1
|
Laverde V, Loges L, Sumanas S. The zebrafish ETS transcription factor Fli1b functions upstream of Scl/Tal1 during embryonic hematopoiesis. Biol Open 2025; 14:bio061948. [PMID: 40079219 PMCID: PMC12010910 DOI: 10.1242/bio.061948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
During embryonic development, vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. The evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in hemangioblast formation and hematopoietic and vascular development. However, its role in regulating the hemangioblast transition into hematovascular lineages is still incompletely understood. Its zebrafish paralog Fli1b (also known as Fli1rs) functions partially redundantly with the ETS transcription factor Etv2 (also known as Etsrp) during vasculogenesis and angiogenesis. However, its role in embryonic hematopoiesis has not been previously investigated. Here, we show that zebrafish fli1b mutants have a reduced formation of primitive erythrocytes and hematopoietic stem and progenitor cells, and display reduced expression of key regulators of hematopoiesis, including scl (also known as tal1), gata1a and runx1. Expression of scl was sufficient to partially rescue defects in erythroid differentiation in fli1b mutants, arguing that scl functions downstream of fli1b during primitive erythropoiesis. In addition, myelopoiesis was strongly misregulated in fli1b mutants. Although the formation of the earliest myeloid progenitors - neutrophils and macrophages - was greatly reduced in fli1b mutants, this was compensated by the increased emergence of myeloid cells from the alternative hematopoietic site - the endocardium. Intriguingly, myeloid cells in fli1b mutants retained vascular endothelial marker expression, suggesting that they are present in a hemangioblast-like state. In summary, our results demonstrate a novel role of fli1b transcription factor in regulating embryonic hematopoiesis.
Collapse
Affiliation(s)
- Valentina Laverde
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Luiza Loges
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
2
|
Wang X, Liu M, Zhang Y, Ma D, Wang L, Liu F. Wdr5-mediated H3K4 methylation facilitates HSPC development via maintenance of genomic stability in zebrafish. Proc Natl Acad Sci U S A 2025; 122:e2420534122. [PMID: 40112113 PMCID: PMC11962412 DOI: 10.1073/pnas.2420534122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
During fetal stage, hematopoietic stem and progenitor cells (HSPCs) undergo rapid proliferation with a tight control of genomic stability. Although histone H3 lysine 4 (H3K4) methylation has been reported to stabilize the genome in proliferating cells, its specific role in HSPC development remains elusive. In this study, we demonstrated that tryptophan-aspartic acid (WD) repeat protein 5 (Wdr5)-mediated H3K4 methylation is crucial for maintaining genomic stability of proliferating HSPCs in zebrafish embryos. Loss of wdr5 led to a severe reduction of HSPC pool in the caudal hematopoietic tissue, accompanied with attenuated H3K4 methylation level and evident p53-dependent apoptosis in the HSPCs. Mechanistically, Wdr5-mediated H3K4 methylation maintains genomic stability by inhibiting the formation of abnormal R-loops in the HSPCs, whereas accumulation of R-loops exacerbates DNA damage. Moreover, the absence of H3K4 trimethylation leads to an inactivated DNA damage response (DDR) pathway, which is deleterious to DNA damage repair and genomic stability. Subsequently, we found that DDR-associated genes, mutL homolog 1 and breast and ovarian cancer interacting helicase 1, are important to ensure HSPC survival, likely by stabilizing their genome. In summary, these findings reveal that Wdr5-mediated H3K4 methylation is essential for HSPC development through tight control of R-loop accumulation and DDR-associated program to ensure genomic stability and survival of proliferating HSPCs.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin300020, China
| | - Yifan Zhang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao266237, China
| | - Dongyuan Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin300020, China
| | - Feng Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing100101, China
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao266237, China
| |
Collapse
|
3
|
Bugoye FC, Torrorey-Sawe R, Biegon R, Dharsee N, Mafumiko F, Kibona H, Aboud S, Patel K, Mining S. Exploring therapeutic applications of PTEN, TMPRSS2:ERG fusion, and tumour molecular subtypes in prostate cancer management. Front Oncol 2025; 15:1521204. [PMID: 40165885 PMCID: PMC11956161 DOI: 10.3389/fonc.2025.1521204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Background Prostate cancer is defined by the suppression of genes that suppress tumours and the activation of proto-oncogenes. These are the hallmarks of prostate cancer, and they have been linked to numerous genomic variations, which lead to unfavourable treatment outcomes. Prostate cancer can be categorised into various risk groups of tumour molecular subtypes grounded in the idea of genomic structural variations connected to TMPRSS2:ERG fusion and loss of PTEN. Research suggests that certain genomic alterations may be more prevalent or exhibit different patterns in prostate cancer tumours across populations. Studies have reported a higher frequency of PTEN loss and TMPRSS2:ERG fusion in prostate tumours of Black/African American men, which may contribute to the more aggressive nature of the disease in this population. Thus, therapeutically important information can be obtained from these structural variations, including correlations with poor prognosis and disease severity. Methods Peer-reviewed articles from 1998 to 2024 were sourced from PubMed and Google Scholar. During the review process, the following search terms were employed: "Tumour suppressor genes OR variations OR alterations OR oncogenes OR diagnostics OR ethnicity OR biomarkers OR prostate cancer genomics OR prostate cancer structural variations OR tumour and molecular subtypes OR therapeutic implications OR immunotherapy OR immunogenetics." Results There was a total of 13,012 results for our search query: 5,903 publications from Google Scholar with the patent and citation unchecked filer options, and 7127 articles from PubMed with the abstract, free full text, and full-text options selected. Unpublished works were not involved. Except for four articles published between 1998 and 1999, all other selected articles published in 2000 and later were considered. However, papers with irrelevant information or redundant or duplicate content were not chosen for this review. Thus, 134 met the inclusion criteria and were ultimately retained for this review. Conclusion This review extracted 134 relevant articles about genomic structure variations in prostate cancer. Our findings demonstrate the importance of PTEN and TMPRSS2:ERG fusion and tumour molecular subtyping in prostate cancer precision medicine.
Collapse
Affiliation(s)
- Fidelis Charles Bugoye
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Rispah Torrorey-Sawe
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Richard Biegon
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Nazima Dharsee
- Clinical Research, Training and Consultancy Unit, Ocean Road Cancer Institute, Dar es Salaam, Tanzania
| | - Fidelice Mafumiko
- Directorate of Forensic Science and DNA Services, Government Chemist Laboratory Authority, Dar es Salaam, Tanzania
| | - Herry Kibona
- Department of Urology, Muhimbili National Hospital, Dar es Salaam, Tanzania
| | - Said Aboud
- Head Office, National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Kirtika Patel
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| | - Simeon Mining
- Department of Pathology, Moi University, Moi Teaching and Referral Hospital, Eldoret, Kenya
| |
Collapse
|
4
|
Tan Q, Wang J, Hao Y, Yang S, Cao B, Pan W, Cao M. Elf1 Deficiency Impairs Macrophage Development in Zebrafish Model Organism. Int J Mol Sci 2025; 26:2537. [PMID: 40141178 PMCID: PMC11942252 DOI: 10.3390/ijms26062537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The Ets (E-twenty-six) family of transcription factors plays a critical role in hematopoiesis and myeloid differentiation. However, the specific functions of many family members in these processes remain largely underexplored and poorly understood. Here, we identify Elf1 (E74-like factor 1), an Ets family member, as a critical regulator of macrophage development in the zebrafish model organism, with minimal impact on neutrophil differentiation. Through morpholino knockdown screening and CRISPR/Cas9-mediated gene editing, we demonstrate that Elf1 is critical for macrophage development and tissue injury responses. Specific overexpression of dominant-negative Elf1 (DN-Elf1) in macrophages demonstrated a cell-autonomous effect on macrophage infiltration. Furthermore, the overexpression of cxcr4b, a gene downstream of Elf1 regulation and essential for cell migration and injury response, significantly rescued this defect, indicating Elf1 as a key regulator of macrophage function. Our findings shed light on the roles of Elf1 in macrophage development and injury response and also highlight zebrafish as a powerful model for immunity research.
Collapse
Affiliation(s)
- Qianli Tan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Q.T.); (W.P.)
| | - Jing Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Yimei Hao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Shizeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Biao Cao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Weijun Pan
- Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (Q.T.); (W.P.)
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| | - Mengye Cao
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; (J.W.); (Y.H.); (S.Y.); (B.C.)
| |
Collapse
|
5
|
Zheng G, Yan Z, Zou J, Zou X, Chai K, Zhang G. AR and YAP crosstalk: impacts on therapeutic strategies in prostate cancer. Front Oncol 2025; 15:1520808. [PMID: 39963114 PMCID: PMC11830605 DOI: 10.3389/fonc.2025.1520808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Prostate cancer ranks as one of the most common types of cancer affecting men worldwide, and its progression is shaped by a diverse array of influencing factors. The AR signaling pathway plays a pivotal role in the pathogenesis of prostate cancer. While existing anti-androgen treatments show initial efficacy, they ultimately do not succeed in halting the advancement to CRPC. Recent studies have identified alterations in the Hippo-YAP signaling pathway within prostate cancer, highlighting intricate crosstalk with the AR signaling pathway. In this review, we examine the interactions and underlying mechanisms between AR and YAP, the key molecules in these two signaling pathways. AR regulates the stability and function of YAP by modulating its transcription, translation, and phosphorylation status, while YAP exerts both promotional and inhibitory regulatory effects on AR. Based on these findings, this paper investigates their significant roles in the onset, progression, and therapeutic resistance of prostate cancer, and discusses the clinical potential of YAP in prostate cancer treatment.
Collapse
Affiliation(s)
- Guansong Zheng
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Zhaojie Yan
- First Clinical College, Gannan Medical University, Ganzhou, China
| | - Junrong Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, Gannan Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Keqiang Chai
- Department of Urology, Third Affiliated Hospital of Gansu University of Chinese Medicine, Baiyin, China
| | - Guoxi Zhang
- Department of Urology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
6
|
Tanaka-Yano M, Sugden WW, Wang D, Badalamenti B, Côté P, Chin D, Goldstein J, George S, Rodrigues-Luiz GF, da Rocha EL, Li H, North TE, Gryder BE, Rowe RG. Dynamic activity of Erg promotes aging of the hematopoietic system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634563. [PMID: 39896635 PMCID: PMC11785177 DOI: 10.1101/2025.01.23.634563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Hematopoiesis changes to adapt to the physiology of development and aging. Temporal changes in hematopoiesis parallel age-dependent incidences of blood diseases. Several heterochronic regulators of hematopoiesis have been identified, but how the master transcription factor (TF) circuitry of definitive hematopoietic stem cells (HSCs) adapts over the lifespan is unknown. Here, we show that expression of the ETS family TF Erg is adult-biased, and that programmed upregulation of Erg expression during juvenile to adult aging is evolutionarily conserved and required for complete implementation of adult patterns of HSC self-renewal and myeloid, erythroid, and lymphoid differentiation. Erg deficiency maintains fetal transcriptional and epigenetic programs, and persistent juvenile phenotypes in Erg haploinsufficient mice are dependent on deregulation of the fetal-biased TF Hmga2 . Finally, Erg haploinsufficiency in the adult results in fetal-like resistance to leukemogenesis. Overall, we identify a mechanism whereby HSC TF networks are rewired to specify stage-specific hematopoiesis, a finding directly relevant to age-biased blood diseases. SUMMARY The hematopoietic system undergoes a process of coordinated aging from the juvenile to adult states. Here, we find that expression of ETS family transcription factor Erg is temporally regulated. Impaired upregulation of Erg during the hematopoietic maturation results in persistence of juvenile phenotypes.
Collapse
|
7
|
Zerella JR, Homan CC, Arts P, Lin X, Spinelli SJ, Venugopal P, Babic M, Brautigan PJ, Truong L, Arriola-Martinez L, Moore S, Hollins R, Parker WT, Nguyen H, Kassahn KS, Branford S, Feurstein S, Larcher L, Sicre de Fontbrune F, Demirdas S, de Munnik S, Antoine-Poirel H, Brichard B, Mansour S, Gordon K, Wlodarski MW, Koppayi A, Dobbins S, Mutsaers PGNJ, Nichols KE, Oak N, DeMille D, Mao R, Crawford A, McCarrier J, Basel D, Flores-Daboub J, Drazer MW, Phillips K, Poplawski NK, Birdsey GM, Pirri D, Ostergaard P, Simons A, Godley LA, Ross DM, Hiwase DK, Soulier J, Brown AL, Carmichael CL, Scott HS, Hahn CN. Germ line ERG haploinsufficiency defines a new syndrome with cytopenia and hematological malignancy predisposition. Blood 2024; 144:1765-1780. [PMID: 38991192 PMCID: PMC11530364 DOI: 10.1182/blood.2024024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
ABSTRACT The genomics era has facilitated the discovery of new genes that predispose individuals to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ETS-related gene (ERG), a novel, autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor that is critical for definitive hematopoiesis, stem cell function, and platelet maintenance. ERG colocalizes with other transcription factors, including RUNX family transcription factor 1 (RUNX1) and GATA binding protein 2 (GATA2), on promoters or enhancers of genes that orchestrate hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 individuals with thrombocytopenia from 1 family and 14 additional ERG variants in unrelated individuals with BMF/HM, including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germ line ERG variants included cytopenias (thrombocytopenia, neutropenia, and pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, and acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense and 1 truncating), including 3 missense population variants, were functionally characterized. Thirteen potentially pathogenic erythroblast transformation specific (ETS) domain missense variants displayed loss-of-function (LOF) characteristics, thereby disrupting transcriptional transactivation, DNA binding, and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture and to promote acute erythroleukemia when transplanted into mice, concordant with these being LOF variants. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germ line ERG variants has clinical implications for patient and family diagnoses, counseling, surveillance, and treatment strategies, including selection of bone marrow donors and cell or gene therapy.
Collapse
Affiliation(s)
- Jiarna R. Zerella
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Claire C. Homan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peer Arts
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Sam J. Spinelli
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Parvathy Venugopal
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Milena Babic
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Peter J. Brautigan
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Luis Arriola-Martinez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Sarah Moore
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Rachel Hollins
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Wendy T. Parker
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Hung Nguyen
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Karin S. Kassahn
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Susan Branford
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Simone Feurstein
- Department of Internal Medicine, Section of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lise Larcher
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | | | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sonja de Munnik
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Benedicte Brichard
- Department of Pediatric Hematology and Oncology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Sahar Mansour
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- South West Thames Regional Centre for Genomics, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Kristiana Gordon
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
- Dermatology and Lymphovascular Medicine, St. George's Universities National Health Service Foundation Trust, London, United Kingdom
| | - Marcin W. Wlodarski
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Ashwin Koppayi
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - Sara Dobbins
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Pim G. N. J. Mutsaers
- Department of Hematology, Erasmus Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Kim E. Nichols
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Ninad Oak
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN
| | - Desiree DeMille
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
| | - Rong Mao
- Associated Regional and University Pathologists Institute for Clinical and Experimental Pathology, Associated Regional and University Pathologists Laboratories, Salt Lake City, UT
- Department of Pathology, University of Utah, Salt Lake City, UT
| | | | - Julie McCarrier
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | - Donald Basel
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI
| | | | - Michael W. Drazer
- Department of Medicine, Section of Hematology/Oncology, The University of Chicago, Chicago, IL
| | - Kerry Phillips
- Adult Genetics Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
| | | | - Graeme M. Birdsey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Daniela Pirri
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pia Ostergaard
- Cardiovascular and Genomics Research Institute, St. George's University of London, London, United Kingdom
| | - Annet Simons
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lucy A. Godley
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL
| | - David M. Ross
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Devendra K. Hiwase
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Royal Adelaide Hospital, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Jean Soulier
- Université Paris Cité, INSERM and Hôpital Saint-Louis, Assistance Publique–Hôpitaux de Paris, Paris, France
| | - Anna L. Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Hamish S. Scott
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Australian Cancer Research Foundation Genomics Facility, Centre for Cancer Biology, Adelaide, SA, Australia
| | - Christopher N. Hahn
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
8
|
Robertson AL, Yue L, Choudhuri A, Kubaczka C, Wattrus SJ, Mandelbaum J, Avagyan S, Yang S, Freeman RJ, Chan V, Blair MC, Daley GQ, Zon LI. Hematopoietic stem cell division is governed by distinct RUNX1 binding partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.596542. [PMID: 38895208 PMCID: PMC11185638 DOI: 10.1101/2024.06.07.596542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.
Collapse
|
9
|
Aurigemma I, Lanzetta O, Cirino A, Allegretti S, Lania G, Ferrentino R, Poondi Krishnan V, Angelini C, Illingworth E, Baldini A. Endothelial gene regulatory elements associated with cardiopharyngeal lineage differentiation. Commun Biol 2024; 7:351. [PMID: 38514806 PMCID: PMC10957928 DOI: 10.1038/s42003-024-06017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Endothelial cells (EC) differentiate from multiple sources, including the cardiopharyngeal mesoderm, which gives rise also to cardiac and branchiomeric muscles. The enhancers activated during endothelial differentiation within the cardiopharyngeal mesoderm are not completely known. Here, we use a cardiogenic mesoderm differentiation model that activates an endothelial transcription program to identify endothelial regulatory elements activated in early cardiogenic mesoderm. Integrating chromatin remodeling and gene expression data with available single-cell RNA-seq data from mouse embryos, we identify 101 putative regulatory elements of EC genes. We then apply a machine-learning strategy, trained on validated enhancers, to predict enhancers. Using this computational assay, we determine that 50% of these sequences are likely enhancers, some of which are already reported. We also identify a smaller set of regulatory elements of well-known EC genes and validate them using genetic and epigenetic perturbation. Finally, we integrate multiple data sources and computational tools to search for transcriptional factor binding motifs. In conclusion, we show EC regulatory sequences with a high likelihood to be enhancers, and we validate a subset of them using computational and cell culture models. Motif analyses show that the core EC transcription factors GATA/ETS/FOS is a likely driver of EC regulation in cardiopharyngeal mesoderm.
Collapse
Affiliation(s)
- Ilaria Aurigemma
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Olga Lanzetta
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Andrea Cirino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Sara Allegretti
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Gabriella Lania
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Rosa Ferrentino
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Varsha Poondi Krishnan
- Institute of Genetics and Biophysics, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Claudia Angelini
- Istituto Applicazioni del Calcolo, National Research Council, Via Pietro Castellino 111, 80131, Naples, Italy
| | - Elizabeth Illingworth
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, Italy
| | - Antonio Baldini
- PhD program in Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
10
|
Zhang A, Lu J, Feng S, Yu H, Yu T, Zhao S, Chen K, Huang Z, Xu J, Qu JY, Wen Z. Fli1 acts in parallel with Pu.1 to control macrophage and neutrophil fate in zebrafish. J Genet Genomics 2024; 51:359-362. [PMID: 37944856 DOI: 10.1016/j.jgg.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Affiliation(s)
- Ao Zhang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jingao Lu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Shachuan Feng
- Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Huapeng Yu
- Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Tao Yu
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Shizheng Zhao
- Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China
| | - Kemin Chen
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jin Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jianan Y Qu
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zilong Wen
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518067, China.
| |
Collapse
|
11
|
Yang Z, Guo D, Zhao J, Li J, Zhang R, Zhang Y, Xu C, Ke T, Wang QK. Aggf1 Specifies Hemangioblasts at the Top of Regulatory Hierarchy via Npas4l and mTOR-S6K-Emp2-ERK Signaling. Arterioscler Thromb Vasc Biol 2023; 43:2348-2368. [PMID: 37881938 DOI: 10.1161/atvbaha.123.318818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Hemangioblasts are mesoderm-derived multipotent stem cells for differentiation of all hematopoietic and endothelial cells in the circulation system. However, the underlying molecular mechanism is poorly understood. METHODS CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (type II CRISPR RNA-guided endonuclease) editing was used to develop aggf1-/- and emp2-/- knockout zebra fish. Whole-mount in situ hybridization and transgenic Tg(gata1-EGFP [enhanced green fluorescent protein]), Tg(mpx-EGFP), Tg(rag2-DsRed [discosoma sp. red fluorescent protein]), Tg(cd41-EGFP), Tg(kdrl-EGFP), and Tg(aggf1-/-;kdrl-EGFP) zebra fish were used to examine specification of hemangioblasts and hematopoietic stem and progenitor cells (HSPCs), hematopoiesis, and vascular development. Quantitative real-time polymerase chain reaction and Western blot analyses were used for expression analysis of genes and proteins. RESULTS Knockout of aggf1 impaired specification of hemangioblasts and HSPCs, hematopoiesis, and vascular development in zebra fish. Expression of npas4l/cloche-the presumed earliest marker for hemangioblast specification-was significantly reduced in aggf1-/- embryos and increased by overexpression of aggf1 in embryos. Overexpression of npas4l rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels in aggf1-/- embryos, placing aggf1 upstream of npas4l in hemangioblast specification. To identify the underlying molecular mechanism, we identified emp2 as a key aggf1 downstream gene. Similar to aggf1, emp2 knockout impaired the specification of hemangioblasts and HSPCs, hematopoiesis, and angiogenesis by increasing the phosphorylation of ERK1/2 (extracellular signal-regulated protein kinase 1/2). Mechanistic studies showed that aggf1 knockdown and knockout significantly decreased the phosphorylated levels of mTOR (mammalian target of rapamycin) and p70 S6K (ribosomal protein S6 kinase), resulting in reduced protein synthesis of Emp2 (epithelial membrane protein 2), whereas mTOR activator MHY1485 (4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine) rescued the impaired specification of hemangioblasts and HSPCs and development of hematopoiesis and intersegmental vessels and reduced Emp2 expression induced by aggf1 knockdown. CONCLUSIONS These results indicate that aggf1 acts at the top of npas4l and becomes the earliest marker during specification of hemangioblasts. Our data identify a novel signaling axis of Aggf1 (angiogenic factor with G-patch and FHA domain 1)-mTOR-S6K-ERK1/2 for specification of hemangioblasts and HSPCs, primitive and definitive hematopoiesis, and vascular development. Our findings provide important insights into specification of hemangioblasts and HSPCs essential for the development of the circulation system.
Collapse
Affiliation(s)
- Zhongcheng Yang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Di Guo
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Jinyan Zhao
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, China (J.Z.)
| | - Jia Li
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University, Chongqing, China (J.L.)
| | - Rui Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Yidan Zhang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Chengqi Xu
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Tie Ke
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
| | - Qing K Wang
- Center for Human Genome Research, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China (Z.Y., D.G., J.L., R.Z., Y.Z., C.X., T.K., Q.K.W.)
- Shaoxing Institute of Innovation, Zhejiang University, China (Q.K.W.)
| |
Collapse
|
12
|
Jin H, Zhang W, Liu H, Bao Y. Genome-wide identification and characteristic analysis of ETS gene family in blood clam Tegillarca granosa. BMC Genomics 2023; 24:700. [PMID: 37990147 PMCID: PMC10664356 DOI: 10.1186/s12864-023-09731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND ETS transcription factors, known as the E26 transformation-specific factors, assume a critical role in the regulation of various vital biological processes in animals, including cell differentiation, the cell cycle, and cell apoptosis. However, their characterization in mollusks is currently lacking. RESULTS The current study focused on a comprehensive analysis of the ETS genes in blood clam Tegillarca granosa and other mollusk genomes. Our phylogenetic analysis revealed the absence of the SPI and ETV subfamilies in mollusks compared to humans. Additionally, several ETS genes in mollusks were found to lack the PNT domain, potentially resulting in a diminished ability of ETS proteins to bind target genes. Interestingly, the bivalve ETS1 genes exhibited significantly high expression levels during the multicellular proliferation stage and in gill tissues. Furthermore, qRT-PCR results showed that Tg-ETS-14 (ETS1) is upregulated in the high total hemocyte counts (THC) population of T. granosa, suggesting it plays a significant role in stimulating hemocyte proliferation. CONCLUSION Our study significantly contributes to the comprehension of the evolutionary aspects concerning the ETS gene family, while also providing valuable insights into its role in fostering hemocyte proliferation across mollusks.
Collapse
Affiliation(s)
- Hongyu Jin
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China
| | - Weiwei Zhang
- School of Marine Sciences, Ningbo University, Ningbo, 315000, China
| | - Hongxing Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China.
| | - Yongbo Bao
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, College of Biological & Environmental Sciences, Zhejiang Wanli University, Zhejiang, 315100, China.
| |
Collapse
|
13
|
Mao A, Li Z, Ning G, Zhou Z, Wei C, Li J, He X, Wang Q. Sclerotome-derived PDGF signaling functions as a niche cue responsible for primitive erythropoiesis. Development 2023; 150:dev201807. [PMID: 37882745 PMCID: PMC10690055 DOI: 10.1242/dev.201807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Primitive erythropoiesis serves a vital role in embryonic development, generating primitive red blood cells responsible for transportation of oxygen throughout the body. Although diverse niche factors are known to function in definitive hematopoiesis, the microenvironment contributing to primitive hematopoiesis remains largely elusive. Here, we report that platelet-derived growth factor (PDGF) signaling is required for erythroid progenitor differentiation in zebrafish. Ablating pdgfαa (also known as pdgfaa) and pdgfαb (also known as pdgfab) or blocking PDGF signaling with an inhibitor impairs erythroid progenitor differentiation, thus resulting in a significant decrease in the number of erythrocytes. We reveal that pdgfαb is expressed in sclerotomal cells, and that its receptor genes, pdgfra and pdgfrb, are expressed in the adjacent erythroid progenitor cells. Sclerotome-specific overexpression of pdgfαb effectively restores primitive erythropoiesis in pdgfαa-/-;pdgfαb-/- mutant embryos. In addition, we have defined ERK1/2 signaling as a downstream pathway of PDGF signaling during embryonic erythropoiesis. Taken together, our findings indicate that PDGF signaling derived from sclerotome functions as a niche cue for primitive erythropoiesis.
Collapse
Affiliation(s)
- Aihua Mao
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Zhuyun Li
- Innovation Centre of Ministry of Education for Development and Diseases, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guozhu Ning
- Affiliated Hospital of Guangdong Medical University and Key Laboratory of Zebrafish Model for Development and Disease, Guangdong Medical University, Zhanjiang 524001, China
| | - Zhengrong Zhou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chiju Wei
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China
| | - Jianchao Li
- Innovation Centre of Ministry of Education for Development and Diseases, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Xinyu He
- Innovation Centre of Ministry of Education for Development and Diseases, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Qiang Wang
- Innovation Centre of Ministry of Education for Development and Diseases, Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
14
|
Li Y, Li C, Liu M, Liu S, Liu F, Wang L. The RNA-binding protein CSDE1 promotes hematopoietic stem and progenitor cell generation via translational control of Wnt signaling. Development 2023; 150:dev201890. [PMID: 37874038 PMCID: PMC10652045 DOI: 10.1242/dev.201890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
In vertebrates, the earliest hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of specialized endothelial cells, hemogenic endothelial cells, in the aorta-gonad-mesonephros region through endothelial-to-hematopoietic transition. HSPC generation is efficiently and accurately regulated by a variety of factors and signals; however, the precise control of these signals remains incompletely understood. Post-transcriptional regulation is crucial for gene expression, as the transcripts are usually bound by RNA-binding proteins (RBPs) to regulate RNA metabolism. Here, we report that the RBP protein Csde1-mediated translational control is essential for HSPC generation during zebrafish early development. Genetic mutants and morphants demonstrated that depletion of csde1 impaired HSPC production in zebrafish embryos. Mechanistically, Csde1 regulates HSPC generation through modulating Wnt/β-catenin signaling activity. We demonstrate that Csde1 binds to ctnnb1 mRNAs (encoding β-catenin, an effector of Wnt signaling) and regulates translation but not stability of ctnnb1 mRNA, which further enhances β-catenin protein level and Wnt signal transduction activities. Together, we identify Csde1 as an important post-transcriptional regulator and provide new insights into how Wnt/β-catenin signaling is precisely regulated at the post-transcriptional level.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Can Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
15
|
Zhang X, Yang Y, Wei Y, Zhao Q, Lou X. blf and the drl cluster synergistically regulate cell fate commitment during zebrafish primitive hematopoiesis. Development 2022; 149:285945. [PMID: 36420817 DOI: 10.1242/dev.200919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Hematopoiesis is a highly coordinated process that generates all the body's blood cells, and perturbations in embryonic hematopoiesis may result in illnesses ranging from fetal anemia to various leukemias. Correct establishment of hematopoietic progenitor cell fate is essential for the development of adequate blood cell subpopulations, although regulators of cell fate commitment have not been fully defined. Here, we show that primary erythropoiesis and myelopoiesis in zebrafish embryos are synergistically regulated by blf and the drl cluster, as simultaneous depletion led to severe erythrocyte aplasia and excessive macrophage formation at the expense of neutrophil development. Integrative analysis of transcriptome- and genome-wide binding data revealed that blf and drl cluster genes are responsible for constraining the expression of vasculogenesis-promoting genes in the intermediate cell mass and monocytopoiesis-promoting genes in the rostral blood island. This indicates that blf and drl cluster genes act as determinants of the fate commitment of erythroid and myeloid progenitor cells. Furthermore, a rescue screen demonstrated that Zfp932 is a potential mammalian functional equivalent to zebrafish blf and drl cluster genes. Our data provide insight into conserved cell fate commitment mechanisms of primitive hematopoiesis.
Collapse
Affiliation(s)
- Xue Zhang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxi Yang
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxuan Wei
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Qingshun Zhao
- Medical School, Nanjing University, Nanjing, 210093, China
| | - Xin Lou
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, 311100, China
| |
Collapse
|
16
|
Zhao S, Zhang A, Zhu H, Wen Z. The ETS transcription factor Spi2 regulates hematopoietic cell development in zebrafish. Development 2022; 149:276980. [DOI: 10.1242/dev.200881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/26/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The E26 transformation-specific or E-twenty-six (ETS) genes encode a superfamily of transcription factors involved in diverse biological processes. Here, we report the identification and characterization of a previously unidentified member of the ETS transcription factors, Spi2, that is found exclusively in the ray-finned fish kingdom. We show that the expression of spi2 is restricted to hemogenic endothelial cells (HECs) and to hematopoietic stem and progenitor cells (HSPCs) in zebrafish. Using bacteria artificial chromosome transgenesis, we generate a spi2 reporter line, TgBAC(spi2:P2a-GFP), which manifests the GFP pattern recapitulating the endogenous spi2 expression. Genetic ablation of spi2 has little effect on HEC formation and the endothelial-to-hematopoietic transition, but results in compromised proliferation of HSPCs in the caudal hematopoietic tissue (CHT) during early development and in severe myeloid lineage defect in adulthood. Epistatic analysis shows that spi2 acts downstream of runx1 in regulating HSPC development in the CHT. Our study identifies Spi2 as an essential regulator for definitive hematopoietic cell development and creates a TgBAC(spi2:P2a-GFP) reporter line for tracking HECs, HSPCs, myeloid cells and thrombocytes from early development to adulthood.
Collapse
Affiliation(s)
- Shizheng Zhao
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Ao Zhang
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Hao Zhu
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology 1 Division of Life Science , , Clear Water Bay, Hong Kong , China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen Peking University−Hong Kong University of Science and Technology Medical Center 2 , Shenzhen 518055 , China
| |
Collapse
|
17
|
Wang L, Lin L, Qi H, Chen J, Grossfeld P. Endothelial Loss of ETS1 Impairs Coronary Vascular Development and Leads to Ventricular Non-Compaction. Circ Res 2022; 131:371-387. [PMID: 35894043 PMCID: PMC9624262 DOI: 10.1161/circresaha.121.319955] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 07/12/2022] [Indexed: 11/16/2022]
Abstract
RATIONALE Jacobsen syndrome is a rare chromosomal disorder caused by deletions in the long arm of human chromosome 11, resulting in multiple developmental defects including congenital heart defects. Combined studies in humans and genetically engineered mice implicate that loss of ETS1 (E26 transformation specific 1) is the cause of congenital heart defects in Jacobsen syndrome, but the underlying molecular and cellular mechanisms are unknown. OBJECTIVE To determine the role of ETS1 in heart development, specifically its roles in coronary endothelium and endocardium and the mechanisms by which loss of ETS1 causes coronary vascular defects and ventricular noncompaction. METHODS AND RESULTS ETS1 global and endothelial-specific knockout mice were used. Phenotypic assessments, RNA sequencing, and chromatin immunoprecipitation analysis were performed together with expression analysis, immunofluorescence and RNAscope in situ hybridization to uncover phenotypic and transcriptomic changes in response to loss of ETS1. Loss of ETS1 in endothelial cells causes ventricular noncompaction, reproducing the phenotype arising from global deletion of ETS1. Endothelial-specific deletion of ETS1 decreased the levels of Alk1 (activin receptor-like kinase 1), Cldn5 (claudin 5), Sox18 (SRY-box transcription factor 18), Robo4 (roundabout guidance receptor 4), Esm1 (endothelial cell specific molecule 1) and Kdr (kinase insert domain receptor), 6 important angiogenesis-relevant genes in endothelial cells, causing a coronary vasculature developmental defect in association with decreased compact zone cardiomyocyte proliferation. Downregulation of ALK1 expression in endocardium due to the loss of ETS1, along with the upregulation of TGF (transforming growth factor)-β1 and TGF-β3, occurred with increased TGFBR2/TGFBR1/SMAD2 signaling and increased extracellular matrix expression in the trabecular layer, in association with increased trabecular cardiomyocyte proliferation. CONCLUSIONS These results demonstrate the importance of endothelial and endocardial ETS1 in cardiac development. Delineation of the gene regulatory network involving ETS1 in heart development will enhance our understanding of the molecular mechanisms underlying ventricular and coronary vascular developmental defects and will lead to improved approaches for the treatment of patients with congenital heart disease.
Collapse
Affiliation(s)
- Lu Wang
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Lizhu Lin
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Hui Qi
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Ju Chen
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Paul Grossfeld
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, La Jolla, CA 92093, USA
- Division of Cardiology, Rady Children’s Hospital San Diego, San Diego, CA, USA
| |
Collapse
|
18
|
Zhang J, Qi L, Wang T, An J, Zhou B, Fang Y, Liu Y, Shan M, Hong D, Wu D, Xu Y, Liu T. FEV Maintains Homing and Expansion by Activating ITGA4 Transcription in Primary and Relapsed AML. Front Oncol 2022; 12:890346. [PMID: 35875066 PMCID: PMC9300928 DOI: 10.3389/fonc.2022.890346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematological malignancy that recurs in approximately 50% of cases. Elevated homing and uncontrolled expansion are characteristics of AML cells. Here, we identified that Fifth Ewing Variant (FEV) regulates the homing and expansion of AML cells. We found that FEV was re-expressed in 30% of primary AML samples and in almost all relapsed AML samples, and FEV expression levels were significantly higher in relapsed samples compared to primary samples. Interference of FEV expression in AML cell lines delayed leukemic progression and suppressed homing and proliferation. Moreover, FEV directly activated integrin subunit alpha 4 (ITGA4) transcription in a dose-dependent manner. Inhibition of integrin α4 activity with natalizumab (NZM) reduced the migration and colony-forming abilities of blasts and leukemic-initiating cells (LICs) in both primary and relapsed AML. Thus, our study suggested that FEV maintains the homing and expansion of AML cells by activating ITGA4 transcription and that targeting ITGA4 inhibits the colony-forming and migration capacities of blasts and LICs. Thus, these findings suggested that the FEV-ITGA4 axis may be a therapeutic target for both primary and relapsed AML.
Collapse
Affiliation(s)
- Jubin Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Lijuan Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Tanzhen Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jingnan An
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yanglan Fang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yujie Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Meng Shan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dengli Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| | - Tianhui Liu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- *Correspondence: Tianhui Liu, ; Yang Xu, ; Depei Wu,
| |
Collapse
|
19
|
Khosh Kish E, Choudhry M, Gamallat Y, Buharideen SM, D D, Bismar TA. The Expression of Proto-Oncogene ETS-Related Gene ( ERG) Plays a Central Role in the Oncogenic Mechanism Involved in the Development and Progression of Prostate Cancer. Int J Mol Sci 2022; 23:ijms23094772. [PMID: 35563163 PMCID: PMC9105369 DOI: 10.3390/ijms23094772] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/17/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
The ETS-related gene (ERG) is proto-oncogene that is classified as a member of the ETS transcription factor family, which has been found to be consistently overexpressed in about half of the patients with clinically significant prostate cancer (PCa). The overexpression of ERG can mostly be attributed to the fusion of the ERG and transmembrane serine protease 2 (TMPRSS2) genes, and this fusion is estimated to represent about 85% of all gene fusions observed in prostate cancer. Clinically, individuals with ERG gene fusion are mostly documented to have advanced tumor stages, increased mortality, and higher rates of metastasis in non-surgical cohorts. In the current review, we elucidate ERG’s molecular interaction with downstream genes and the pathways associated with PCa. Studies have documented that ERG plays a central role in PCa progression due to its ability to enhance tumor growth by promoting inflammatory and angiogenic responses. ERG has also been implicated in the epithelial–mesenchymal transition (EMT) in PCa cells, which increases the ability of cancer cells to metastasize. In vivo, research has demonstrated that higher levels of ERG expression are involved with nuclear pleomorphism that prompts hyperplasia and the loss of cell polarity.
Collapse
Affiliation(s)
- Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Sabrina Marsha Buharideen
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Dhananjaya D
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
| | - Tarek A. Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2V 1P9, Canada; (E.K.K.); (M.C.); (Y.G.); (S.M.B.); (D.D.)
- Alberta Precision Laboratories, Calgary, AB T2V 1P9, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Calgary, AB T2V 1P9, Canada
- Tom Baker Cancer Center, Arnie Charbonneau Cancer Institute, Calgary, AB T2V 1P9, Canada
- Correspondence: ; Tel.: +1-403-943-8430; Fax: +1-403-943-3333
| |
Collapse
|
20
|
The Evolution of Biomineralization through the Co-Option of Organic Scaffold Forming Networks. Cells 2022; 11:cells11040595. [PMID: 35203246 PMCID: PMC8870065 DOI: 10.3390/cells11040595] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/05/2022] Open
Abstract
Biomineralization is the process in which organisms use minerals to generate hard structures like teeth, skeletons and shells. Biomineralization is proposed to have evolved independently in different phyla through the co-option of pre-existing developmental programs. Comparing the gene regulatory networks (GRNs) that drive biomineralization in different species could illuminate the molecular evolution of biomineralization. Skeletogenesis in the sea urchin embryo was extensively studied and the underlying GRN shows high conservation within echinoderms, larval and adult skeletogenesis. The organic scaffold in which the calcite skeletal elements form in echinoderms is a tubular compartment generated by the syncytial skeletogenic cells. This is strictly different than the organic cartilaginous scaffold that vertebrates mineralize with hydroxyapatite to make their bones. Here I compare the GRNs that drive biomineralization and tubulogenesis in echinoderms and in vertebrates. The GRN that drives skeletogenesis in the sea urchin embryo shows little similarity to the GRN that drives bone formation and high resemblance to the GRN that drives vertebrates’ vascular tubulogenesis. On the other hand, vertebrates’ bone-GRNs show high similarity to the GRNs that operate in the cells that generate the cartilage-like tissues of basal chordate and invertebrates that do not produce mineralized tissue. These comparisons suggest that biomineralization in deuterostomes evolved through the phylum specific co-option of GRNs that control distinct organic scaffolds to mineralization.
Collapse
|
21
|
McGarvey AC, Kopp W, Vučićević D, Mattonet K, Kempfer R, Hirsekorn A, Bilić I, Gil M, Trinks A, Merks AM, Panáková D, Pombo A, Akalin A, Junker JP, Stainier DY, Garfield D, Ohler U, Lacadie SA. Single-cell-resolved dynamics of chromatin architecture delineate cell and regulatory states in zebrafish embryos. CELL GENOMICS 2022; 2:100083. [PMID: 36777038 PMCID: PMC9903790 DOI: 10.1016/j.xgen.2021.100083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
DNA accessibility of cis-regulatory elements (CREs) dictates transcriptional activity and drives cell differentiation during development. While many genes regulating embryonic development have been identified, the underlying CRE dynamics controlling their expression remain largely uncharacterized. To address this, we produced a multimodal resource and genomic regulatory map for the zebrafish community, which integrates single-cell combinatorial indexing assay for transposase-accessible chromatin with high-throughput sequencing (sci-ATAC-seq) with bulk histone PTMs and Hi-C data to achieve a genome-wide classification of the regulatory architecture determining transcriptional activity in the 24-h post-fertilization (hpf) embryo. We characterized the genome-wide chromatin architecture at bulk and single-cell resolution, applying sci-ATAC-seq on whole 24-hpf stage zebrafish embryos, generating accessibility profiles for ∼23,000 single nuclei. We developed a genome segmentation method, ScregSeg (single-cell regulatory landscape segmentation), for defining regulatory programs, and candidate CREs, specific to one or more cell types. We integrated the ScregSeg output with bulk measurements for histone post-translational modifications and 3D genome organization and identified new regulatory principles between chromatin modalities prevalent during zebrafish development. Sci-ATAC-seq profiling of npas4l/cloche mutant embryos identified novel cellular roles for this hematovascular transcriptional master regulator and suggests an intricate mechanism regulating its expression. Our work defines regulatory architecture and principles in the zebrafish embryo and establishes a resource of cell-type-specific genome-wide regulatory annotations and candidate CREs, providing a valuable open resource for genomics, developmental, molecular, and computational biology.
Collapse
Affiliation(s)
- Alison C. McGarvey
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Wolfgang Kopp
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Dubravka Vučićević
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Kenny Mattonet
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Rieke Kempfer
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Antje Hirsekorn
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Ilija Bilić
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Marine Gil
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Alexandra Trinks
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Anne Margarete Merks
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Daniela Panáková
- Electrochemical Signaling in Development and Disease, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin 13125, Germany
| | - Ana Pombo
- Epigenetic Regulation and Chromatin Architecture, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Centre for Molecular Medicine, Berlin 10115, Germany
| | - Jan Philipp Junker
- Quantitative Developmental Biology, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany
| | - Didier Y.R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - David Garfield
- IRI Life Sciences, Humboldt Universität Berlin, Berlin 10115, Germany
| | - Uwe Ohler
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Institute for Biology, Humboldt Universität Berlin, Berlin 10115, Germany,Corresponding author
| | - Scott Allen Lacadie
- Computational Regulatory Genomics, Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, Berlin 10115, Germany,Berlin Institute of Health, Berlin 10178, Germany,Corresponding author
| |
Collapse
|
22
|
Wu M, Chen Q, Li J, Xu Y, Lian J, Liu Y, Meng P, Zhang Y. Gfi1aa/Lsd1 Facilitates Hemangioblast Differentiation Into Primitive Erythrocytes by Targeting etv2 and sox7 in Zebrafish. Front Cell Dev Biol 2022; 9:786426. [PMID: 35096818 PMCID: PMC8790037 DOI: 10.3389/fcell.2021.786426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/09/2021] [Indexed: 11/28/2022] Open
Abstract
The first wave of hematopoiesis is the primitive hematopoiesis, which produces embryonic erythroid and myeloid cells. Primitive erythrocytes are thought to be generated from bipotent hemangioblasts, but the molecular basis remains unclear. Transcriptional repressors Gfi1aa and Gfi1b have been shown to cooperatively promote primitive erythrocytes differentiation from hemangioblasts in zebrafish. However, the mechanism of these repressors during the primitive wave is largely unknown. Herein, by functional analysis of zebrafish gfi1aa smu10 , gfi1b smu11 , gfi1ab smu12 single, double, and triple mutants, we found that Gfi1aa not only plays a predominant role in primitive erythropoiesis but also synergizes with Gfi1ab. To screen Gfi1aa downstream targets, we performed RNA-seq and ChIP-seq analysis and found two endothelial transcription factors, etv2 and sox7, to be repressed by Gfi1aa. Genetic analysis demonstrated Gfi1aa to promote hemangioblast differentiation into primitive erythrocytes by inhibiting both etv2 and sox7 in an Lsd1-dependent manner. Moreover, the H3K4me1 level of etv2 and sox7 were increased in gfi1aa mutant. Taken together, these results suggest that Gfi1aa/Lsd1-dependent etv2/sox7 downregulation is critical for hemangioblast differentiation during primitive hematopoiesis by inhibition of endothelial specification. The different and redundant roles for Gfi1(s), as well as their genetic and epigenetic regulation during primitive hematopoiesis, help us to better know the molecular basis of the primitive hematopoiesis and sheds light on the understanding the Gfi1(s) related pathogenesis.
Collapse
Affiliation(s)
- Mei Wu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qi Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jing Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yue Xu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Junwei Lian
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongxiang Liu
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, China,*Correspondence: Yiyue Zhang,
| |
Collapse
|
23
|
Using the Zebrafish as a Genetic Model to Study Erythropoiesis. Int J Mol Sci 2021; 22:ijms221910475. [PMID: 34638816 PMCID: PMC8508994 DOI: 10.3390/ijms221910475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/18/2021] [Accepted: 09/25/2021] [Indexed: 11/30/2022] Open
Abstract
Vertebrates generate mature red blood cells (RBCs) via a highly regulated, multistep process called erythropoiesis. Erythropoiesis involves synthesis of heme and hemoglobin, clearance of the nuclei and other organelles, and remodeling of the plasma membrane, and these processes are exquisitely coordinated by specific regulatory factors including transcriptional factors and signaling molecules. Defects in erythropoiesis can lead to blood disorders such as congenital dyserythropoietic anemias, Diamond–Blackfan anemias, sideroblastic anemias, myelodysplastic syndrome, and porphyria. The molecular mechanisms of erythropoiesis are highly conserved between fish and mammals, and the zebrafish (Danio rerio) has provided a powerful genetic model for studying erythropoiesis. Studies in zebrafish have yielded important insights into RBC development and established a number of models for human blood diseases. Here, we focus on latest discoveries of the molecular processes and mechanisms regulating zebrafish erythropoiesis and summarize newly established zebrafish models of human anemias.
Collapse
|
24
|
A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish. Proc Natl Acad Sci U S A 2021; 118:2015748118. [PMID: 33785593 PMCID: PMC8040670 DOI: 10.1073/pnas.2015748118] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The caudal hematopoietic tissue (CHT) is characterized as a hematopoietic organ for fetal hematopoietic stem and progenitor cell (HSPC) expansion in zebrafish. In this study, we used scRNA-seq combined with functional assays to decode the developing CHT. First, we resolved fetal HSPC heterogeneity, manifested as lineage priming and metabolic gene signatures. We further analyzed the cellular interactions among nonhematopoietic niche components and HSPCs and identified an endothelial cell-specific factor, Gpr182, followed by experimental validation of its role in promoting HSPC expansion. Finally, we uncovered the conservation and divergence of developmental hematopoiesis between human fetal liver and zebrafish CHT. Our study provides a valuable resource for fetal HSPC development and clues to establish a supportive niche for HSPC expansion in vitro. During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand–receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein–coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.
Collapse
|
25
|
Marsman J, Gimenez G, Day RC, Horsfield JA, Jones GT. A non-coding genetic variant associated with abdominal aortic aneurysm alters ERG gene regulation. Hum Mol Genet 2021; 29:554-565. [PMID: 31691800 PMCID: PMC7068029 DOI: 10.1093/hmg/ddz256] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 09/11/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a major cause of sudden death in the elderly. While AAA has some overlapping genetic and environmental risk factors with atherosclerosis, there are substantial differences, and AAA-specific medication is lacking. A recent meta-analysis of genome-wide association studies has identified four novel single-nucleotide polymorphisms (SNPs) specifically associated with AAA. Here, we investigated the gene regulatory function for one of four non-coding SNPs associated with AAA, rs2836411, which is located in an intron of the ERG gene. Rs2836411 resides within a >70 kb super-enhancer that has high levels of H3K27ac and H3K4me1 in vascular endothelial and haematopoietic cell types. Enhancer luciferase assays in cell lines showed that the risk allele significantly alters enhancer activity. The risk allele also correlates with reduced ERG expression in aortic and other vascular tissues. To identify whether rs2836411 directly contacts the promoters of ERG and/or of genes further away, we performed allele-specific circular chromosome conformation capture sequencing. In vascular endothelial cells, which express ERG, the SNP region interacts highly within the super-enhancer, while in vascular smooth muscle cells, which do not express ERG, the interactions are distributed across a wider region that includes neighbouring genes. Furthermore, the risk allele has fewer interactions within the super-enhancer compared to the protective allele. In conclusion, our results indicate that rs2836411 likely affects ERG expression by altering enhancer activity and changing local chromatin interactions. ERG is involved in vascular development, angiogenesis, and inflammation in atherosclerosis; therefore mechanistically, rs2836411 could contribute to AAA by modulating ERG levels.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand
| | - Robert C Day
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand
| | - Julia A Horsfield
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Gregory T Jones
- Department of Surgical Sciences, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
26
|
Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol 2021; 37:873-890. [PMID: 33469864 DOI: 10.1007/s10565-021-09581-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
Collapse
|
27
|
Neal A, Nornes S, Louphrasitthiphol P, Sacilotto N, Preston MD, Fleisinger L, Payne S, De Val S. ETS factors are required but not sufficient for specific patterns of enhancer activity in different endothelial subtypes. Dev Biol 2021; 473:1-14. [PMID: 33453264 PMCID: PMC8026812 DOI: 10.1016/j.ydbio.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/16/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Correct vascular differentiation requires distinct patterns of gene expression in different subtypes of endothelial cells. Members of the ETS transcription factor family are essential for the transcriptional activation of arterial and angiogenesis-specific gene regulatory elements, leading to the hypothesis that they play lineage-defining roles in arterial and angiogenic differentiation directly downstream of VEGFA signalling. However, an alternative explanation is that ETS binding at enhancers and promoters is a general requirement for activation of many endothelial genes regardless of expression pattern, with subtype-specificity provided by additional factors. Here we use analysis of Ephb4 and Coup-TFII (Nr2f2) vein-specific enhancers to demonstrate that ETS factors are equally essential for vein, arterial and angiogenic-specific enhancer activity patterns. Further, we show that ETS factor binding at these vein-specific enhancers is enriched by VEGFA signalling, similar to that seen at arterial and angiogenic enhancers. However, while arterial and angiogenic enhancers can be activated by VEGFA in vivo, the Ephb4 and Coup-TFII venous enhancers are not, suggesting that the specificity of VEGFA-induced arterial and angiogenic enhancer activity occurs via non-ETS transcription factors. These results support a model in which ETS factors are not the primary regulators of specific patterns of gene expression in different endothelial subtypes. Vein-specific enhancers can contain essential ETS motifs. VEGFA induced an increase in ETS binding at vein, arterial and angiogenic enhancers. VEGFA stimulation cannot induce vein-specific enhancer activity.
Collapse
Affiliation(s)
- Alice Neal
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| | - Svanhild Nornes
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Natalia Sacilotto
- Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Mark D Preston
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, EN6 3QG, United Kingdom
| | - Lucija Fleisinger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom
| | - Sophie Payne
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Sarah De Val
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom; Ludwig Institute for Cancer Research Ltd, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom.
| |
Collapse
|
28
|
Pak B, Schmitt CE, Choi W, Kim JD, Han O, Alsiö J, Jung DW, Williams DR, Coppieters W, Stainier DYR, Jin SW. Analyses of Avascular Mutants Reveal Unique Transcriptomic Signature of Non-conventional Endothelial Cells. Front Cell Dev Biol 2020; 8:589717. [PMID: 33330468 PMCID: PMC7719722 DOI: 10.3389/fcell.2020.589717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells appear to emerge from diverse progenitors. However, to which extent their developmental origin contributes to define their cellular and molecular characteristics remains largely unknown. Here, we report that a subset of endothelial cells that emerge from the tailbud possess unique molecular characteristics that set them apart from stereotypical lateral plate mesoderm (LPM)-derived endothelial cells. Lineage tracing shows that these tailbud-derived endothelial cells arise at mid-somitogenesis stages, and surprisingly do not require Npas4l or Etsrp function, indicating that they have distinct spatiotemporal origins and are regulated by distinct molecular mechanisms. Microarray and single cell RNA-seq analyses reveal that somitogenesis- and neurogenesis-associated transcripts are over-represented in these tailbud-derived endothelial cells, suggesting that they possess a unique transcriptomic signature. Taken together, our results further reveal the diversity of endothelial cells with respect to their developmental origin and molecular properties, and provide compelling evidence that the molecular characteristics of endothelial cells may reflect their distinct developmental history.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Christopher E. Schmitt
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Woosoung Choi
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jun-Dae Kim
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
- Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, United States
| | - Orjin Han
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jessica Alsiö
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Da-Woon Jung
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Darren R. Williams
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Wouter Coppieters
- Unit of Animal Genomics, Faculty of Veterinary Medicine, Interdisciplinary Institute of Applied Genomics (GIGA-R), University of Liège (B34), Liège, Belgium
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Suk-Won Jin
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, South Korea
- Yale Cardiovascular Research Center and Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
29
|
Lv H, Liu B, Qin Y. Isosorbide mononitrate promotes angiogenesis in embryonic development of zebrafish. Genet Mol Biol 2020; 43:20190233. [PMID: 32706844 PMCID: PMC7380327 DOI: 10.1590/1678-4685-gmb-2019-0233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 05/28/2020] [Indexed: 12/21/2022] Open
Abstract
Coronary heart disease (CHD) is a leading cause of death worldwide, and
angiogenesis plays important roles in CHD. Thus, in the present study, the
angiogenic efficacy of four common cardiovascular medicines (aspirin,
pravastatin, metoprolol and isosorbide mononitrate (ISMN)) was determined by the
number and length of zebrafish intersegmental vessels (ISVs) after immersing
zebrafish embryos in different medicines. Results showed that ISMN significantly
increased the length and number of ISVs. ISMN is a long-acting nitrate ester
drug. It has been used as a vasodilator to dilate arteries and veins to reduce
the cardiac preload and postload. However, the effect of ISMN on angiogenesis
remains unclear. Thus, by in vitro experiments, the angiogenic mechanism of ISMN
was evaluated through detecting the viability and proliferation of human
umbilical vein endothelial cells (HUVECs) and the expression of
angiogenesis-related genes and miRNAs. Results indicated that ISMN could
increase the viability and proliferation of HUVECs by decreasing apoptosis, and
elevated the expressions of vedf, kdrl,
pdgfr in zebrafish embryos. Furthermore, the expressions of
miR-126, miR-130a and miR-210 were also regulated in ISMN-treated HUVECs. In
conclusion, ISMN could promote angiogenesis in zebrafish embryos and HUVECs,
implying ISMN may be a potential therapeutic in treating angiogenesis-related
diseases.
Collapse
Affiliation(s)
- Hui Lv
- The Second Affiliated Hospital of ShanXi Medical University, Department of Cardiovascular Disease, Taiyuan, Shanxi, 030001, China
| | - Bo Liu
- Xinhua Hospital Affiliated To Shanghai Jiaotong University School Of Medicine, Department of Cardiovascular Disease, Shanghai 200092, China
| | - Yongwen Qin
- The Second Military Medical University, Department of Cardiovascular Disease , Shanghai 200433, China
| |
Collapse
|
30
|
Lee DH, Kim TM, Kim JK, Park C. ETV2/ER71 Transcription Factor as a Therapeutic Vehicle for Cardiovascular Disease. Theranostics 2019; 9:5694-5705. [PMID: 31534512 PMCID: PMC6735401 DOI: 10.7150/thno.35300] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases have long been the leading cause of mortality and morbidity in the United States as well as worldwide. Despite numerous efforts over the past few decades, the number of the patients with cardiovascular disease still remains high, thereby necessitating the development of novel therapeutic strategies equipped with a better understanding of the biology of the cardiovascular system. Recently, the ETS transcription factor, ETV2 (also known as ER71), has been recognized as a master regulator of the development of the cardiovascular system and plays an important role in pathophysiological angiogenesis and the endothelial cell reprogramming. Here, we discuss the detailed mechanisms underlying ETV2/ER71-regulated cardiovascular lineage development. In addition, recent reports on the novel functions of ETV2/ER71 in neovascularization and direct cell reprogramming are discussed with a focus on its therapeutic potential for cardiovascular diseases.
Collapse
|
31
|
Possible cooption of a VEGF-driven tubulogenesis program for biomineralization in echinoderms. Proc Natl Acad Sci U S A 2019; 116:12353-12362. [PMID: 31152134 DOI: 10.1073/pnas.1902126116] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Biomineralization is the process by which living organisms use minerals to form hard structures that protect and support them. Biomineralization is believed to have evolved rapidly and independently in different phyla utilizing preexisting components. The mechanistic understanding of the regulatory networks that drive biomineralization and their evolution is far from clear. Sea urchin skeletogenesis is an excellent model system for studying both gene regulation and mineral uptake and deposition. The sea urchin calcite spicules are formed within a tubular cavity generated by the skeletogenic cells controlled by vascular endothelial growth factor (VEGF) signaling. The VEGF pathway is essential for biomineralization in echinoderms, while in many other phyla, across metazoans, it controls tubulogenesis and vascularization. Despite the critical role of VEGF signaling in sea urchin spiculogenesis, the downstream program it activates was largely unknown. Here we study the cellular and molecular machinery activated by the VEGF pathway during sea urchin spiculogenesis and reveal multiple parallels to the regulation of vertebrate vascularization. Human VEGF rescues sea urchin VEGF knockdown, vesicle deposition into an internal cavity plays a significant role in both systems, and sea urchin VEGF signaling activates hundreds of genes, including biomineralization and interestingly, vascularization genes. Moreover, five upstream transcription factors and three signaling genes that drive spiculogenesis are homologous to vertebrate factors that control vascularization. Overall, our findings suggest that sea urchin spiculogenesis and vertebrate vascularization diverged from a common ancestral tubulogenesis program, broadly adapted for vascularization and specifically coopted for biomineralization in the echinoderm phylum.
Collapse
|
32
|
Kalna V, Yang Y, Peghaire CR, Frudd K, Hannah R, Shah AV, Osuna Almagro L, Boyle JJ, Göttgens B, Ferrer J, Randi AM, Birdsey GM. The Transcription Factor ERG Regulates Super-Enhancers Associated With an Endothelial-Specific Gene Expression Program. Circ Res 2019; 124:1337-1349. [PMID: 30892142 PMCID: PMC6493686 DOI: 10.1161/circresaha.118.313788] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE The ETS (E-26 transformation-specific) transcription factor ERG (ETS-related gene) is essential for endothelial homeostasis, driving expression of lineage genes and repressing proinflammatory genes. Loss of ERG expression is associated with diseases including atherosclerosis. ERG's homeostatic function is lineage-specific, because aberrant ERG expression in cancer is oncogenic. The molecular basis for ERG lineage-specific activity is unknown. Transcriptional regulation of lineage specificity is linked to enhancer clusters (super-enhancers). OBJECTIVE To investigate whether ERG regulates endothelial-specific gene expression via super-enhancers. METHODS AND RESULTS Chromatin immunoprecipitation with high-throughput sequencing in human umbilical vein endothelial cells showed that ERG binds 93% of super-enhancers ranked according to H3K27ac, a mark of active chromatin. These were associated with endothelial genes such as DLL4 (Delta-like protein 4), CLDN5 (claudin-5), VWF (von Willebrand factor), and CDH5 (VE-cadherin). Comparison between human umbilical vein endothelial cell and prostate cancer TMPRSS2 (transmembrane protease, serine-2):ERG fusion-positive human prostate epithelial cancer cell line (VCaP) cells revealed distinctive lineage-specific transcriptome and super-enhancer profiles. At a subset of endothelial super-enhancers (including DLL4 and CLDN5), loss of ERG results in significant reduction in gene expression which correlates with decreased enrichment of H3K27ac and MED (Mediator complex subunit)-1, and reduced recruitment of acetyltransferase p300. At these super-enhancers, co-occupancy of GATA2 (GATA-binding protein 2) and AP-1 (activator protein 1) is significantly lower compared with super-enhancers that remained constant following ERG inhibition. These data suggest distinct mechanisms of super-enhancer regulation in endothelial cells and highlight the unique role of ERG in controlling a core subset of super-enhancers. Most disease-associated single nucleotide polymorphisms from genome-wide association studies lie within noncoding regions and perturb transcription factor recognition sequences in relevant cell types. Analysis of genome-wide association studies data shows significant enrichment of risk variants for cardiovascular disease and other diseases, at ERG endothelial enhancers and super-enhancers. CONCLUSIONS The transcription factor ERG promotes endothelial homeostasis via regulation of lineage-specific enhancers and super-enhancers. Enrichment of cardiovascular disease-associated single nucleotide polymorphisms at ERG super-enhancers suggests that ERG-dependent transcription modulates disease risk.
Collapse
Affiliation(s)
- Viktoria Kalna
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Youwen Yang
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Claire R. Peghaire
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Karen Frudd
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Rebecca Hannah
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom (R.H., B.G.)
| | - Aarti V. Shah
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Lourdes Osuna Almagro
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Joseph J. Boyle
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Berthold Göttgens
- Department of Haematology, Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, United Kingdom (R.H., B.G.)
| | - Jorge Ferrer
- Epigenomics and Disease, Department of Medicine (J.F.), Imperial College London, United Kingdom
| | - Anna M. Randi
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| | - Graeme M. Birdsey
- From the National Heart and Lung Institute (V.K., Y.Y., C.R.P., K.F., A.V.S., L.O.A., J.J.B., A.M.R., G.M.B.), Imperial College London, United Kingdom
| |
Collapse
|
33
|
Nagai N, Ohguchi H, Nakaki R, Matsumura Y, Kanki Y, Sakai J, Aburatani H, Minami T. Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition. PLoS Genet 2018; 14:e1007826. [PMID: 30500808 PMCID: PMC6291168 DOI: 10.1371/journal.pgen.1007826] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 12/12/2018] [Accepted: 11/12/2018] [Indexed: 12/18/2022] Open
Abstract
Endothelial cell (EC) plasticity in pathological settings has recently been recognized as a driver of disease progression. Endothelial-to-mesenchymal transition (EndMT), in which ECs acquire mesenchymal properties, has been described for a wide range of pathologies, including cancer. However, the mechanism regulating EndMT in the tumor microenvironment and the contribution of EndMT in tumor progression are not fully understood. Here, we found that combined knockdown of two ETS family transcription factors, ERG and FLI1, induces EndMT coupled with dynamic epigenetic changes in ECs. Genome-wide analyses revealed that ERG and FLI1 are critical transcriptional activators for EC-specific genes, among which microRNA-126 partially contributes to blocking the induction of EndMT. Moreover, we demonstrated that ERG and FLI1 expression is downregulated in ECs within tumors by soluble factors enriched in the tumor microenvironment. These data provide new insight into the mechanism of EndMT, functions of ERG and FLI1 in ECs, and EC behavior in pathological conditions. Differentiated cells possess unique characteristics to maintain vital activities. However, cells occasionally show abnormal behavior in pathological settings due to dysregulated gene expression. Endothelial-to-mesenchymal transition (EndMT) is a phenomenon in which endothelial cells lose their characteristics and acquire mesenchymal-like properties. Although EndMT is observed in various diseases including cancer, and augments fibrosis and vascular defects, the mechanism of EndMT induction is not fully understood. Here, we show that EndMT is triggered via reduced expression of ERG and FLI1, which have recently been recognized as pivotal transcription factors in endothelial cells (ECs). Mechanistically, ERG and FLI1 activate EC-specific genes and repress mesenchymal-like genes via epigenetic regulation to prevent EndMT. Furthermore, we demonstrate that microRNA-126, which is specifically expressed in ECs, is the key downstream target of ERG/FLI1 for regulating EndMT. Finally, we show that ERG and FLI1 expression is decreased in ECs within tumors, suggesting that EndMT is induced in the tumor microenvironment. Collectively, these findings indicate that loss of ERG and FLI1 leads to the aberrant behavior of ECs in pathological conditions.
Collapse
Affiliation(s)
- Nao Nagai
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Ohguchi
- Division of Disease Epigenetics, IRDA, Kumamoto University, Kumamoto, Japan
| | - Ryo Nakaki
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto, Japan
- * E-mail:
| |
Collapse
|
34
|
Wang X, Li J, Yang Z, Wang L, Li L, Deng W, Zhou J, Wang L, Xu C, Chen Q, Wang QK. phlda3 overexpression impairs specification of hemangioblasts and vascular development. FEBS J 2018; 285:4071-4081. [PMID: 30188605 PMCID: PMC6218282 DOI: 10.1111/febs.14653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 08/20/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023]
Abstract
The phlda3 gene encodes a small, 127-amino acid protein with only a PH domain, and is involved in tumor suppression, proliferation of islet β-cells, insulin secretion, glucose tolerance, and liver injury. However, the role of phlda3 in vascular development is unknown. Here, we show that phlda3 overexpression decreases the expression levels of hemangioblast markers scl, fli1, and etsrp and intersegmental vessel (ISV) markers flk1 and cdh5, and disrupts ISV development in tg(flk1:GFP) and tg(fli1:GFP) zebrafish. Moreover, phlda3 overexpression inhibits the activation of protein kinase B (AKT) in zebrafish embryos, and the developmental defects of ISVs by phlda3 overexpression were reversed by the expression of a constitutively active form of AKT. These data suggest that phlda3 is a negative regulator of hemangioblast specification and ISV development via AKT signaling.
Collapse
Affiliation(s)
- Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Jia Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Zhongcheng Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Li Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Wenqing Deng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Juan Zhou
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Longfei Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic; Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, P. R. China
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic; Department of Molecular Medicine, Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
35
|
Sabbagh MF, Heng JS, Luo C, Castanon RG, Nery JR, Rattner A, Goff LA, Ecker JR, Nathans J. Transcriptional and epigenomic landscapes of CNS and non-CNS vascular endothelial cells. eLife 2018; 7:36187. [PMID: 30188322 PMCID: PMC6126923 DOI: 10.7554/elife.36187] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Vascular endothelial cell (EC) function depends on appropriate organ-specific molecular and cellular specializations. To explore genomic mechanisms that control this specialization, we have analyzed and compared the transcriptome, accessible chromatin, and DNA methylome landscapes from mouse brain, liver, lung, and kidney ECs. Analysis of transcription factor (TF) gene expression and TF motifs at candidate cis-regulatory elements reveals both shared and organ-specific EC regulatory networks. In the embryo, only those ECs that are adjacent to or within the central nervous system (CNS) exhibit canonical Wnt signaling, which correlates precisely with blood-brain barrier (BBB) differentiation and Zic3 expression. In the early postnatal brain, single-cell RNA-seq of purified ECs reveals (1) close relationships between veins and mitotic cells and between arteries and tip cells, (2) a division of capillary ECs into vein-like and artery-like classes, and (3) new endothelial subtype markers, including new validated tip cell markers.
Collapse
Affiliation(s)
- Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jacob S Heng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chongyuan Luo
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Loyal A Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, United States.,Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
36
|
The Ets2 Repressor Factor (Erf) Is Required for Effective Primitive and Definitive Hematopoiesis. Mol Cell Biol 2017; 37:MCB.00183-17. [PMID: 28694332 DOI: 10.1128/mcb.00183-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Erf is a gene for a ubiquitously expressed Ets DNA-binding domain-containing transcriptional repressor. Erf haploinsufficiency causes craniosynostosis in humans and mice, while its absence in mice leads to failed chorioallantoic fusion and death at embryonic day 10.5 (E10.5). In this study, we show that Erf is required in all three waves of embryonic hematopoiesis. Mice lacking Erf in the embryo proper exhibited severe anemia and died around embryonic day 14.5. Erf epiblast-specific knockout embryos had reduced numbers of circulating blood cells from E9.5 onwards, with the development of severe anemia by E14.5. Elimination of Erf resulted in both reduced and more immature primitive erythroblasts at E9.5 to E10.5. Reduced definitive erythroid colony-forming activity was found in the bloodstream of E10.5 embryos and in the fetal liver at E11.5 to E13.5. Finally, elimination of Erf resulted in impaired repopulation ability, indicating that Erf is necessary for hematopoietic stem cell maintenance or differentiation. We conclude that Erf is required for both primitive and erythromyeloid progenitor waves of hematopoietic stem cell (HSC)-independent hematopoiesis as well as for the normal function of HSCs.
Collapse
|
37
|
The endothelial transcription factor ERG mediates Angiopoietin-1-dependent control of Notch signalling and vascular stability. Nat Commun 2017; 8:16002. [PMID: 28695891 PMCID: PMC5508205 DOI: 10.1038/ncomms16002] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/17/2017] [Indexed: 02/06/2023] Open
Abstract
Notch and Angiopoietin-1 (Ang1)/Tie2 pathways are crucial for vascular maturation and stability. Here we identify the transcription factor ERG as a key regulator of endothelial Notch signalling. We show that ERG controls the balance between Notch ligands by driving Delta-like ligand 4 (Dll4) while repressing Jagged1 (Jag1) expression. In vivo, this regulation occurs selectively in the maturing plexus of the mouse developing retina, where Ang1/Tie2 signalling is active. We find that ERG mediates Ang1-dependent regulation of Notch ligands and is required for the stabilizing effects of Ang1 in vivo. We show that Ang1 induces ERG phosphorylation in a phosphoinositide 3-kinase (PI3K)/Akt-dependent manner, resulting in ERG enrichment at Dll4 promoter and multiple enhancers. Finally, we demonstrate that ERG directly interacts with Notch intracellular domain (NICD) and β-catenin and is required for Ang1-dependent β-catenin recruitment at the Dll4 locus. We propose that ERG coordinates Ang1, β-catenin and Notch signalling to promote vascular stability.
Collapse
|
38
|
Fish JE, Cantu Gutierrez M, Dang LT, Khyzha N, Chen Z, Veitch S, Cheng HS, Khor M, Antounians L, Njock MS, Boudreau E, Herman AM, Rhyner AM, Ruiz OE, Eisenhoffer GT, Medina-Rivera A, Wilson MD, Wythe JD. Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network. Development 2017; 144:2428-2444. [PMID: 28536097 DOI: 10.1242/dev.146050] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada .,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Manuel Cantu Gutierrez
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan T Dang
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Zhiqi Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Shawn Veitch
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Henry S Cheng
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Melvin Khor
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Lina Antounians
- Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Makon-Sébastien Njock
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Emilie Boudreau
- Toronto General Hospital Research Institute, University Health Network, Toronto M5G 2C4, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5S 1A8, Canada.,Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada
| | - Alexander M Herman
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander M Rhyner
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oscar E Ruiz
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - George T Eisenhoffer
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Graduate School of Biomedical Sciences, University of Texas, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alejandra Medina-Rivera
- Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Querétaro 76230, México
| | - Michael D Wilson
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto M5S 3H2, Canada.,Genetics and Genome Biology, Hospital for Sick Children, Toronto M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Joshua D Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.,Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
39
|
Xie Y, Koch ML, Zhang X, Hamblen MJ, Godinho FJ, Fujiwara Y, Xie H, Klusmann JH, Orkin SH, Li Z. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells. Stem Cells 2017; 35:1773-1785. [PMID: 28436588 DOI: 10.1002/stem.2627] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 11/10/2022]
Abstract
ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Ergkd ) in which Erg expression can be conditionally restored by Cre recombinase. Ergkd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Ergkd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin- Sca-1+ c-Kit+ (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Ergkd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785.
Collapse
Affiliation(s)
- Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston, Massachusetts, USA
| | - Mia Lee Koch
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Xin Zhang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Melanie J Hamblen
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Frank J Godinho
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Yuko Fujiwara
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Huafeng Xie
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jan-Henning Klusmann
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stuart H Orkin
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, Massachusetts, USA.,Howard Hughes Medical Institute, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Harding A, Cortez-Toledo E, Magner NL, Beegle JR, Coleal-Bergum DP, Hao D, Wang A, Nolta JA, Zhou P. Highly Efficient Differentiation of Endothelial Cells from Pluripotent Stem Cells Requires the MAPK and the PI3K Pathways. Stem Cells 2017; 35:909-919. [PMID: 28248004 DOI: 10.1002/stem.2577] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
Abstract
Pluripotent stem cells are a promising source of endothelial cells (ECs) for the treatment of vascular diseases. We have developed a robust protocol to differentiate human induced pluripotent stem cells (hiPSCs) and embryonic stem cells (hESCs) into ECs with high purities (94%-97% CD31+ and 78%-83% VE-cadherin+ ) in 8 days without cell sorting. Passaging of these cells yielded a nearly pure population of ECs (99% of CD31+ and 96.8% VE-cadherin+ ). These ECs also expressed other endothelial markers vWF, Tie2, NOS3, and exhibited functions of ECs such as uptake of Dil-acetylated low-density lipoprotein and formation of tubes in vitro or vessels in vivo on matrigel. We found that FGF2, VEGF, and BMP4 synergistically induced early vascular progenitors (VPs) from hiPSC-derived mesodermal cells. The MAPK and PI3K pathways are crucial not only for the initial commitment to vascular lineages but also for the differentiation of vascular progenitors to ECs, most likely through regulation of the ETS family transcription factors, ERG and FLI1. We revealed novel roles of the p38 and JNK MAPK pathways on EC differentiation. Furthermore, inhibition of the ERK pathway markedly promoted the differentiation of smooth muscle cells. Finally, we demonstrate that pluripotent stem cell-derived ECs are capable of forming patent blood vessels that were connected to the host vasculature in the ischemic limbs of immune deficient mice. Thus, we demonstrate that ECs can be efficiently derived from hiPSCs and hESCs, and have great potential for vascular therapy as well as for mechanistic studies of EC differentiation. Stem Cells 2017;35:909-919.
Collapse
Affiliation(s)
- Aja Harding
- Department of Internal Medicine, Stem Cell Program.,Department of Biological Sciences, Humboldt State University, Arcata, California, USA
| | | | | | | | | | - Dake Hao
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Aijun Wang
- Department of Surgery, University of California Davis Medical Center, Sacramento, California, USA
| | - Jan A Nolta
- Department of Internal Medicine, Stem Cell Program
| | - Ping Zhou
- Department of Internal Medicine, Stem Cell Program
| |
Collapse
|
41
|
Masud S, Torraca V, Meijer AH. Modeling Infectious Diseases in the Context of a Developing Immune System. Curr Top Dev Biol 2016; 124:277-329. [PMID: 28335862 DOI: 10.1016/bs.ctdb.2016.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Zebrafish has been used for over a decade to study the mechanisms of a wide variety of inflammatory disorders and infections, with models ranging from bacterial, viral, to fungal pathogens. Zebrafish has been especially relevant to study the differentiation, specialization, and polarization of the two main innate immune cell types, the macrophages and the neutrophils. The optical accessibility and the early appearance of myeloid cells that can be tracked with fluorescent labels in zebrafish embryos and the ability to use genetics to selectively ablate or expand immune cell populations have permitted studying the interaction between infection, development, and metabolism. Additionally, zebrafish embryos are readily colonized by a commensal flora, which facilitated studies that emphasize the requirement for immune training by the natural microbiota to properly respond to pathogens. The remarkable conservation of core mechanisms required for the recognition of microbial and danger signals and for the activation of the immune defenses illustrates the high potential of the zebrafish model for biomedical research. This review will highlight recent insight that the developing zebrafish has contributed to our understanding of host responses to invading microbes and the involvement of the microbiome in several physiological processes. These studies are providing a mechanistic basis for developing novel therapeutic approaches to control infectious diseases.
Collapse
Affiliation(s)
- Samrah Masud
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Vincenzo Torraca
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
42
|
Expression of the fetal hematopoiesis regulator FEV indicates leukemias of prenatal origin. Leukemia 2016; 31:1079-1086. [DOI: 10.1038/leu.2016.313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/27/2016] [Accepted: 09/29/2016] [Indexed: 01/22/2023]
|
43
|
Thambyrajah R, Patel R, Mazan M, Lie-a-Ling M, Lilly A, Eliades A, Menegatti S, Garcia-Alegria E, Florkowska M, Batta K, Kouskoff V, Lacaud G. New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle 2016; 15:2108-2114. [PMID: 27399214 PMCID: PMC4993433 DOI: 10.1080/15384101.2016.1203491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 10/26/2022] Open
Abstract
The first hematopoietic cells are generated very early in ontogeny to support the growth of the embryo and to provide the foundation to the adult hematopoietic system. There is a considerable therapeutic interest in understanding how these first blood cells are generated in order to try to reproduce this process in vitro. This would allow generating blood products, or hematopoietic cell populations from embryonic stem (ES) cells, induced pluripotent stem cells or through directed reprogramming. Recent studies have clearly established that the first hematopoietic cells originate from a hemogenic endothelium (HE) through an endothelial to hematopoietic transition (EHT). The molecular mechanisms underlining this transition remain largely unknown with the exception that the transcription factor RUNX1 is critical for this process. In this Extra Views report, we discuss our recent studies demonstrating that the transcriptional repressors GFI1 and GFI1B have a critical role in the EHT. We established that these RUNX1 transcriptional targets are actively implicated in the downregulation of the endothelial program and the loss of endothelial identity during the formation of the first blood cells. In addition, our results suggest that GFI1 expression provides an ideal novel marker to identify, isolate and study the HE cell population.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Rahima Patel
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Milena Mazan
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Michael Lie-a-Ling
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Andrew Lilly
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Alexia Eliades
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Sara Menegatti
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Eva Garcia-Alegria
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | | | - Kiran Batta
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| | - Valerie Kouskoff
- CRUK Stem Cell Haematopoiesis, Cancer Research UK Manchester Institute, Manchester, UK
| | - Georges Lacaud
- CRUK Stem Cell Biology, Cancer Research UK Manchester Institute, Manchester, UK
| |
Collapse
|
44
|
Shah AV, Birdsey GM, Randi AM. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol 2016; 86:3-13. [PMID: 27208692 PMCID: PMC5404112 DOI: 10.1016/j.vph.2016.05.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 01/06/2023]
Abstract
Over the last few years, the ETS transcription factor ERG has emerged as a major regulator of endothelial function. Multiple studies have shown that ERG plays a crucial role in promoting angiogenesis and vascular stability during development and after birth. In the mature vasculature ERG also functions to maintain endothelial homeostasis, by transactivating genes involved in key endothelial functions, while repressing expression of pro-inflammatory genes. Its homeostatic role is lineage-specific, since ectopic expression of ERG in non-endothelial tissues such as prostate is detrimental and contributes to oncogenesis. This review summarises the main roles and pathways controlled by ERG in the vascular endothelium, its transcriptional targets and its functional partners and the emerging evidence on the pathways regulating ERG's activity and expression.
Collapse
Affiliation(s)
- Aarti V Shah
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Graeme M Birdsey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
45
|
Craig MP, Sumanas S. ETS transcription factors in embryonic vascular development. Angiogenesis 2016; 19:275-85. [PMID: 27126901 DOI: 10.1007/s10456-016-9511-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/19/2016] [Indexed: 11/25/2022]
Abstract
At least thirteen ETS-domain transcription factors are expressed during embryonic hematopoietic or vascular development and potentially function in the formation and maintenance of the embryonic vasculature or blood lineages. This review summarizes our current understanding of the specific roles played by ETS factors in vasculogenesis and angiogenesis and the implications of functional redundancies between them.
Collapse
Affiliation(s)
- Michael P Craig
- Department of Biochemistry and Molecular Biology, Wright State University, 3640 Colonel Glenn Hwy., Dayton, OH, 45435, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Saulius Sumanas
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA.
| |
Collapse
|
46
|
Wei Y, Xu J, Zhang W, Wen Z, Liu F. RNA polymerase III component Rpc9 regulates hematopoietic stem and progenitor cell maintenance in zebrafish. Development 2016; 143:2103-10. [DOI: 10.1242/dev.126797] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 04/25/2016] [Indexed: 12/18/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are capable of self-renewal and replenishing all lineages of blood cells throughout the lifetime and thus critical for tissue homeostasis. However, the mechanism regulating HSPC development is still incompletely understood. Here, we isolate a zebrafish mutant with defective T lymphopoiesis and positional cloning identifies that Rpc9, a component of DNA-directed RNA polymerase III (Pol III) complex, is responsible for the mutant phenotype. Further analysis shows that rpc9-deficiency leads to the impairment of HSPCs and their derivatives in zebrafish embryos. Excessive apoptosis is observed in the caudal hematopoietic tissue (CHT, the equivalent of fetal liver in mammals) of rpc9−/− embryos and the hematopoietic defects in rpc9−/− embryos can be fully rescued by suppression of p53. Thus, our work illustrate that Rpc9, a component of Pol III, plays an important tissue-specific role in HSPC maintenance during zebrafish embryogenesis and that it might be conserved across vertebrates including mammals.
Collapse
Affiliation(s)
- Yonglong Wei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Xu
- State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Wenqing Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Cell Biology, Southern Medical University, Guangzhou 510515, China
| | - Zilong Wen
- State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Division of Life Science, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
47
|
Fish JE, Wythe JD. The molecular regulation of arteriovenous specification and maintenance. Dev Dyn 2015; 244:391-409. [PMID: 25641373 DOI: 10.1002/dvdy.24252] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 12/21/2022] Open
Abstract
The formation of a hierarchical vascular network, composed of arteries, veins, and capillaries, is essential for embryogenesis and is required for the production of new functional vasculature in the adult. Elucidating the molecular mechanisms that orchestrate the differentiation of vascular endothelial cells into arterial and venous cell fates is requisite for regenerative medicine, as the directed formation of perfused vessels is desirable in a myriad of pathological settings, such as in diabetes and following myocardial infarction. Additionally, this knowledge will enhance our understanding and treatment of vascular anomalies, such as arteriovenous malformations (AVMs). From studies in vertebrate model organisms, such as mouse, zebrafish, and chick, a number of key signaling pathways have been elucidated that are required for the establishment and maintenance of arterial and venous fates. These include the Hedgehog, Vascular Endothelial Growth Factor (VEGF), Transforming Growth Factor-β (TGF-β), Wnt, and Notch signaling pathways. In addition, a variety of transcription factor families acting downstream of, or in concert with, these signaling networks play vital roles in arteriovenous (AV) specification. These include Notch and Notch-regulated transcription factors (e.g., HEY and HES), SOX factors, Forkhead factors, β-Catenin, ETS factors, and COUP-TFII. It is becoming apparent that AV specification is a highly coordinated process that involves the intersection and carefully orchestrated activity of multiple signaling cascades and transcriptional networks. This review will summarize the molecular mechanisms that are involved in the acquisition and maintenance of AV fate, and will highlight some of the limitations in our current knowledge of the molecular machinery that directs AV morphogenesis.
Collapse
Affiliation(s)
- Jason E Fish
- Toronto General Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | | |
Collapse
|
48
|
Minas TZ, Han J, Javaheri T, Hong SH, Schlederer M, Saygideğer-Kont Y, Çelik H, Mueller KM, Temel I, Özdemirli M, Kovar H, Erkizan HV, Toretsky J, Kenner L, Moriggl R, Üren A. YK-4-279 effectively antagonizes EWS-FLI1 induced leukemia in a transgenic mouse model. Oncotarget 2015; 6:37678-94. [PMID: 26462019 PMCID: PMC4741957 DOI: 10.18632/oncotarget.5520] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/28/2015] [Indexed: 12/22/2022] Open
Abstract
Ewing sarcoma is an aggressive tumor of bone and soft tissue affecting predominantly children and young adults. Tumor-specific chromosomal translocations create EWS-FLI1 and similar aberrant ETS fusion proteins that drive sarcoma development in patients. ETS family fusion proteins and over-expressed ETS proteins are also found in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. Transgenic expression of EWS-FLI1 in mice promotes high penetrance erythroid leukemia with dense hepatic and splenic infiltrations. We identified a small molecule, YK-4-279, that directly binds to EWS-FLI1 and inhibits its oncogenic activity in Ewing sarcoma cell lines and xenograft mouse models. Herein, we tested in vivo therapeutic efficacy and potential side effects of YK-4-279 in the transgenic mouse model with EWS-FLI1 induced leukemia. A two-week course of treatment with YK-4-279 significantly reduced white blood cell count, nucleated erythroblasts in the peripheral blood, splenomegaly, and hepatomegaly of erythroleukemic mice. YK-4-279 inhibited EWS-FLI1 target gene expression in neoplastic cells. Treated animals showed significantly better overall survival compared to control mice that rapidly succumbed to leukemia. YK-4-279 treated mice did not show overt toxicity in liver, spleen, or bone marrow. In conclusion, this in vivo study highlights the efficacy of YK-4-279 to treat EWS-FLI1 expressing neoplasms and support its therapeutic potential for patients with Ewing sarcoma and other ETS-driven malignancies.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Chromatin Immunoprecipitation
- Disease Models, Animal
- Flow Cytometry
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunoenzyme Techniques
- Indoles/pharmacology
- Leukemia, Erythroblastic, Acute/drug therapy
- Leukemia, Erythroblastic, Acute/etiology
- Leukemia, Erythroblastic, Acute/pathology
- Mice
- Mice, Transgenic
- Oncogene Proteins, Fusion/administration & dosage
- Oncogene Proteins, Fusion/antagonists & inhibitors
- Oncogene Proteins, Fusion/toxicity
- Proto-Oncogene Protein c-fli-1/administration & dosage
- Proto-Oncogene Protein c-fli-1/antagonists & inhibitors
- Proto-Oncogene Protein c-fli-1/toxicity
- RNA, Messenger/genetics
- RNA-Binding Protein EWS/administration & dosage
- RNA-Binding Protein EWS/antagonists & inhibitors
- RNA-Binding Protein EWS/toxicity
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Surface Plasmon Resonance
Collapse
Affiliation(s)
- Tsion Zewdu Minas
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Jenny Han
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | | | - Sung-Hyeok Hong
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Michaela Schlederer
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Haydar Çelik
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Kristina M. Mueller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Idil Temel
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Metin Özdemirli
- Department of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Heinrich Kovar
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Jeffrey Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Pathology of Laboratory Animals, University of Veterinary Medicine, Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Aykut Üren
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
49
|
LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. Proc Natl Acad Sci U S A 2015; 112:13922-7. [PMID: 26512114 DOI: 10.1073/pnas.1517326112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hemangioblast is a progenitor cell with the capacity to give rise to both hematopoietic and endothelial progenitors. Currently, the regulatory mechanisms underlying hemangioblast formation are being elucidated, whereas those controllers for the selection of hematopoietic or endothelial fates still remain a mystery. To answer these questions, we screened for zebrafish mutants that have defects in the hemangioblast expression of Gata1, which is never expressed in endothelial progenitors. One of the isolated mutants, it627, showed not only down-regulation of hematopoietic genes but also up-regulation of endothelial genes. We identified the gene responsible for the it627 mutant as the zebrafish homolog of Lys-specific demethylase 1 (LSD1/KDM1A). Surprisingly, the hematopoietic defects in lsd1(it627) embryos were rescued by the gene knockdown of the Ets variant 2 gene (etv2), an essential regulator for vasculogenesis. Our results suggest that the LSD1-dependent shutdown of Etv2 gene expression may be a significant event required for hemangioblasts to initiate hematopoietic differentiation.
Collapse
|
50
|
Genome-wide analysis of the zebrafish Klf family identifies two genes important for erythroid maturation. Dev Biol 2015; 403:115-27. [PMID: 26015096 DOI: 10.1016/j.ydbio.2015.05.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 01/01/2023]
Abstract
Krüppel-like transcription factors (Klfs), each of which contains a CACCC-box binding domain, have been investigated in a variety of developmental processes, such as angiogenesis, neurogenesis and somatic-cell reprogramming. However, the function and molecular mechanism by which the Klf family acts during developmental hematopoiesis remain elusive. Here, we report identification of 24 Klf family genes in zebrafish using bioinformatics. Gene expression profiling shows that 6 of these genes are expressed in blood and/or vascular endothelial cells during embryogenesis. Loss of function of 2 factors (klf3 or klf6a) leads to a decreased number of mature erythrocytes. Molecular studies indicate that both Klf3 and Klf6a are essential for erythroid cell differentiation and maturation but that these two proteins function in distinct manners. We find that Klf3 inhibits the expression of ferric-chelate reductase 1b (frrs1b), thereby promoting the maturation of erythroid cells, whereas Klf6a controls the erythroid cell cycle by negatively regulating cdkn1a expression to determine the rate of red blood cell proliferation. Taken together, our study provides a global view of the Klf family members that contribute to hematopoiesis in zebrafish and sheds new light on the function and molecular mechanism by which Klf3 and Klf6a act during erythropoiesis in vertebrates.
Collapse
|