1
|
Hatano R, Smith AM, Raman R, Zamora JE, Bashir R, McCloskey KE. Comparing fabrication techniques for engineered cardiac tissue. J Biomed Mater Res A 2024; 112:1921-1929. [PMID: 38752415 DOI: 10.1002/jbm.a.37737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 09/03/2024]
Abstract
Tissue engineering can provide in vitro models for drug testing, disease modeling, and perhaps someday, tissue/organ replacements. For building 3D heart tissue, the alignment of cardiac cells or cardiomyocytes (CMs) is important in generating a synchronously contracting tissue. To that end, researchers have generated several fabrication methods for building heart tissue, but direct comparisons of pros and cons using the same cell source is lacking. Here, we derived cardiomyocytes (CMs) from human induced pluripotent stem cells (hiPSCs) and compare the assembly of these cells using three fabrication methods: cardiospheres, muscle rings, and muscle strips. All three protocols successfully generated compacted tissue comprised of hiPSC-derived CMs stable for at least 2 weeks. The percentage of aligned cells was greatest in the muscle strip (55%) and the muscle ring (50%) compared with the relatively unaligned cardiospheres (35%). The iPSC-derived CMs within the muscle strip also exhibited the greatest elongation, with elongation factor at 2.0 compared with 1.5 for the muscle ring and 1.2 for the cardiospheres. This is the first direct comparison of various fabrication techniques using the same cell source.
Collapse
Affiliation(s)
- Rachel Hatano
- Graduate Program in Bioengineering and Small-scale Technologies, University of California, Merced, USA
| | - Ariell M Smith
- Bioengineering Department, University of California, Merced, USA
| | - Ritu Raman
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jose E Zamora
- Graduate Program in Materials and Biomaterials Science and Engineering, University of California, Merced, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Kara E McCloskey
- Graduate Program in Bioengineering and Small-scale Technologies, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
2
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate- and immunomagnetic-purified hiPSC-derived cardiomyocytes generate comparable engineered cardiac tissue constructs. JCI Insight 2024; 9:e172168. [PMID: 37988170 PMCID: PMC10906451 DOI: 10.1172/jci.insight.172168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. Global proteomics revealed that lactate-purified hiPSC-CMs displayed a differential phenotype over MACS hiPSC-CMs. hiPSC-CMs were then integrated into 3D hiPSC-ECTs and cultured for 4 weeks. Structurally, there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force and Ca2+ transient measurements revealed similar functional performance between purification methods. High-resolution mass spectrometry-based quantitative proteomics showed no significant difference in protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates that lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable structural, functional, and proteomic features, and it suggests that lactate purification does not result in an irreversible change in a hiPSC-CM phenotype.
Collapse
Affiliation(s)
- Kalina J. Rossler
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | - Timothy J. Aballo
- Molecular and Cellular Pharmacology Training Program
- Department of Cell and Regenerative Biology
| | | | | | | | | | - Yanlong Zhu
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Timothy J. Kamp
- Department of Cell and Regenerative Biology
- Department of Medicine
| | | | - Ying Ge
- Department of Cell and Regenerative Biology
- Department of Chemistry, and
- Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Ormrod B, Ehler E. Induced pluripotent stem cell-derived cardiomyocytes-more show than substance? Biophys Rev 2023; 15:1941-1950. [PMID: 38192353 PMCID: PMC10771368 DOI: 10.1007/s12551-023-01099-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/04/2023] [Indexed: 01/10/2024] Open
Abstract
Cardiomyocytes that are derived from human-induced pluripotent stem cells (iPSC-CM) are an exciting tool to investigate cardiomyopathy disease mechanisms at the cellular level as well as to screen for potential side effects of novel drugs. However, currently their benefit is limited due to their fairly immature differentiation status under conventional culture conditions. This review is mainly aimed at researchers outside of the iPSC-CM field and will describe potential pitfalls and which features at the level of the myofibrils would be desired to make them a more representative model system. We will also discuss different strategies that may help to achieve these.
Collapse
Affiliation(s)
- Beth Ormrod
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
| | - Elisabeth Ehler
- School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, SE1 1UL UK
- Randall Centre for Cell and Molecular Biophysics (School of Basic and Biosciences), Room 3.26A, New Hunt’s House, Guy’s Campus, London, SE1 1UL UK
- British Heart Foundation Centre of Research Excellence, King’s College London, London, SE1 1UL UK
| |
Collapse
|
4
|
Yang Z, Zhang Y, Wang J, Yin J, Wang Z, Pei R. Cardiac organoid: multiple construction approaches and potential applications. J Mater Chem B 2023; 11:7567-7581. [PMID: 37477533 DOI: 10.1039/d3tb00783a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The human cardiac organoid (hCO) is three-dimensional tissue model that is similar to an in vivo organ and has great potential on heart development biology, disease modeling, drug screening and regenerative medicine. However, the construction of hCO presents a unique challenge compared with other organoids such as the lung, small intestine, pancreas, liver. Since heart disease is the dominant cause of death and the treatment of such disease is one of the most unmet medical needs worldwide, developing technologies for the construction and application of hCO is a critical task for the scientific community. In this review, we discuss the current classification and construction methods of hCO. In addition, we describe its applications in drug screening, disease modeling, and regenerative medicine. Finally, we propose the limitations of the cardiac organoid and future research directions. A detailed understanding of hCO will provide ways to improve its construction and expand its applications.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jine Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Jingbo Yin
- School of Materials Science and Engineering, Shanghai University, 200444 Shanghai, China
| | - Zheng Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, 215123 Suzhou, China.
| |
Collapse
|
5
|
Rossler KJ, de Lange WJ, Mann MW, Aballo TJ, Melby JA, Zhang J, Kim G, Bayne EF, Zhu Y, Farrell ET, Kamp TJ, Ralphe JC, Ge Y. Lactate and Immunomagnetic-purified iPSC-derived Cardiomyocytes Generate Comparable Engineered Cardiac Tissue Constructs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.05.539642. [PMID: 37205556 PMCID: PMC10187273 DOI: 10.1101/2023.05.05.539642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. After purification, hiPSC-CMs were combined with hiPSC-cardiac fibroblasts to create 3D hiPSC-ECT constructs maintained in culture for four weeks. There were no structural differences observed, and there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force, Ca 2+ transients, and β-adrenergic response revealed similar functional performance between purification methods. High-resolution mass spectrometry (MS)-based quantitative proteomics showed no significant difference in any protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable molecular and functional properties, and suggests lactate purification does not result in an irreversible change in hiPSC-CM phenotype.
Collapse
|
6
|
De Lange WJ, Farrell ET, Hernandez JJ, Stempien A, Kreitzer CR, Jacobs DR, Petty DL, Moss RL, Crone WC, Ralphe JC. cMyBP-C ablation in human engineered cardiac tissue causes progressive Ca2+-handling abnormalities. J Gen Physiol 2023; 155:e202213204. [PMID: 36893011 PMCID: PMC10038829 DOI: 10.1085/jgp.202213204] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/02/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
Truncation mutations in cardiac myosin binding protein C (cMyBP-C) are common causes of hypertrophic cardiomyopathy (HCM). Heterozygous carriers present with classical HCM, while homozygous carriers present with early onset HCM that rapidly progress to heart failure. We used CRISPR-Cas9 to introduce heterozygous (cMyBP-C+/-) and homozygous (cMyBP-C-/-) frame-shift mutations into MYBPC3 in human iPSCs. Cardiomyocytes derived from these isogenic lines were used to generate cardiac micropatterns and engineered cardiac tissue constructs (ECTs) that were characterized for contractile function, Ca2+-handling, and Ca2+-sensitivity. While heterozygous frame shifts did not alter cMyBP-C protein levels in 2-D cardiomyocytes, cMyBP-C+/- ECTs were haploinsufficient. cMyBP-C-/- cardiac micropatterns produced increased strain with normal Ca2+-handling. After 2 wk of culture in ECT, contractile function was similar between the three genotypes; however, Ca2+-release was slower in the setting of reduced or absent cMyBP-C. At 6 wk in ECT culture, the Ca2+-handling abnormalities became more pronounced in both cMyBP-C+/- and cMyBP-C-/- ECTs, and force production became severely depressed in cMyBP-C-/- ECTs. RNA-seq analysis revealed enrichment of differentially expressed hypertrophic, sarcomeric, Ca2+-handling, and metabolic genes in cMyBP-C+/- and cMyBP-C-/- ECTs. Our data suggest a progressive phenotype caused by cMyBP-C haploinsufficiency and ablation that initially is hypercontractile, but progresses to hypocontractility with impaired relaxation. The severity of the phenotype correlates with the amount of cMyBP-C present, with more severe earlier phenotypes observed in cMyBP-C-/- than cMyBP-C+/- ECTs. We propose that while the primary effect of cMyBP-C haploinsufficiency or ablation may relate to myosin crossbridge orientation, the observed contractile phenotype is Ca2+-mediated.
Collapse
Affiliation(s)
- Willem J. De Lange
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily T. Farrell
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jonathan J. Hernandez
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alana Stempien
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caroline R. Kreitzer
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Derek R. Jacobs
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Dominique L. Petty
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard L. Moss
- Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wendy C. Crone
- Departments of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Engineering Physics, University of Wisconsin-Madison, Madison, WI, USA
- Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - J. Carter Ralphe
- Departments of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Lewis-Israeli YR, Wasserman AH, Aguirre A. Heart Organoids and Engineered Heart Tissues: Novel Tools for Modeling Human Cardiac Biology and Disease. Biomolecules 2021; 11:1277. [PMID: 34572490 PMCID: PMC8468189 DOI: 10.3390/biom11091277] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/06/2021] [Accepted: 08/24/2021] [Indexed: 01/02/2023] Open
Abstract
Organoids are three-dimensional in vitro cell constructs that recapitulate organ properties and structure to a significant extent. They constitute particularly useful models to study unapproachable states in humans, such as embryonic and fetal development, or early disease progression in adults. In recent years organoids have been implemented to model a wide range of different organs and disease conditions. However, the technology for their fabrication and application to cardiovascular studies has been lagging significantly when compared to other organoid types (e.g., brain, pancreas, kidney, intestine). This is a surprising fact since cardiovascular disease (CVD) and congenital heart disease (CHD) constitute the leading cause of mortality and morbidity in the developed world, and the most common birth defect in humans, respectively, and collectively constitute one of the largest unmet medical needs in the modern world. There is a critical need to establish in vitro models of the human heart that faithfully recapitulate its biology and function, thus enabling basic and translational studies to develop new therapeutics. Generating heart organoids that truly resemble the heart has proven difficult due to its complexity, but significant progress has been made recently to overcome this obstacle. In this review, we will discuss progress in novel heart organoid generation methods, the advantages and disadvantages of each approach, and their translational applications for advancing cardiovascular studies and the treatment of heart disorders.
Collapse
Affiliation(s)
- Yonatan R. Lewis-Israeli
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823, USA; (Y.R.L.-I.); (A.H.W.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Aaron H. Wasserman
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823, USA; (Y.R.L.-I.); (A.H.W.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48823, USA
| | - Aitor Aguirre
- Division of Developmental and Stem Cell Biology, Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48823, USA; (Y.R.L.-I.); (A.H.W.)
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48823, USA
| |
Collapse
|
8
|
Cho S, Lee C, Skylar-Scott MA, Heilshorn SC, Wu JC. Reconstructing the heart using iPSCs: Engineering strategies and applications. J Mol Cell Cardiol 2021; 157:56-65. [PMID: 33895197 DOI: 10.1016/j.yjmcc.2021.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a key component of cardiac tissue engineering, enabling studies of cardiovascular disease mechanisms, drug responses, and developmental processes in human 3D tissue models assembled from isogenic cells. Since the very first engineered heart tissues were introduced more than two decades ago, a wide array of iPSC-derived cardiac spheroids, organoids, and heart-on-a-chip models have been developed incorporating the latest available technologies and materials. In this review, we will first outline the fundamental biological building blocks required to form a functional unit of cardiac muscle, including iPSC-derived cells differentiated by soluble factors (e.g., small molecules), extracellular matrix scaffolds, and exogenous biophysical maturation cues. We will then summarize the different fabrication approaches and strategies employed to reconstruct the heart in vitro at varying scales and geometries. Finally, we will discuss how these platforms, with continued improvements in scalability and tissue maturity, can contribute to both basic cardiovascular research and clinical applications in the future.
Collapse
Affiliation(s)
- Sangkyun Cho
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Chelsea Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA
| | - Mark A Skylar-Scott
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Betty Irene Moore Children's Heart Center, Stanford Children's Health, Stanford, CA 94025, USA
| | - Sarah C Heilshorn
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA 94025, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94025, USA; Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94025, USA.
| |
Collapse
|
9
|
Sharma P, Wang X, Ming CLC, Vettori L, Figtree G, Boyle A, Gentile C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003765. [PMID: 33464713 DOI: 10.1002/smll.202003765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.
Collapse
Affiliation(s)
- Poonam Sharma
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Laura Vettori
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Gemma Figtree
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Andrew Boyle
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carmine Gentile
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
10
|
de Lange WJ, Farrell ET, Kreitzer CR, Jacobs DR, Lang D, Glukhov AV, Ralphe JC. Human iPSC-engineered cardiac tissue platform faithfully models important cardiac physiology. Am J Physiol Heart Circ Physiol 2021; 320:H1670-H1686. [PMID: 33606581 DOI: 10.1152/ajpheart.00941.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CM) may provide an important bridge between animal models and the intact human myocardium. Fulfilling this potential is hampered by their relative immaturity, leading to poor physiological responsiveness. hiPSC-CMs grown in traditional two-dimensional (2D) culture lack a t-tubular system, have only rudimentary intracellular calcium-handling systems, express predominantly embryonic sarcomeric protein isoforms, and preferentially use glucose as an energy substrate. Culturing hiPSC-CM in a variety of three-dimensional (3D) environments and the addition of nutritional, pharmacological, and electromechanical stimuli have proven, to various degrees, to be beneficial for maturation. We present a detailed assessment of a novel model in which hiPSC-CMs and hiPSC-derived cardiac fibroblasts are cocultured in a 3D fibrin matrix to form engineered cardiac tissue constructs (hiPSC-ECTs). The hiPSC-ECTs are responsive to physiological stimuli, including stretch, frequency, and β-adrenergic stimulation, develop a t-tubular system, and demonstrate calcium-handling and contractile kinetics that compare favorably with ventricular human myocardium. Furthermore, transcript levels of various genes involved in calcium-handling and contraction are increased. These markers of maturation become more robust over a relatively short period of time in culture (6 wk vs. 2 wk in hiPSC-ECTs). A comparison of the hiPSC-ECT molecular and performance variables with those of human cardiac tissue and other available engineered tissue platforms is provided to aid selection of the most appropriate platform for the research question at hand. Important and noteworthy aspects of this human cardiac model system are its reliance on "off-the-shelf" equipment, ability to provide detailed physiological performance data, and the ability to achieve a relatively mature cardiac physiology without additional nutritional, pharmacological, and electromechanical stimuli that may elicit unintended effects on function.NEW & NOTEWORTHY This study seeks to provide an in-depth assessment of contractile performance of human iPSC-derived cardiomyocytes cultured together with fibroblasts in a 3-dimensional-engineered tissue and compares performance both over time as cells mature, and with corresponding measures found in the literature using alternative 3D culture configurations. The suitability of 3D-engineered human cardiac tissues to model cardiac function is emphasized, and data provided to assist in the selection of the most appropriate configuration based on the target application.
Collapse
Affiliation(s)
- Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Caroline R Kreitzer
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Derek R Jacobs
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Di Lang
- Department of Medicine Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Alexey V Glukhov
- Department of Medicine Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
11
|
Melby JA, de Lange WJ, Zhang J, Roberts DS, Mitchell SD, Tucholski T, Kim G, Kyrvasilis A, McIlwain SJ, Kamp TJ, Ralphe JC, Ge Y. Functionally Integrated Top-Down Proteomics for Standardized Assessment of Human Induced Pluripotent Stem Cell-Derived Engineered Cardiac Tissues. J Proteome Res 2021; 20:1424-1433. [PMID: 33395532 DOI: 10.1021/acs.jproteome.0c00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) human induced pluripotent stem cell-derived engineered cardiac tissues (hiPSC-ECTs) have emerged as a promising alternative to two-dimensional hiPSC-cardiomyocyte monolayer systems because hiPSC-ECTs are a closer representation of endogenous cardiac tissues and more faithfully reflect the relevant cardiac pathophysiology. The ability to perform functional and molecular assessments using the same hiPSC-ECT construct would allow for more reliable correlation between observed functional performance and underlying molecular events, and thus is critically needed. Herein, for the first time, we have established an integrated method that permits sequential assessment of functional properties and top-down proteomics from the same single hiPSC-ECT construct. We quantitatively determined the differences in isometric twitch force and the sarcomeric proteoforms between two groups of hiPSC-ECTs that differed in the duration of time of 3D-ECT culture. Importantly, by using this integrated method we discovered a new and strong correlation between the measured contractile parameters and the phosphorylation levels of alpha-tropomyosin between the two groups of hiPSC-ECTs. The integration of functional assessments together with molecular characterization by top-down proteomics in the same hiPSC-ECT construct enables a holistic analysis of hiPSC-ECTs to accelerate their applications in disease modeling, cardiotoxicity, and drug discovery. Data are available via ProteomeXchange with identifier PXD022814.
Collapse
Affiliation(s)
- Jake A Melby
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Jianhua Zhang
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - David S Roberts
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Stanford D Mitchell
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Gina Kim
- Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Andreas Kyrvasilis
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Sean J McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,UW Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
12
|
Massai D, Pisani G, Isu G, Rodriguez Ruiz A, Cerino G, Galluzzi R, Pisanu A, Tonoli A, Bignardi C, Audenino AL, Marsano A, Morbiducci U. Bioreactor Platform for Biomimetic Culture and in situ Monitoring of the Mechanical Response of in vitro Engineered Models of Cardiac Tissue. Front Bioeng Biotechnol 2020; 8:733. [PMID: 32766218 PMCID: PMC7381147 DOI: 10.3389/fbioe.2020.00733] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/10/2020] [Indexed: 12/17/2022] Open
Abstract
In the past two decades, relevant advances have been made in the generation of engineered cardiac constructs to be used as functional in vitro models for cardiac research or drug testing, and with the ultimate but still challenging goal of repairing the damaged myocardium. To support cardiac tissue generation and maturation in vitro, the application of biomimetic physical stimuli within dedicated bioreactors is crucial. In particular, cardiac-like mechanical stimulation has been demonstrated to promote development and maturation of cardiac tissue models. Here, we developed an automated bioreactor platform for tunable cyclic stretch and in situ monitoring of the mechanical response of in vitro engineered cardiac tissues. To demonstrate the bioreactor platform performance and to investigate the effects of cyclic stretch on construct maturation and contractility, we developed 3D annular cardiac tissue models based on neonatal rat cardiac cells embedded in fibrin hydrogel. The constructs were statically pre-cultured for 5 days and then exposed to 4 days of uniaxial cyclic stretch (sinusoidal waveform, 10% strain, 1 Hz) within the bioreactor. Explanatory biological tests showed that cyclic stretch promoted cardiomyocyte alignment, maintenance, and maturation, with enhanced expression of typical mature cardiac markers compared to static controls. Moreover, in situ monitoring showed increasing passive force of the constructs along the dynamic culture. Finally, only the stretched constructs were responsive to external electrical pacing with synchronous and regular contractile activity, further confirming that cyclic stretching was instrumental for their functional maturation. This study shows that the proposed bioreactor platform is a reliable device for cyclic stretch culture and in situ monitoring of the passive mechanical response of the cultured constructs. The innovative feature of acquiring passive force measurements in situ and along the culture allows monitoring the construct maturation trend without interrupting the culture, making the proposed device a powerful tool for in vitro investigation and ultimately production of functional engineered cardiac constructs.
Collapse
Affiliation(s)
- Diana Massai
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Giuseppe Pisani
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Giuseppe Isu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andres Rodriguez Ruiz
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Giulia Cerino
- Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Renato Galluzzi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessia Pisanu
- Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Andrea Tonoli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Cristina Bignardi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Alberto L Audenino
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| | - Anna Marsano
- Department of Surgery, University Hospital of Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Turin, Italy
| |
Collapse
|
13
|
Yu HT, Zhen J, Xu JX, Cai L, Leng JY, Ji HL, Keller BB. Zinc protects against cadmium-induced toxicity in neonatal murine engineered cardiac tissues via metallothionein-dependent and independent mechanisms. Acta Pharmacol Sin 2020; 41:638-649. [PMID: 31768045 PMCID: PMC7471469 DOI: 10.1038/s41401-019-0320-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022]
Abstract
Cadmium (Cd) is a nonessential heavy metal and a prevalent environmental toxin that has been shown to induce significant cardiomyocyte apoptosis in neonatal murine engineered cardiac tissues (ECTs). In contrast, zinc (Zn) is a potent metallothionein (MT) inducer, which plays an important role in protection against Cd toxicity. In this study, we investigated the protective effects of Zn against Cd toxicity in ECTs and explore the underlying mechanisms. ECTs were constructed from neonatal ventricular cells of wild-type (WT) mice and mice with global MT gene deletion (MT-KO). In WT-ECTs, Cd (5-20 μM) caused a dose-dependent toxicity that was detected within 8 h evidenced by suppressed beating, apoptosis, and LDH release; Zn (50-200 μM) dose-dependently induced MT expression in ECTs without causing ECT toxicity; co-treatment of ECT with Zn (50 µM) prevented Cd-induced toxicity. In MT-KO ECTs, Cd toxicity was enhanced; but unexpectedly, cotreatment with Zn provided partial protection against Cd toxicity. Furthermore, Cd, but not Zn, significantly activated Nrf2 and its downstream targets, including HO-1; inhibition of HO-1 by a specific HO-1 inhibitor, ZnPP (10 µM), significantly increased Cd-induced toxicity, but did not inhibit Zn protection against Cd injury, suggesting that Nrf2-mediated HO-1 activation was not required for Zn protective effect. Finally, the ability of Zn to reduce Cd uptake provided an additional MT-independent mechanism for reducing Cd toxicity. Thus, Zn exerts protective effects against Cd toxicity for murine ECTs that are partially MT-mediated. Further studies are required to translate these findings towards clinical trials.
Collapse
Affiliation(s)
- Hai-Tao Yu
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Juan Zhen
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Jian-Xiang Xu
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Lu Cai
- The Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
- Department of Radiation Oncology, The University of Louisville School of Medicine, Louisville, KY, USA
| | - Ji-Yan Leng
- The First Hospital of Jilin University, Changchun, 130021, China
| | - Hong-Lei Ji
- The First Hospital of Jilin University, Changchun, 130021, China.
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
- Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
14
|
Hassan A, Saeed A, Afzal S, Shahid M, Amin I, Idrees M. Applications and hazards associated with carbon nanotubes in biomedical sciences. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1724151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ali Hassan
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Afraz Saeed
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Samia Afzal
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Shahid
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Iram Amin
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Division of Molecular Virology and Infectious Diseases, Centre of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
Zhen J, Yu H, Ji H, Cai L, Leng J, Keller BB. Neonatal murine engineered cardiac tissue toxicology model: Impact of dexrazoxane on doxorubicin induced injury. Life Sci 2019; 239:117070. [PMID: 31751580 DOI: 10.1016/j.lfs.2019.117070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX) induced cardiotoxicity is a life-threatening side effect of chemotherapy and decreased cardiac function can present years after treatment. Despite the investigation of a broad range of pharmacologic interventions, to date the only drug shown to reduce DOX-related cardiotoxicity in preclinical studies and limited clinical trials is the iron chelating agent, dexrazoxane (DRZ), although the mechanisms responsible for DRZ mediated protection from DOX related cardiotoxicity remain unclear. Engineered cardiac tissues (ECTs) can be used for tissue repair strategies and as in vitro surrogate models to test cardiac toxicities and preventative countermeasures. Neonatal murine ECTs display cardiotoxicity in response to the environmental toxin, cadmium, and reduced cadmium toxicity with Zinc co-treatment, in part via the induction of the anti-oxidant Metallothionein (MT). We adapted our in vitro ECT model to determine the feasibility of using the ECT approach to investigate DOX-related cardiac injury and DRZ prevention. We found: (1) DOX induced dose and time dependent cell death in ECTs; (2) Zinc did not show protection from DOX cardiotoxicity; (3) MT overexpression induced by Zinc, low dose Cd pretreatment, or MT-overexpression (MT-TG) did not reduce ECT DOX cardiotoxicity; (4) DRZ reduced ECT DOX induced cell death; and (5) The mechanism of DRZ ECT protection from DOX cardiotoxicity was topoisomerase 2B (TOP2B) inhibition rather than reduced reactive oxygen species. Our data support the feasibility of ECTs as an in vitro platform technology for the investigation of drug induced cardiotoxicities including the role of TOP2B in DOX toxicity and DRZ mediated DOX toxicity prevention.
Collapse
Affiliation(s)
- Juan Zhen
- The First Hospital of Jilin University, Changchun 130021, China; The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haitao Yu
- The First Hospital of Jilin University, Changchun 130021, China; The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Honglei Ji
- The First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- The Pediatric Research Institute, Department of Pediatrics, the University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Radiation Oncology, the University of Louisville School of Medicine, Louisville, KY, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Jiyan Leng
- The First Hospital of Jilin University, Changchun 130021, China.
| | - Bradley B Keller
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA; Kosair Charities Pediatric Heart Research Program, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
16
|
Phosphomimetic cardiac myosin-binding protein C partially rescues a cardiomyopathy phenotype in murine engineered heart tissue. Sci Rep 2019; 9:18152. [PMID: 31796859 PMCID: PMC6890639 DOI: 10.1038/s41598-019-54665-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Phosphorylation of cardiac myosin-binding protein C (cMyBP-C), encoded by MYBPC3, increases the availability of myosin heads for interaction with actin thus enhancing contraction. cMyBP-C phosphorylation level is lower in septal myectomies of patients with hypertrophic cardiomyopathy (HCM) than in non-failing hearts. Here we compared the effect of phosphomimetic (D282) and wild-type (S282) cMyBP-C gene transfer on the HCM phenotype of engineered heart tissues (EHTs) generated from a mouse model carrying a Mybpc3 mutation (KI). KI EHTs showed lower levels of mutant Mybpc3 mRNA and protein, and altered gene expression compared with wild-type (WT) EHTs. Furthermore, KI EHTs exhibited faster spontaneous contractions and higher maximal force and sensitivity to external [Ca2+] under pacing. Adeno-associated virus-mediated gene transfer of D282 and S282 similarly restored Mybpc3 mRNA and protein levels and suppressed mutant Mybpc3 transcripts. Moreover, both exogenous cMyBP-C proteins were properly incorporated in the sarcomere. KI EHTs hypercontractility was similarly prevented by both treatments, but S282 had a stronger effect than D282 to normalize the force-Ca2+-relationship and the expression of dysregulated genes. These findings in an in vitro model indicate that S282 is a better choice than D282 to restore the HCM EHT phenotype. To which extent the results apply to human HCM remains to be seen.
Collapse
|
17
|
Cai W, Zhang J, de Lange WJ, Gregorich ZR, Karp H, Farrell ET, Mitchell SD, Tucholski T, Lin Z, Biermann M, McIlwain SJ, Ralphe JC, Kamp TJ, Ge Y. An Unbiased Proteomics Method to Assess the Maturation of Human Pluripotent Stem Cell-Derived Cardiomyocytes. Circ Res 2019; 125:936-953. [PMID: 31573406 PMCID: PMC6852699 DOI: 10.1161/circresaha.119.315305] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
RATIONALE Human pluripotent stem cell (hPSC)-derived cardiomyocytes exhibit the properties of fetal cardiomyocytes, which limits their applications. Various methods have been used to promote maturation of hPSC-cardiomyocytes; however, there is a lack of an unbiased and comprehensive method for accurate assessment of the maturity of hPSC-cardiomyocytes. OBJECTIVE We aim to develop an unbiased proteomics strategy integrating high-throughput top-down targeted proteomics and bottom-up global proteomics for the accurate and comprehensive assessment of hPSC-cardiomyocyte maturation. METHODS AND RESULTS Utilizing hPSC-cardiomyocytes from early- and late-stage 2-dimensional monolayer culture and 3-dimensional engineered cardiac tissue, we demonstrated the high reproducibility and reliability of a top-down proteomics method, which enabled simultaneous quantification of contractile protein isoform expression and associated post-translational modifications. This method allowed for the detection of known maturation-associated contractile protein alterations and, for the first time, identified contractile protein post-translational modifications as promising new markers of hPSC-cardiomyocytes maturation. Most notably, decreased phosphorylation of α-tropomyosin was found to be associated with hPSC-cardiomyocyte maturation. By employing a bottom-up global proteomics strategy, we identified candidate maturation-associated markers important for sarcomere organization, cardiac excitability, and Ca2+ homeostasis. In particular, upregulation of myomesin 1 and transmembrane 65 was associated with hPSC-cardiomyocyte maturation and validated in cardiac development, making these promising markers for assessing maturity of hPSC-cardiomyocytes. We have further validated α-actinin isoforms, phospholamban, dystrophin, αB-crystallin, and calsequestrin 2 as novel maturation-associated markers, in the developing mouse cardiac ventricles. CONCLUSIONS We established an unbiased proteomics method that can provide accurate and specific assessment of the maturity of hPSC-cardiomyocytes and identified new markers of maturation. Furthermore, this integrated proteomics strategy laid a strong foundation for uncovering the molecular pathways involved in cardiac development and disease using hPSC-cardiomyocytes.
Collapse
Affiliation(s)
- Wenxuan Cai
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianhua Zhang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Willem J. de Lange
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachery R. Gregorich
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah Karp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Emily T. Farrell
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Stanford D. Mitchell
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ziqing Lin
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mitch Biermann
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - J. Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Timothy J. Kamp
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ying Ge
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
18
|
Notbohm J, Napiwocki B, deLange W, Stempien A, Saraswathibhatla A, Craven R, Salick M, Ralphe J, Crone W. Two-Dimensional Culture Systems to Enable Mechanics-Based Assays for Stem Cell-Derived Cardiomyocytes. EXPERIMENTAL MECHANICS 2019; 59:1235-1248. [PMID: 31680699 PMCID: PMC6824432 DOI: 10.1007/s11340-019-00473-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/09/2019] [Indexed: 06/10/2023]
Abstract
Well-controlled 2D cell culture systems advance basic investigations in cell biology and provide innovative platforms for drug development, toxicity testing, and diagnostic assays. These cell culture systems have become more advanced in order to provide and to quantify the appropriate biomechanical and biochemical cues that mimic the milieu of conditions present in vivo. Here we present an innovative 2D cell culture system to investigate human stem cell-derived cardiomyocytes, the muscle cells of the heart responsible for pumping blood throughout the body. We designed our 2D cell culture platform to control intracellular features to produce adult-like cardiomyocyte organization with connectivity and anisotropic conduction comparable to the native heart, and combined it with optical microscopy to quantify cell-cell and cell-substrate mechanical interactions. We show the measurement of forces and displacements that occur within individual cells, between neighboring cells, and between cells and their surrounding matrix. This system has broad potential to expand our understanding of tissue physiology, with particular advantages for the study of the mechanically active heart. Furthermore, this technique should prove valuable in screening potential drugs for efficacy and testing for toxicity.
Collapse
Affiliation(s)
- J. Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - B.N. Napiwocki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - W.J. deLange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - A. Stempien
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - A. Saraswathibhatla
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
| | - R.J. Craven
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
| | - M.R. Salick
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, USA
| | - J.C. Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - W.C. Crone
- Department of Engineering Physics, University of Wisconsin-Madison, Madison WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison WI, USA
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison WI, USA
| |
Collapse
|
19
|
Biomaterializing the promise of cardiac tissue engineering. Biotechnol Adv 2019; 42:107353. [PMID: 30794878 DOI: 10.1016/j.biotechadv.2019.02.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
During an average individual's lifespan, the human heart pumps nearly 200 million liters of blood delivered by approximately 3 billion heartbeats. Therefore, it is not surprising that native myocardium under this incredible demand is extraordinarily complex, both structurally and functionally. As a result, successful engineering of adult-mimetic functional cardiac tissues is likely to require utilization of highly specialized biomaterials representative of the native extracellular microenvironment. There is currently no single biomaterial that fully recapitulates the architecture or the biochemical and biomechanical properties of adult myocardium. However, significant effort has gone toward designing highly functional materials and tissue constructs that may one day provide a ready source of cardiac tissue grafts to address the overwhelming burden of cardiomyopathic disease. In the near term, biomaterial-based scaffolds are helping to generate in vitro systems for querying the mechanisms underlying human heart homeostasis and disease and discovering new, patient-specific therapeutics. When combined with advances in minimally-invasive cardiac delivery, ongoing efforts will likely lead to scalable cell and biomaterial technologies for use in clinical practice. In this review, we describe recent progress in the field of cardiac tissue engineering with particular emphasis on use of biomaterials for therapeutic tissue design and delivery.
Collapse
|
20
|
Yu H, Ye F, Yuan F, Cai L, Ji H, Keller BB. Neonatal Murine Engineered Cardiac Tissue Toxicology Model: Impact of Metallothionein Overexpression on Cadmium-Induced Injury. Toxicol Sci 2018; 165:499-511. [PMID: 29982767 DOI: 10.1093/toxsci/kfy177] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Engineered cardiac tissues (ECTs) serve as robust in vitro models to study human cardiac diseases including cardiac toxicity assays due to rapid structural and functional maturation and the ability to vary ECT composition. Metallothionein (MT) has been shown to be cardioprotective for environmental toxicants including heavy metals. To date, studies on the role of cardiomyocyte (CM)-specific MT expression and function have occurred in dissociated single cell assays or expensive in vivo small animal models. Therefore, we generated 3D ECTs using neonatal mouse ventricular cells from wild-type (WT) and the CM-specific overexpressing MT-transgenic (MT-TG) to determine the effect of MT overexpression on ECT maturation and function. Because Cadmium (Cd) is an environmentally prevalent heavy metal toxicant with direct negative impact on cardiac structure and function, we then determined the effect of MT overexpression to reduce Cd mediated CM toxicity within ECTs. We found: (1) structural and functional maturation was similar in WT and MT-TG ECTs; (2) Cd exposure negatively impacted ECT cell survival, maturation, and function; and (3) MT-ECTs showed reduced Cd toxicity as defined by reduced cleaved caspase 3, reduced Bax/Bcl2 ratio, reduced TdT-mediated dUTP nick-end labeling positive cells, reduced CM loss after Cd treatment, and delayed onset of cardiac dysfunction after Cd treatment. Thus, neonatal murine ECTs can serve as a robust in vitro model for heavy metal toxicity screening and as a platform to evaluate the role cardioprotective mechanisms, such as the MT-TG model, on environmentally relevant toxicants.
Collapse
Affiliation(s)
- Haitao Yu
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun 130021, China
- The Pediatric Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40292
| | - Fei Ye
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun 130021, China
- Kosair Charities Pediatric Heart Research Program, Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Fangping Yuan
- Kosair Charities Pediatric Heart Research Program, Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202
| | - Lu Cai
- The Pediatric Research Institute, The Department of Pediatrics of the University of Louisville, Louisville, Kentucky 40292
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202
| | - Honglei Ji
- The Center of Cardiovascular Disorders, The First Hospital of Jilin University, Changchun 130021, China
| | - Bradley B Keller
- Kosair Charities Pediatric Heart Research Program, Department of Pediatrics, Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky 40202
| |
Collapse
|
21
|
Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat Biomed Eng 2018; 2:955-967. [PMID: 31015724 PMCID: PMC6482859 DOI: 10.1038/s41551-018-0280-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 07/20/2018] [Indexed: 12/26/2022]
Abstract
The integration of in vitro cardiac tissue models, human induced pluripotent stem cells (hiPSCs) and genome-editing tools allows for the enhanced interrogation of physiological phenotypes and the recapitulation of disease pathologies. Here, in a cardiac tissue model consisting of filamentous 3D matrices populated with cardiomyocytes (CMs) derived from healthy wild-type hiPSCs (WT hiPSC-CMs) or from isogenic hiPSCs deficient in the sarcomere protein cardiac myosin binding protein C (MYBPC3−/− hiPSC-CMs), we show that the WT microtissues adapted to the mechanical environment with increased contraction force commensurate to matrix stiffness, whereas the MYBPC3−/− microtissues exhibited impaired force-development kinetics regardless of matrix stiffness and deficient contraction force only when grown on matrices with high fiber stiffness. Under mechanical overload, the MYBPC3−/− microtissues had a higher degree of calcium transient abnormalities, and exhibited an accelerated decay of calcium dynamics as well as calcium desensitization, which accelerated when contracting against stiffer fibers. Our findings suggest that MYBPC3 deficiency and the presence of environmental stresses synergistically lead to contractile deficits in the cardiac tissues.
Collapse
|
22
|
Smelter DF, de Lange WJ, Cai W, Ge Y, Ralphe JC. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability. Am J Physiol Heart Circ Physiol 2018; 314:H1179-H1191. [PMID: 29451820 PMCID: PMC6032085 DOI: 10.1152/ajpheart.00686.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/16/2022]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of haploinsufficiency. NEW & NOTEWORTHY This study is one of the first to describe a disease mechanism for a missense mutation in cardiac myosin-binding protein C linked to hypertrophic cardiomyopathy. The mutation decreases stability of the fibronectin type III domain and results in substantially reduced mutant protein expression dissonant to transcript abundance.
Collapse
Affiliation(s)
- Dan F Smelter
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| | - Wenxuan Cai
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison , Madison, Wisconsin
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison , Madison, Wisconsin
- Human Proteomics Program, University of Wisconsin-Madison , Madison, Wisconsin
- Department of Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison , Madison, Wisconsin
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
23
|
Hodgson P, Ireland J, Grunow B. Fish, the better model in human heart research? Zebrafish Heart aggregates as a 3D spontaneously cardiomyogenic in vitro model system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:132-141. [PMID: 29729327 DOI: 10.1016/j.pbiomolbio.2018.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/04/2018] [Accepted: 04/27/2018] [Indexed: 12/25/2022]
Abstract
The zebrafish (ZF) has become an essential model for biomedical, pharmacological and eco-toxicological heart research. Despite the anatomical differences between fish and human hearts, similarities in cellular structure and conservation of genes as well as pathways across vertebrates have led to an increase in the popularity of ZF as a model for human cardiac research. ZF research benefits from an entirely sequenced genome, which allows us to establish and study cardiovascular mutants to better understand cardiovascular diseases. In this review, we will discuss the importance of in vitro model systems for cardiac research and summarise results of in vitro 3D heart-like cell aggregates, consisting of myocardial tissue formed spontaneously from enzymatically digested whole embryonic ZF larvae (Zebrafish Heart Aggregate - ZFHA). We will give an overview of the similarities and differences of ZF versus human hearts and highlight why ZF complement established mammalian models (i.e. murine and large animal models) for cardiac research. At this stage, the ZFHA model system is being refined into a high-throughput (more ZFHA generated than larvae prepared) and stable in vitro test system to accomplish the same longevity of previously successful salmonid models. ZFHA have potential for the use of high-throughput-screenings of different factors like small molecules, nucleic acids, proteins and lipids which is difficult to achieve in the zebrafish in vivo screening models with lethal mutations as well as to explore ion channel disorders and to find appropriate drugs for safety screening.
Collapse
Affiliation(s)
- Patricia Hodgson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| | - Jake Ireland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK; School of Chemistry, Materials Science, and Engineering, Hilmer Building, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Bianka Grunow
- University Medicine Greifswald, Institute of Physiology, Greifswalder Str. 11C, 17495 Karlsburg, Germany; Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK.
| |
Collapse
|
24
|
Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res 2017; 120:1487-1500. [PMID: 28450366 DOI: 10.1161/circresaha.117.310738] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair.
Collapse
Affiliation(s)
- Florian Weinberger
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
25
|
Farrell ET, Grimes AC, de Lange WJ, Armstrong AE, Ralphe JC. Increased Postnatal Cardiac Hyperplasia Precedes Cardiomyocyte Hypertrophy in a Model of Hypertrophic Cardiomyopathy. Front Physiol 2017; 8:414. [PMID: 28659827 PMCID: PMC5470088 DOI: 10.3389/fphys.2017.00414] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/30/2017] [Indexed: 01/17/2023] Open
Abstract
Rationale: Hypertrophic cardiomyopathy (HCM) occurs in ~0.5% of the population and is a leading cause of sudden cardiac death (SCD) in young adults. Cardiomyocyte hypertrophy has been the accepted mechanism for cardiac enlargement in HCM, but the early signaling responsible for initiating hypertrophy is poorly understood. Mutations in cardiac myosin binding protein C (MYBPC3) are among the most common HCM-causing mutations. Ablation of Mybpc3 in an HCM mouse model (cMyBP-C−/−) rapidly leads to cardiomegaly by postnatal day (PND) 9, though hearts are indistinguishable from wild-type (WT) at birth. This model provides a unique opportunity to explore early processes involved in the dramatic postnatal transition to hypertrophy. Methods and Results: We performed microarray analysis, echocardiography, qPCR, immunohistochemistry (IHC), and isolated cardiomyocyte measurements to characterize the perinatal cMyBP-C−/− phenotype before and after overt hypertrophy. cMyBP-C−/− hearts showed elevated cell cycling at PND1 that transitioned to hypertrophy by PND9. An expanded time course revealed that increased cardiomyocyte cycling was associated with elevated heart weight to body weight ratios prior to cellular hypertrophy, suggesting that cell cycling resulted in cardiomyocyte proliferation. Animals heterozygous for the cMyBP-C deletion trended in the direction of the homozygous null, yet did not show increased heart size by PND9. Conclusions: Results indicate that altered regulation of the cell cycling pathway and elevated proliferation precedes hypertrophy in the cMyBP-C−/− HCM model, and suggests that increased cardiomyocyte number contributes to increased heart size in cMyBP-C−/− mice. This pre-hypertrophic period may reflect a unique time during which the commitment to HCM is determined and disease severity is influenced.
Collapse
Affiliation(s)
- Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public HealthMadison, WI, United States
| | - Adrian C Grimes
- Department of Medicine, University of Wisconsin School of Medicine and Public HealthMadison, WI, United States
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public HealthMadison, WI, United States
| | - Annie E Armstrong
- Department of Pediatrics, University of Wisconsin School of Medicine and Public HealthMadison, WI, United States
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public HealthMadison, WI, United States
| |
Collapse
|
26
|
Sun H, Zhou J, Huang Z, Qu L, Lin N, Liang C, Dai R, Tang L, Tian F. Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs. Int J Nanomedicine 2017; 12:3109-3120. [PMID: 28450785 PMCID: PMC5399986 DOI: 10.2147/ijn.s128030] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Carbon nanotubes (CNTs) provide an essential 2-D microenvironment for cardiomyocyte growth and function. However, it remains to be elucidated whether CNT nanostructures can promote cell-cell integrity and facilitate the formation of functional tissues in 3-D hydrogels. Here, single-walled CNTs were incorporated into collagen hydrogels to fabricate (CNT/Col) hydrogels, which improved mechanical and electrical properties. The incorporation of CNTs (up to 1 wt%) exhibited no toxicity to cardiomyocytes and enhanced cell adhesion and elongation. Through the use of immunohistochemical staining, transmission electron microscopy, and intracellular calcium-transient measurement, the incorporation of CNTs was found to improve cell alignment and assembly remarkably, which led to the formation of engineered cardiac tissues with stronger contraction potential. Importantly, cardiac tissues based on CNT/Col hydrogels were noted to have better functionality. Collectively, the incorporation of CNTs into the Col hydrogels improved cell alignment and the performance of cardiac constructs. Our study suggests that CNT/Col hydrogels offer a promising tissue scaffold for cardiac constructs, and might serve as injectable biomaterials to deliver cell or drug molecules for cardiac regeneration following myocardial infarction in the near future.
Collapse
Affiliation(s)
- Hongyu Sun
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Jing Zhou
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Zhu Huang
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Linlin Qu
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Ning Lin
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Chengxiao Liang
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Ruiwu Dai
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Lijun Tang
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| | - Fuzhou Tian
- General Surgery Center, Chengdu Military General Hospital, Chengdu, China
| |
Collapse
|
27
|
Soares JS, Zhang W, Sacks MS. A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds. Acta Biomater 2017; 51:220-236. [PMID: 28063987 DOI: 10.1016/j.actbio.2016.12.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/14/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022]
Abstract
Formation of engineering tissues (ET) remains an important scientific area of investigation for both clinical translational and mechanobiological studies. Needled-nonwoven (NNW) scaffolds represent one of the most ubiquitous biomaterials based on their well-documented capacity to sustain tissue formation and the unique property of substantial construct stiffness amplification, the latter allowing for very sensitive determination of forming tissue modulus. Yet, their use in more fundamental studies is hampered by the lack of: (1) substantial understanding of the mechanics of the NNW scaffold itself under finite deformations and means to model the complex mechanical interactions between scaffold fibers, cells, and de novo tissue; and (2) rational models with reliable predictive capabilities describing their evolving mechanical properties and their response to mechanical stimulation. Our objective is to quantify the mechanical properties of the forming ET phase in constructs that utilize NNW scaffolds. We present herein a novel mathematical model to quantify their stiffness based on explicit considerations of the modulation of NNW scaffold fiber-fiber interactions and effective fiber stiffness by surrounding de novo ECM. Specifically, fibers in NNW scaffolds are effectively stiffer than if acting alone due to extensive fiber-fiber cross-over points that impart changes in fiber geometry, particularly crimp wavelength and amplitude. Fiber-fiber interactions in NNW scaffolds also play significant role in the bulk anisotropy of the material, mainly due to fiber buckling and large translational out-of-plane displacements occurring to fibers undergoing contraction. To calibrate the model parameters, we mechanically tested impregnated NNW scaffolds with polyacrylamide (PAM) gels with a wide range of moduli with values chosen to mimic the effects of surrounding tissues on the scaffold fiber network. Results indicated a high degree of model fidelity over a wide range of planar strains. Lastly, we illustrated the impact of our modeling approach quantifying the stiffness of engineered ECM after in vitro incubation and early stages of in vivo implantation obtained in a concurrent study of engineered tissue pulmonary valves in an ovine model. STATEMENT OF SIGNIFICANCE Regenerative medicine has the potential to fully restore diseased tissues or entire organs with engineered tissues. Needled-nonwoven scaffolds can be employed to serve as the support for their growth. However, there is a lack of understanding of the mechanics of these materials and their interactions with the forming tissues. We developed a mathematical model for these scaffold-tissue composites to quantify the mechanical properties of the forming tissues. Firstly, these measurements are pivotal to achieve functional requirements for tissue engineering implants; however, the theoretical development yielded critical insight into particular mechanisms and behaviors of these scaffolds that were not possible to conjecture without the insight given by modeling, let alone describe or foresee a priori.
Collapse
Affiliation(s)
- João S Soares
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States
| | - Will Zhang
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States
| | - Michael S Sacks
- Institute for Computational Engineering and Sciences, Department of Biomedical Engineering, Center for Cardiovascular Simulation, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229, United States.
| |
Collapse
|
28
|
Deddens JC, Sadeghi AH, Hjortnaes J, van Laake LW, Buijsrogge M, Doevendans PA, Khademhosseini A, Sluijter JPG. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Adv Healthc Mater 2017; 6. [PMID: 27906521 DOI: 10.1002/adhm.201600571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
| | - Amir Hossein Sadeghi
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Marc Buijsrogge
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
- Department of Physics; King Abdulaziz University; Jeddah 21569 Saudi Arabia
| | - Joost P. G. Sluijter
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| |
Collapse
|
29
|
Thymosin β4 Improves Differentiation and Vascularization of EHTs. Stem Cells Int 2017; 2017:6848271. [PMID: 28191018 PMCID: PMC5278226 DOI: 10.1155/2017/6848271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/07/2016] [Indexed: 01/14/2023] Open
Abstract
Induced pluripotent stem cells (iPSC) constitute a powerful tool to study cardiac physiology and represents a promising treatment strategy to tackle cardiac disease. However, iPSCs remain relatively immature after differentiation. Additionally, engineered heart tissue (EHT) has been investigated as a therapy option in preclinical disease models with promising results, although their vascularization and functionality leave room for improvement. Thymosin β4 (Tβ4) has been shown to promote the differentiation of progenitor cell lines to cardiomyocytes while it also induces angiogenic sprouting and vascular maturation. We examined the potential impact of Tβ4 to enhance maturation of cardiomyocytes from iPSCs. Assessing the expression of transcription factors associated with cardiac differentiation, we were able to demonstrate the increased generation of cells displaying cardiomyocyte characteristics in vitro. Furthermore, we demonstrated, in a zebrafish model of embryonic vascular development, that Tβ4 is crucial for the proper execution of lymphatic and angiogenic vessel sprouting. Finally, utilizing Tβ4-transduced EHTs generated from mice genetically engineered to label endothelial cells in vitro, we show that treatment with Tβ4 promotes vascularization and contractility in EHTs, highlighting Tβ4 as a growth factor improving the formation of cardiomyocytes from iPSC and enhancing the performance of EHTs generated from neonatal cardiomyocytes.
Collapse
|
30
|
Sidorov VY, Samson PC, Sidorova TN, Davidson JM, Lim CC, Wikswo JP. I-Wire Heart-on-a-Chip I: Three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater 2017; 48:68-78. [PMID: 27818308 DOI: 10.1016/j.actbio.2016.11.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/07/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Engineered 3D cardiac tissue constructs (ECTCs) can replicate complex cardiac physiology under normal and pathological conditions. Currently, most measurements of ECTC contractility are either made isometrically, with fixed length and without control of the applied force, or auxotonically against a variable force, with the length changing during the contraction. The "I-Wire" platform addresses the unmet need to control the force applied to ECTCs while interrogating their passive and active mechanical and electrical characteristics. A six-well plate with inserted PDMS casting molds containing neonatal rat cardiomyocytes cultured with fibrin for 13-15days is mounted on the motorized mechanical stage of an inverted microscope equipped with a fast sCMOS camera. A calibrated flexible probe provides strain load of the ECTC via lateral displacement, and the microscope detects the deflections of both the probe and the ECTC. The ECTCs exhibited longitudinally aligned cardiomyocytes with well-developed sarcomeric structure, recapitulated the Frank-Starling force-tension relationship, and demonstrated expected transmembrane action potentials, electrical and mechanical restitutions, and responses to both β-adrenergic stimulation and blebbistatin. The I-Wire platform enables creation and mechanical and electrical characterization of ECTCs, and hence can be valuable in the study of cardiac diseases, drug screening, drug development, and the qualification of cells for tissue-engineered regenerative medicine. STATEMENT OF SIGNIFICANCE There is a growing interest in creating engineered heart tissue constructs for basic cardiac research, applied research in cardiac pharmacology, and repair of damaged hearts. We address an unmet need to characterize fully the performance of these tissues with our simple "I-Wire" assay that allows application of controlled forces to three-dimensional cardiac fiber constructs and measurement of both the electrical and mechanical properties of the construct. The advantage of I-Wire over other approaches is that the constructs being measured are truly three-dimensional, rather than a single layer of cells grown within a microfluidic device. We anticipate that the I-Wire will be extremely useful for the evaluation of myocardial constructs created using cardiomyocytes derived from human induced pluripotent stem cells.
Collapse
|
31
|
Kriegel AJ, Gartz M, Afzal MZ, de Lange WJ, Ralphe JC, Strande JL. Molecular Approaches in HFpEF: MicroRNAs and iPSC-Derived Cardiomyocytes. J Cardiovasc Transl Res 2016; 10:295-304. [PMID: 28032312 DOI: 10.1007/s12265-016-9723-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023]
Abstract
Heart failure with preserved left ventricular ejection fraction (HFpEF) has emerged as one of the largest unmet needs in cardiovascular medicine. HFpEF is increasing in prevalence and causes significant morbidity, mortality, and health care resource utilization. Patients have multiple co-morbidities which contribute to the disease complexity. To date, no effective treatment for HFpEF has been identified. The paucity of cardiac biopsies from this patient population and the absence of well-accepted animal models limit our understanding of the underlying molecular mechanisms of HFpEF. In this review, we discuss combining state-of-the-art technologies of microRNA profiling and human induced pluripotent cell-derived cardiomyocytes (iPSC-CMs) in order to uncover novel molecular pathways that may contribute to the development of HFpEF. Here, we focus the advantages and limitations of microRNA profiling and iPSC-CMs as a disease model system to discover molecular mechanisms in HFpEF.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melanie Gartz
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Muhammad Z Afzal
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Willem J de Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jennifer L Strande
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
32
|
Wijnker PJM, Friedrich FW, Dutsch A, Reischmann S, Eder A, Mannhardt I, Mearini G, Eschenhagen T, van der Velden J, Carrier L. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue. J Mol Cell Cardiol 2016; 97:82-92. [PMID: 27108529 DOI: 10.1016/j.yjmcc.2016.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany; Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Felix W Friedrich
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexander Dutsch
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Silke Reischmann
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Alexandra Eder
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Giulia Mearini
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
33
|
Pecha S, Eschenhagen T, Reichenspurner H. Myocardial tissue engineering for cardiac repair. J Heart Lung Transplant 2016; 35:294-298. [DOI: 10.1016/j.healun.2015.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/24/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023] Open
|
34
|
Cashman TJ, Josowitz R, Johnson BV, Gelb BD, Costa KD. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy. PLoS One 2016; 11:e0146697. [PMID: 26784941 PMCID: PMC4718533 DOI: 10.1371/journal.pone.0146697] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/21/2015] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new therapeutic approaches for this lethal form of heart disease.
Collapse
Affiliation(s)
- Timothy J. Cashman
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Rebecca Josowitz
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Bryce V. Johnson
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Bruce D. Gelb
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
| | - Kevin D. Costa
- The Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York City, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Eder A, Vollert I, Hansen A, Eschenhagen T. Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 2016; 96:214-24. [PMID: 26026976 DOI: 10.1016/j.addr.2015.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/11/2015] [Accepted: 05/21/2015] [Indexed: 12/29/2022]
Abstract
Drug development is time- and cost-intensive and, despite extensive efforts, still hampered by the limited value of current preclinical test systems to predict side effects, including proarrhythmic and cardiotoxic effects in clinical practice. Part of the problem may be related to species-dependent differences in cardiomyocyte biology. Therefore, the event of readily available human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CM) has raised hopes that this human test bed could improve preclinical safety pharmacology as well as drug discovery approaches. However, hiPSC-CM are immature and exhibit peculiarities in terms of ion channel function, gene expression, structural organization and functional responses to drugs that limit their present usefulness. Current efforts are thus directed towards improving hiPSC-CM maturity and high-content readouts. Culturing hiPSC-CM as 3-dimensional engineered heart tissue (EHT) improves CM maturity and anisotropy and, in a 24-well format using silicone racks, enables automated, multiplexed high content readout of contractile function. This review summarizes the principal technology and focuses on advantages and disadvantages of this technology and its potential for preclinical drug screening.
Collapse
|
36
|
Slowing of contractile kinetics by myosin-binding protein C can be explained by its cooperative binding to the thin filament. J Mol Cell Cardiol 2015; 96:2-10. [PMID: 26454159 DOI: 10.1016/j.yjmcc.2015.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/30/2022]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is a thick filament-associated protein that participates in the regulation of muscle contraction. Simplified in vitro systems show that cMyBP-C binds not only to myosin, but also to the actin filament. The physiological significance of these separate binding interactions remains unclear, as does the question of whether either interaction is capable of explaining the behavior of intact muscle from which cMyBP-C has been removed. We have used a computational model to explore the characteristic effects of myosin-binding versus actin-binding by cMyBP-C. Simulations suggest that myosin-cMyBP-C interactions reduce peak force and Ca2 + sensitivity of the myofilaments, but have no appreciable effect on the rate of force redevelopment (ktr). In contrast, cMyBP-C binding to actin increases myofilament Ca2 + sensitivity and slows ktrat sub-maximal Ca2 + values. This slowing is due to cooperation between cMyBP-C ‘crossbridges’ and traditional myosin crossbridges as they bind to and activate the actin thin filament. We further observed that an overall recapitulation of skinned myocardial data from wild type and cMyBP-C knockout mice requires the interaction of cMyBP-C with of both of its binding targets in our model. The assumption of significant interactions with both partners was also sufficient to explain published effects of cMyBP-C ablation on twitch kinetics. These modeling results strongly support the view that both binding interactions play critical roles in the physiology of intact muscle. Furthermore, they suggest that the widely observed phenomenon of slowed force development in the presence of cMyBP-C may actually be a manifestation of cooperative binding of this protein to the thin filament.
Collapse
|
37
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|
38
|
Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa YS, van der Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE. Engineered in vitro disease models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:195-262. [PMID: 25621660 DOI: 10.1146/annurev-pathol-012414-040418] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
Collapse
Affiliation(s)
- Kambez H Benam
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115;
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Vollert I, Eder A, Hansen A, Eschenhagen T. Engineering Cardiovascular Regeneration. CURRENT STEM CELL REPORTS 2015. [DOI: 10.1007/s40778-015-0010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Veerman CC, Kosmidis G, Mummery CL, Casini S, Verkerk AO, Bellin M. Immaturity of Human Stem-Cell-Derived Cardiomyocytes in Culture: Fatal Flaw or Soluble Problem? Stem Cells Dev 2015; 24:1035-52. [DOI: 10.1089/scd.2014.0533] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Christiaan C. Veerman
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Georgios Kosmidis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christine L. Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Simona Casini
- Department of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Arie O. Verkerk
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
41
|
Implantable thin-film porous microelectrode array (P-MEA) for electrical stimulation of engineered cardiac tissues. BIOCHIP JOURNAL 2015. [DOI: 10.1007/s13206-015-9201-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Eschenhagen T, Mummery C, Knollmann BC. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes. Cardiovasc Res 2015; 105:424-38. [PMID: 25618410 PMCID: PMC4349163 DOI: 10.1093/cvr/cvv017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
One of the obstacles to a better understanding of the pathogenesis of human cardiomyopathies has been poor availability of heart-tissue samples at early stages of disease development. This has possibly changed by the advent of patient-derived induced pluripotent stem cell (hiPSC) from which cardiomyocytes can be derived in vitro. The main promise of hiPSC technology is that by capturing the effects of thousands of individual gene variants, the phenotype of differentiated derivatives of these cells will provide more information on a particular disease than simple genotyping. This article summarizes what is known about the ‘human cardiomyopathy or heart failure phenotype in vitro’, which constitutes the reference for modelling sarcomeric cardiomyopathies in hiPSC-derived cardiomyocytes. The current techniques for hiPSC generation and cardiac myocyte differentiation are briefly reviewed and the few published reports of hiPSC models of sarcomeric cardiomyopathies described. A discussion of promises and challenges of hiPSC-modelling of sarcomeric cardiomyopathies and individualized approaches is followed by a number of questions that, in the view of the authors, need to be answered before the true potential of this technology can be evaluated.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistr. 52, 20246 Hamburg, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck
| | - Christine Mummery
- Department of Anatomy and Embryology, Leiden University Medical Centre, Einthovenweg 20, 2333ZC Leiden, The Netherlands
| | - Bjorn C Knollmann
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA
| |
Collapse
|
43
|
Pfeiffer ER, Tangney JR, Omens JH, McCulloch AD. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. J Biomech Eng 2014; 136:021007. [PMID: 24337452 DOI: 10.1115/1.4026221] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 12/12/2013] [Indexed: 11/08/2022]
Abstract
Cardiac mechanical contraction is triggered by electrical activation via an intracellular calcium-dependent process known as excitation-contraction coupling. Dysregulation of cardiac myocyte intracellular calcium handling is a common feature of heart failure. At the organ scale, electrical dyssynchrony leads to mechanical alterations and exacerbates pump dysfunction in heart failure. A reverse coupling between cardiac mechanics and electrophysiology is also well established. It is commonly referred as cardiac mechanoelectric feedback and thought to be an important contributor to the increased risk of arrhythmia during pathological conditions that alter regional cardiac wall mechanics, including heart failure. At the cellular scale, most investigations of myocyte mechanoelectric feedback have focused on the roles of stretch-activated ion channels, though mechanisms that are independent of ionic currents have also been described. Here we review excitation-contraction coupling and mechanoelectric feedback at the cellular and organ scales, and we identify the need for new multicellular tissue-scale model systems and experiments that can help us to obtain a better understanding of how interactions between electrophysiological and mechanical processes at the cell scale affect ventricular electromechanical interactions at the organ scale in the normal and diseased heart.
Collapse
|
44
|
Raval KK, Tao R, White BE, De Lange WJ, Koonce CH, Yu J, Kishnani PS, Thomson JA, Mosher DF, Ralphe JC, Kamp TJ. Pompe disease results in a Golgi-based glycosylation deficit in human induced pluripotent stem cell-derived cardiomyocytes. J Biol Chem 2014; 290:3121-36. [PMID: 25488666 DOI: 10.1074/jbc.m114.628628] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infantile-onset Pompe disease is an autosomal recessive disorder caused by the complete loss of lysosomal glycogen-hydrolyzing enzyme acid α-glucosidase (GAA) activity, which results in lysosomal glycogen accumulation and prominent cardiac and skeletal muscle pathology. The mechanism by which loss of GAA activity causes cardiomyopathy is poorly understood. We reprogrammed fibroblasts from patients with infantile-onset Pompe disease to generate induced pluripotent stem (iPS) cells that were differentiated to cardiomyocytes (iPSC-CM). Pompe iPSC-CMs had undetectable GAA activity and pathognomonic glycogen-filled lysosomes. Nonetheless, Pompe and control iPSC-CMs exhibited comparable contractile properties in engineered cardiac tissue. Impaired autophagy has been implicated in Pompe skeletal muscle; however, control and Pompe iPSC-CMs had comparable clearance rates of LC3-II-detected autophagosomes. Unexpectedly, the lysosome-associated membrane proteins, LAMP1 and LAMP2, from Pompe iPSC-CMs demonstrated higher electrophoretic mobility compared with control iPSC-CMs. Brefeldin A induced disruption of the Golgi in control iPSC-CMs reproduced the higher mobility forms of the LAMPs, suggesting that Pompe iPSC-CMs produce LAMPs lacking appropriate glycosylation. Isoelectric focusing studies revealed that LAMP2 has a more alkaline pI in Pompe compared with control iPSC-CMs due largely to hyposialylation. MALDI-TOF-MS analysis of N-linked glycans demonstrated reduced diversity of multiantennary structures and the major presence of a trimannose complex glycan precursor in Pompe iPSC-CMs. These data suggest that Pompe cardiomyopathy has a glycan processing abnormality and thus shares features with hypertrophic cardiomyopathies observed in the congenital disorders of glycosylation.
Collapse
Affiliation(s)
- Kunil K Raval
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the WiCell Institute, Madison, Wisconsin 53719
| | - Ran Tao
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Brent E White
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Willem J De Lange
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Chad H Koonce
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705
| | - Junying Yu
- Cellular Dynamics International, Madison, Wisconsin 53711
| | - Priya S Kishnani
- the Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710
| | - James A Thomson
- the Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, the Genome Center of Wisconsin, University of Wisconsin, Madison, Wisconsin 53706, the Morgridge Institute for Research, Madison, Wisconsin 53715
| | - Deane F Mosher
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - John C Ralphe
- the Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792
| | - Timothy J Kamp
- From the Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53705, the Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, the WiCell Institute, Madison, Wisconsin 53719,
| |
Collapse
|
45
|
Zimmermann WH. Biomechanical regulation of in vitro cardiogenesis for tissue-engineered heart repair. Stem Cell Res Ther 2014; 4:137. [PMID: 24229468 PMCID: PMC4055071 DOI: 10.1186/scrt348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The heart is a continuously pumping organ with an average lifespan of eight decades. It develops from the onset of embryonic cardiogenesis under biomechanical load, performs optimally within a defined range of hemodynamic load, and fails if acutely or chronically overloaded. Unloading of the heart leads to defective cardiogenesis in utero, but can also lead to a desired therapeutic outcome (for example, in patients with heart failure under left ventricular assist device therapy). In light of the well-documented relevance of mechanical loading for cardiac physiology and pathology, it is plausible that tissue engineers have integrated mechanical stimulation regimens into protocols for heart muscle construction. To achieve optimal results, physiological principles of beat-to-beat myocardial loading and unloading should be simulated. In addition, heart muscle engineering, in particular if based on pluripotent stem cell-derived cardiomyocytes, may benefit from staggered tonic loading protocols to simulate viscoelastic properties of the prenatal and postnatal myocardial stroma. This review will provide an overview of heart muscle mechanics, summarize observations on the role of mechanical loading for heart development and postnatal performance, and discuss how physiological loading regimens can be exploited to advance myocardial tissue engineering towards a therapeutic application.
Collapse
|
46
|
De Lange WJ, Grimes AC, Hegge LF, Spring AM, Brost TM, Ralphe JC. E258K HCM-causing mutation in cardiac MyBP-C reduces contractile force and accelerates twitch kinetics by disrupting the cMyBP-C and myosin S2 interaction. ACTA ACUST UNITED AC 2014; 142:241-55. [PMID: 23980194 PMCID: PMC3753599 DOI: 10.1085/jgp.201311018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mutations in cardiac myosin binding protein C (cMyBP-C) are prevalent causes of hypertrophic cardiomyopathy (HCM). Although HCM-causing truncation mutations in cMyBP-C are well studied, the growing number of disease-related cMyBP-C missense mutations remain poorly understood. Our objective was to define the primary contractile effect and molecular disease mechanisms of the prevalent cMyBP-C E258K HCM-causing mutation in nonremodeled murine engineered cardiac tissue (mECT). Wild-type and human E258K cMyBP-C were expressed in mECT lacking endogenous mouse cMyBP-C through adenoviral-mediated gene transfer. Expression of E258K cMyBP-C did not affect cardiac cell survival and was appropriately incorporated into the cardiac sarcomere. Functionally, expression of E258K cMyBP-C caused accelerated contractile kinetics and severely compromised twitch force amplitude in mECT. Yeast two-hybrid analysis revealed that E258K cMyBP-C abolished interaction between the N terminal of cMyBP-C and myosin heavy chain sub-fragment 2 (S2). Furthermore, this mutation increased the affinity between the N terminal of cMyBP-C and actin. Assessment of phosphorylation of three serine residues in cMyBP-C showed that aberrant phosphorylation of cMyBP-C is unlikely to be responsible for altering these interactions. We show that the E258K mutation in cMyBP-C abolishes interaction between N-terminal cMyBP-C and myosin S2 by directly disrupting the cMyBP-C-S2 interface, independent of cMyBP-C phosphorylation. Similar to cMyBP-C ablation or phosphorylation, abolition of this inhibitory interaction accelerates contractile kinetics. Additionally, the E258K mutation impaired force production of mECT, which suggests that in addition to the loss of physiological function, this mutation disrupts contractility possibly by tethering the thick and thin filament or acting as an internal load.
Collapse
Affiliation(s)
- Willem J De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Modeling integrated human physiology in vitro is a formidable task not yet achieved with any of the existing cell/tissue systems. However, tissue engineering is becoming increasingly successful at authentic representation of the actual environmental milieu of tissue development, regeneration and disease progression, and in providing real-time insights into morphogenic events. Functional human tissue units engineered to combine biological fidelity with the high-throughput screening and real-time measurement of physiological responses are poised to transform drug screening and predictive modeling of disease. In this review, we focus on the in vitro engineering of functional human myocardium that mimics heart tissue for analysis of myocardial function, in the context of physiological studies, drug screening for therapeutics, and safety pharmacology.
Collapse
|
48
|
Abstract
The engineering of 3-dimensional (3D) heart muscles has undergone exciting progress for the past decade. Profound advances in human stem cell biology and technology, tissue engineering and material sciences, as well as prevascularization and in vitro assay technologies make the first clinical application of engineered cardiac tissues a realistic option and predict that cardiac tissue engineering techniques will find widespread use in the preclinical research and drug development in the near future. Tasks that need to be solved for this purpose include standardization of human myocyte production protocols, establishment of simple methods for the in vitro vascularization of 3D constructs and better maturation of myocytes, and, finally, thorough definition of the predictive value of these methods for preclinical safety pharmacology. The present article gives an overview of the present state of the art, bottlenecks, and perspectives of cardiac tissue engineering for cardiac repair and in vitro testing.
Collapse
Affiliation(s)
- Marc N. Hirt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
49
|
Hong KU, Moore JB. Recent advances in cardiac myocyte biology and function. Circ Res 2013; 113:e121-4. [PMID: 24311621 DOI: 10.1161/circresaha.113.302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kyung U Hong
- From the Department of Medicine, Institute of Molecular Cardiology (K.U.H., J.B.M.) and Department of Medicine, Diabetes and Obesity Center (K.U.H.), University of Louisville, Louisville, KY
| | | |
Collapse
|
50
|
Feinberg A, Ripplinger C, van der Meer P, Sheehy S, Domian I, Chien K, Parker K. Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Reports 2013; 1:387-96. [PMID: 24286027 PMCID: PMC3841251 DOI: 10.1016/j.stemcr.2013.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022] Open
Abstract
Stem cell-derived cardiomyocytes represent unique tools for cell- and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated. We reasoned that physiological metrics of engineered cardiac tissues offer a means of comparison. We built laminar myocardium engineered from cardiomyocytes that were differentiated from mouse embryonic stem cell-derived cardiac progenitors or harvested directly from neonatal mouse ventricles, and compared their anatomy and physiology in vitro. Tissues assembled from progenitor-derived myocytes and neonate myocytes demonstrated similar cytoskeletal architectures but different gap junction organization and electromechanical properties. Progenitor-derived myocardium had significantly less contractile stress and slower longitudinal conduction velocity than neonate-derived myocardium, indicating that the developmental state of the cardiomyocytes affects the electromechanical function of the resultant engineered tissue. These data suggest a need to establish performance metrics for future stem cell applications.
Collapse
Affiliation(s)
- Adam W. Feinberg
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Crystal M. Ripplinger
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Peter van der Meer
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Sean P. Sheehy
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ibrahim Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kenneth R. Chien
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|