1
|
Zhang EL, Van Petten J, Eitzen G. RhoGDI in RBL-2H3 cells acts as a negative regulator of Rho GTPase signaling to inhibit granule exocytosis. J Leukoc Biol 2024; 116:1498-1514. [PMID: 38943612 PMCID: PMC11599123 DOI: 10.1093/jleuko/qiae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 05/28/2024] [Accepted: 06/27/2024] [Indexed: 07/01/2024] Open
Abstract
Mast cells are hematopoietic-derived immune cells that possess numerous cytoplasmic granules containing immune mediators such as cytokines and histamine. Antigen stimulation triggers mast cell granule exocytosis, releasing granule contents in a process known as degranulation. We have shown that Rho GTPase signaling is an essential component of granule exocytosis, however, the proteins that regulate Rho GTPases during this process are not well defined. Here we examined the role of Rho guanine-nucleotide dissociation inhibitors (RhoGDIs) in regulating Rho GTPase signaling using RBL-2H3 cells as a mast cell model. We found that RBL-2H3 cells express two RhoGDI isoforms which are primarily localized to the cytosol. Knockdown of RhoGDI1 and RhoGDI2 greatly reduced the levels of all Rho GTPases tested: RhoA, RhoG, Rac1, Rac2, and Cdc42. The reduction in Rho GTPase levels was accompanied by an increase in their membrane-localized fraction and an elevation in the levels of active Rho GTPases. All RhoGDI knockdown strains had altered resting cell morphology, although each strain was activation competent when stimulated. Live cell imaging revealed that the RhoGDI1/2 double knockdown (DKD) strain maintained its activated state for prolonged periods of time compared to the other strains. Only the RhoGDI1/2 DKD strain showed a significant increase in granule exocytosis. Conversely, RhoGDI overexpression in RBL-2H3 cells did not noticeably affect Rho GTPases or degranulation. Based on these results, RhoGDIs act as negative regulators of Rho GTPases during mast cell degranulation, and inhibit exocytosis by sequestering Rho GTPases in the cytosol.
Collapse
Affiliation(s)
- Eric L Zhang
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Jennifer Van Petten
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | - Gary Eitzen
- Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
3
|
Delisle SV, Labreche C, Lara-Márquez M, Abou-Hamad J, Garland B, Lamarche-Vane N, Sabourin LA. Expression of a kinase inactive SLK is embryonic lethal and impairs cell migration in fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119783. [PMID: 38871226 DOI: 10.1016/j.bbamcr.2024.119783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Kinases are known to have kinase activity independent functions. To gain further insights into potential kinase-independent functions of SLK/STK2, we have developed a kinase-dead allele, SLKK63R using in vivo CRISPR/Cas technology. Our studies show that blastocysts homozygote for SLKK63R do not develop into viable mice. However, heterozygotes are viable and fertile with no overt phenotypes. Analyses of mouse embryonic fibroblasts show that expression of SLKK63R results in a 50% decrease in kinase activity in heterozygotes. In contrast to previous studies, our data show that SLK does not form homodimers and that the kinase defective allele does not act in a dominant negative fashion. Expression of SLKK63R leads to altered Rac1 and RhoA activity, increased stress fiber formation and delayed focal adhesion turnover. Our data support a previously observed role for SLK in cell migration and suggest that at least 50% kinase activity is sufficient for embryonic development.
Collapse
Affiliation(s)
- Samuel V Delisle
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Cedrik Labreche
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Mónica Lara-Márquez
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - John Abou-Hamad
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brennan Garland
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nathalie Lamarche-Vane
- Cancer Research Program, Research Institute of the McGill University Health Centre and Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Luc A Sabourin
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; Dept. of Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Song K, Jiang X, Xu X, Chen Y, Zhang J, Tian Y, Wang Q, Weng J, Liang Y, Ma W. Ste20-like kinase activity promotes meiotic resumption and spindle microtubule stability in mouse oocytes. Cell Prolif 2022; 56:e13391. [PMID: 36579845 PMCID: PMC10068952 DOI: 10.1111/cpr.13391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Ste20-like kinase (SLK) is involved in cell proliferation and migration in somatic cells. This study aims to explore SLK expression and function in mouse oocyte meiosis. Western blot, immunofluorescence, Co-immunoprecipitation, drug treatment, cRNA construct and in vitro transcription, microinjection of morpholino oilgo (MO) and cRNA were performed in oocytes. High and stable protein expression of SLK was detected in mouse oocyte meiosis, with dynamic distribution in the nucleus, chromosomes and spindle apparatus. SLK phosphorylation emerges around meiotic resumption and reaches a peak during metaphase I (MI) and metaphase II. SLK knockdown with MO or expression of kinase-dead SLK K63R dramatically delays meiotic resumption due to sequentially suppressed phosphorylation of Polo-like kinase 1 (Plk1) and cell division cycle 25C (CDC25C) and dephosphorylation of cyclin-dependent kinase 1 (CDK1). SLK depletion promotes ubiquitination-mediated degradation of paxillin, an antagonist to α-tubulin deacetylation, and thus destroys spindle assembly and chromosome alignment; these phenotypes can be substantially rescued by exogenous expression of SLK kinase active fragment. Additionally, exogenous SLK effectively promotes meiotic progression and spindle assembly in aging oocytes with reduced SLK. Collectively, this study reveals SLK is required for meiotic resumption and spindle assembly in mouse oocyte meiosis.
Collapse
Affiliation(s)
- Ke Song
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Jiang
- Division of Sport Anatomy, School of Sport Science, Beijing Sport University, Beijing, China
| | - Xiangning Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ye Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ying Tian
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Qian Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing Weng
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yuanjing Liang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
TNF-α Plus IL-1β Induces Opposite Regulation of Cx43 Hemichannels and Gap Junctions in Mesangial Cells through a RhoA/ROCK-Dependent Pathway. Int J Mol Sci 2022; 23:ijms231710097. [PMID: 36077498 PMCID: PMC9456118 DOI: 10.3390/ijms231710097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Connexin 43 (Cx43) is expressed in kidney tissue where it forms hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analysis of ethidium uptake and thiobarbituric acid reactive species revealed that treatment with TNF-α plus IL-1β increases Cx43 hemichannel activity and oxidative stress in MES-13 cells (a cell line derived from mesangial cells), and in primary mesangial cells. The latter was also accompanied by a reduction in gap junctional communication, whereas Western blotting assays showed a progressive increase in phosphorylated MYPT (a target of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly antagonized the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell-cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.
Collapse
|
6
|
RhoA Signaling in Neurodegenerative Diseases. Cells 2022; 11:cells11091520. [PMID: 35563826 PMCID: PMC9103838 DOI: 10.3390/cells11091520] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Ras homolog gene family member A (RhoA) is a small GTPase of the Rho family involved in regulating multiple signal transduction pathways that influence a diverse range of cellular functions. RhoA and many of its downstream effector proteins are highly expressed in the nervous system, implying an important role for RhoA signaling in neurons and glial cells. Indeed, emerging evidence points toward a role of aberrant RhoA signaling in neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease, Huntington’s disease, and amyotrophic lateral sclerosis. In this review, we summarize the current knowledge of RhoA regulation and downstream cellular functions with an emphasis on the role of RhoA signaling in neurodegenerative diseases and the therapeutic potential of RhoA inhibition in neurodegeneration.
Collapse
|
7
|
Ste20-like Kinase Is Critical for Inhibitory Synapse Maintenance and Its Deficiency Confers a Developmental Dendritopathy. J Neurosci 2021; 41:8111-8125. [PMID: 34400520 DOI: 10.1523/jneurosci.0352-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/21/2022] Open
Abstract
The size and structure of the dendritic arbor play important roles in determining how synaptic inputs of neurons are converted to action potential output. The regulatory mechanisms governing the development of dendrites, however, are insufficiently understood. The evolutionary conserved Ste20/Hippo kinase pathway has been proposed to play an important role in regulating the formation and maintenance of dendritic architecture. A key element of this pathway, Ste20-like kinase (SLK), regulates cytoskeletal dynamics in non-neuronal cells and is strongly expressed throughout neuronal development. However, its function in neurons is unknown. We show that, during development of mouse cortical neurons, SLK has a surprisingly specific role for proper elaboration of higher, ≥ third-order dendrites both in male and in female mice. Moreover, we demonstrate that SLK is required to maintain excitation-inhibition balance. Specifically, SLK knockdown caused a selective loss of inhibitory synapses and functional inhibition after postnatal day 15, whereas excitatory neurotransmission was unaffected. Finally, we show that this mechanism may be relevant for human disease, as dysmorphic neurons within human cortical malformations revealed significant loss of SLK expression. Overall, the present data identify SLK as a key regulator of both dendritic complexity during development and inhibitory synapse maintenance.SIGNIFICANCE STATEMENT We show that dysmorphic neurons of human epileptogenic brain lesions have decreased levels of the Ste20-like kinase (SLK). Decreasing SLK expression in mouse neurons revealed that SLK has essential functions in forming the neuronal dendritic tree and in maintaining inhibitory connections with neighboring neurons.
Collapse
|
8
|
Yu LY, Tseng TJ, Lin HC, Hsu CL, Lu TX, Tsai CJ, Lin YC, Chu I, Peng CT, Chen HJ, Tsai FC. Synthetic dysmobility screen unveils an integrated STK40-YAP-MAPK system driving cell migration. SCIENCE ADVANCES 2021; 7:eabg2106. [PMID: 34321207 PMCID: PMC8318371 DOI: 10.1126/sciadv.abg2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/10/2021] [Indexed: 05/05/2023]
Abstract
Integrating signals is essential for cell survival, leading to the concept of synthetic lethality. However, how signaling is integrated to control cell migration remains unclear. By conducting a "two-hit" screen, we revealed the synergistic reduction of cell migration when serine-threonine kinase 40 (STK40) and mitogen-activated protein kinase (MAPK) were simultaneously suppressed. Single-cell analyses showed that STK40 knockdown reduced cell motility and coordination by strengthening focal adhesion (FA) complexes. Furthermore, STK40 knockdown reduced the stability of yes-associated protein (YAP) and subsequently decreased YAP transported into the nucleus, while MAPK inhibition further weakened YAP activities in the nucleus to disturb FA remodeling. Together, we unveiled an integrated STK40-YAP-MAPK system regulating cell migration and introduced "synthetic dysmobility" as a novel strategy to collaboratively control cell migration.
Collapse
Affiliation(s)
- Ling-Yea Yu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Jen Tseng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsuan-Chao Lin
- Department of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chi-Lin Hsu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Xuan Lu
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- Ph.D. Program in Biological Sciences, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Chia-Jung Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Japan
| | - Yu-Chiao Lin
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - I Chu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Tzu Peng
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hou-Jen Chen
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Feng-Chiao Tsai
- Department of Pharmacology, National Taiwan University College of Medicine, Taipei, Taiwan.
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
9
|
H 2S protects hippocampal neurons against hypoxia-reoxygenation injury by promoting RhoA phosphorylation at Ser188. Cell Death Discov 2021; 7:132. [PMID: 34088899 PMCID: PMC8178328 DOI: 10.1038/s41420-021-00514-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/12/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
Inhibition of RhoA-ROCK pathway is involved in the H2S-induced cerebral vasodilatation and H2S-mediated protection on endothelial cells against oxygen-glucose deprivation/reoxygenation injury. However, the inhibitory mechanism of H2S on RhoA-ROCK pathway is still unclear. The aim of this study was to investigate the target and mechanism of H2S in inhibition of RhoA/ROCK. GST-RhoAwild and GST-RhoAS188A proteins were constructed and expressed, and were used for phosphorylation assay in vitro. Recombinant RhoAwild-pEGFP-N1 and RhoAS188A-pEGFP-N1 plasmids were constructed and transfected into primary hippocampal nerve cells (HNCs) to evaluate the neuroprotective mechanism of endothelial H2S by using transwell co-culture system with endothelial cells from cystathionine-γ-lyase knockout (CSE-/-) mice and 3-mercaptopyruvate sulfurtransferase knockout (3-MST-/-) rats, respectively. We found that NaHS, exogenous H2S donor, promoted RhoA phosphorylation at Ser188 in the presence of cGMP-dependent protein kinase 1 (PKG1) in vitro. Besides, both exogenous and endothelial H2S facilitated the RhoA phosphorylation at Ser188 in HNCs, which induced the reduction of RhoA activity and membrane transposition, as well as ROCK2 activity and expression. To further investigate the role of endothelial H2S on RhoA phosphorylation, we detected H2S release from ECs of CSE+/+ and CSE-/- mice, and 3-MST+/+ and 3-MST-/- rats, respectively, and found that H2S produced by ECs in the culture medium is mainly catalyzed by CSE synthase. Moreover, we revealed that both endothelial H2S, mainly catalyzed by CSE, and exogenous H2S protected the HNCs against hypoxia-reoxygenation injury via phosphorylating RhoA at Ser188.
Collapse
|
10
|
Garland B, Delisle S, Al-Zahrani KN, Pryce BR, Sabourin LA. The Ste20-like kinase - a Jack of all trades? J Cell Sci 2021; 134:261804. [PMID: 33961052 DOI: 10.1242/jcs.258269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Over the past 20 years, the Ste20-like kinase (SLK; also known as STK2) has emerged as a central regulator of cytoskeletal dynamics. Reorganization of the cytoskeleton is necessary for a plethora of biological processes including apoptosis, proliferation, migration, tissue repair and signaling. Several studies have also uncovered a role for SLK in disease progression and cancer. Here, we review the recent findings in the SLK field and summarize the various roles of SLK in different animal models and discuss the biochemical mechanisms regulating SLK activity. Together, these studies have revealed multiple roles for SLK in coupling cytoskeletal dynamics to cell growth, in muscle repair and in negative-feedback loops critical for cancer progression. Furthermore, the ability of SLK to regulate some systems appears to be kinase activity independent, suggesting that it may be an important scaffold for signal transduction pathways. These various findings reveal highly complex functions and regulation patterns of SLK in development and disease, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Brennan Garland
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Samuel Delisle
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| | - Khalid N Al-Zahrani
- Center for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G1X5, Canada
| | - Benjamin R Pryce
- Department of Pediatrics, Hollings Cancer Center, Medical University of South Carolina,Charleston, SC 29425, USA
| | - Luc A Sabourin
- Ottawa Hospital Research Institute, Cancer Therapeutics, Ottawa, Ontario, K1H8L1, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H8L6, Canada
| |
Collapse
|
11
|
Borgo C, D'Amore C, Cesaro L, Sarno S, Pinna LA, Ruzzene M, Salvi M. How can a traffic light properly work if it is always green? The paradox of CK2 signaling. Crit Rev Biochem Mol Biol 2021; 56:321-359. [PMID: 33843388 DOI: 10.1080/10409238.2021.1908951] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CK2 is a constitutively active protein kinase that assuring a constant level of phosphorylation to its numerous substrates supports many of the most important biological functions. Nevertheless, its activity has to be controlled and adjusted in order to cope with the varying needs of a cell, and several examples of a fine-tune regulation of its activity have been described. More importantly, aberrant regulation of this enzyme may have pathological consequences, e.g. in cancer, chronic inflammation, neurodegeneration, and viral infection. Our review aims at summarizing our current knowledge about CK2 regulation. In the first part, we have considered the most important stimuli shown to affect protein kinase CK2 activity/expression. In the second part, we focus on the molecular mechanisms by which CK2 can be regulated, discussing controversial aspects and future perspectives.
Collapse
Affiliation(s)
- Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Claudio D'Amore
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Luca Cesaro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenzo A Pinna
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR Institute of Neurosciences, Padova, Italy
| | - Mauro Salvi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
12
|
Loss of the Ste20-like kinase induces a basal/stem-like phenotype in HER2-positive breast cancers. Oncogene 2020; 39:4592-4602. [PMID: 32393835 DOI: 10.1038/s41388-020-1315-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/20/2023]
Abstract
HER2 is overexpressed in 20-30% of all breast cancers and is associated with an invasive disease and poor clinical outcome. The Ste20-like kinase (SLK) is activated downstream of HER2/Neu and is required for efficient epithelial-to-mesenchymal transition, cell cycle progression, and migration in the mammary epithelium. Here we show that loss of SLK in a murine model of HER2/Neu-positive breast cancers significantly accelerates tumor onset and decreases overall survival. Transcriptional profiling of SLK knockout HER2/Neu-derived tumor cells revealed a strong induction in the triple-negative breast cancer marker, Sox10, accompanied by an increase in mammary stem/progenitor activity. Similarly, we demonstrate that SLK and Sox10 expression are inversely correlated in patient samples, with the loss of SLK and acquisition of Sox10 marking the triple-negative subtype. Furthermore, pharmacological inhibition of AKT reduces SLK-null tumor growth in vivo and is rescued by ectopic Sox10 expression, suggesting that Sox10 is a critical regulator of tumor growth downstream of SLK/AKT. These findings highlight a role for SLK in negatively regulating HER2-induced mammary tumorigenesis and provide mechanistic insight into the regulation of Sox10 expression in breast cancer.
Collapse
|
13
|
Wang Y, Wang R, Tang DD. Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction. Am J Respir Cell Mol Biol 2020; 62:645-656. [PMID: 31913659 PMCID: PMC7193783 DOI: 10.1165/rcmb.2019-0310oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
It has been reported that actin polymerization is regulated by protein tyrosine phosphorylation in smooth muscle on contractile stimulation. The role of protein serine/threonine phosphorylation in modulating actin dynamics is underinvestigated. SLK (Ste20-like kinase) is a serine/threonine protein kinase that plays a role in apoptosis, cell cycle, proliferation, and migration. The function of SLK in smooth muscle is mostly unknown. Here, SLK knockdown (KD) inhibited acetylcholine (ACh)-induced actin polymerization and contraction without affecting myosin light chain phosphorylation at Ser-19 in human airway smooth muscle. Stimulation with ACh induced paxillin phosphorylation at Ser-272, which was reduced in SLK KD cells. However, SLK did not catalyze paxillin Ser-272 phosphorylation in vitro. But, SLK KD attenuated Plk1 (polo-like kinase 1) phosphorylation at Thr-210. Plk1 mediated paxillin phosphorylation at Ser-272 in vitro. Expression of the nonphosphorylatable paxillin mutant S272A (substitution of alanine at Ser-272) attenuated the agonist-enhanced F-actin/G-actin ratios without affecting myosin light chain phosphorylation. Because N-WASP (neuronal Wiskott-Aldrich Syndrome Protein) phosphorylation at Tyr-256 (an indication of its activation) promotes actin polymerization, we also assessed the role of paxillin phosphorylation in N-WASP activation. S272A paxillin inhibited the ACh-enhanced N-WASP phosphorylation at Tyr-256. Together, these results suggest that SLK regulates paxillin phosphorylation at Ser-272 via Plk1, which modulates N-WASP activation and actin polymerization in smooth muscle. SLK-mediated actin cytoskeletal reorganization may facilitate force transmission between the contractile units and the extracellular matrix.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York
| |
Collapse
|
14
|
Woychyshyn B, Papillon J, Guillemette J, Navarro-Betancourt JR, Cybulsky AV. Genetic ablation of SLK exacerbates glomerular injury in adriamycin nephrosis in mice. Am J Physiol Renal Physiol 2020; 318:F1377-F1390. [PMID: 32308020 DOI: 10.1152/ajprenal.00028.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ste20-like kinase SLK is critical for embryonic development and may play an important role in wound healing, muscle homeostasis, cell migration, and tumor growth. Mice with podocyte-specific deletion of SLK show albuminuria and damage to podocytes as they age. The present study addressed the role of SLK in glomerular injury. We induced adriamycin nephrosis in 3- to 4-mo-old control and podocyte SLK knockout (KO) mice. Compared with control, SLK deletion exacerbated albuminuria and loss of podocytes, synaptopodin, and podocalyxin. Glomeruli of adriamycin-treated SLK KO mice showed diffuse increases in the matrix and sclerosis as well as collapse of the actin cytoskeleton. SLK can phosphorylate ezrin. The complex of phospho-ezrin, Na+/H+ exchanger regulatory factor 2, and podocalyxin in the apical domain of the podocyte is a key determinant of normal podocyte architecture. Deletion of SLK reduced glomerular ezrin and ezrin phosphorylation in adriamycin nephrosis. Also, deletion of SLK reduced the colocalization of ezrin and podocalyxin in the glomerulus. Cultured glomerular epithelial cells with KO of SLK showed reduced ezrin phosphorylation and podocalyxin expression as well as reduced F-actin. Thus, SLK deletion leads to podocyte injury as mice age and exacerbates injury in adriamycin nephrosis. The mechanism may at least in part involve ezrin phosphorylation as well as disruption of the cytoskeleton and podocyte apical membrane structure.
Collapse
Affiliation(s)
- Boyan Woychyshyn
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Julie Guillemette
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - José R Navarro-Betancourt
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Andrey V Cybulsky
- Departments of Medicine and Physiology, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Role of a RhoA/ROCK-Dependent Pathway on Renal Connexin43 Regulation in the Angiotensin II-Induced Renal Damage. Int J Mol Sci 2019; 20:ijms20184408. [PMID: 31500276 PMCID: PMC6770162 DOI: 10.3390/ijms20184408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/03/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022] Open
Abstract
In various models of chronic kidney disease, the amount and localization of Cx43 in the nephron is known to increase, but the intracellular pathways that regulate these changes have not been identified. Therefore, we proposed that: "In the model of renal damage induced by infusion of angiotensin II (AngII), a RhoA/ROCK-dependent pathway, is activated and regulates the abundance of renal Cx43". In rats, we evaluated: 1) the time-point where the renal damage induced by AngII is no longer reversible; and 2) the involvement of a RhoA/ROCK-dependent pathway and its relationship with the amount of Cx43 in this irreversible stage. Systolic blood pressure (SBP) and renal function (urinary protein/urinary creatinine: Uprot/UCrea) were evaluated as systemic and organ outcomes, respectively. In kidney tissue, we also evaluated: 1) oxidative stress (amount of thiobarbituric acid reactive species), 2) inflammation (immunoperoxidase detection of the inflammatory markers ED-1 and IL-1β), 3) fibrosis (immune detection of type III collagen; Col III) and 4) activity of RhoA/ROCK (amount of phosphorylated MYPT1; p-MYPT1). The ratio Uprot/UCrea, SBP, oxidative stress, inflammation, amount of Cx43 and p-MYPT1 remained high 2 weeks after suspending AngII treatment in rats treated for 4 weeks with AngII. These responses were not observed in rats treated with AngII for less than 4 weeks, in which all measurements returned spontaneously close to the control values after suspending AngII treatment. Rats treated with AngII for 6 weeks and co-treated for the last 4 weeks with Fasudil, an inhibitor of ROCK, showed high SBP but did not present renal damage or increased amount of renal Cx43. Therefore, renal damage induced by AngII correlates with the activation of RhoA/ROCK and the increase in Cx43 amounts and can be prevented by inhibitors of this pathway.
Collapse
|
16
|
Fokin Artem I, Zhapparova Olga N, Burakov Anton V, Nadezhdina Elena S. Centrosome-derived microtubule radial array, PCM-1 protein, and primary cilia formation. PROTOPLASMA 2019; 256:1361-1373. [PMID: 31079229 DOI: 10.1007/s00709-019-01385-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
In animal cells, the centrosome nucleates and anchors microtubules (MT), forming their radial array. During interphase centrosome-derived MT, aster can either team up with other MT network or function in an autonomous manner. What is the function of the centrosome-derived MT aster? We suggested that it might play an important role in the formation of the primary cilium, the organelle obligatorily associated with the centrosome. PCM-1 (PeriCentriolar Matrix 1) protein, which participates in the organization of the primary cilium, is a part of pericentiolar satellites. They are transported to the centrosome along MTs by the motor protein dynein in a complex with its cofactor dynactin. Previously, we showed that SLK/LOSK phosphorylated the p150Glued subunit of dynactin, thus promoting its centrosomal targeting followed by its participation in the retention of microtubules. Here, we found that under the repression of SLK/LOSK activity, the PCM-1 protein lost its pericentrosomal localization and was being dispersed throughout the cytoplasm. Despite that the alanine and glutamine mutants of p150Glued had opposite effects on PCM-1 localization, they associated with PCM-1 to the same extent. The occurrence of primary cilia also significantly decreased when SLK/LOSK was repressed. These defects also correlated with a disturbance of the long-range transport in cells, whereas dynein-depending motility was intact. Treatment with the GSK-3β kinase inhibitor also resulted in the loss of the centrosome-derived MT aster, dispersion of PCM-1 over the cytoplasm, and reduction of primary cilia occurrence. Thus, kinases involved in the centrosome-derived MT aster regulation can indirectly control the formation of primary cilia in cells.
Collapse
Affiliation(s)
- I Fokin Artem
- A.N. Belozersky Institute for Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobjevy Gory, 1 bld.73, Moscow, Russian Federation, 119991
| | - N Zhapparova Olga
- A.N. Belozersky Institute for Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobjevy Gory, 1 bld.73, Moscow, Russian Federation, 119991
| | - V Burakov Anton
- A.N. Belozersky Institute for Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Vorobjevy Gory, 1 bld.73, Moscow, Russian Federation, 119991
| | - S Nadezhdina Elena
- Department of Cell Biology of Institute of Protein Research, Russian Academy of Science, Vavilova ul., 34, Moscow, Russian Federation, 117334.
| |
Collapse
|
17
|
Le Gal L, Pellegrin M, Santoro T, Mazzolai L, Kurtz A, Meda P, Wagner C, Haefliger J. Connexin37-Dependent Mechanisms Selectively Contribute to Modulate Angiotensin II -Mediated Hypertension. J Am Heart Assoc 2019; 8:e010823. [PMID: 30943815 PMCID: PMC6507190 DOI: 10.1161/jaha.118.010823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/30/2019] [Indexed: 12/23/2022]
Abstract
Background Gap junction channels made of Connexin37 (Cx37) are expressed by aortic endothelial and smooth muscle cells of hypertensive mice, as well as by the renin-secreting cells of kidneys. Methods and Results To decipher whether Cx37 has any role in hypertension, angiotensin II (Ang II ) was infused in normotensive wild-type and Cx37-deficient mice (Cx37-/-). After 2 to 4 weeks, the resulting increase in blood pressure was lower in Cx37-/- than in wild-type mice, suggesting an alteration in the Ang II response. To investigate this possibility, mice were submitted to a 2-kidney, 1-clip procedure, a renin-dependent model of hypertension. Two weeks after this clipping, Cx37-/- mice were less hypertensive than wild-type mice and, 2 weeks later, their blood pressure had returned to control values, in spite of abnormally high plasma renin levels. In contrast, Cx37-/- and wild-type mice that received N-nitro-l-arginine-methyl-ester, a renin-independent model of hypertension, featured a similar and sustained increase in blood pressure. The data indicate that loss of Cx37 selectively altered the Ang II -dependent pathways. Consistent with this conclusion, aortas of Cx37-/- mice featured an increased basal expression of the Ang II type 2 receptors ( AT 2R), and increased transcripts levels of downstream signaling proteins, such as Cnksr1 and Ptpn6 ( SHP -1). Accordingly, the response of Cx37-/- mice aortas to an ex vivo Ang II exposure was altered, since phosphorylation levels of several proteins of the Ang II pathway ( MLC 2, ERK , and AKT ) remained unchanged. Conclusions These findings provide evidence that Cx37 selectively influences Ang II signaling, mostly via a modulation of the expression of the Ang II type 2 receptor.
Collapse
Affiliation(s)
- Loïc Le Gal
- Department of MedicineUniversity of LausanneSwitzerland
| | - Maxime Pellegrin
- Division of AngiologyHeart and Vessel DepartmentCentre Hospitalier Universitaire VaudoisUniversity of LausanneSwitzerland
| | - Tania Santoro
- Department of MedicineUniversity of LausanneSwitzerland
| | - Lucia Mazzolai
- Division of AngiologyHeart and Vessel DepartmentCentre Hospitalier Universitaire VaudoisUniversity of LausanneSwitzerland
| | - Armin Kurtz
- Department of PhysiologyUniversity of RegensburgGermany
| | - Paolo Meda
- Department of Cell Physiology and MetabolismSchool of MedicineCMUUniversity of GenevaSwitzerland
| | | | | |
Collapse
|
18
|
Angiotensin II-Induced Mesangial Cell Damaged Is Preceded by Cell Membrane Permeabilization Due to Upregulation of Non-Selective Channels. Int J Mol Sci 2018; 19:ijms19040957. [PMID: 29570626 PMCID: PMC5979336 DOI: 10.3390/ijms19040957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Connexin43 (Cx43), pannexin1 (Panx1) and P2X7 receptor (P2X7R) are expressed in kidneys and are known to constitute a feedforward mechanism leading to inflammation in other tissues. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remain unknown. In the present work, we found that MES-13 cells, from a cell line derived from mesangial cells, stimulated with angiotensin II (AngII) developed oxidative stress (OS, thiobarbituric acid reactive species (TBARS) and generated pro-inflammatory cytokines (ELISA; IL-1β and TNF-α). The membrane permeability increased progressively several hours before the latter outcome, which was a response prevented by Losartan, indicating the involvement of AT1 receptors. Western blot analysis showed that the amount of phosphorylated MYPT (a substrate of RhoA/ROCK) and Cx43 increased progressively and in parallel in cells treated with AngII, a response followed by an increase in the amount in Panx1 and P2X7R. Greater membrane permeability was partially explained by opening of Cx43 hemichannels (Cx43 HCs) and Panx1 channels (Panx1 Chs), as well as P2X7Rs activation by extracellular ATP, which was presumably released via Cx HCs and Panx1 Chs. Additionally, inhibition of RhoA/ROCK blocked the progressive increase in membrane permeability, and the remaining response was explained by the other non-selective channels. The rise of activity in the RhoA/ROCK-dependent pathway, as well as in Cx HCs, P2X7R, and to a minor extent in Panx1 Chs led to higher amounts of TBARS and pro-inflammatory cytokines. We propose that AngII-induced mesangial cell damage could be effectively inhibited by concomitantly inhibiting the RhoA/ROCK-dependent pathway and one or more non-selective channel(s) activated through this pathway.
Collapse
|
19
|
Cybulsky AV, Papillon J, Guillemette J, Belkina N, Patino-Lopez G, Torban E. Ste20-like kinase, SLK, a novel mediator of podocyte integrity. Am J Physiol Renal Physiol 2017; 315:F186-F198. [PMID: 29187370 DOI: 10.1152/ajprenal.00238.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
SLK is essential for embryonic development and may play a key role in wound healing, tumor growth, and metastasis. Expression and activation of SLK are increased in kidney development and during recovery from ischemic acute kidney injury. Overexpression of SLK in glomerular epithelial cells/podocytes in vivo induces injury and proteinuria. Conversely, reduced SLK expression leads to abnormalities in cell adhesion, spreading, and motility. Tight regulation of SLK expression thus may be critical for normal renal structure and function. We produced podocyte-specific SLK-knockout mice to address the functional role of SLK in podocytes. Mice with podocyte-specific deletion of SLK showed reduced glomerular SLK expression and activity compared with control. Podocyte-specific deletion of SLK resulted in albuminuria at 4-5 mo of age in male mice and 8-9 mo in female mice, which persisted for up to 13 mo. At 11-12 mo, knockout mice showed ultrastructural changes, including focal foot process effacement and microvillous transformation of podocyte plasma membranes. Mean foot process width was approximately twofold greater in knockout mice compared with control. Podocyte number was reduced by 35% in knockout mice compared with control, and expression of nephrin, synaptopodin, and podocalyxin was reduced in knockout mice by 20-30%. In summary, podocyte-specific deletion of SLK leads to albuminuria, loss of podocytes, and morphological evidence of podocyte injury. Thus, SLK is essential to the maintenance of podocyte integrity as mice age.
Collapse
Affiliation(s)
- Andrey V Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| | - Natalya Belkina
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Genaro Patino-Lopez
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health , Bethesda, Maryland
| | - Elena Torban
- Department of Medicine, McGill University Health Centre Research Institute, McGill University , Montreal, Quebec , Canada
| |
Collapse
|
20
|
Cybulsky AV, Guillemette J, Papillon J, Abouelazm NT. Regulation of Ste20-like kinase, SLK, activity: Dimerization and activation segment phosphorylation. PLoS One 2017; 12:e0177226. [PMID: 28475647 PMCID: PMC5419656 DOI: 10.1371/journal.pone.0177226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022] Open
Abstract
The Ste20-like kinase, SLK, has diverse cellular functions. SLK mediates organ development, cell cycle progression, cytoskeletal remodeling, cytokinesis, and cell survival. Expression and activity of SLK are enhanced in renal ischemia-reperfusion injury, and overexpression of SLK was shown to induce apoptosis in cultured glomerular epithelial cells (GECs) and renal tubular cells, as well as GEC/podocyte injury in vivo. The SLK protein consists of a N-terminal catalytic domain and an extensive C-terminal domain, which contains coiled-coils. The present study addresses the regulation of SLK activity. Controlled dimerization of the SLK catalytic domain enhanced autophosphorylation of SLK at T183 and S189, which are located in the activation segment. The full-length ectopically- and endogenously-expressed SLK was also autophosphorylated at T183 and S189. Using ezrin as a model SLK substrate (to address exogenous kinase activity), we demonstrate that dimerized SLK 1–373 or full-length SLK can effectively induce activation-specific phosphorylation of ezrin. Mutations in SLK, including T183A, S189A or T193A reduced T183 or S189 autophosphorylation, and showed a greater reduction in ezrin phosphorylation. Mutations in the coiled-coil region of full-length SLK that impair dimerization, in particular I848G, significantly reduced ezrin phosphorylation and tended to reduce autophosphorylation of SLK at T183. In experimental membranous nephropathy in rats, proteinuria and GEC/podocyte injury were associated with increased glomerular SLK activity and ezrin phosphorylation. In conclusion, dimerization via coiled-coils and phosphorylation of T183, S189 and T193 play key roles in the activation and signaling of SLK, and provide targets for novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrey V. Cybulsky
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- * E-mail:
| | - Julie Guillemette
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Joan Papillon
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
| | - Nihad T. Abouelazm
- Department of Medicine, McGill University Health Centre Research Institute, McGill University, Montreal, Quebec, Canada
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Yu X, Zhang Q, Zhao Y, Schwarz BJ, Stallone JN, Heaps CL, Han G. Activation of G protein-coupled estrogen receptor 1 induces coronary artery relaxation via Epac/Rap1-mediated inhibition of RhoA/Rho kinase pathway in parallel with PKA. PLoS One 2017; 12:e0173085. [PMID: 28278256 PMCID: PMC5344336 DOI: 10.1371/journal.pone.0173085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 02/15/2017] [Indexed: 12/24/2022] Open
Abstract
Previously, we reported that cAMP/PKA signaling is involved in GPER-mediated coronary relaxation by activating MLCP via inhibition of RhoA pathway. In the current study, we tested the hypothesis that activation of GPER induces coronary artery relaxation via inhibition of RhoA/Rho kinase pathway by cAMP downstream targets, exchange proteins directly activated by cAMP (Epac) as well as PKA. Our results show that Epac inhibitors, brefeldin A (BFA, 50 μM), or ESI-09 (20 μM), or CE3F4 (100 μM), all partially inhibited porcine coronary artery relaxation response to the selective GPER agonist, G-1 (0.3–3 μM); while concurrent administration of BFA and PKI (5 μM), a PKA inhibitor, almost completely blocked the relaxation effect of G-1. The Epac specific agonist, 8-CPT-2Me-cAMP (007, 1–100 μM), induced a concentration-dependent relaxation response. Furthermore, the activity of Ras-related protein 1 (Rap1) was up regulated by G-1 (1 μM) treatment of porcine coronary artery smooth muscle cells (CASMCs). Phosphorylation of vasodilator-stimulated phosphoprotein (p-VASP) was elevated by G-1 (1 μM) treatment, but not by 007 (50 μM); and the effect of G-1 on p-VASP was blocked by PKI, but not by ESI-09, an Epac antagonist. RhoA activity was similarly down regulated by G-1 and 007, whereas ESI-09 restored most of the reduced RhoA activity by G-1 treatment. Furthermore, G-1 decreased PGF2α-induced p-MYPT1, which was partially reversed with either ESI-09 or PKI; whereas, concurrent administration of ESI-09 and PKI totally prevented the inhibitory effect of G-1. The inhibitory effects of G-1 on p- MLC levels in CASMCs were mostly restored by either ESI-09 or PKI. These results demonstrate that activation of GPER induces coronary artery relaxation via concurrent inhibition of RhoA/Rho kinase by Epac/Rap1 and PKA. GPER could be a potential drug target for preventing and treating cardiovascular diseases.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Qiao Zhang
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhao
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Benjamin J. Schwarz
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - John N. Stallone
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States of America
| | - Cristine L. Heaps
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
| | - Guichun Han
- Department of Physiology and Pharmacology, Texas A&M University, College Station, TX, United States of America
- Women's Health Division, Michael E. DeBakey Institute, Texas A&M University, College Station, TX, United States of America
- * E-mail:
| |
Collapse
|
22
|
Deletion of the Ste20-like kinase SLK in skeletal muscle results in a progressive myopathy and muscle weakness. Skelet Muscle 2017; 7:3. [PMID: 28153048 PMCID: PMC5288853 DOI: 10.1186/s13395-016-0119-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
Background The Ste20-like kinase, SLK, plays an important role in cell proliferation and cytoskeletal remodeling. In fibroblasts, SLK has been shown to respond to FAK/Src signaling and regulate focal adhesion turnover through Paxillin phosphorylation. Full-length SLK has also been shown to be essential for embryonic development. In myoblasts, the overexpression of a dominant negative SLK is sufficient to block myoblast fusion. Methods In this study, we crossed the Myf5-Cre mouse model with our conditional SLK knockout model to delete SLK in skeletal muscle. A thorough analysis of skeletal muscle tissue was undertaken in order to identify defects in muscle development caused by the lack of SLK. Isometric force analysis was performed on adult knockout mice and compared to age-matched wild-type mice. Furthermore, cardiotoxin injections were performed followed by immunohistochemistry for myogenic markers to assess the efficiency muscle regeneration following SLK deletion. Results We show here that early deletion of SLK from the myogenic lineage does not markedly impair skeletal muscle development but delays the regenerative process. Interestingly, adult mice (~6 months) display an increase in the proportion of central nuclei and increased p38 activation. Furthermore, mice as young as 3 months old present with decreased force generation, suggesting that the loss of SLK impairs myofiber stability and function. Assessment of structural components revealed aberrant localization of focal adhesion proteins, such as FAK and paxillin. Our data show that the loss of SLK results in unstable myofibers resulting in a progressive myopathy. Additionally, the loss of SLK resulted in a delay in muscle regeneration following cardiotoxin injections. Conclusions Our results show that SLK is dispensable for muscle development and regeneration but is required for myofiber stability and optimal force generation. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0119-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Ming D, Songyan L, Yawen C, Na Z, Jing M, Zhaowen X, Ye L, Wa D, Jie L. trans-Polydatin protects the mouse heart against ischemia/reperfusion injury via inhibition of the renin–angiotensin system (RAS) and Rho kinase (ROCK) activity. Food Funct 2017; 8:2309-2321. [DOI: 10.1039/c6fo01842d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background: Recent studies highlighted the protective benefits of a Chinese herb extract frompolygonum cuspidatum,trans-polydatin, on cardiac disease.
Collapse
Affiliation(s)
- Dong Ming
- Medical College
- Shenzhen University
- Shenzhen
- China
| | - Liao Songyan
- Division of Pathophysiology
- Medical College
- Shenzhen University
- Shenzhen
- China
| | - Chen Yawen
- Medical College
- Shenzhen University
- Shenzhen
- China
| | - Zheng Na
- Medical College
- Shenzhen University
- Shenzhen
- China
| | - Ma Jing
- Medical College
- Shenzhen University
- Shenzhen
- China
| | | | - Liu Ye
- Department of Anatomy
- Hebei Medical University
- Hebei 050017
- China
| | - Ding Wa
- Medical College
- Shenzhen University
- Shenzhen
- China
| | - Liu Jie
- Medical College
- Shenzhen University
- Shenzhen
- China
| |
Collapse
|
24
|
Abstract
Rho GTPases regulate cytoskeletal and cell adhesion dynamics and thereby coordinate a wide range of cellular processes, including cell migration, cell polarity and cell cycle progression. Most Rho GTPases cycle between a GTP-bound active conformation and a GDP-bound inactive conformation to regulate their ability to activate effector proteins and to elicit cellular responses. However, it has become apparent that Rho GTPases are regulated by post-translational modifications and the formation of specific protein complexes, in addition to GTP-GDP cycling. The canonical regulators of Rho GTPases - guanine nucleotide exchange factors, GTPase-activating proteins and guanine nucleotide dissociation inhibitors - are regulated similarly, creating a complex network of interactions to determine the precise spatiotemporal activation of Rho GTPases.
Collapse
Affiliation(s)
- Richard G Hodge
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Anne J Ridley
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
25
|
Phosphodiesterase inhibitor KMUP-3 displays cardioprotection via protein kinase G and increases cardiac output via G-protein-coupled receptor agonist activity and Ca(2+) sensitization. Kaohsiung J Med Sci 2016; 32:55-67. [PMID: 26944323 DOI: 10.1016/j.kjms.2016.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 11/20/2022] Open
Abstract
KMUP-3 (7-{2-[4-(4-nitrobenzene) piperazinyl]ethyl}-1, 3-dimethylxanthine) displays cardioprotection and increases cardiac output, and is suggested to increase cardiac performance and improve myocardial infarction. To determine whether KMUP-3 improves outcomes in hypoperfused myocardium by inducing Ca(2+) sensitization to oppose protein kinase (PK)G-mediated Ca(2+) blockade, we measured left ventricular systolic blood pressure, maximal rates of pressure development, mean arterial pressure and heart rate in rats, and measured contractility and expression of PKs/RhoA/Rho kinase (ROCK)II in beating guinea pig left atria. Hemodynamic changes induced by KMUP-3 (0.5-3.0 mg/kg, intravenously) were inhibited by Y27632 [(R)-(+)-trans-4-1-aminoethyl)-N-(4-Pyridyl) cyclohexane carboxamide] and ketanserin (1 mg/kg, intravenously). In electrically stimulated left guinea pig atria, positive inotropy induced by KMUP-3 (0.1-100μM) was inhibited by the endothelial NO synthase (eNOS) inhibitors N-nitro-l-arginine methyl ester (L-NAME) and 7-nitroindazole, cyclic AMP antagonist SQ22536 [9-(terahydro-2-furanyl)-9H-purin-6-amine], soluble guanylyl cyclase (sGC) antagonist ODQ (1H-[1,2,4] oxadiazolo[4,3-a] quinoxalin-1-one), RhoA inhibitor C3 exoenzyme, β-blocker propranolol, 5-hydroxytryptamine 2A antagonist ketanserin, ROCK inhibitor Y27632 and KMUP-1 (7-{2-[4-(2-chlorobenzene) piperazinyl]ethyl}-1, 3-dimethylxanthine) at 10μM. Western blotting assays indicated that KMUP-3 (0.1-10μM) increased PKA, RhoA/ROCKII, and PKC translocation and CIP-17 (an endogenous 17-kDa inhibitory protein) activation. In spontaneous right atria, KMUP-3 induced negative chronotropy that was blunted by 7-nitroindazole and atropine. In neonatal myocytes, L-NAME inhibited KMUP-3-induced eNOS phosphorylation and RhoA/ROCK activation. In H9c2 cells, Y-27632 (50μM) and PKG antagonist KT5823 [2,3,9,10,11,12-hexahydro-10R- methoxy-2,9-dimethyl-1-oxo-9S,12R-epoxy-1H-diindolo(1,2,3-fg:3',2',1'-kl) pyrrolo(3,4-i)(1,6)benzodiazocine-10-carboxylic acid, methyl ester] (3μM) reversed KMUP-3 (1-100μM)-induced Ca(2+)-entry blockade. GPCR agonist activity of KMUP-3 appeared opposed to KMUP-1, and increased cardiac output via Ca(2+) sensitization, and displayed cardioprotection via cyclic GMP/PKG-mediated myocardial preconditioning in animal studies.
Collapse
|
26
|
Fokin AI, Klementeva TS, Nadezhdina ES, Burakov AV. SLK/LOSK kinase regulates cell motility independently of microtubule organization and Golgi polarization. Cytoskeleton (Hoboken) 2016; 73:83-92. [PMID: 26818812 DOI: 10.1002/cm.21276] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 10/16/2015] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
Abstract
Cell motility is an essential complex process that requires actin and microtubule cytoskeleton reorganization and polarization. Such extensive rearrangement is closely related to cell polarization as a whole. The serine/threonine kinase SLK/LOSK is a potential regulator of cell motility, as it phosphorylates a series of cytoskeleton-bound proteins that collectively participate in the remodeling of migratory cell architecture. In this work, we report that SLK/LOSK is an indispensable regulator of cell locomotion that primarily acts through the small GTPase RhoA and the dynactin subunit p150(Glued). Both RhoA and dynactin affect cytoskeleton organization, polarization, and general cell locomotory activity to various extents. However, it seems that these events are independent of each other. Thus, SLK/LOSK kinase effectively functions as a switch that links all of the processes underlying cell motility to provide robust directional movement.
Collapse
Affiliation(s)
- Artem I Fokin
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, Moscow, 119992, Russia
| | - Tatiana S Klementeva
- Institute of Protein Research of Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya Str, 4, 142290, Russia
| | - Elena S Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, Moscow, 119992, Russia.,Institute of Protein Research of Russian Academy of Sciences, Moscow Region, Pushchino, Institutskaya Str, 4, 142290, Russia
| | - Anton V Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, Moscow, 119992, Russia
| |
Collapse
|
27
|
Suppression of Ventricular Arrhythmias After Myocardial Infarction by AT1 Receptor Blockade: Role of the AT2 Receptor and Casein Kinase 2/Kir2.1 Pathway. Editorial to: "Valsartan Upregulates Kir2.1 in Rats Suffering from Myocardial Infarction Via Casein Kinase 2" by Xinran Li et al. Cardiovasc Drugs Ther 2015; 29:201-6. [PMID: 26175121 DOI: 10.1007/s10557-015-6608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Al-Zahrani KN, Sekhon P, Tessier DR, Yockell-Lelievre J, Pryce BR, Baron KD, Howe GA, Sriram RK, Daniel K, Mckay M, Lo V, Quizi J, Addison CL, Gruslin A, Sabourin LA. Essential role for the SLK protein kinase in embryogenesis and placental tissue development. Dev Dyn 2014; 243:640-51. [PMID: 24868594 DOI: 10.1002/dvdy.24106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Over the past decade, the Ste20-like kinase SLK, has been implicated in several signaling processes. SLK repression has been shown to impair cell cycle kinetics and inhibit FAK-mediated cell migration. Here, using a gene trapped allele, we have generated mice expressing a truncated form of the SLK kinase. RESULTS Our results show that an SLK-LacZ fusion protein is expressed in embryonic stem cells and in embryos throughout development. We find that the SLK-LacZ fusion protein is less efficient at phosphorylating substrates resulting in reduced cell proliferation within the embryos and angiogenic defects in the placentae of the homozygous mutant animals at embryonic day (E) 12.5. This results in marked developmental defects and apoptotic lesions in the embryos by E14.5. CONCLUSIONS Homozygotes expressing the SLK-LacZ fusion protein present with an embryonic lethal phenotype occurring between E12.5 and E14.5. Overall, we demonstrate a requirement for SLK kinase activity in the developing embryo and placenta.
Collapse
|
29
|
Yu X, Li F, Klussmann E, Stallone JN, Han G. G protein-coupled estrogen receptor 1 mediates relaxation of coronary arteries via cAMP/PKA-dependent activation of MLCP. Am J Physiol Endocrinol Metab 2014; 307:E398-407. [PMID: 25005496 DOI: 10.1152/ajpendo.00534.2013] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activation of GPER exerts a protective effect in hypertension and ischemia-reperfusion models and relaxes arteries in vitro. However, our understanding of the mechanisms of GPER-mediated vascular regulation is far from complete. In the current study, we tested the hypothesis that GPER-induced relaxation of porcine coronary arteries is mediated via cAMP/PKA signaling. Our findings revealed that vascular relaxation to the selective GPER agonist G-1 (0.3-3 μM) was associated with increased cAMP production in a concentration-dependent manner. Furthermore, inhibition of adenylyl cyclase (AC) with SQ-22536 (100 μM) or of PKA activity with either Rp-8-CPT-cAMPS (5 μM) or PKI (5 μM) attenuated G-1-induced relaxation of coronary arteries preconstricted with PGF2α (1 μM). G-1 also increased PKA activity in cultured coronary artery smooth muscle cells (SMCs). To determine downstream signals of the cAMP/PKA cascade, we measured RhoA activity in cultured human and porcine coronary SMCs and myosin-light chain phosphatase (MLCP) activity in these artery rings by immunoblot analysis of phosphorylation of myosin-targeting subunit protein-1 (p-MYPT-1; the MLCP regulatory subunit). G-1 decreased PGF2α-induced p-MYPT-1, whereas Rp-8-CPT-cAMPS prevented this inhibitory effect of G-1. Similarly, G-1 inhibited PGF2α-induced phosphorylation of MLC in coronary SMCs, and this inhibitory effect was also reversed by Rp-8-CPT-cAMPS. RhoA activity was downregulated by G-1, whereas G36 (GPER antagonist) restored RhoA activity. Finally, FMP-API-1 (100 μM), an inhibitor of the interaction between PKA and A-kinase anchoring proteins (AKAPs), attenuated the effect of G-1 on coronary artery relaxation and p-MYPT-1. These findings demonstrate that localized cAMP/PKA signaling is involved in GPER-mediated coronary vasodilation by activating MLCP via inhibition of RhoA pathway.
Collapse
Affiliation(s)
- Xuan Yu
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas
| | - Fen Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas; College of Life Science, Henan Normal University, Xinxiang, Henan Province, China; and
| | - Enno Klussmann
- Anchored Signaling, Max-Delbrück-Centrum für Molekulare Medizin Berlin-Buch, Berlin, Germany
| | - John N Stallone
- Women's Health Division, Michael E. DeBakey Institute, and Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas
| | - Guichun Han
- Women's Health Division, Michael E. DeBakey Institute, and Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, Texas;
| |
Collapse
|
30
|
Faria-Costa G, Leite-Moreira A, Henriques-Coelho T. Cardiovascular effects of the angiotensin type 2 receptor. Rev Port Cardiol 2014; 33:439-49. [PMID: 25087493 DOI: 10.1016/j.repc.2014.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/02/2014] [Indexed: 02/06/2023] Open
Abstract
The angiotensin type 2 receptor, AT2R, has been described as having opposite effects to the angiotensin type 1 receptor, AT1R. Although the quantities of the AT2R found in the adult are low, its expression rises in pathological situations. The AT2R has three major signaling pathways: activation of serine/threonine phosphatases (promoting apoptosis and antioxidant effects), activation of the bradykinin/NO/cGMP pathway (promoting vasodilation), and activation of phospholipase A2 (associated with regulation of potassium currents). The AT2R appears to have effects in vascular remodeling, atherosclerosis prevention and blood pressure lowering (when associated with an AT1R inhibitor). After myocardial infarction, the AT2R appears to decrease infarct size, cardiac hypertrophy and fibrosis, and to improve cardiac function. However, its role in the heart is controversial. In the kidney, the AT2R promotes natriuresis. Until now, treatment directed at the renin-angiotensin-aldosterone system has been based on angiotensin-converting enzyme inhibitors or angiotensin type 1 receptor blockers. The study of the AT2R has been revolutionized by the discovery of a direct agonist, C21, which promises to become part of the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Gabriel Faria-Costa
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Tiago Henriques-Coelho
- Departamento de Fisiologia e Cirurgia Cardiotorácica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
31
|
Faria-Costa G, Leite-Moreira A, Henriques-Coelho T. Cardiovascular effects of the angiotensin type 2 receptor. REVISTA PORTUGUESA DE CARDIOLOGIA (ENGLISH EDITION) 2014. [DOI: 10.1016/j.repce.2014.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
32
|
Rho kinase inhibition activity of pinocembrin in rat aortic rings contracted by angiotensin II. Chin J Nat Med 2013; 11:258-63. [PMID: 23725838 DOI: 10.1016/s1875-5364(13)60025-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Indexed: 02/06/2023]
Abstract
AIM To investigate the effects of pinocembrin on angiotensin II (Ang II)-induced vascular contraction, and to explore its molecular mechanism of actions. METHODS The isometric vascular tone was measured in rat thoracic aortic rings with denuded endothelium. Phosphorylation level of myosin phosphatase target unit 1 (MYPT1), and protein levels of Rho kinase 1 (ROCK1, ROKβ or p160ROCK) and angiotensin II type-1 receptor (AT1R) were determined by Western blot analysis. RESULTS Pinocembrin produced a relaxant effect on endothelium-denuded aortic rings contracted by Ang II (100 nmol·L(-1)) in a dose-dependent manner. In endothelium-denuded aortic rings stimulated by Ang II, pretreatment with pinocembrin (25 and 100 μmol·L(-1)) for 20 min significantly attenuated MYPT1 phosphorylation and ROCK1 protein levels. Meanwhile, the protein level of AT1R in response to Ang II was not affected by pinocembrin in rat aortic rings. CONCLUSION These findings indicate that pinocembrin inhibits vasoconstriction induced by Ang II in rat endothelium-denuded aortic rings, and the mechanism at least in part, is due to the blockade of the RhoA/ROCK pathway.
Collapse
|
33
|
Zhapparova ON, Fokin AI, Vorobyeva NE, Bryantseva SA, Nadezhdina ES. Ste20-like protein kinase SLK (LOSK) regulates microtubule organization by targeting dynactin to the centrosome. Mol Biol Cell 2013; 24:3205-14. [PMID: 23985322 PMCID: PMC3806656 DOI: 10.1091/mbc.e13-03-0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The protein kinase SLK (LOSK) phosphorylates the 1A isoform of the p150Glued subunit of dynactin and targets it to the centrosome, where it maintains microtubule radial organization. In addition, dynactin phosphorylation is involved in Golgi reorientation in polarized cells. The microtubule- and centrosome-associated Ste20-like kinase (SLK; long Ste20-like kinase [LOSK]) regulates cytoskeleton organization and cell polarization and spreading. Its inhibition causes microtubule disorganization and release of centrosomal dynactin. The major function of dynactin is minus end–directed transport along microtubules in a complex with dynein motor. In addition, dynactin is required for maintenance of the microtubule radial array in interphase cells, and depletion of its centrosomal pool entails microtubule disorganization. Here we demonstrate that SLK (LOSK) phosphorylates the p150Glued subunit of dynactin and thus targets it to the centrosome, where it maintains microtubule radial organization. We show that phosphorylation is required only for centrosomal localization of p150Glued and does not affect its microtubule-organizing properties: artificial targeting of nonphosphorylatable p150Glued to the centrosome restores microtubule radial array in cells with inhibited SLK (LOSK). The phosphorylation site is located in a microtubule-binding region that is variable for two isoforms (1A and 1B) of p150Glued expressed in cultured fibroblast-like cells (isoform 1B lacks 20 amino acids in the basic microtubule-binding domain). The fact that SLK (LOSK) phosphorylates only a minor isoform 1A of p150Glued suggests that transport and microtubule-organizing functions of dynactin are distinctly divided between the two isoforms. We also show that dynactin phosphorylation is involved in Golgi reorientation in polarized cells.
Collapse
Affiliation(s)
- Olga N Zhapparova
- A. N. Belozersky Institute for Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia Institute of Protein Research, Russian Academy of Sciences, Moscow 117334, Russia
| | | | | | | | | |
Collapse
|
34
|
Fu Z, Wang M, Everett A, Lakatta E, Van Eyk J. Can proteomics yield insight into aging aorta? Proteomics Clin Appl 2013; 7:477-89. [PMID: 23788441 DOI: 10.1002/prca.201200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 12/16/2022]
Abstract
The aging aorta exhibits structural and physiological changes that are reflected in the proteome of its component cells types. The advance in proteomic technologies has made it possible to analyze the quantity of proteins associated with the natural history of aortic aging. These alterations reflect the molecular and cellular mechanisms of aging and could provide an opportunity to predict vascular health. This paper focuses on whether discoveries stemming from the application of proteomic approaches of the intact aging aorta or vascular smooth muscle cells can provide useful insights. Although there have been limited studies to date, a number of interesting proteins have been identified that are closely associated with aging in the rat aorta. Such proteins, including milk fat globule-EGF factor 8, matrix metalloproteinase type-2, and vitronectin, could be used as indicators of vascular health, or even explored as therapeutic targets for aging-related vascular diseases.
Collapse
Affiliation(s)
- Zongming Fu
- Department of Pediatrics, The Johns Hopkins University, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
35
|
Sabbatini ME, Williams JA. Cholecystokinin-mediated RhoGDI phosphorylation via PKCα promotes both RhoA and Rac1 signaling. PLoS One 2013; 8:e66029. [PMID: 23776598 PMCID: PMC3679036 DOI: 10.1371/journal.pone.0066029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/07/2013] [Indexed: 01/18/2023] Open
Abstract
RhoA and Rac1 have been implicated in the mechanism of CCK-induced amylase secretion from pancreatic acini. In all cell types studied to date, inactive Rho GTPases are present in the cytosol bound to the guanine nucleotide dissociation inhibitor RhoGDI. Here, we identified the switch mechanism regulating RhoGDI1-Rho GTPase dissociation and RhoA translocation upon CCK stimulation in pancreatic acini. We found that both Gα13 and PKC, independently, regulate CCK-induced RhoA translocation and that the PKC isoform involved is PKCα. Both RhoGDI1 and RhoGDI3, but not RhoGDI2, are expressed in pancreatic acini. Cytosolic RhoA and Rac1 are associated with RhoGDI1, and CCK-stimulated PKCα activation releases the complex. Overexpression of RhoGDI1, by binding RhoA, inhibits its activation, and thereby, CCK-induced apical amylase secretion. RhoA translocation is also inhibited by RhoGDI1. Inactive Rac1 influences CCK-induced RhoA activation by preventing RhoGDI1 from binding RhoA. By mutational analysis we found that CCK-induced PKCα phosphorylation on RhoGDI1 at Ser96 releases RhoA and Rac1 from RhoGDI1 to facilitate Rho GTPases signaling.
Collapse
Affiliation(s)
- Maria Eugenia Sabbatini
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America.
| | | |
Collapse
|
36
|
Storck EM, Wojciak-Stothard B. Rho GTPases in pulmonary vascular dysfunction. Vascul Pharmacol 2013; 58:202-10. [DOI: 10.1016/j.vph.2012.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/05/2012] [Accepted: 09/09/2012] [Indexed: 12/19/2022]
|
37
|
Spiga FM, Prouteau M, Gotta M. The TAO kinase KIN-18 regulates contractility and establishment of polarity in the C. elegans embryo. Dev Biol 2013; 373:26-38. [DOI: 10.1016/j.ydbio.2012.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 09/15/2012] [Accepted: 10/01/2012] [Indexed: 01/12/2023]
|
38
|
Abstract
Spatio-temporal control of RhoA GTPase is critical for regulation of cell migration, attachment to extracellular matrix, and cell-cell adhesions. Activation of RhoA is mediated by guanine nucleotide exchange factors (GEFs), a diverse family of enzymes that are controlled by multiple signaling pathways regulating actin cytoskeleton and cell migration. GEFs can be regulated by different mechanisms. Growing evidence demonstrates that phosphorylation serves as one of the predominant signals controlling activity, interactions, and localization of RhoGEFs. It acts as a positive and a negative regulator, and allows for regulation of RhoGEFs by multiple signaling cascades. Although there are common trends in phosphorylation-mediated regulation of some RhoGEF homologs, the majority of GEFs utilize distinct mechanisms that are dictated by their unique structure and interaction networks. This diversity enables multiple signaling pathways to use different RhoGEFs for regulation of a single central-RhoA. Here, we review current examples of phosphorylation-mediated regulation of GEFs for RhoA and its role in cell migration, discuss mechanisms, and provide insights into potential future directions.
Collapse
Affiliation(s)
- Maulik Patel
- Department of Pharmacology; University of Illinois at Chicago; Chicago, IL USA
| | - Andrei V Karginov
- Department of Pharmacology; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
39
|
Chiu WC, Juang JM, Chang SN, Wu CK, Tsai CT, Tseng CD, Tseng YZ, Su MJ, Chiang FT. Differential baseline expression and angiotensin II-stimulation of leukemia-associated RhoGEF in vascular smooth muscle cells of spontaneously hypertensive rats. Int J Nanomedicine 2012; 7:5929-39. [PMID: 23233801 PMCID: PMC3518287 DOI: 10.2147/ijn.s36700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Studies to explore angiotensin II (Ang II) and its downstream signaling pathways via Rho guanine nucleotide exchange factors (RhoGEFs) and RhoA signaling are crucial to understanding the mechanisms of smooth muscle contraction leading to hypertension. This study aimed to investigate the Ang II–induced expression of RhoGEFs in vascular smooth muscle cells (VSMCs) of spontaneously hypertensive rats (SHRs) and to identify the possible regulator associated with hypertension. Methods Cultured VSMCs of the aorta from SHRs and Wistar-Kyoto (WKY) rats were treated with or without Ang II or Ang II plus Ang II type 2 receptor antagonists. The expression levels of RhoGEF messenger RNA (mRNA) and protein were determined. To evaluate the changes of aortic ring contractile force in response to Ang II, a nonviral carrier system was adopted to deliver the leukemia-associated RhoGEF (LARG) small interfering RNA via nanoparticles into aortic rings. Results The baseline mRNA levels of three RhoGEFs in cultured VSMCs of WKY rats did not increase with age, but they were significantly higher in 12-week-old SHRs than in 5-week-old SHRs. Expression levels of LARG mRNA were higher in SHRs than in age-matched WKY rats. The baseline LAGR protein of 12-week-old SHRs was about four times higher than that of WKY rats of the same age. After Ang II–stimulation, LAGR protein expression was significantly increased in 12-week-old WKY rats but remained unchanged in 12-week-old SHRs. LARG small interfering RNA was successfully delivered into aortic rings using nanoparticles. LARG knockdown resulted in 12-week-old SHRs showing the greatest reduction in aortic ring contraction. Conclusion There were differences in age-related RhoGEF expression at baseline and in response to Ang II–stimulation between SHRs and WKY rats in this study. Nanotechnology can assist in studying the silencing of LARG in tissue culture. The findings of this study indicate that LARG gene expression may be associated with the genesis of hypertension in SHRs.
Collapse
Affiliation(s)
- Wei-Chiao Chiu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, No 7 Chung-Shan South Road, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chiu WC, Juang JM, Chang SN, Wu CK, Tsai CT, Tseng YZ, Chiang FT. Angiotensin II regulates the LARG/RhoA/MYPT1 axis in rat vascular smooth muscle in vitro. Acta Pharmacol Sin 2012; 33:1502-10. [PMID: 23123644 DOI: 10.1038/aps.2012.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIM To identify a key protein that binds monomeric G protein RhoA and activates the RhoA/Rho kinase/MYPT1 axis in vascular smooth muscle cells (VSMCs) upon angiotensin II (Ang II) stimulation. METHODS Primary cultured VSMCs from Sprague-Dawley rats were transfected with siRNAs against leukemia-associated RhoGEF (LARG), and then treated with Ang II, losartan, PD123319, or Val(5)-Ang II. The target mRNA and protein levels were determined using qPCR and Western blot analysis, respectively. Rat aortic rings were isolated, and the isometric contraction was measured with a force transducer and recorder. RESULTS Stimulation with Ang II (0.1 μmol/L) for 0.5 h significantly increased the level of LARG mRNA in VSMCs. At 3, 6, and 9 h after the treatment with Ang II (0.1 μmol/L) plus AT(2) antagonist PD123319 (1 μmol/L) or with AT(1) agonist Val(5)-Ang II (1 μmol/L), the LARG protein, RhoA activity, and phosphorylation level of myosin phosphatase target subunit 1 (MYPT1) in VSMCs were significantly increased. Knockdown of LARG with siRNA reduced these effects caused by AT(1) receptor activation. In rat aortic rings pretreated with LARG siRNA, Ang II-induced contraction was diminished. CONCLUSION Ang II upregulates LARG gene expression and activates the LARG/RhoA/MYPT1 axis via AT(1), thereby maintaining vascular tone.
Collapse
|
41
|
Al-Zahrani KN, Baron KD, Sabourin LA. Ste20-like kinase SLK, at the crossroads: a matter of life and death. Cell Adh Migr 2012; 7:1-10. [PMID: 23154402 DOI: 10.4161/cam.22495] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reorganization of the cytoskeleton is necessary for apoptosis, proliferation, migration, development and tissue repair. However, it is well established that mutations or overexpression of key regulators contribute to the phenotype and progression of several pathologies such as cancer. For instance, c-src mutations and the overexpression of FAK have been implicated in the invasive and metastatic process, suggesting that components of the motility system may represent a new class of therapeutic targets. Over the last several years, we and others have established distinct roles for the Ste20-like kinase SLK, encompassing apoptosis, growth, motility and development. Here, we review the SLK field from its initial cloning to the most recent findings from our laboratory. We summarize the various roles of SLK and the biochemical mechanisms that regulate its activity. These various findings reveal very complex functions and pattern of regulation for SLK in development and cancer, making it a potential therapeutic target.
Collapse
|
42
|
Verdonk K, Durik M, Abd-Alla N, Batenburg WW, van den Bogaerdt AJ, van Veghel R, Roks AJ, Danser AJ, van Esch JH. Compound 21 Induces Vasorelaxation via an Endothelium- and Angiotensin II Type 2 Receptor-Independent Mechanism. Hypertension 2012; 60:722-9. [DOI: 10.1161/hypertensionaha.112.196022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II type 2 (AT
2
) receptor stimulation has been linked to vasodilation. Yet, AT
2
receptor-independent hypertension and hypotension (or no effect on blood pressure) have been observed in vivo after application of the AT
2
receptor agonist compound 21 (C21). We, therefore, studied its effects in vitro, using preparations known to display AT
2
receptor-mediated responses. Hearts of Wistar rats, spontaneously hypertensive rats (SHRs), C57Bl/6 mice, and AT
2
receptor knockout mice were perfused according to Langendorff. Mesenteric and iliac arteries of these animals, as well as coronary microarteries from human donor hearts, were mounted in Mulvany myographs. In the coronary vascular bed of Wistar rats, C57Bl/6 mice, and AT
2
receptor knockout mice, C21 induced constriction followed by dilation. SHR hearts displayed enhanced constriction and no dilation. Irbesartan (angiotensin II type 1 receptor blocker) abolished the constriction and enhanced or (in SHRs) reintroduced dilation, and PD123319 (AT
2
receptor blocker) did not block the latter. C21 relaxed preconstricted vessels of all species, and this did not depend on angiotensin II receptors, the endothelium, or the NO-guanylyl cyclase-cGMP pathway. C21 constricted SHR iliac arteries but none of the other vessels, and irbesartan prevented this. C21 shifted the concentration-response curves to U46619 (thromboxane A
2
analog) and phenylephrine (α-adrenoceptor agonist) but not ionomycine (calcium ionophore) to the right. In conclusion, C21 did not cause AT
2
receptor-mediated vasodilation. Yet, it did induce vasodilation by blocking calcium transport into the cell and constriction via angiotensin II type 1 receptor stimulation. The latter effect is enhanced in SHRs. These data may explain the varying effects of C21 on blood pressure in vivo.
Collapse
Affiliation(s)
- Koen Verdonk
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Matej Durik
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Nalina Abd-Alla
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Wendy W. Batenburg
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Antoon J. van den Bogaerdt
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Richard van Veghel
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Anton J.M. Roks
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - A.H. Jan Danser
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| | - Joep H.M. van Esch
- From the Division of Vascular Medicine and Pharmacology, Department of Internal Medicine (K.V., M.D., N.A.-A., W.W.B., R.v.V., A.J.M.R., A.H.J.D., J.H.M.v.E.) and Department of Thoracic Surgery and Heart Valve Bank (A.J.v.d.B.), Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
43
|
Cario-Toumaniantz C, Ferland-McCollough D, Chadeuf G, Toumaniantz G, Rodriguez M, Galizzi JP, Lockhart B, Bril A, Scalbert E, Loirand G, Pacaud P. RhoA guanine exchange factor expression profile in arteries: evidence for a Rho kinase-dependent negative feedback in angiotensin II-dependent hypertension. Am J Physiol Cell Physiol 2012; 302:C1394-404. [PMID: 22322975 DOI: 10.1152/ajpcell.00423.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustained overactivation of RhoA is a common component for the pathogenesis of several cardiovascular disorders, including hypertension. Although activity of Rho proteins depends on Rho exchange factors (Rho-GEFs), the identity of Rho-GEFs expressed in vascular smooth muscle cells (VSMC) and participating in the control of Rho protein activity and Rho-dependent functions remains unknown. To address this question, we analyzed by quantitative RT-PCR the expression profile of 28 RhoA-GEFs in arteries of normotensive (saline-treated) and hypertensive (ANG II-treated) rats. Sixteen RhoA-GEFs were downregulated in mesenteric arteries of hypertensive rats, among which nine are also downregulated in cultured VSMC stimulated by ANG II (100 nM, 48 h), suggesting a direct effect of ANG II. Inhibition of type 1 ANG II receptors (losartan, 1 μM) or Rho kinase (fasudil, 10 μM) prevented ANG II-induced RhoA-GEF downregulation. Functionally, ANG II-induced downregulation of RhoA-GEFs is associated with decreased Rho kinase activation in response to endothelin-1, norepinephrine, and U-46619. This work thus identifies a group of RhoA-GEFs that controls RhoA and RhoA-dependent functions in VSMC, and a negative feedback of RhoA/Rho kinase activity on the expression of these RhoA-GEFs that may play an adaptative role to limit RhoA/Rho kinase activation.
Collapse
|
44
|
Nithipatikom K, Gomez-Granados AD, Tang AT, Pfeiffer AW, Williams CL, Campbell WB. Cannabinoid receptor type 1 (CB1) activation inhibits small GTPase RhoA activity and regulates motility of prostate carcinoma cells. Endocrinology 2012; 153:29-41. [PMID: 22087025 PMCID: PMC3249681 DOI: 10.1210/en.2011-1144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cannabinoid receptor type 1 (CB1) is a G protein-coupled receptor that is activated in an autocrine fashion by the endocannabinoids (EC), N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). The CB1 and its endogenous and synthetic agonists are emerging as therapeutic targets in several cancers due to their ability to suppress carcinoma cell invasion and migration. However, the mechanisms that the CB1 regulates cell motility are not well understood. In this study, we examined the molecular mechanisms that diminish cell migration upon the CB1 activation in prostate carcinoma cells. The CB1 activation with the agonist WIN55212 significantly diminishes the small GTPase RhoA activity but modestly increases the Rac1 and Cdc42 activity. The diminished RhoA activity is accompanied by the loss of actin/myosin microfilaments, cell spreading, and cell migration. Interestingly, the CB1 inactivation with the selective CB1 antagonist AM251 significantly increases RhoA activity, enhances microfilament formation and cell spreading, and promotes cell migration. This finding suggests that endogenously produced EC activate the CB1, resulting in chronic repression of RhoA activity and cell migration. Consistent with this possibility, RhoA activity is significantly diminished by the exogenous application of AEA but not by 2-AG in PC-3 cells (cells with very low AEA hydrolysis). Pretreatment of cells with a monoacylglycerol lipase inhibitor, JZL184, which blocks 2-AG hydrolysis, decreases the RhoA activity. These results indicate the unique CB1 signaling and support the model that EC, through their autocrine activation of CB1 and subsequent repression of RhoA activity, suppress migration in prostate carcinoma cells.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Luhovy AY, Jaberi A, Papillon J, Guillemette J, Cybulsky AV. Regulation of the Ste20-like kinase, SLK: involvement of activation segment phosphorylation. J Biol Chem 2011; 287:5446-58. [PMID: 22203681 DOI: 10.1074/jbc.m111.302018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression and activation of the Ste20-like kinase, SLK, is increased during kidney development and recovery from ischemic acute kidney injury. SLK promotes apoptosis, and it may regulate cell survival during injury or repair. This study addresses the role of phosphorylation in the regulation of kinase activity. We mutated serine and threonine residues in the putative activation segment of the SLK catalytic domain and expressed wild type (WT) and mutant proteins in COS-1 or glomerular epithelial cells. Compared with SLK WT, the T183A, S189A, and T183A/S189A mutants showed reduced in vitro kinase activity. SLK WT, but not mutants, increased activation-specific phosphorylation of c-Jun N-terminal kinase (JNK) and p38 kinase. Similarly, SLK WT stimulated activator protein-1 reporter activity, but activation of activator protein-1 by the three SLK mutants was ineffective. To test if homodimerization of SLK affects phosphorylation, the cDNA encoding SLK amino acids 1-373 (which include the catalytic domain) was fused with a cDNA for a modified FK506-binding protein, Fv (Fv-SLK 1-373). After transfection, the addition of AP20187 (an FK506 analog) induced regulated dimerization of Fv-SLK 1-373. AP20187-stimulated dimerization enhanced the kinase activity of Fv-SLK 1-373 WT. In contrast, kinase activity of Fv-SLK 1-373 T183A/S189A was weak and was not enhanced after dimerization. Finally, apoptosis was increased after expression of Fv-SLK 1-373 WT but not T183A/S189A. Thus, phosphorylation of Thr-183 and Ser-189 plays a key role in the activation and signaling of SLK and could represent a target for novel therapeutic approaches to renal injury.
Collapse
Affiliation(s)
- Artem Y Luhovy
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
46
|
Gayard M, Guilluy C, Rousselle A, Viollet B, Henrion D, Pacaud P, Loirand G, Rolli-Derkinderen M. AMPK Alpha 1-Induced RhoA Phosphorylation Mediates Vasoprotective Effect of Estradiol. Arterioscler Thromb Vasc Biol 2011; 31:2634-42. [DOI: 10.1161/atvbaha.111.228304] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective—
Estradiol (E2) mediates numerous beneficial effects assigned to estrogens, but whereas mechanisms have been described at the endothelial level, direct effects on vascular smooth muscle cells (VSMC) are poorly documented. As evidence accumulates regarding the role of RhoA in vascular pathophysiology and the benefit of RhoA-Rho associated protein kinase (Rock) pathway inhibition, we analyzed if E2 could inhibit it in VSMC.
Methods and Results—
We show that in VSMC, E2 inhibits the RhoA-Rock pathway in a time- and concentration-dependent manner. The inhibition of RhoA-Rock pathway results from E2-induced phosphorylation of the Ser188 of RhoA. Using pharmacological, transfection, and in vitro phosphorylation experiments, we demonstrate that AMP-activated protein kinase subunit alpha 1 (AMPKα1) is activated by estrogen receptor stimulation and catalyzes RhoA phosphorylation induced by E2. Ex vivo, ovariectomy leads to an increase in the amplitude of phenylephrine- or serotonine-induced contractions of aortic rings in wild-type mice but not in AMPKα1-knock-out mice or E2-supplemented animals. These functional effects were correlated with a reduced level of RhoA phosphorylation in the aorta of ovariectomized female, male, and AMPKα1 knock-out mice.
Conclusion—
Our work thus defines AMPKα1 as (1) a new kinase for RhoA and (2) a new mediator of the vasoprotective effects of estrogen.
Collapse
Affiliation(s)
- Marion Gayard
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Christophe Guilluy
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Anthony Rousselle
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Benoit Viollet
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Daniel Henrion
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Pierre Pacaud
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Gervaise Loirand
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| | - Malvyne Rolli-Derkinderen
- From the Institut National de la Santé et de la Recherche Médicale (INSERM) (M.G., C.G., A.R., P.P., G.L., M.R.D.), UMR915, Institut du Thorax, Nantes, France; Institut Cochin (B.V.), Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS) (UMR 8104), Paris, France; INSERM (B.V.), U567, Paris, France; CNRS UMR 6214 (D.H.), Angers, France; Université de Nantes and CHU Nantes (P.P., G.L.), Nantes, France
| |
Collapse
|
47
|
Garcia-Mata R, Boulter E, Burridge K. The 'invisible hand': regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 2011; 12:493-504. [PMID: 21779026 DOI: 10.1038/nrm3153] [Citation(s) in RCA: 419] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The 'invisible hand' is a term originally coined by Adam Smith in The Theory of Moral Sentiments to describe the forces of self-interest, competition and supply and demand that regulate the resources in society. This metaphor continues to be used by economists to describe the self-regulating nature of a market economy. The same metaphor can be used to describe the RHO-specific guanine nucleotide dissociation inhibitor (RHOGDI) family, which operates in the background, as an invisible hand, using similar forces to regulate the RHO GTPase cycle.
Collapse
Affiliation(s)
- Rafael Garcia-Mata
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA.
| | | | | |
Collapse
|
48
|
Marc Y, Llorens-Cortes C. The role of the brain renin-angiotensin system in hypertension: implications for new treatment. Prog Neurobiol 2011; 95:89-103. [PMID: 21763394 DOI: 10.1016/j.pneurobio.2011.06.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 06/19/2011] [Accepted: 06/22/2011] [Indexed: 02/07/2023]
Abstract
Hypertension affects 26% of adults and is in constant progress related to increased incidence of obesity and diabetes. One-third of hypertensive patients may be successfully treated with one antihypertensive agent, one-third may require two agents and in the remaining patients will need three agents for effective blood pressure (BP) control. The development of new classes of antihypertensive agents with different mechanisms of action therefore remains an important goal. Brain renin-angiotensin system (RAS) hyperactivity has been implicated in hypertension development and maintenance in several types of experimental and genetic hypertension animal models. Among the main bioactive peptides of the brain RAS, angiotensin (Ang) II and Ang III have similar affinities for type 1 (AT1) and type 2 (AT2) Ang II receptors. Following intracerebroventricular (i.c.v.) injection, Ang II and Ang III similarly increase arginine-vasopressin (AVP) release and BP. Blocking the brain RAS may be advantageous as it simultaneously (1) decreases sympathetic tone and consequently vascular resistance, (2) decreases AVP release, reducing blood volume and vascular resistance and (3) blocks angiotensin-induced baroreflex inhibition, decreasing both vascular resistance and cardiac output. However, as Ang II is converted to Ang III in vivo, the exact nature of the active peptide is not precisely determined. We summarize here the main findings identifying AngIII as one of the major effector peptides of the brain RAS in the control of AVP release and BP. Brain AngIII exerts a tonic stimulatory effect on BP in hypertensive rats, identifying brain aminopeptidase A (APA), the enzyme generating brain Ang III, as a potentially candidate target for hypertension treatment. This has led to the development of potent orally active APA inhibitors, such as RB150--the prototype of a new class of centrally acting antihypertensive agents.
Collapse
|
49
|
Abstract
Angiotensin II (Ang II) is a pleiotropic hormone that influences the function of many cell types and regulates many organ systems. In the cardiovascular system, it is a potent vasoconstrictor that increases peripheral vascular resistance and elevates arterial pressure. It also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via AT(1) and AT(2) receptors, which couple to many signaling molecules, including small G proteins, phospholipases, mitogen-activated protein (MAP) kinases, phosphatases, tyrosine kinases, NADPH oxidase, and transcription factors. In general, acute Ang II stimulation induces vasoconstriction through changes in the intracellular free calcium concentration [Ca(2+)](i), whereas long-term stimulation leads to cell proliferation and proinflammatory responses. This review focuses on signaling processes of vasoconstriction and highlights some new mechanisms regulating the contractile machinery in controlling vasomotor tone by Ang II, including RhoA/Rho kinase, transient receptor potential (TRP) channels, reactive oxygen species, and arachidonic acid metabolites.
Collapse
|
50
|
Delarosa S, Guillemette J, Papillon J, Han YS, Kristof AS, Cybulsky AV. Activity of the Ste20-like kinase, SLK, is enhanced by homodimerization. Am J Physiol Renal Physiol 2011; 301:F554-64. [PMID: 21677149 DOI: 10.1152/ajprenal.00062.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The expression and activation of the Ste20-like kinase, SLK, is increased during renal development and recovery from ischemic acute renal failure. SLK promotes apoptosis, and during renal injury and repair, transcriptional induction or posttranscriptional control of SLK may, therefore, regulate cell survival. SLK contains protein interaction (coiled-coil) domains, suggesting that posttranslational homodimerization may also modulate SLK activity. We therefore expressed coiled-coil regions in the C-terminal domain of SLK as fusion proteins and demonstrated their homodimerization. By gel-filtration chromatography, endogenous and heterologously expressed SLK were detected in a macromolecular protein complex. To test the role of homodimerization in kinase activation, we constructed a fusion protein consisting of the SLK catalytic domain (amino acids 1-373) and a modified FK506 binding protein, Fv (Fv-SLK 1-373). Addition of AP20187 (an analog of FK506) enhanced the homodimerization of Fv-SLK 1-373. In an in vitro kinase assay, the dimeric Fv-SLK 1-373 displayed greater kinase activity than the monomeric form. In cells expressing Fv-SLK 1-373, homodimerization increased activation-specific phosphorylation of the proapoptotic kinases, c-Jun N-terminal kinase and p38 kinase. Compared with the monomer, dimeric Fv-SLK 1-373 enhanced the activation of a Bax promoter-luciferase reporter. Finally, expression of Fv-SLK 1-373 induced apoptosis, and the effect was increased by homodimerization. Thus the activity, downstream signaling, and functional effects of SLK are enhanced by dimerization of the kinase domain.
Collapse
Affiliation(s)
- Sierra Delarosa
- Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|