1
|
Yang J, Xin B, Wang X, Wan Y. Cancer-associated fibroblasts in breast cancer in the single-cell era: Opportunities and challenges. Biochim Biophys Acta Rev Cancer 2025; 1880:189291. [PMID: 40024607 DOI: 10.1016/j.bbcan.2025.189291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Breast cancer is a leading cause of morbidity and mortality in women, and its progression is closely linked to the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs), key components of the TME, play a crucial role in promoting tumor growth by driving cancer cell proliferation, invasion, extracellular matrix (ECM) remodeling, inflammation, chemoresistance, and immunosuppression. CAFs exhibit considerable heterogeneity and are classified into subgroups based on different combinations of biomarkers. Single-cell RNA sequencing (scRNA-seq) enables high-throughput and high-resolution analysis of individual cells. Relying on this technology, it is possible to cluster complex CAFs according to different biomarkers to analyze the specific phenotypes and functions of different subpopulations. This review explores CAF clusters in breast cancer and their associated biomarkers, highlighting their roles in disease progression and potential for targeted therapies.
Collapse
Affiliation(s)
- Jingtong Yang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Xiaoyu Wang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun 130033, Jilin, China.
| |
Collapse
|
2
|
Zhou C, Zhong Y, Chu Y, Chen R, Wang Y, Zheng Y, Dai H, Zhan C, Xie A, Luo J. Glutathione S-Transferase α4 Alleviates Hyperlipidemia-Induced Vascular Neointimal Hyperplasia in Arteriovenous Grafts via Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol 2024; 84:58-70. [PMID: 38573593 DOI: 10.1097/fjc.0000000000001570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
ABSTRACT Neointimal hyperplasia causes the failure of coronary artery bypass grafting. Our previous studies have found that endothelial dysfunction is 1 candidate for triggering neointimal hyperplasia, but which factors are involved in this process is unclear. Glutathione S-transferase α4 (GSTA4) plays an important role in metabolizing 4-hydroxynonenal (4-HNE), a highly reactive lipid peroxidation product, which causes endothelial dysfunction or death. Here, we investigated the role of GSTA4 in neointima formation after arteriovenous grafts (AVGs) with or without high-fat diet (HFD). Compared with normal diet, HFD caused endothelial dysfunction and increased neointima formation, concomitantly accompanied by downregulated expression of GSTA4 at the mRNA and protein levels. In vitro, overexpression of GSTA4 attenuated 4-HNE-induced endothelial dysfunction and knockdown of GSTA4 aggravated endothelial dysfunction. Furthermore, silencing GSTA4 expression facilitated the activation of 4-HNE-induced endoplasmic reticulum stress and inhibition of endoplasmic reticulum stress pathway alleviated 4-HNE-induced endothelial dysfunction. In addition, compared with wild-type mice, mice with knockout of endothelial-specific GSTA4 (GSTA4 endothelial cell KO) exhibited exacerbated vascular endothelial dysfunction and increased neointima formation caused by HFD. Together, these results demonstrate the critical role of GSTA4 in protecting the function of endothelial cells and in alleviating hyperlipidemia-induced vascular neointimal hyperplasia in arteriovenous grafts.
Collapse
Affiliation(s)
- Chenchen Zhou
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanxia Zhong
- Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; and
| | - Yun Chu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renyu Chen
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yurou Wang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingfang Zheng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongkai Dai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengye Zhan
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aini Xie
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Luo
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Zhong YX, Zhou CC, Zheng YF, Dai HK, Chen RY, Wang YR, Zhan CY, Luo JL, Xie AN. Endoplasmic Reticulum Stress-induced Endothelial Dysfunction Promotes Neointima Formation after Arteriovenous Grafts in Mice on High-fat Diet. Curr Med Sci 2023; 43:115-122. [PMID: 36640244 DOI: 10.1007/s11596-022-2663-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 09/03/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Endothelial dysfunction is one candidate for triggering neointima formation after arteriovenous grafts (AVGs), but the factors mediating this process are unclear. The purpose of this study was to investigate the role of endoplasmic reticulum stress (ERS)-induced endothelial dysfunction in neointima formation following AVGs in high-fat diet (HFD) mice. METHODS CCAAT-enhancer-binding protein-homologous protein (CHOP) knockout (KO) mice were created. Mice were fed with HFD to produce HFD model. AVGs model were applied in the groups of WT ND, WT HFD, and CHOP KO HFD. Human umbilical vein endothelial cells (HUVECs) were cultured with oxidized low density lipoprotein (ox-LDL) (40 mg/L) for the indicated time lengths (0, 6, 12, 24 h). ERS inhibitor tauroursodeoxycholic acid (TUDCA) was used to block ERS. Immunohistochemical staining was used to observe the changes of ICAM1. Changes of ERS were detected by real-time RT-PCR. Protein expression levels and ERS activation were detected by Western blotting. Endothellial cell function was determined by endothelial permeability assay and transendothelial migration assay. RESULTS HFD increased neointima formation in AVGs associated with endothelial dysfunction. At the same time, ERS was increased in endothelial cells (ECs) after AVGs in mice consuming the HFD. In vitro, ox-LDL was found to stimulate ERS, increase the permeability of the EC monolayer, and cause endothelial dysfunction. Blocking ERS with TUDCA or CHOP siRNA reversed the EC dysfunction caused by ox-LDL. In vivo, knockout of CHOP (CHOP KO) protected the function of ECs and decreased neointima formation after AVGs in HFD mice. CONCLUSION Inhibiting ERS in ECs could improve the function of AVGs.
Collapse
Affiliation(s)
- Yan-Xia Zhong
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chen-Chen Zhou
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying-Fang Zheng
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Kai Dai
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ren-Yu Chen
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu-Rou Wang
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Cheng-Ye Zhan
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-Long Luo
- Emergency and Intensive Care Unit, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ai-Ni Xie
- Divison of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
4
|
Wu Y, Liang M, Huang F, Cheng OH, Xiao X, Lee TH, Truong L, Cheng J. Notch Blockade Specifically in Bone Marrow-Derived FSP-1-Positive Cells Ameliorates Renal Fibrosis. Cells 2023; 12:cells12020214. [PMID: 36672147 PMCID: PMC9856686 DOI: 10.3390/cells12020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The infiltration of inflammatory cells during a kidney injury stimulates myofibroblast activation leading to kidney fibrosis. Fibroblast-specific protein 1 (FSP-1) positive cells have been reported as either myofibroblasts or monocytes during tissue fibrosis. The functions of FSP-1+ cells that are associated with the development of renal fibrosis and the signaling pathways that regulate FSP-1+ cell activation have not been well defined. METHODS In mice with unilateral ureteral obstruction (UUO), we characterized FSP-1+ cells and determined the role of the Notch signaling pathway in the activation of bone marrow-derived FSP-1+ cells during kidney fibrosis. RESULTS In kidneys from mice with UUO, the FSP-1+ cells accumulated significantly in the tubulointerstitial area. By using immunostaining and FSP-1 reporter mice, we found that FSP-1 was co-stained with inflammatory cell markers, but not myofibroblast markers. Results from mice with bone marrow transplantations showed that FSP-1+ cells in obstructed kidneys represent a bone marrow-derived population of inflammatory cells. In cultured FSP-1+ cells, the inhibition of Notch signaling suppressed the activation and cytokine secretion of FSP-1+ cells that were induced by LPS but not by IL-4. The specific KO or blockade of Notch signaling in bone marrow-derived FSP-1+ cells suppressed UUO-induced ECM deposition, the infiltration of FSP-1+ inflammatory cells, and cytokine production. These responses ameliorated myofibroblast accumulation and renal fibrosis in obstructed kidneys. CONCLUSION Our study reveals that most FSP-1+ cells in obstructed kidneys are activated macrophages that are derived from bone marrow and that Notch signaling activates the production of M1 cytokines in FSP-1+ monocytes/macrophages, which is important for renal inflammation and fibrosis.
Collapse
Affiliation(s)
- Yongdong Wu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming Liang
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510000, China
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (M.L.); (J.C.); Tel.: +1-713-798-2698 (J.C.); Fax: +1-713-798-5010 (J.C.)
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Owen H. Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiaoguang Xiao
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tae Hoon Lee
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Luan Truong
- Department of Pathology, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: (M.L.); (J.C.); Tel.: +1-713-798-2698 (J.C.); Fax: +1-713-798-5010 (J.C.)
| |
Collapse
|
5
|
Toledo B, Picon-Ruiz M, Marchal JA, Perán M. Dual Role of Fibroblasts Educated by Tumour in Cancer Behavior and Therapeutic Perspectives. Int J Mol Sci 2022; 23:15576. [PMID: 36555218 PMCID: PMC9778751 DOI: 10.3390/ijms232415576] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Tumours are complex systems with dynamic interactions between tumour cells, non-tumour cells, and extracellular components that comprise the tumour microenvironment (TME). The majority of TME's cells are cancer-associated fibroblasts (CAFs), which are crucial in extracellular matrix (ECM) construction, tumour metabolism, immunology, adaptive chemoresistance, and tumour cell motility. CAF subtypes have been identified based on the expression of protein markers. CAFs may act as promoters or suppressors in tumour cells depending on a variety of factors, including cancer stage. Indeed, CAFs have been shown to promote tumour growth, survival and spread, and secretome changes, but they can also slow tumourigenesis at an early stage through mechanisms that are still poorly understood. Stromal-cancer interactions are governed by a variety of soluble factors that determine the outcome of the tumourigenic process. Cancer cells release factors that enhance the ability of fibroblasts to secrete multiple tumour-promoting chemokines, acting on malignant cells to promote proliferation, migration, and invasion. This crosstalk between CAFs and tumour cells has given new prominence to the stromal cells, from being considered as mere physical support to becoming key players in the tumour process. Here, we focus on the concept of cancer as a non-healing wound and the relevance of chronic inflammation to tumour initiation. In addition, we review CAFs heterogeneous origins and markers together with the potential therapeutic implications of CAFs "re-education" and/or targeting tumour progression inhibition.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
| | - Manuel Picon-Ruiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, E-18071 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18016 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, E-23071 Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, E-18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, E-18016 Granada, Spain
| |
Collapse
|
6
|
Guo Q, Chen G, Cheng H, Qing Y, Truong L, Ma Q, Wang Y, Cheng J. Temporal regulation of notch activation improves arteriovenous fistula maturation. J Transl Med 2022; 20:543. [PMID: 36419038 PMCID: PMC9682688 DOI: 10.1186/s12967-022-03727-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Arteriovenous fistula (AVF) maturation is a process involving remodeling of venous arm of the AVFs. It is a challenge to balance adaptive AVF remodeling and neointima formation. In this study we temporally controlled Notch activation to promote AVF maturation while avoiding neointima formation. METHODS Temporal Notch activation was controlled by regulating the expression of Notch transcription factor, RBP-Jκ, or dnMAML1 (dominant negative MAML2) in vascular smooth muscle cells (VSMCs). AVF mouse model was created and VSMC phenotype dynamic changes during AVF remodeling were determined. RESULTS Activated Notch was found in the nuclei of neointimal VSMCs in AVFs from uremic mice. We found that the VSMCs near the anastomosis became dedifferentiated and activated after AVF creation. These dedifferentiated VSMCs regained smooth muscle contractile markers later during AVF remodeling. However, global or VSMC-specific KO of RBP-Jκ at early stage (before or 1 week after AVF surgery) blocked VSMC differentiation and neointima formation in AVFs. These un-matured AVFs showed less intact endothelium and increased infiltration of inflammatory cells. Consequently, the VSMC fate in the neointima was completely shut down, leading to an un-arterialized AVF. In contrast, KO of RBP-Jκ at late stage (3 weeks after AVF surgery), it could not block neointima formation and vascular stenosis. Inhibition of Notch activation at week 1 or 2, could maintain VSMC contractile markers expression and facilitate AVF maturation. CONCLUSIONS This work uncovers the molecular and cellular events in each segment of AVF remodeling and found that neither sustained increasing nor blocking of Notch signaling improves AVF maturation. It highlights a novel strategy to improve AVF patency: temporally controlled Notch activation can achieve a balance between adaptive AVF remodeling and neointima formation to improve AVF maturation. TRANSLATIONAL PERSPECTIVE Adaptive vascular remodeling is required for AVF maturation. The balance of wall thickening of the vein and neointima formation in AVF determines the fate of AVF function. Sustained activation of Notch signaling in VSMCs promotes neointima formation, while deficiency of Notch signaling at early stage during AVF remodeling prevents VSMC accumulation and differentiation from forming a functional AVFs. These responses also delay EC regeneration and impair EC barrier function with increased inflammation leading to failed vascular remodeling of AVFs. Thus, a strategy to temporal regulate Notch activation will improve AVF maturation.
Collapse
Affiliation(s)
- Qunying Guo
- grid.12981.330000 0001 2360 039XDepartment of Nephrology, Key Laboratory of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Ministry of Health and Guangdong Province, Guangzhou, China ,grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Guang Chen
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA ,grid.33199.310000 0004 0368 7223 Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan, China
| | - Hunter Cheng
- grid.240145.60000 0001 2291 4776Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Ying Qing
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Luan Truong
- grid.63368.380000 0004 0445 0041Department of Pathology, Houston Methodist Hospital, Houston, TX 77030 USA
| | - Quan Ma
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Wang
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jizhong Cheng
- grid.39382.330000 0001 2160 926XSection of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
7
|
Feng S, Peden EK, Guo Q, Lee TH, Li Q, Yuan Y, Chen C, Huang F, Cheng J. Downregulation of the endothelial histone demethylase JMJD3 is associated with neointimal hyperplasia of arteriovenous fistulas in kidney failure. J Biol Chem 2022; 298:101816. [PMID: 35278430 PMCID: PMC9052161 DOI: 10.1016/j.jbc.2022.101816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022] Open
Abstract
Jumonji domain-containing protein-3 (JMJD3), a histone H3 lysine 27 (H3K27) demethylase, promotes endothelial regeneration, but its function in neointimal hyperplasia (NIH) of arteriovenous fistulas (AVFs) has not been explored. In this study, we examined the contribution of endothelial JMJD3 to NIH of AVFs and the mechanisms underlying JMJD3 expression during kidney failure. We found that endothelial JMJD3 expression was negatively associated with NIH of AVFs in patients with kidney failure. JMJD3 expression in endothelial cells (ECs) was also downregulated in the vasculature of chronic kidney disease (CKD) mice. In addition, specific knockout of endothelial JMJD3 delayed EC regeneration, enhanced endothelial mesenchymal transition, impaired endothelial barrier function as determined by increased Evans blue staining and inflammatory cell infiltration, and accelerated neointima formation in AVFs created by venous end to arterial side anastomosis in CKD mice. Mechanistically, JMJD3 expression was downregulated via binding of transforming growth factor beta 1-mediated Hes family transcription factor Hes1 to its gene promoter. Knockdown of JMJD3 enhanced H3K27 methylation, thereby inhibiting transcriptional activity at promoters of EC markers and reducing migration and proliferation of ECs. Furthermore, knockdown of endothelial JMJD3 decreased endothelial nitric oxide synthase expression and nitric oxide production, leading to the proliferation of vascular smooth muscle cells. In conclusion, we demonstrate that decreased expression of endothelial JMJD3 impairs EC regeneration and function and accelerates neointima formation in AVFs. We propose increasing the expression of endothelial JMJD3 could represent a new strategy for preventing endothelial dysfunction, attenuating NIH, and improving AVF patency in patients with kidney disease.
Collapse
Affiliation(s)
- Shaozhen Feng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China; Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Tae Hoon Lee
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Yuhui Yuan
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Changyi Chen
- Department of Surgery, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, USA.
| |
Collapse
|
8
|
Guo Q, Huang F, Qing Y, Feng S, Xiao X, Wang Y, Liang M, Wang T, Mitch WE, Cheng J. Decreased Jagged1 expression in vascular smooth muscle cells delays endothelial regeneration in arteriovenous graft. Cardiovasc Res 2020; 116:2142-2155. [PMID: 31913453 DOI: 10.1093/cvr/cvz333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 01/03/2020] [Indexed: 11/12/2022] Open
Abstract
AIMS It is well-established that endothelial dysfunction promotes activation of vascular smooth muscle cell (VSMC). Whether decreased accumulation of VSMCs affects endothelial regeneration and functions in arteriovenous graft (AVG) remodelling has not been studied. We sought to identify mechanisms by which the Notch ligand, Jagged1, in VSMCs regulates endothelial cell (EC) functions in AVGs. METHODS AND RESULTS AVGs were created in transgenic mice bearing VSMC-specific knockout (KO) or overexpression of Jagged1. VSMC migration, EC regeneration, and its barrier functions as well as AVG remodelling were evaluated. Jagged1 expression was induced in VSMCs of neointima in the AVGs. Jagged1 KO in VSMCs inhibited the accumulation of extracellular matrix as well as VSMC migration. Fewer α-SMA-positive VSMCs were found in AVGs created in VSMC-specific Jagged1 KO mice (VSMCJagged1 KO mice) vs. in WT mice. Decreased VSMCs in AVGs were associated with deterioration of EC functions. In AVGs created in transgenic mice bearing Jagged1 KO in VSMCs exhibited delayed EC regeneration and impaired EC barrier function. Barrier dysfunction of ECs increased inflammatory cell infiltration and dysregulation of AVG remodelling and arterialization. The increased expression of IL-1β in macrophages was associated with expression of adhesion markers in ECs in AVGs created in VSMCJagged1 KO mice. In contrast, AVGs created in mice with overexpression of Jagged1 in VSMCs exhibited improved EC regeneration plus decreased macrophage infiltration. This led to AVG remodelling and arterialization. In co-cultures of ECs and VSMCs, Jagged1 deficiency in VSMCs suppressed N-cadherin and integrin β3 expression in ECs. Inhibition of integrin β3 activation delayed EC spreading and migration. Notably, Jagged1 overexpression in VSMCs or treatment with recombinant Jagged1 stimulated the expression of N-cadherin and integrin β3 in ECs. Jagged1-induced responses were blocked by inhibition of Notch signalling. CONCLUSIONS Jagged1 expression in VSMCs maintains EC barrier functions and blocks infiltration of macrophages. These responses promote remodelling and arterialization of AVGs.
Collapse
Affiliation(s)
- Qunying Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China.,Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Fengzhang Huang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ying Qing
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Shaozhen Feng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiaoguang Xiao
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yun Wang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Ming Liang
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Tao Wang
- Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - William E Mitch
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jizhong Cheng
- Section of Nephrology, Department of Medicine, Selzman Institute for Kidney Health, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
9
|
Fu C, Liu P, Li P, Liu W, Huang X, Liang Y. FSP1 promotes the biofunctions of adventitial fibroblast through the crosstalk among RAGE, JAK2/STAT3 and Wnt3a/β-catenin signalling pathways. J Cell Mol Med 2019; 23:7246-7260. [PMID: 31454154 PMCID: PMC6815850 DOI: 10.1111/jcmm.14518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence indicates that fibroblast‐specific protein 1 (FSP1) provides vital effects in cell biofunctions. However, whether FSP1 influences the adventitial fibroblast (AF) and vascular remodelling remains unclear. Therefore, we investigated the potential role and action mechanism of FSP1‐mediated AF bioactivity. AFs were cultured and stimulated with FSP1 and siRNA‐FSP1 in vitro. Viability assays demonstrated that siRNA‐FSP1 counteracted AFs proliferative, migratory and adherent abilities enhanced with FSP1. Flow cytometry revealed that FSP1 increased AFs number in S phase and decreased cellular apoptosis. Contrarily, siRNA‐FSP1 displayed the contrary results. RT‐PCR, Western blotting and immunocytochemistry showed that FSP1 synchronously up‐regulated the expression of molecules in RAGE, JAK2/STAT3 and Wnt3a/β‐catenin pathways and induced a proinflammatory cytokine profile characterized by high levels of MCP‐1, ICAM‐1 and VCAM‐1. Conversely, FSP1 knockdown reduced the expression of these molecules and cytokines. The increased number of autophagosomes in FSP1‐stimulated group and fewer autophagic corpuscles in siRNA‐FSP1 group was observed by transmission electron microscope (TEM). Autophagy‐related proteins (LC3B, beclin‐1 and Apg7) were higher in FSP1 group than those in other groups. Conversely, the expression of p62 protein was shown an opposite trend of variation. Therefore, these pathways can promote AFs bioactivity, facilitate autophagy and induce the expression of the proinflammatory cytokines. Contrarily, siRNA‐FSP1 intercepts the crosstalk of these pathways, suppresses AF functions, restrains autophagy and attenuates the expression of the inflammatory factors. Our findings indicate that crosstalk among RAGE, STAT3/JAK2 and Wnt3a/β‐catenin signalling pathways may account for the mechanism of AF functions with the stimulation of FSP1.
Collapse
Affiliation(s)
- Caihua Fu
- Department of Cardiology, Jinan Central Hospital Affiliated Shandong University, Jinan, China
| | - Ping Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Peilun Li
- Department of Cardiology, Linyi People's Hospital, Linyi, China
| | - Wenhui Liu
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| | - Xianwei Huang
- Department of Emergency, First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yansheng Liang
- Department of Cardiology, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
10
|
Liang M, Guo Q, Huang F, Han G, Song K, Luo J, Cheng H, Hu H, Peden EK, Chen C, Mitch WE, Du J, Fu X, Truong L, Cheng J. Notch signaling in bone marrow-derived FSP-1 cells initiates neointima formation in arteriovenous fistulas. Kidney Int 2019; 95:1347-1358. [PMID: 30799025 PMCID: PMC6763204 DOI: 10.1016/j.kint.2018.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 11/16/2022]
Abstract
Neointima formation is a major contributor to arteriovenous fistula (AVF) failure. We have previously shown that activation of the Notch signaling pathway contributes to neointima formation by promoting the migration of vascular smooth muscle cells (VSMCs) into the venous anastomosis. In the current study we investigated the mechanisms underlying the dedifferentiation and migration of VSMCs, and in particular the role of bone marrow-derived fibroblast specific protein 1 (FSP-1)+ cells, another cell type found in models of vascular injury. Using VSMC-specific reporter mice, we found that most of the VSMCs participating in AVF neointima formation originated from dedifferentiated VSMCs. We also observed infiltration of bone marrow-derived FSP-1+ cells into the arterial anastomosis where they could interact with VSMCs. In vitro, conditioned media from FSP-1+ cells stimulated VSMC proliferation and phenotype switching. Activated Notch signaling transformed FSP-1+ cells into type I macrophages and stimulated secretion of cytokines and growth factors. Pretreatment with a Notch inhibitor or knockout of the canonical downstream factor RBP-Jκ in bone marrow-derived FSP1+ cells decreased FSP1+ cell infiltration into murine AVFs, attenuating VSMC dedifferentiation and neointima formation. Our results suggest that targeting Notch signaling could provide a new therapeutic strategy to improve AVF patency.
Collapse
MESH Headings
- Animals
- Arteriovenous Shunt, Surgical/adverse effects
- Cell Dedifferentiation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics
- Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism
- Macrophages/drug effects
- Macrophages/metabolism
- Male
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/etiology
- Neointima/pathology
- Neointima/prevention & control
- Primary Cell Culture
- Receptors, Notch/antagonists & inhibitors
- Receptors, Notch/metabolism
- Renal Dialysis/adverse effects
- Renal Dialysis/methods
- Renal Insufficiency, Chronic/therapy
- S100 Calcium-Binding Protein A4/metabolism
- Signal Transduction/drug effects
- Vascular Patency/drug effects
Collapse
Affiliation(s)
- Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Fengzhang Huang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Guofeng Han
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ke Song
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jinlong Luo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hunter Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hongzhen Hu
- Pain Center, Washington University, Saint Louis, Missouri, USA
| | - Eric K Peden
- Department of Vascular Surgery, DeBakey Heart and Vascular Institute, Houston Methodist Hospital, Houston, Texas, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - William E Mitch
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Jie Du
- Beijing AnZhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Xiaodong Fu
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Luan Truong
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Methodist Hospital Research Institute, Houston, Texas, USA
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
11
|
Ackerman JE, Nichols AEC, Studentsova V, Best KT, Knapp E, Loiselle AE. Cell non-autonomous functions of S100a4 drive fibrotic tendon healing. eLife 2019; 8:e45342. [PMID: 31124787 PMCID: PMC6546390 DOI: 10.7554/elife.45342] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Identification of pro-regenerative approaches to improve tendon healing is critically important as the fibrotic healing response impairs physical function. In the present study we tested the hypothesis that S100a4 haploinsufficiency or inhibition of S100a4 signaling improves tendon function following acute injury and surgical repair in a murine model. We demonstrate that S100a4 drives fibrotic tendon healing primarily through a cell non-autonomous process, with S100a4 haploinsufficiency promoting regenerative tendon healing. Moreover, inhibition of S100a4 signaling via antagonism of its putative receptor, RAGE, also decreases scar formation. Mechanistically, S100a4 haploinsufficiency decreases myofibroblast and macrophage content at the site of injury, with both cell populations being key drivers of fibrotic progression. Moreover, S100a4-lineage cells become α-SMA+ myofibroblasts, via loss of S100a4 expression. Using a combination of genetic mouse models, small molecule inhibitors and in vitro studies we have defined S100a4 as a novel, promising therapeutic candidate to improve tendon function after acute injury.
Collapse
Affiliation(s)
- Jessica E Ackerman
- Center for Musculoskeletal Research, Department of Orthopaedics and RehabilitationUniversity of Rochester Medical CenterRochesterUnited States
| | - Anne EC Nichols
- Center for Musculoskeletal Research, Department of Orthopaedics and RehabilitationUniversity of Rochester Medical CenterRochesterUnited States
| | - Valentina Studentsova
- Center for Musculoskeletal Research, Department of Orthopaedics and RehabilitationUniversity of Rochester Medical CenterRochesterUnited States
| | - Katherine T Best
- Center for Musculoskeletal Research, Department of Orthopaedics and RehabilitationUniversity of Rochester Medical CenterRochesterUnited States
| | - Emma Knapp
- Center for Musculoskeletal Research, Department of Orthopaedics and RehabilitationUniversity of Rochester Medical CenterRochesterUnited States
| | - Alayna E Loiselle
- Center for Musculoskeletal Research, Department of Orthopaedics and RehabilitationUniversity of Rochester Medical CenterRochesterUnited States
| |
Collapse
|
12
|
de Vries MR, Quax PHA. Inflammation in Vein Graft Disease. Front Cardiovasc Med 2018; 5:3. [PMID: 29417051 PMCID: PMC5787541 DOI: 10.3389/fcvm.2018.00003] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/08/2018] [Indexed: 12/23/2022] Open
Abstract
Bypass surgery is one of the most frequently used strategies to revascularize tissues downstream occlusive atherosclerotic lesions. For venous bypass surgery the great saphenous vein is the most commonly used vessel. Unfortunately, graft efficacy is low due to the development of vascular inflammation, intimal hyperplasia and accelerated atherosclerosis. Moreover, failure of grafts leads to significant adverse outcomes and even mortality. The last couple of decades not much has changed in the treatment of vein graft disease (VGD). However, insight is the cellular and molecular mechanisms of VGD has increased. In this review, we discuss the latest insights on VGD and the role of inflammation in this. We discuss vein graft pathophysiology including hemodynamic changes, the role of vessel wall constitutions and vascular remodeling. We show that profound systemic and local inflammatory responses, including inflammation of the perivascular fat, involve both the innate and adaptive immune system.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
13
|
Luo J, Chen G, Liang M, Xie A, Li Q, Guo Q, Sharma R, Cheng J. Reduced Expression of Glutathione S-Transferase α 4 Promotes Vascular Neointimal Hyperplasia in CKD. J Am Soc Nephrol 2017; 29:505-517. [PMID: 29127112 DOI: 10.1681/asn.2017030290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/27/2017] [Indexed: 11/03/2022] Open
Abstract
Neointima formation is the leading cause of arteriovenous fistula (AVF) failure. We have shown that CKD accelerates this process by transforming the vascular smooth muscle cells (SMCs) lining the AVF from a contractile to the synthetic phenotype. However, the underlying mechanisms affecting this transformation are not clear. Previous studies have shown that the α-class glutathione transferase isozymes have an important role in regulating 4-hydroxynonenal (4-HNE)-mediated proliferative signaling of cells. Here, using both the loss- and gain-of-function approaches, we investigated the role of glutathione S-transferase α4 (GSTA4) in modulating cellular 4-HNE levels for the transformation and proliferation of SMCs. Compared with non-CKD controls, mice with CKD had downregulated expression of GSTA4 at the mRNA and protein levels, with concomitant increase in 4-HNE in arteries and veins. This effect was associated with upregulated phosphorylation of MAPK signaling pathway proteins in proliferating SMCs. Overexpressing GSTA4 blocked 4-HNE-induced SMC proliferation. Additionally, inhibitors of MAPK signaling inhibited the 4-HNE-induced responses. Compared with wild-type mice, mice lacking GSTA4 exhibited increased CKD-induced neointima formation in AVF. Transient expression of an activated form of GSTA4, achieved using a combined Tet-On/Cre induction system in mice, lowered levels of 4-HNE and reduced the proliferation of SMCs. Together, these results demonstrate the critical role of GSTA4 in blocking CKD-induced neointima formation and AVF failure.
Collapse
Affiliation(s)
- Jinlong Luo
- Department of Emergency, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Guang Chen
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Ming Liang
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas.,Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, China
| | - Aini Xie
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qingtian Li
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Qunying Guo
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Rajendra Sharma
- Department of Integrative Traditional Chinese & Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; and
| | - Jizhong Cheng
- Selzman Institute for Kidney Health, Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, Texas;
| |
Collapse
|
14
|
Sustained activation of ADP/P2ry12 signaling induces SMC senescence contributing to thoracic aortic aneurysm/dissection. J Mol Cell Cardiol 2016; 99:76-86. [PMID: 27534720 DOI: 10.1016/j.yjmcc.2016.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/15/2022]
Abstract
Thoracic aortic aneurysm/dissection (TAAD) is characterized by excessive smooth muscle cell (SMC) loss, extracellular matrix (ECM) degradation and inflammation. However, the mechanism whereby signaling leads to SMC loss is unclear. We used senescence-associated (SA)-β-gal staining and analysis of expression of senescence-related proteins (p53, p21, p19) to show that excessive mechanical stretch (20% elongation, 3600cycles/h, 48h) induced SMC senescence. SMC senescence was also detected in TAAD specimens from both mice and humans. High-performance liquid chromatography and luciferin-luciferase-based assay revealed that excessive mechanical stretch increased adenosine diphosphate (ADP) release from SMCs both in vivo and in vitro. Elevated ADP induced SMC senescence while genetic knockout of the ADP receptor, P2Y G protein-coupled receptor 12 (P2ry12), in mice protected against SMC senescence and inflammation. Both TAAD formation and rupture were significantly reduced in P2ry12-/- mice. SMCs from P2ry12-/- mice were resistant to senescence induced by excessive mechanical stretch or ADP treatment. Mechanistically, ADP treatment sustained Ras activation, whereas pharmacological inhibition of Ras protected against SMC senescence and reduced TAAD formation. Taken together, excessive mechanical stress may induce a sustained release of ADP and promote SMC senescence via P2ry12-dependent sustained Ras activation, thereby contributing to excessive inflammation and degeneration, which provides insights into TAAD formation and progression.
Collapse
|
15
|
Endoplasmic reticulum stress in bone marrow-derived cells prevents acute cardiac inflammation and injury in response to angiotensin II. Cell Death Dis 2016; 7:e2258. [PMID: 27277680 PMCID: PMC5143392 DOI: 10.1038/cddis.2016.164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
Abstract
Inflammation plays an important role in hypertensive cardiac injury. The endoplasmic reticulum (ER) stress pathway is involved in the inflammatory response. However, the role of ER stress in elevated angiotensin II (Ang II)-induced cardiac injury remains unclear. In this study, we investigated the role of ER stress in Ang II-induced hypertensive cardiac injury. Transcriptome analysis and quantitative real-time PCR showed that Ang II infusion in mice increased ER stress-related genes expression in the heart. C/EBP homologous protein (CHOP) deficiency, a key mediator of ER stress, increased infiltration of inflammatory cells, especially neutrophils, the production of inflammatory cytokines, chemokines in Ang II-infused mouse hearts. CHOP deficiency increased Ang II-induced cardiac fibrotic injury: (1) Masson trichrome staining showed increased fibrotic areas, (2) immunohistochemistry staining showed increased expression of α-smooth muscle actin, transforming growth factor β1 and (3) quantitative real-time PCR showed increased expression of collagen in CHOP-deficient mouse heart. Bone marrow transplantation experiments indicated that CHOP deficiency in bone marrow cells was responsible for Ang II-induced cardiac fibrotic injury. Moreover, TUNEL staining and flow cytometry revealed that CHOP deficiency decreased neutrophil apoptosis in response to Ang II. Taken together, our study demonstrated that hypertension induced ER stress after Ang II infusion. ER stress in bone marrow-derived cells protected acute cardiac inflammation and injury in response to Ang II.
Collapse
|
16
|
de Vries MR, Simons KH, Jukema JW, Braun J, Quax PHA. Vein graft failure: from pathophysiology to clinical outcomes. Nat Rev Cardiol 2016; 13:451-70. [PMID: 27194091 DOI: 10.1038/nrcardio.2016.76] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Occlusive arterial disease is a leading cause of morbidity and mortality worldwide. Aside from balloon angioplasty, bypass graft surgery is the most commonly performed revascularization technique for occlusive arterial disease. Coronary artery bypass graft surgery is performed in patients with left main coronary artery disease and three-vessel coronary disease, whereas peripheral artery bypass graft surgery is used to treat patients with late-stage peripheral artery occlusive disease. The great saphenous veins are commonly used conduits for surgical revascularization; however, they are associated with a high failure rate. Therefore, preservation of vein graft patency is essential for long-term surgical success. With the exception of 'no-touch' techniques and lipid-lowering and antiplatelet (aspirin) therapy, no intervention has hitherto unequivocally proven to be clinically effective in preventing vein graft failure. In this Review, we describe both preclinical and clinical studies evaluating the pathophysiology underlying vein graft failure, and the latest therapeutic options to improve patency for both coronary and peripheral grafts.
Collapse
Affiliation(s)
- Margreet R de Vries
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Karin H Simons
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Jerry Braun
- Department of Cardiothoracic Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| |
Collapse
|
17
|
Bing W, Pang X, Qu Q, Bai X, Yang W, Bi Y, Bi X. Simvastatin improves the homing of BMSCs via the PI3K/AKT/miR-9 pathway. J Cell Mol Med 2016; 20:949-61. [PMID: 26871266 PMCID: PMC4831354 DOI: 10.1111/jcmm.12795] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022] Open
Abstract
Bone marrow‐derived mesenchymal stem cells (BMSCs) have great therapeutic potential for many diseases. However, the homing of BMSCs to injury sites remains a difficult problem. Recent evidence indicates that simvastatin stimulates AKT phosphorylation, and p‐AKT affects the expression of chemokine (CXC motif) receptor‐4 (CXCR4). Therefore, simvastatin may improve the expression of CXCR4 in BMSCs, and microRNAs (miRs) may participate in this process. In this study, we demonstrated that simvastatin increased both the total and the surface expression of CXCR4 in BMSCs. Stromal cell‐derived factor‐1α (SDF‑1α)‐induced migration of BMSCs was also enhanced by simvastatin, and this action was inhibited by AMD 3100(a chemokine receptor antagonist for CXCR4). The PI3K/AKT pathway was activated by simvastatin in this process, and LY294002 reversed the overexpression of CXCR4 caused by simvastatin. MiR‐9 directly targeted CXCR4 in rat BMSCs, and simvastatin decreased miR‐9 expression. P‐AKT affected the expression of miR‐9; as the phosphorylation of AKT increased, miR‐9 expression decreased. In addition, LY294002 increased miR‐9 expression. Taken together, our results indicated that simvastatin improved the migration of BMSCs via the PI3K/AKT pathway. MiR‐9 also participated in this process, and the phosphorylation of AKT affected miR‐9 expression, suggesting that simvastatin might have beneficial effects in stem cell therapy.
Collapse
Affiliation(s)
- Weidong Bing
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xinyan Pang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Qingxi Qu
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiao Bai
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Wenwen Yang
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Yanwen Bi
- Department of Cardiovascular Surgery, Qi Lu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Xiaolu Bi
- School of Life Science of Shandong University, Jinan, Shandong Province, China
| |
Collapse
|
18
|
BMSCs Interactions with Adventitial Fibroblasts Display Smooth Muscle Cell Lineage Potential in Differentiation and Migration That Contributes to Neointimal Formation. Stem Cells Int 2016; 2016:3196071. [PMID: 26880952 PMCID: PMC4736561 DOI: 10.1155/2016/3196071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
In this study a model of simulated vascular injury in vitro was used to study the characterization of bone-marrow-derived mesenchymal stem cells (BMSCs) morphology and to investigate the differentiation and migration of BMSCs in the presence of adventitial fibroblasts. BMSCs from rats were indirectly cocultured with adventitial fibroblasts in a transwell chamber apparatus for 7 days, and clonogenic assays demonstrated that BMSCs could be differentiated into smooth muscle-like cells with this process, including smooth muscle α-actin (α-SMA) expression by immunofluorescence staining. Cell morphology of BMSCs was assessed by inverted microscope, while cell proliferation was assessed by MTT assay. The expressions of TGF-β1, MMP-1, and NF-κB were detected by immunofluorescence staining and Smad3 mRNA was measured by reverse transcription PCR. Migration ability of BMSCs with DAPI-labeled nuclei was measured by laser confocal microscopy. Our results demonstrate that indirect interactions with adventitial fibroblasts can induce proliferation, differentiation, and migration of BMSCs that can actively participate in neointimal formation. Our results indicate that the pathogenesis of vascular remodeling might perform via TGF-β1/Smad3 signal transduction pathways.
Collapse
|
19
|
Poduri A, Rateri DL, Howatt DA, Balakrishnan A, Moorleghen JJ, Cassis LA, Daugherty A. Fibroblast Angiotensin II Type 1a Receptors Contribute to Angiotensin II-Induced Medial Hyperplasia in the Ascending Aorta. Arterioscler Thromb Vasc Biol 2015; 35:1995-2002. [PMID: 26160957 PMCID: PMC4552596 DOI: 10.1161/atvbaha.115.305995] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/29/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin II (Ang II) infusion causes aortic medial thickening via stimulation of angiotensin II type 1a (AT1a) receptors. The purpose of this study was to determine the cellular loci of AT1a receptors that mediate this Ang II-induced aortic pathology. APPROACH AND RESULTS Saline or Ang II was infused into AT1a receptor floxed mice expressing Cre under control of cell-specific promoters. Initially, AT1a receptors were depleted in aortic smooth muscle cell and endothelium by expressing Cre under control of SM22 and Tie2 promoters, respectively. Deletion of AT1a receptors in either cell type had no effect on Ang II-induced medial thickening. To determine whether this effect was related to neural stimulation, AT1a receptors were depleted using an enolase 2-driven Cre. Depletion of AT1a receptors in neural cells attenuated Ang II-induced medial thickening of the ascending, but not descending aorta. Lineage tracking studies, using ROSA26-LacZ, demonstrated that enolase 2 was also expressed in adventitial cells adjacent to the region of attenuated thickening. To determine whether adventitial fibroblasts contributed to this attenuation, AT1a receptors in fibroblasts were depleted using S100A4 driven Cre. Similar to enolase 2-Cre, Ang II-induced medial thickening was attenuated in the ascending, but not the descending aorta. Lineage tracking demonstrated an increase of S100A4-LacZ positive cells in the media of the ascending region during Ang II infusion. CONCLUSIONS AT1a receptor depletion in fibroblasts attenuates Ang II-induced medial hyperplasia in the ascending aorta.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/prevention & control
- DNA/genetics
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation
- Genotype
- Hyperplasia/drug therapy
- Hyperplasia/genetics
- Hyperplasia/pathology
- Infusions, Intravenous
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- RNA, Messenger/genetics
- Receptor, Angiotensin, Type 1/administration & dosage
- Receptor, Angiotensin, Type 1/biosynthesis
- Receptor, Angiotensin, Type 1/genetics
- Tunica Media/drug effects
- Tunica Media/metabolism
- Tunica Media/pathology
Collapse
Affiliation(s)
- Aruna Poduri
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Debra L Rateri
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Deborah A Howatt
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Anju Balakrishnan
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Jessica J Moorleghen
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Lisa A Cassis
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington
| | - Alan Daugherty
- From the Saha Cardiovascular Research Center (A.P., D.L.R., D.A.H., A.B., J.J.M., A.D.) and Department of Molecular and Biomedical Pharmacology (L.A.C.), University of Kentucky, Lexington.
| |
Collapse
|
20
|
Liu Y, Wang Y, Shi H, Jia L, Cheng J, Cui W, Li H, Li P, Du J. CARD9 mediates necrotic smooth muscle cell-induced inflammation in macrophages contributing to neointima formation of vein grafts. Cardiovasc Res 2015; 108:148-58. [PMID: 26243429 DOI: 10.1093/cvr/cvv211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
AIMS Inflammation plays an important role in the neointima formation of grafted veins. However, the initiation of inflammation in grafted veins is still unclear. Here, we investigated the role and underlying mechanism of an innate immunity signalling protein, caspase-associated recruitment domain 9 (CARD9) in vein grafts in mice. METHODS AND RESULTS In early murine vein grafts, we observed robust death of smooth muscle cells (SMCs), which was accompanied by infiltration of macrophages and expression of pro-inflammatory cytokines. Meanwhile, SMC necrosis was associated with the expression of pro-inflammatory cytokines in macrophages in vitro. To explore the mediators of necrotic SMC-induced inflammation in grafted veins from mice, we examined the expression of CARD family proteins and found CARD9 highly expressed in infiltrated macrophages of grafted veins. CARD9-knockout (KO) inhibited necrotic SMC-induced pro-inflammatory cytokine expression and NF-κB activation. Furthermore, CARD9-KO suppressed necrotic SMC-induced expression of VEGF in macrophages. Finally, CARD9-KO decreased neointima formation of grafted veins in mice. CONCLUSION The innate immune protein CARD9 in macrophages may mediate necrotic SMC-induced inflammation by activating NF-κB and contributed to neointima formation in the vein grafts.
Collapse
Affiliation(s)
- Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Ying Wang
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Hongtao Shi
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Lixin Jia
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Jizhong Cheng
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Wei Cui
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Huihua Li
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Ping Li
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Collaborative Innovative Research Center for Cardiovascular Diseases, Beijing 100029, China
| |
Collapse
|
21
|
Luo J, Liang M, Mitch WE, Danesh FR, Yu M, Cheng J. FSP-1 Impairs the Function of Endothelium Leading to Failure of Arteriovenous Grafts in Diabetic Mice. Endocrinology 2015; 156:2200-10. [PMID: 25774552 PMCID: PMC4430603 DOI: 10.1210/en.2014-1841] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To understand how endothelial cell (EC) dysfunction contributes to the failure of arteriovenous graft (AVG), we investigated the role of fibroblast-specific protein 1 (FSP-1) in cultured ECs and a mouse AVG model. In vitro, we uncovered a new FSP-1-dependent pathway that activates rho-associated, coiled-coil-containing protein kinase 1 (ROCK1) in ECs, leading to phosphorylation of myosin light chain 2 resulting in EC dysfunction. In cultured ECs, high glucose stimulated FSP-1 expression and increased permeability of an EC monolayer. The increase in permeability by the high glucose concentration was mediated by FSP-1 expression. Treatment of cultured ECs with FSP-1 caused leakage of the endothelial barrier plus increased expression of adhesion molecules and decreased expression of junction molecules. These responses were initiated by binding of FSP-1 to receptor for advanced glycation end products, which resulted in ROCK1 activation. In vivo, diabetes increased infiltration of inflammatory cells into AVGs and stimulated neointima formation. Increased FSP-1 expression and ROCK1 activation were found in AVGs of diabetic mice. Blocking FSP-1 suppressed diabetes-induced ROCK1 activation in AVGs. In mice with FSP-1 knockout or with ROCK1 knockout, accumulation of inflammatory cells and neointima formation in AVG were attenuated despite diabetes. Thus, mechanisms of inhibiting FSP-1 in ECs could improve AVG function.
Collapse
Affiliation(s)
- Jinlong Luo
- Nephrology Division (J.L., M.L., W.E.M., M.Y., J.C.), Baylor College of Medicine, Houston, Texas 77030; Emergency Medicine (F.R.D.), University of Texas MD Anderson Cancer Center, Houston, Texas 77030; and Department of Emergency (J.L.), Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China 430074
| | | | | | | | | | | |
Collapse
|
22
|
Migration of smooth muscle cells from the arterial anastomosis of arteriovenous fistulas requires Notch activation to form neointima. Kidney Int 2015; 88:490-502. [PMID: 25786100 PMCID: PMC4677993 DOI: 10.1038/ki.2015.73] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 01/31/2023]
Abstract
A major factor contributing to failure of arteriovenous fistulas (AVFs) is migration of smooth muscle cells into the forming neointima. To identify the source of smooth muscle cells in neointima, we created end-to-end AVFs by anastomosing the common carotid artery to the jugular vein and studied neural crest-derived smooth muscle cells from the carotid artery which are Wnt1-positive during development. In Wnt1-cre-GFP mice, smooth muscle cells in the carotid artery but not the jugular vein are labeled with GFP. About half of the cells were GFP-positive in the neointima indicating their migration from the carotid artery to the jugular vein in AVFs created in these mice. Since fibroblast-specific protein-1 (FSP-1) regulates smooth muscle cell migration, we examined FSP-1 in failed AVFs and polytetrafluoroethylene (PTFE) grafts from patients with ESRD or from AVFs in mice with chronic kidney disease. In smooth muscle cells of AVFs or PTFE grafts, FSP-1 and activation of Notch1 are present. In smooth muscle cells, Notch1 increased RBP-Jκ transcription factor activity and RBP-Jκ stimulated FSP-1 expression. Conditional knockout of RBP-Jκ in smooth muscle cells or general knockout of FSP-1, suppressed neointima formation in AVFs in mice. Thus, the artery of AVFs is the major source of smooth muscle cells during neointima formation. Knockout of RBP-Jκ or FSP-1 ameliorates neointima formation and might improve AVF patency during long-term follow up.
Collapse
|
23
|
Liang M, Woodard LE, Liang A, Luo J, Wilson MH, Mitch WE, Cheng J. Protective role of insulin-like growth factor-1 receptor in endothelial cells against unilateral ureteral obstruction-induced renal fibrosis. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1234-50. [PMID: 25783760 DOI: 10.1016/j.ajpath.2015.01.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 12/17/2022]
Abstract
Insulin-like growth factor-1 receptor (IGF-1R) can regulate vascular homeostasis and endothelial function. We studied the role of IGF-1R in oxidative stress-induced endothelial dysfunction. Unilateral ureteral obstruction (UUO) was performed in wild-type (WT) mice and mice with endothelial cell (EC)-specific IGF-1R knockout (KO). After UUO in endothelial IGF-1R KO mice, endothelial barrier dysfunction was more severe than in WT mice, as seen by increased inflammatory cell infiltration and vascular endothelial (VE)-cadherin phosphorylation. UUO in endothelial IGF-1R KO mice increased interstitial fibroblast accumulation and enhanced extracellular protein deposition as compared with the WT mice. Endothelial barrier function measured by transendothelial migration in response to hydrogen peroxide (H2O2) was impaired in ECs. Silencing IGF-1R enhanced the influence of H2O2 in disrupting the VE-protein tyrosine phosphatase/VE-cadherin interaction. Overexpression of IGF-1R suppressed H2O2-induced endothelial barrier dysfunction. Furthermore, by using the piggyBac transposon system, we expressed IGF-1R in VE cells in mice. The expression of IGF-1R in ECs also suppressed the inflammatory cell infiltration and renal fibrosis induced by UUO. IGF-1R KO in the VE-cadherin lineage of bone marrow cells had no significant effect on the UUO-induced fibrosis, as compared with control mice. Our results indicate that IGF-1R in the endothelium maintains the endothelial barrier function by stabilization of the VE-protein tyrosine phosphatase/VE-cadherin complex. Decreased expression of IGF-1R impairs endothelial function and increases the fibrosis of kidney disease.
Collapse
Affiliation(s)
- Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China; Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Lauren E Woodard
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, and Department of Veterans Affairs, Nashville, Tennessee
| | - Anlin Liang
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jinlong Luo
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Matthew H Wilson
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University, and Department of Veterans Affairs, Nashville, Tennessee
| | - William E Mitch
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jizhong Cheng
- Nephrology Division, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
24
|
Stankiewicz TR, Ramaswami SA, Bouchard RJ, Aktories K, Linseman DA. Neuronal apoptosis induced by selective inhibition of Rac GTPase versus global suppression of Rho family GTPases is mediated by alterations in distinct mitogen-activated protein kinase signaling cascades. J Biol Chem 2015; 290:9363-76. [PMID: 25666619 DOI: 10.1074/jbc.m114.575217] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 12/11/2022] Open
Abstract
Rho family GTPases play integral roles in neuronal differentiation and survival. We have shown previously that Clostridium difficile toxin B (ToxB), an inhibitor of RhoA, Rac1, and Cdc42, induces apoptosis of cerebellar granule neurons (CGNs). In this study, we compared the effects of ToxB to a selective inhibitor of the Rac-specific guanine nucleotide exchange factors Tiam1 and Trio (NSC23766). In a manner similar to ToxB, selective inhibition of Rac induces CGN apoptosis associated with enhanced caspase-3 activation and reduced phosphorylation of the Rac effector p21-activated kinase. In contrast to ToxB, caspase inhibitors do not protect CGNs from targeted inhibition of Rac. Also dissimilar to ToxB, selective inhibition of Rac does not inhibit MEK1/2/ERK1/2 or activate JNK/c-Jun. Instead, targeted inhibition of Rac suppresses distinct MEK5/ERK5, p90Rsk, and Akt-dependent signaling cascades known to regulate the localization and expression of the Bcl-2 homology 3 domain-only protein Bad. Adenoviral expression of a constitutively active mutant of MEK5 is sufficient to attenuate neuronal cell death induced by selective inhibition of Rac with NSC23766 but not apoptosis induced by global inhibition of Rho GTPases with ToxB. Collectively, these data demonstrate that global suppression of Rho family GTPases with ToxB causes a loss of MEK1/2/ERK1/2 signaling and activation of JNK/c-Jun, resulting in diminished degradation and enhanced transcription of the Bcl-2 homology 3 domain-only protein Bim. In contrast, selective inhibition of Rac induces CGN apoptosis by repressing unique MEK5/ERK5, p90Rsk, and Akt-dependent prosurvival pathways, ultimately leading to enhanced expression, dephosphorylation, and mitochondrial localization of proapoptotic Bad.
Collapse
Affiliation(s)
- Trisha R Stankiewicz
- From the Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, the Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208
| | - Sai Anandi Ramaswami
- the Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208
| | - Ron J Bouchard
- From the Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220
| | - Klaus Aktories
- the Institute for Experimental and Clinical Pharmacology and Toxicology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany, and
| | - Daniel A Linseman
- From the Research Service, Veterans Affairs Medical Center, Denver, Colorado 80220, the Department of Biological Sciences and Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80208, the Division of Clinical Pharmacology and Toxicology, Department of Medicine and Neuroscience Program, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
25
|
Myofibroblasts in proliferative diabetic retinopathy can originate from infiltrating fibrocytes and through endothelial-to-mesenchymal transition (EndoMT). Exp Eye Res 2015; 132:179-89. [PMID: 25637870 DOI: 10.1016/j.exer.2015.01.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 02/06/2023]
Abstract
Myofibroblasts expressing α-smooth muscle actin (α-SMA) are the key cellular mediator of fibrosis. Fibrovascular epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) are characterized by the accumulation of a large number of myofibroblasts. We explored the hypothesis that proliferating endothelial cells via endothelial-to-mesenchymal transition (EndoMT) and/or bone marrow-derived circulating fibrocytes contribute to the myofibroblast population present in PDR epiretinal membranes. Epiretinal membranes from 14 patients with PDR were studied by immunohistochemistry. All membranes contained neovessels expressing the endothelial cell marker CD31. CD31(+) endothelial cells co-expressed the fibroblast/myofibroblast markers fibroblast-specific protein-1 (FSP-1) and α-SMA, indicative for the occurrence of endoMT. In the stroma, cells expressing FSP-1, α-SMA, the leukocyte common antigen CD45, and the myelomonocytic marker CD11b were detected. Double labeling showed co-localization of CD45 with FSP-1 and α-SMA and co-localization of CD11b with α-SMA and matrix metalloproteinase-9, demonstrating the presence of infiltrating fibrocytes. In addition, we investigated the phenotypic changes that take place in human retinal microvascular endothelial cells following exposure to transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF) and the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Retinal microvascular endothelial cells changed morphology upon cytokine exposure, lost the expression of endothelial cell markers (endothelial nitric oxide synthase and vascular endothelial-cadherin) and started to express mesenchymal markers (calponin, snail, transgelin and FSP-1). These results suggest that endothelial cells as well as circulating fibrocytes may differentiate into myofibroblasts in the diabetic eye and contribute to pathologic fibrosis in PDR.
Collapse
|
26
|
Liang M, Wang Y, Liang A, Dong JF, Du J, Cheng J. Impaired integrin β3 delays endothelial cell regeneration and contributes to arteriovenous graft failure in mice. Arterioscler Thromb Vasc Biol 2015; 35:607-15. [PMID: 25614287 DOI: 10.1161/atvbaha.114.305089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Neointima formation is associated with stenosis and subsequent thrombosis in arteriovenous grafts (AVGs). A role of integrin β3 in the neointima formation of AVGs remains poorly understood. APPROACH AND RESULTS In integrin β3(-/-) mice, we found significantly accelerated occlusion of AVGs compared with the wild-type mice. This is caused by the development of neointima and lack of endothelial regeneration. The latter is a direct consequence of impaired functions of circulating angiogenic cells (CACs) and platelets in integrin β3(-/-) mice. Evidence suggests the involvement of platelet regulating CAC homing to and differentiation at graft sites via transforming growth factor-β1 and Notch signaling pathway. First, CACs deficient of integrin β3 impaired adhesion activity toward exposed subendothelium. Second, platelets from integrin β3(-/-) mice failed to sufficiently stimulate CACs to differentiate into mature endothelial cells. Finally, we found that transforming growth factor-β1 level was increased in platelets from integrin β3(-/-) mice and resulted in enhanced Notch1 activation in CACs in AVGs. These results demonstrate that integrin β3 is critical for endothelial cell homing and differentiation. The increased transforming growth factor-β1 and Notch1 signaling mediates integrin β3(-/-)-induced AVG occlusion. This accelerated occlusion of AVGs was reversed in integrin β3(-/-) mice transplanted with the bone marrow from wild-type mice. CONCLUSIONS Our results suggest that boosting integrin β3 function in the endothelial cells and platelets could prevent neointima and thrombosis in AVGs.
Collapse
Affiliation(s)
- Ming Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Yun Wang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Anlin Liang
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jin-Fei Dong
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jie Du
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.)
| | - Jizhong Cheng
- From the Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China (M.L.); Department of Cell Biology, Third Military Medical University, Chongqing, China (Y.W.); Puget Sound Blood Research Institute, Hematology Division, Department of Medicine, University of Washington, Seattle (J.-F.D.); Beijing Anzhen Hospital Affiliated to the Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, China (J.D.); and Nephrology Division, Baylor College of Medicine, Houston, TX (M.L., Y.W., A.L., J.C.).
| |
Collapse
|
27
|
Abstract
Dr. Tuveson and colleagues provide a comprehensive review on the fundamental role of cancer-associated fibroblasts in shaping the tumor microenvironment and promoting tumor initiation and progression. Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
28
|
Cross Talk Between Vascular Smooth Muscle Cells and Monocytes Through Interleukin-1β/Interleukin-18 Signaling Promotes Vein Graft Thickening. Arterioscler Thromb Vasc Biol 2014; 34:2001-11. [DOI: 10.1161/atvbaha.113.303145] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective—
Interleukin (IL)-1β and IL-18 are key proinflammatory cytokines that play important roles in the pathophysiology of vein graft remodeling. However, the mechanism of IL-1β/IL-18 production and its role in the development of graft remodeling remain unclear.
Approach and Results—
IL-1β/IL-18 were rapidly expressed in venous interposition grafts. Vascular smooth muscle cell (VSMC) death and monocytic inflammasome activation occurred in grafted veins. Necrotic VSMCs induced the expression of IL-1β, IL-18, and other inflammasome-associated proteins in monocytes, which was partially inhibited by their antagonist, recombinant IL-1ra-Fc-IL-18bp. Activated monocytes stimulated proliferation of VSMCs by activating cell growth–related signaling molecules (AKT, STAT3, ERK1/2, and mTOR [AKT/protein kinase B, signal transducer and activator of transcription 3, extracellular signal-regulated kinase 1/2, mammalian target of rapamycin]) and increasing production of platelet-derived growth factor-bb; these effects were suppressed by IL-1ra-Fc-IL-18bp. Activated monocytes also promoted migration of VSMCs, which was independent of IL-1β/IL-18 signaling. Importantly, administration of IL-1ra-Fc-IL-18bp inhibited activation of cell growth–related signaling molecules, VSMC proliferation, and vein graft thickening in vivo.
Conclusions—
Our work identified an interaction among necrotic VSMCs, monocytes, and viable VSMCs through IL-1β/IL-18 signaling, which might be exploited as a therapeutic target in vein graft remodeling.
Collapse
|
29
|
Liang M, Liang A, Wang Y, Jiang J, Cheng J. Smooth muscle cells from the anastomosed artery are the major precursors for neointima formation in both artery and vein grafts. Basic Res Cardiol 2014; 109:431. [PMID: 25107324 DOI: 10.1007/s00395-014-0431-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 12/01/2022]
Abstract
Accumulation of smooth muscle cells (SMC) results in neointima formation in injured vessels. Two graft models consisting of vein and artery grafts were created by anastomosing common carotid arteries to donor vessels. To identify the origin of the neointima cells from anastomosed arteries, we use Wnt1-Cre/reporter mice to label and track SMCs in the common carotid artery. The contribution of SMCs in the neighboring arteries to neointima formation was studied. On evaluating the artery grafts after 1 month, >90 % of the labeled neointima cells were found to have originated from the anastomosing host arteries. Most of the neointima cells were also smooth muscle α-actin positive (SMA-α(+)) and expressed the smooth muscle myosin heavy chain (SMMHC), the SMC terminal differentiation marker. In vein grafts, about 60 % SMA-α-positive cells were from anastomosing arteries. Bone marrow cells did not contribute to neointima SMCs in vein grafts, but did co-stain with markers of inflammatory cells. Wnt1 expression was not detected in the neointima cells in the vein or artery grafts, or the injured femoral arteries. Neointima SMCs showed the synthetic phenotype and were positively labeled with BrdU in vitro and in vivo. Treatment with the IGF-1 receptor inhibitor suppressed SMC proliferation and neointima formation in vein grafts. Our results indicate that SMCs from the neighboring artery are predominantly present in the neointima formed in both vein and artery grafts and that Wnt1-Cre mice can be used to explore the role of SMCs originating from neighboring vessels in vascular remodeling.
Collapse
Affiliation(s)
- Ming Liang
- Department of Nephrology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
30
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
31
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
32
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
33
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
34
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
35
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- dyrj] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
36
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
37
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
38
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
39
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
40
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1#] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
41
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
42
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
43
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
44
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
45
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
46
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
47
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
48
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
49
|
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|
50
|
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound. J Exp Med 2014. [DOI: 10.1084/jem.20140692 order by 1-- eloc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fibroblasts regulate the structure and function of healthy tissues, participate transiently in tissue repair after acute inflammation, and assume an aberrant stimulatory role during chronic inflammatory states including cancer. Such cancer-associated fibroblasts (CAFs) modulate the tumor microenvironment and influence the behavior of neoplastic cells in either a tumor-promoting or tumor-inhibiting manner. These pleiotropic functions highlight the inherent plasticity of fibroblasts and may provide new avenues to understand and therapeutically intervene in malignancies. We discuss the emerging themes of CAF biology in the context of tumorigenesis and therapy.
Collapse
Affiliation(s)
- Daniel Öhlund
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Ela Elyada
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - David Tuveson
- D. Öhlund, E. Elyada, and D. Tuveson are at the Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| |
Collapse
|