPE) for 14 days using implantable osmotic pumps. In addition to significant cardiac hypertrophy and increased maximal ventricular pressure, IPE treatment accelerated pressure development and relaxation (74% increase in dP/dtmax and 14% decrease in τ), resulting in a 52% increase in cardiac output compared with saline (SAL)-treated mice. Accelerated pressure development was maintained when accounting for changes in heart rate and preload, suggesting that myocardial adaptations contribute to enhanced ventricular contractility. Ventricular myocardium isolated from IPE-treated mice displayed a significant reduction in troponin I (TnI) and myosin-binding protein C (MyBP-C) expression and a concomitant increase in the phosphorylation levels of the remaining TnI and MyBP-C protein compared with myocardium isolated from saline-treated control mice. Skinned myocardium isolated from IPE-treated mice displayed a significant acceleration in the rate of cross-bridge (XB) detachment (46% increase) and an enhanced magnitude of XB recruitment (43% increase) at submaximal Ca2+ activation compared with SAL-treated mice but unaltered myofilament Ca2+ sensitivity of force generation. These findings demonstrate that sarcomeric protein modifications during neurohormonal stress are molecular adaptations that enhance in vivo ventricular contractility through accelerated XB kinetics to increase cardiac output.NEW & NOTEWORTHY Posttranslational modifications to sarcomeric regulatory proteins provide a mechanism to modulate cardiac function in response to stress. In this study, we demonstrate that neurohormonal stress produces modifications to myosin-binding protein C and troponin I, including a reduction in protein expression within the sarcomere and increased phosphorylation of the remaining protein, which serve to enhance cross-bridge kinetics and increase cardiac output. These findings highlight the importance of sarcomeric regulatory protein modifications in modulating ventricular function during cardiac stress.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Hyerin Kwak
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
37
|
Gresham KS, Stelzer JE. The contributions of cardiac myosin binding protein C and troponin I phosphorylation to β-adrenergic enhancement of in vivo cardiac function. J Physiol 2016; 594:669-86. [PMID: 26635197 DOI: 10.1113/jp270959] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 11/30/2015] [Indexed: 01/12/2023] Open
Abstract
KEY POINTS β-adrenergic stimulation increases cardiac myosin binding protein C (MyBP-C) and troponin I phosphorylation to accelerate pressure development and relaxation in vivo, although their relative contributions remain unknown. Using a novel mouse model lacking protein kinase A-phosphorylatable troponin I (TnI) and MyBP-C, we examined in vivo haemodynamic function before and after infusion of the β-agonist dobutamine. Mice expressing phospho-ablated MyBP-C displayed cardiac hypertrophy and prevented full acceleration of pressure development and relaxation in response to dobutamine, whereas expression of phosphor-ablated TnI alone had little effect on the acceleration of contractile function in response to dobutamine. Our data demonstrate that MyBP-C phosphorylation is the principal mediator of the contractile response to increased β-agonist stimulation in vivo. These results help us understand why MyBP-C dephosphorylation in the failing heart contributes to contractile dysfunction and decreased adrenergic reserve in response to acute stress. β-adrenergic stimulation plays a critical role in accelerating ventricular contraction and speeding relaxation to match cardiac output to changing circulatory demands. Two key myofilaments proteins, troponin I (TnI) and myosin binding protein-C (MyBP-C), are phosphorylated following β-adrenergic stimulation; however, their relative contributions to the enhancement of in vivo cardiac contractility are unknown. To examine the roles of TnI and MyBP-C phosphorylation in β-adrenergic-mediated enhancement of cardiac function, transgenic (TG) mice expressing non-phosphorylatable TnI protein kinase A (PKA) residues (i.e. serine to alanine substitution at Ser23/24; TnI(PKA-)) were bred with mice expressing non-phosphorylatable MyBP-C PKA residues (i.e. serine to alanine substitution at Ser273, Ser282 and Ser302; MyBPC(PKA-)) to generate a novel mouse model expressing non-phosphorylatable PKA residues in TnI and MyBP-C (DBL(PKA-)). MyBP-C dephosphorylation produced cardiac hypertrophy and increased wall thickness in MyBPC(PKA-) and DBL(PKA-) mice, and in vivo echocardiography and pressure-volume catheterization studies revealed impaired systolic function and prolonged diastolic relaxation compared to wild-type and TnI(PKA-) mice. Infusion of the β-agonist dobutamine resulted in accelerated rates of pressure development and relaxation in all mice; however, MyBPC(PKA-) and DBL(PKA-) mice displayed a blunted contractile response compared to wild-type and TnI(PKA-) mice. Furthermore, unanaesthesized MyBPC(PKA-) and DBL(PKA-) mice displayed depressed maximum systolic pressure in response to dobutamine as measured using implantable telemetry devices. Taken together, our data show that MyBP-C phosphorylation is a critical modulator of the in vivo acceleration of pressure development and relaxation as a result of enhanced β-adrenergic stimulation, and reduced MyBP-C phosphorylation may underlie depressed adrenergic reserve in heart failure.
Collapse
Affiliation(s)
- Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
38
|
Feridooni HA, MacDonald JK, Ghimire A, Pyle WG, Howlett SE. Acute exposure to progesterone attenuates cardiac contraction by modifying myofilament calcium sensitivity in the female mouse heart. Am J Physiol Heart Circ Physiol 2016; 312:H46-H59. [PMID: 27793852 DOI: 10.1152/ajpheart.00073.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 10/20/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022]
Abstract
Acute application of progesterone attenuates cardiac contraction, although the underlying mechanisms are unclear. We investigated whether progesterone modified contraction in isolated ventricular myocytes and identified the Ca2+ handling mechanisms involved in female C57BL/6 mice (6-9 mo; sodium pentobarbital anesthesia). Cells were field-stimulated (4 Hz; 37°C) and exposed to progesterone (0.001-10.0 μM) or vehicle (35 min). Ca2+ transients (fura-2) and cell shortening were recorded simultaneously. Maximal concentrations of progesterone inhibited peak contraction by 71.4% (IC50 = 160 ± 50 nM; n = 12) and slowed relaxation by 75.4%. By contrast, progesterone had no effect on amplitudes or time courses of underlying Ca2+ transients. Progesterone (1 µM) also abbreviated action potential duration. When the duration of depolarization was controlled by voltage-clamp, progesterone attenuated contraction and slowed relaxation but did not affect Ca2+ currents, Ca2+ transients, sarcoplasmic reticulum (SR) content, or fractional release of SR Ca2+ Actomyosin MgATPase activity was assayed in myofilaments from hearts perfused with progesterone (1 μM) or vehicle (35 min). While maximal responses to Ca2+ were not affected by progesterone, myofilament Ca2+ sensitivity was reduced (EC50 = 0.94 ± 0.01 µM for control, n = 7 vs. 1.13 ± 0.05 μM for progesterone, n = 6; P < 0.05) and progesterone increased phosphorylation of myosin binding protein C. The effects on contraction were inhibited by lonaprisan (progesterone receptor antagonist) and levosimendan (Ca2+ sensitizer). Unlike results in females, progesterone had no effect on contraction or myofilament Ca2+ sensitivity in age-matched male mice. These data indicate that progesterone reduces myofilament Ca2+ sensitivity in female hearts, which may exacerbate manifestations of cardiovascular disease late in pregnancy when progesterone levels are high. NEW & NOTEWORTHY We investigated myocardial effects of acute application of progesterone. In females, but not males, progesterone attenuates and slows cardiomyocyte contraction with no effect on calcium transients. Progesterone also reduces myofilament calcium sensitivity in female hearts. This may adversely affect heart function, especially when serum progesterone levels are high in pregnancy.Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/acute-progesterone-modifies-cardiac-contraction/.
Collapse
Affiliation(s)
- Hirad A Feridooni
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Anjali Ghimire
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - W Glen Pyle
- Centre for Cardiovascular Investigations, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada; and
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; .,Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
39
|
Barbagallo F, Xu B, Reddy GR, West T, Wang Q, Fu Q, Li M, Shi Q, Ginsburg KS, Ferrier W, Isidori AM, Naro F, Patel HH, Bossuyt J, Bers D, Xiang YK. Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circ Res 2016; 119:931-43. [PMID: 27576469 DOI: 10.1161/circresaha.116.308964] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/29/2016] [Indexed: 01/05/2023]
Abstract
RATIONALE In heart failure, myofilament proteins display abnormal phosphorylation, which contributes to contractile dysfunction. The mechanisms underlying the dysregulation of protein phosphorylation on myofilaments is not clear. OBJECTIVE This study aims to understand the mechanisms underlying altered phosphorylation of myofilament proteins in heart failure. METHODS AND RESULTS We generate a novel genetically encoded protein kinase A (PKA) biosensor anchored onto the myofilaments in rabbit cardiac myocytes to examine PKA activity at the myofilaments in responses to adrenergic stimulation. We show that PKA activity is shifted from the sarcolemma to the myofilaments in hypertrophic failing rabbit myocytes. In particular, the increased PKA activity on the myofilaments is because of an enhanced β2 adrenergic receptor signal selectively directed to the myofilaments together with a reduced phosphodiesterase activity associated with the myofibrils. Mechanistically, the enhanced PKA activity on the myofilaments is associated with downregulation of caveolin-3 in the hypertrophic failing rabbit myocytes. Reintroduction of caveolin-3 in the failing myocytes is able to normalize the distribution of β2 adrenergic receptor signal by preventing PKA signal access to the myofilaments and to restore contractile response to adrenergic stimulation. CONCLUSIONS In hypertrophic rabbit myocytes, selectively enhanced β2 adrenergic receptor signaling toward the myofilaments contributes to elevated PKA activity and PKA phosphorylation of myofilament proteins. Reintroduction of caveolin-3 is able to confine β2 adrenergic receptor signaling and restore myocyte contractility in response to β adrenergic stimulation.
Collapse
Affiliation(s)
- Federica Barbagallo
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Bing Xu
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Gopireddy R Reddy
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Toni West
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Qingtong Wang
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Qin Fu
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Minghui Li
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Qian Shi
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Kenneth S Ginsburg
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - William Ferrier
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Andrea M Isidori
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Fabio Naro
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Hemal H Patel
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Julie Bossuyt
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Donald Bers
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.)
| | - Yang K Xiang
- From the Department of Pharmacology, University of California at Davis (F.B., B.X., G.R.R., T.W., Q.W., Q.F., M.L., Q.S., K.S.G., J.B., D.B., Y.K.X.); Department of Experimental Medicine (F.B., A.M.I.) and Department of Anatomical, Histological, Forensic, and Orthopedic Sciences (F.N.), Sapienza University of Rome, Italy; Department of Medicine and Epidemiology, School of Veterinary Medicine, and Surgical Research Facility, School of Medicine, University of California, Davis (W.F.); VA San Diego Healthcare System, La Jolla, CA (H.H.P.); Department of Anesthesiology, University of California, San Diego, La Jolla (H.H.P.); and VA Northern California Healthcare System, Mather (Y.K.X.).
| |
Collapse
|
40
|
Peyrou J, Réant P, Reynaud A, Cornolle C, Dijos M, Rooryck-Thambo C, Landelle M, Montaudon M, Laurent F, Roudaut R, Lafitte S. Morphological and functional abnormalities pattern in hypertrophy-free HCM mutation carriers detected with echocardiography. Int J Cardiovasc Imaging 2016; 32:1379-1389. [PMID: 27324645 DOI: 10.1007/s10554-016-0929-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 06/14/2016] [Indexed: 01/20/2023]
Abstract
To evaluate if morphological or functional abnormalities could be detected with echocardiography in hypertrophic myocardiopathy (HCM) mutation carriers without left ventricle (LV) hypertrophy has developed. HCM is caused by extensive genes mutations found in two-third of patients. Because screening for carriership of a large population is unreasonable, identification of asymptomatic subjects is confined to the use of imaging such as echocardiography, by which subtle abnormalities can be detected. Comprehensive echocardiographic studies including morphological and functional assessment were performed. Asymptomatic HCM mutation carriers without hypertrophy (Phe-/Gen+, n = 14), and HCM patients (Phe+/Gen+, n = 17) were compared with healthy control subjects (n = 32) in a prospective design. Compared to controls, septum thickness was significantly higher with an elongated mitral valve in both groups. Thickened LV muscular band (LVMB) are more likely found in Phe-/Gen+ and Phe+/Gen+. The thickness of LVMB was higher in the Phe-/Gen+ versus controls. A LVMB thickness ≥3.6 mm was associated with HCM mutation carriership (sensitivity: 76.9 %, specificity: 94.1 %). The regional strain was significantly impaired in the basal segments of the septum in the Phe-/Gen+. The GLS was significantly impaired in the Phe+/Gen+ (-16.4 % ± 2.9 vs. -21.4 % ± 2.3 in control subjects, p = 0.01). Mitral A wave velocity, septal E/e', averaged E/e' were increased in both groups. E/A ratio was significantly lower in Phe+/Gen+. Morphological and functional abnormalities in hypertrophy-free HCM mutation carriers could be detected with echocardiography. Anomalous thickened LVMB could be representing a morphological marker for the HCM disease without overt hypertrophy has developed or in patients with an ambiguous diagnosis.
Collapse
Affiliation(s)
- Jérôme Peyrou
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France.
| | - Patricia Réant
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| | - Amélie Reynaud
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| | - Claire Cornolle
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| | - Marina Dijos
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| | - Caroline Rooryck-Thambo
- Department of Molecular Genetic, Bordeaux University Hospital, Pellegrin Hospital, Bordeaux, France
| | - Mathieu Landelle
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| | - Michel Montaudon
- Department of Radiology, Bordeaux University Hospital, Haut-Lévêque Heart Hospital, Pessac, France
| | - François Laurent
- Department of Radiology, Bordeaux University Hospital, Haut-Lévêque Heart Hospital, Pessac, France
| | - Raymond Roudaut
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| | - Stéphane Lafitte
- Echocardiography Laboratory, Haut-Lévêque Heart Hospital, Bordeaux University Hospital, Avenue de Magellan, 33604, Pessac Cedex, France
| |
Collapse
|
41
|
Najafi A, Sequeira V, Kuster DWD, van der Velden J. β-adrenergic receptor signalling and its functional consequences in the diseased heart. Eur J Clin Invest 2016; 46:362-74. [PMID: 26842371 DOI: 10.1111/eci.12598] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND To maintain the balance between the demand of the body and supply (cardiac output), cardiac performance is tightly regulated via the parasympathetic and sympathetic nervous systems. In heart failure, cardiac output (supply) is decreased due to pathologic remodelling of the heart. To meet the demands of the body, the sympathetic system is activated and catecholamines stimulate β-adrenergic receptors (β-ARs) to increase contractile performance and cardiac output. Although this is beneficial in the acute phase, chronic β-ARs stimulation initiates a cascade of alterations at the cellular level, resulting in a diminished contractile performance of the heart. MATERIALS AND METHODS This narrative review includes results from previously published systematic reviews and clinical and basic research publications obtained via PubMed up to May 2015. RESULTS We discuss the alterations that occur during sustained β-AR stimulation in diseased myocardium and emphasize the consequences of β-AR overstimulation for cardiac function. In addition, current treatment options as well as future therapeutic strategies to treat patients with heart failure to normalize consequences of β-AR overstimulation are discussed. CONCLUSIONS The heart is able to protect itself from chronic stimulation of the β-ARs via desensitization and reduced membrane availability of the β-ARs. However, ultimately this leads to an impaired downstream signalling and decreased protein kinase A (PKA)-mediated protein phosphorylation. β-blockers are widely used to prevent β-AR overstimulation and restore β-ARs in the failing hearts. However, novel and more specific therapeutic treatments are needed to improve treatment of HF in the future.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| | - Vasco Sequeira
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands
| | - Jolanda van der Velden
- Department of Physiology, VU University Medical Center, Institute for Cardiovascular research (ICaR-VU), Amsterdam, the Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, the Netherlands
| |
Collapse
|
42
|
Rodrigues PG, Leite-Moreira AF, Falcão-Pires I. Myocardial reverse remodeling: how far can we rewind? Am J Physiol Heart Circ Physiol 2016; 310:H1402-22. [PMID: 26993225 DOI: 10.1152/ajpheart.00696.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/04/2016] [Indexed: 12/19/2022]
Abstract
Heart failure (HF) is a systemic disease that can be divided into HF with reduced ejection fraction (HFrEF) and with preserved ejection fraction (HFpEF). HFpEF accounts for over 50% of all HF patients and is typically associated with high prevalence of several comorbidities, including hypertension, diabetes mellitus, pulmonary hypertension, obesity, and atrial fibrillation. Myocardial remodeling occurs both in HFrEF and HFpEF and it involves changes in cardiac structure, myocardial composition, and myocyte deformation and multiple biochemical and molecular alterations that impact heart function and its reserve capacity. Understanding the features of myocardial remodeling has become a major objective for limiting or reversing its progression, the latter known as reverse remodeling (RR). Research on HFrEF RR process is broader and has delivered effective therapeutic strategies, which have been employed for some decades. However, the RR process in HFpEF is less clear partly due to the lack of information on HFpEF pathophysiology and to the long list of failed standard HF therapeutics strategies in these patient's outcomes. Nevertheless, new proteins, protein-protein interactions, and signaling pathways are being explored as potential new targets for HFpEF remodeling and RR. Here, we review recent translational and clinical research in HFpEF myocardial remodeling to provide an overview on the most important features of RR, comparing HFpEF with HFrEF conditions.
Collapse
Affiliation(s)
- Patrícia G Rodrigues
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Adelino F Leite-Moreira
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, Universidade do Porto, Porto, Portugal
| |
Collapse
|
43
|
Site-directed spectroscopy of cardiac myosin-binding protein C reveals effects of phosphorylation on protein structural dynamics. Proc Natl Acad Sci U S A 2016; 113:3233-8. [PMID: 26908877 DOI: 10.1073/pnas.1521281113] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have used the site-directed spectroscopies of time-resolved fluorescence resonance energy transfer (TR-FRET) and double electron-electron resonance (DEER), combined with complementary molecular dynamics (MD) simulations, to resolve the structure and dynamics of cardiac myosin-binding protein C (cMyBP-C), focusing on the N-terminal region. The results have implications for the role of this protein in myocardial contraction, with particular relevance to β-adrenergic signaling, heart failure, and hypertrophic cardiomyopathy. N-terminal cMyBP-C domains C0-C2 (C0C2) contain binding regions for potential interactions with both thick and thin filaments. Phosphorylation by PKA in the MyBP-C motif regulates these binding interactions. Our spectroscopic assays detect distances between pairs of site-directed probes on cMyBP-C. We engineered intramolecular pairs of labeling sites within cMyBP-C to measure, with high resolution, the distance and disorder in the protein's flexible regions using TR-FRET and DEER. Phosphorylation reduced the level of molecular disorder and the distribution of C0C2 intramolecular distances became more compact, with probes flanking either the motif between C1 and C2 or the Pro/Ala-rich linker (PAL) between C0 and C1. Further insight was obtained from microsecond MD simulations, which revealed a large structural change in the disordered motif region in which phosphorylation unmasks the surface of a series of residues on a stable α-helix within the motif with high potential as a protein-protein interaction site. These experimental and computational findings elucidate structural transitions in the flexible and dynamic portions of cMyBP-C, providing previously unidentified molecular insight into the modulatory role of this protein in cardiac muscle contractility.
Collapse
|
44
|
Mamidi R, Gresham KS, Verma S, Stelzer JE. Cardiac Myosin Binding Protein-C Phosphorylation Modulates Myofilament Length-Dependent Activation. Front Physiol 2016; 7:38. [PMID: 26913007 PMCID: PMC4753332 DOI: 10.3389/fphys.2016.00038] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Cardiac myosin binding protein-C (cMyBP-C) phosphorylation is an important regulator of contractile function, however, its contributions to length-dependent changes in cross-bridge (XB) kinetics is unknown. Therefore, we performed mechanical experiments to quantify contractile function in detergent-skinned ventricular preparations isolated from wild-type (WT) hearts, and hearts expressing non-phosphorylatable cMyBP-C [Ser to Ala substitutions at residues Ser273, Ser282, and Ser302 (i.e., 3SA)], at sarcomere length (SL) 1.9 μm or 2.1μm, prior and following protein kinase A (PKA) treatment. Steady-state force generation measurements revealed a blunting in the length-dependent increase in myofilament Ca(2+)-sensitivity of force generation (pCa50) following an increase in SL in 3SA skinned myocardium compared to WT skinned myocardium. Dynamic XB behavior was assessed at submaximal Ca(2+)-activations by imposing an acute rapid stretch of 2% of initial muscle length, and measuring both the magnitudes and rates of resultant phases of force decay due to strain-induced XB detachment and delayed force rise due to recruitment of additional XBs with increased SL (i.e., stretch activation). The magnitude (P2) and rate of XB detachment (k rel) following stretch was significantly reduced in 3SA skinned myocardium compared to WT skinned myocardium at short and long SL, and prior to and following PKA treatment. Furthermore, the length-dependent acceleration of k rel due to decreased SL that was observed in WT skinned myocardium was abolished in 3SA skinned myocardium. PKA treatment accelerated the rate of XB recruitment (k df) following stretch at both SL's in WT but not in 3SA skinned myocardium. The amplitude of the enhancement in force generation above initial pre-stretch steady-state levels (P3) was not different between WT and 3SA skinned myocardium at any condition measured. However, the magnitude of the entire delayed force phase which can dip below initial pre-stretch steady-state levels (Pdf) was significantly lower in 3SA skinned myocardium under all conditions, in part due to a reduced magnitude of XB detachment (P2) in 3SA skinned myocardium compared to WT skinned myocardium. These findings demonstrate that cMyBP-C phospho-ablation regulates SL- and PKA-mediated effects on XB kinetics in the myocardium, which would be expected to contribute to the regulation of the Frank-Starling mechanism.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| | - Sujeet Verma
- Department of Horticultural Science, Institute of Food and Agricultural Sciences Gulf Coast Research and Education Center, University of Florida Wimauma, FL, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
45
|
Najafi A, Sequeira V, Helmes M, Bollen IAE, Goebel M, Regan JA, Carrier L, Kuster DWD, Van Der Velden J. Selective phosphorylation of PKA targets after β-adrenergic receptor stimulation impairs myofilament function in Mybpc3-targeted HCM mouse model. Cardiovasc Res 2016; 110:200-14. [PMID: 26825555 DOI: 10.1093/cvr/cvw026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 01/22/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Hypertrophic cardiomyopathy (HCM) has been associated with reduced β-adrenergic receptor (β-AR) signalling, leading downstream to a low protein kinase A (PKA)-mediated phosphorylation. It remained undefined whether all PKA targets will be affected similarly by diminished β-AR signalling in HCM. We aimed to investigate the role of β-AR signalling on regulating myofilament and calcium handling in an HCM mouse model harbouring a gene mutation (G > A transition on the last nucleotide of exon 6) in Mybpc3 encoding cardiac myosin-binding protein C. METHODS AND RESULTS Cardiomyocyte contractile properties and phosphorylation state were measured in left ventricular permeabilized and intact cardiomyocytes isolated from heterozygous (HET) or homozygous (KI) Mybpc3-targeted knock-in mice. Significantly higher myofilament Ca²⁺sensitivity and passive tension were detected in KI mice, which were normalized after PKA treatment. Loaded intact cardiomyocyte force-sarcomere length relation was impaired in both HET and KI mice, suggesting a reduced length-dependent activation. Unloaded cardiomyocyte function revealed an impaired myofilament contractile response to isoprenaline (ISO) in KI, whereas the calcium-handling response to ISO was maintained. This disparity was explained by an attenuated increase in cardiac troponin I (cTnI) phosphorylation in KI, whereas the increase in phospholamban (PLN) phosphorylation was maintained to wild-type values. CONCLUSION These data provide evidence that in the KI HCM mouse model, β-AR stimulation leads to preferential PKA phosphorylation of PLN over cTnI, resulting in an impaired inotropic and lusitropic response.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Ilse A E Bollen
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Max Goebel
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Jessica A Regan
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Lucie Carrier
- Institute of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Diederik W D Kuster
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands
| | - Jolanda Van Der Velden
- Department of Physiology, Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center Amsterdam, Netherlands ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
46
|
Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 2015; 576:385-94. [PMID: 26526134 DOI: 10.1016/j.gene.2015.10.052] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Troponin I (TnI) is the inhibitory subunit of the troponin complex in the sarcomeric thin filament of striated muscle and plays a central role in the calcium regulation of contraction and relaxation. Vertebrate TnI has evolved into three isoforms encoded by three homologous genes: TNNI1 for slow skeletal muscle TnI, TNNI2 for fast skeletal muscle TnI and TNNI3 for cardiac TnI, which are expressed under muscle type-specific and developmental regulations. To summarize the current knowledge on the TnI isoform genes and products, this review focuses on the evolution, gene regulation, posttranslational modifications, and structure-function relationship of TnI isoform proteins. Their physiological and medical significances are also discussed.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
47
|
van Dijk SJ, Witt CC, Harris SP. Normal cardiac contraction in mice lacking the proline-alanine rich region and C1 domain of cardiac myosin binding protein C. J Mol Cell Cardiol 2015; 88:124-32. [PMID: 26455481 DOI: 10.1016/j.yjmcc.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 11/28/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is an essential regulator of cross bridge cycling. Through mechanisms that are incompletely understood the N-terminal domains (NTDs) of cMyBP-C can activate contraction even in the absence of calcium and can also inhibit cross bridge kinetics in the presence of calcium. In vitro studies indicated that the proline-alanine rich (p/a) region and C1 domain are involved in these processes, although effects were greater using human proteins compared to murine proteins (Shaffer et al. J Biomed Biotechnol 2010, 2010: 789798). We hypothesized that the p/a and C1 region are critical for the timing of contraction. In this study we tested this hypothesis using a mouse model lacking the p/a and C1 region (p/a-C1(-/-) mice) to investigate the in vivo relevance of these regions on cardiac performance. Surprisingly, hearts of adult p/a-C1(-/-) mice functioned normally both on a cellular and whole organ level. Force measurements in permeabilized cardiomyocytes from adult p/a-C1(-/-) mice and wild type (Wt) littermate controls demonstrated similar rates of force redevelopment both at submaximal and maximal activation. Maximal and passive force and calcium sensitivity of force were comparable between groups as well. Echocardiograms showed normal isovolumetric contraction times, fractional shortening and ejection fraction, indicating proper systolic function in p/a-C1(-/-) mouse hearts. p/a-C1(-/-) mice showed a slight but significant reduction in isovolumetric relaxation time compared to Wt littermates, yet this difference disappeared in older mice (7-8months of age). Moreover, stroke volume was preserved in p/a-C1(-/-) mice, corroborating sufficient time for normal filling of the heart. Overall, the hearts of p/a-C1(-/-) mice showed no signs of dysfunction even after chronic stress with an adrenergic agonist. Together, these results indicate that the p/a region and the C1 domain of cMyBP-C are not critical for normal cardiac contraction in mice and that these domains have little if any impact on cross bridge kinetics in mice. These results thus contrast with in vitro studies utilizing proteins encoding the human p/a region and C1 domain. More detailed insight in how individual domains of cMyBP-C function and interact, across species and over the wide spectrum of conditions in which the heart has to function, will be essential to a better understanding of how cMyBP-C tunes cardiac contraction.
Collapse
Affiliation(s)
- Sabine J van Dijk
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Christian C Witt
- Department of Anaesthesiology and Operative Intensive Care, University Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Samantha P Harris
- Department of Cellular and Molecular Medicine, University of Arizona, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
48
|
Rosas PC, Liu Y, Abdalla MI, Thomas CM, Kidwell DT, Dusio GF, Mukhopadhyay D, Kumar R, Baker KM, Mitchell BM, Powers PA, Fitzsimons DP, Patel BG, Warren CM, Solaro RJ, Moss RL, Tong CW. Phosphorylation of cardiac Myosin-binding protein-C is a critical mediator of diastolic function. Circ Heart Fail 2015; 8:582-94. [PMID: 25740839 DOI: 10.1161/circheartfailure.114.001550] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 02/24/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND Heart failure (HF) with preserved ejection fraction (HFpEF) accounts for ≈50% of all cases of HF and currently has no effective treatment. Diastolic dysfunction underlies HFpEF; therefore, elucidation of the mechanisms that mediate relaxation can provide new potential targets for treatment. Cardiac myosin-binding protein-C (cMyBP-C) is a thick filament protein that modulates cross-bridge cycling rates via alterations in its phosphorylation status. Thus, we hypothesize that phosphorylated cMyBP-C accelerates the rate of cross-bridge detachment, thereby enhancing relaxation to mediate diastolic function. METHODS AND RESULTS We compared mouse models expressing phosphorylation-deficient cMyBP-C(S273A/S282A/S302A)-cMyBP-C(t3SA), phosphomimetic cMyBP-C(S273D/S282D/S302D)-cMyBP-C(t3SD), and wild-type-control cMyBP-C(tWT) to elucidate the functional effects of cMyBP-C phosphorylation. Decreased voluntary running distances, increased lung/body weight ratios, and increased brain natriuretic peptide levels in cMyBP-C(t3SA) mice demonstrate that phosphorylation deficiency is associated with signs of HF. Echocardiography (ejection fraction and myocardial relaxation velocity) and pressure/volume measurements (-dP/dtmin, pressure decay time constant τ-Glantz, and passive filling stiffness) show that cMyBP-C phosphorylation enhances myocardial relaxation in cMyBP-C(t3SD) mice, whereas deficient cMyBP-C phosphorylation causes diastolic dysfunction with HFpEF in cMyBP-C(t3SA) mice. Simultaneous force and [Ca(2+)]i measurements on intact papillary muscles show that enhancement of relaxation in cMyBP-C(t3SD) mice and impairment of relaxation in cMyBP-C(t3SA) mice are not because of altered [Ca(2+)]i handling, implicating that altered cross-bridge detachment rates mediate these changes in relaxation rates. CONCLUSIONS cMyBP-C phosphorylation enhances relaxation, whereas deficient phosphorylation causes diastolic dysfunction and phenotypes resembling HFpEF. Thus, cMyBP-C is a potential target for treatment of HFpEF.
Collapse
Affiliation(s)
- Paola C Rosas
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Yang Liu
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Mohamed I Abdalla
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Candice M Thomas
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - David T Kidwell
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Giuseppina F Dusio
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Dhriti Mukhopadhyay
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Rajesh Kumar
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Kenneth M Baker
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Brett M Mitchell
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Patricia A Powers
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Daniel P Fitzsimons
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Bindiya G Patel
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Chad M Warren
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - R John Solaro
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Richard L Moss
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.)
| | - Carl W Tong
- From the Department of Medical Physiology (P.C.R., Y.L., M.I.A., B.M.M., C.W.T.) and Division of Molecular Cardiology, Department of Medicine (C.M.T., R.K., K.M.B.), Texas A&M University Health Science Center, College of Medicine, Temple City; Internal Medicine/Division of Cardiology (D.T.K., C.W.T.) and Department of Surgery (G.F.D., D.M.), Baylor Scott & White Health-Central Texas, Temple City; Department of Cell and Regenerative Biology and Biotechnology Center, University of Wisconsin School of Medicine and Public Health, Madison (P.A.P., D.P.F., R.L.M.); and Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, Chicago (B.G.P., C.M.W., R.J.S.).
| |
Collapse
|
49
|
Chang AN, Battiprolu PK, Cowley PM, Chen G, Gerard RD, Pinto JR, Hill JA, Baker AJ, Kamm KE, Stull JT. Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem 2015; 290:10703-16. [PMID: 25733667 DOI: 10.1074/jbc.m115.642165] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a β-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.
Collapse
Affiliation(s)
| | | | - Patrick M Cowley
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | - Robert D Gerard
- Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Jose R Pinto
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306
| | - Joseph A Hill
- Internal Medicine (Cardiology), and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Anthony J Baker
- the Veterans Affairs Medical Center, San Francisco, California 94143, the University of California, San Francisco, California 94143, and
| | | | | |
Collapse
|
50
|
Negroni JA, Morotti S, Lascano EC, Gomes AV, Grandi E, Puglisi JL, Bers DM. β-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model. J Mol Cell Cardiol 2015; 81:162-75. [PMID: 25724724 DOI: 10.1016/j.yjmcc.2015.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/10/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
A five-state model of myofilament contraction was integrated into a well-established rabbit ventricular myocyte model of ion channels, Ca(2+) transporters and kinase signaling to analyze the relative contribution of different phosphorylation targets to the overall mechanical response driven by β-adrenergic stimulation (β-AS). β-AS effect on sarcoplasmic reticulum Ca(2+) handling, Ca(2+), K(+) and Cl(-) currents, and Na(+)/K(+)-ATPase properties was included based on experimental data. The inotropic effect on the myofilaments was represented as reduced myofilament Ca(2+) sensitivity (XBCa) and titin stiffness, and increased cross-bridge (XB) cycling rate (XBcy). Assuming independent roles of XBCa and XBcy, the model reproduced experimental β-AS responses on action potentials and Ca(2+) transient amplitude and kinetics. It also replicated the behavior of force-Ca(2+), release-restretch, length-step, stiffness-frequency and force-velocity relationships, and increased force and shortening in isometric and isotonic twitch contractions. The β-AS effect was then switched off from individual targets to analyze their relative impact on contractility. Preventing β-AS effects on L-type Ca(2+) channels or phospholamban limited Ca(2+) transients and contractile responses in parallel, while blocking phospholemman and K(+) channel (IKs) effects enhanced Ca(2+) and inotropy. Removal of β-AS effects from XBCa enhanced contractile force while decreasing peak Ca(2+) (due to greater Ca(2+) buffering), but had less effect on shortening. Conversely, preventing β-AS effects on XBcy preserved Ca(2+) transient effects, but blunted inotropy (both isometric force and especially shortening). Removal of titin effects had little impact on contraction. Finally, exclusion of β-AS from XBCa and XBcy while preserving effects on other targets resulted in preserved peak isometric force response (with slower kinetics) but nearly abolished enhanced shortening. β-AS effects on XBCa and XBcy have greater impact on isometric and isotonic contraction, respectively.
Collapse
Affiliation(s)
- Jorge A Negroni
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina.
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, CA, USA
| | - Elena C Lascano
- Department of Comparative, Cellular and Molecular Biology, Universidad Favaloro, Buenos Aires, Argentina
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, University of California Davis, CA, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, CA, USA
| | - José L Puglisi
- Department of Pharmacology, University of California Davis, CA, USA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, CA, USA.
| |
Collapse
|