1
|
Sun CL, Xu C, Itani O, Christensen EL, Vijay H, Ho J, Correa-Medina A, Klingler CB, Mathew ND, Flibotte S, Humphreys IR, Rubalcaba DD, Ritter AE, Desbois M, Grill B, Crowder CM. Biased regulation of protein synthesis and hypoxic death by a conditional raptor mutation. Curr Biol 2025:S0960-9822(25)00504-4. [PMID: 40339571 DOI: 10.1016/j.cub.2025.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/24/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
Mechanistic target of rapamycin (mTOR) functions in mTOR complex 1 (mTORC1) with raptor to match metazoan metabolism to available nutrients to regulate multiple cellular, physiological, and pathological processes. Hypoxic cellular injury is influenced by the mTORC1 pathway, but whether its activity promotes or prevents injury is unclear, and which mTORC1-regulated mechanisms control hypoxic injury are obscure. Here, we report the discovery of a hypoxia-resistant, temperature-sensitive raptor mutant in an unbiased forward mutagenesis screen in C. elegans. This raptor mutant is both hypoxia resistant and long lived at intermediate temperatures, while unable to develop at higher temperatures. Temperature-shift experiments show that the conditional hypoxia resistance can be induced in the raptor mutant immediately prior to the hypoxic insult. At these intermediate temperatures, the raptor mutation selectively reduces protein synthesis without affecting autophagy, and epistasis experiments implicate mTOR-targeted translation regulators as components of the hypoxia resistance mechanism. Using the conditional developmental arrest phenotype in a selection for suppressors of raptor loss of function, we isolated multiple second-site raptor missense mutants, whose mutated residue is predicted to interact with RagA, a raptor-binding protein. These suppressor mutations restore normal protein synthesis, hypoxic sensitivity, and lifespan and thereby implicate raptor-RagA interactions as critical to these biological processes.
Collapse
Affiliation(s)
- Chun-Ling Sun
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Cong Xu
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Omar Itani
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Harshitha Vijay
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jessica Ho
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Abraham Correa-Medina
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Christian B Klingler
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Neal D Mathew
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Stephane Flibotte
- Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Box 357350, Seattle, WA 98105, USA; Institute for Protein Design, University of Washington, 3946 W Stevens Way NE, Box 351655, Seattle, WA 98105, USA
| | - Diego Delgadillo Rubalcaba
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Alison E Ritter
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Muriel Desbois
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA; Departments of Pediatrics and Pharmacology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - C Michael Crowder
- Department of Anesthesiology and Pain Medicine, University of Washington, Box 356540, 1959 NE Pacific Street, Seattle, WA 98195, USA; Mitochondrial and Metabolism Center, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Box 355065, 3720 15th Avenue NE, Seattle, WA 98105, USA.
| |
Collapse
|
2
|
Ding Y, Yan F, Yoon B, Wei W, Ruff DM, Zhang Y, Lin X, Xu X. An mTOR-Tfeb-Fabp7a signaling axis can be harnessed to ameliorate bag3 cardiomyopathy in adult zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620101. [PMID: 39484593 PMCID: PMC11527138 DOI: 10.1101/2024.10.24.620101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Dysregulated proteostasis in cardiomyocytes is an important pathological event in BAG3 cardiomyopathy, which can be repaired by inhibiting mechanistic target of rapamycin (mTOR) for cardioprotective effects. Here, we aimed to uncover additional pathological events and therapeutic target genes via leveraging zebrafish genetics. We first assessed transcription factor EB ( tfeb ), a candidate gene that encodes a direct downstream phosphorylation target of mTOR signaling. We found that cardiomyocyte-specific transgenic overexpression of tfeb ( Tg[cmlc2:tfeb] ) is sufficient to repair defective proteostasis, attenuate accelerated cardiac senescence, a previously unrecognized phenotype in the bag3 cardiomyopathy model, and rescue cardiac dysfunction. Next, we compared cardiac transcriptomes between the Tg(cmlc2:tfeb) transgenic fish and the mtor xu015/+ mutant, and tested 4 commonly downregulated lipodystrophy genes using an F0-based genetic assay. We found that inhibition of the fatty acid binding protein a ( fabp7a ) gene, but not the other 3 genes, exerts therapeutic effects on bag3 cardiomyopathy. Conversely, fabp7a expression is elevated in bag3 cardiomyopathy model and cardiomyocyte-specific overexpression of fabp7a resulted in dysregulated proteostasis, accelerated cardiac senescence, as well as cardiac dysfunction. Together, these genetic studies in zebrafish uncovered Fabp7a activation and accelerated cardiac senescence as important pathological events in bag3 cardiomyopathy. The mTOR-Tfeb-Fabp7a signaling axis can be harnessed to repair these pathological changes and exert cardioprotective effects.
Collapse
|
3
|
Li H, Wang M, Huang Y. Anthracycline-induced cardiotoxicity: An overview from cellular structural perspective. Biomed Pharmacother 2024; 179:117312. [PMID: 39167843 DOI: 10.1016/j.biopha.2024.117312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/28/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Anthracyclines are broad-spectrum anticancer drugs, but their clinical use is limited due to their severe cardiotoxicity. Anthracycline-induced cardiotoxicity (AIC) remains a significant cause of heart disease-related mortality in many cancer survivors. The underlying mechanisms of AIC have been explored over the past few decades. Reactive oxygen species and drug-induced inhibition of topoisomerase II beta are well-studied mechanisms, with mitochondria being a prominently investigated organelle. Emerging mechanisms such as ferroptosis, Ca2+ overload, autophagy and inflammation mediators have been implicated in recent years. In this review, our goal is to summarize and update the roles of various mechanisms in AIC, focusing on different cellular levels and further explore promising therapeutic approaches targeting these organelles or pathways.
Collapse
Affiliation(s)
- Hansheng Li
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Meilun Wang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| | - Yan Huang
- Department of Cardiology and Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060, China; Hubei Key Laboratory of Cardiology, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
4
|
Xia J, Wang H, Zhong Z, Jiang J. Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling. Cells 2024; 13:953. [PMID: 38891085 PMCID: PMC11171791 DOI: 10.3390/cells13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
PIKfyve is an endosomal lipid kinase that synthesizes phosphatidylinositol 3,5-biphosphate from phosphatidylinositol 3-phsphate. Inhibition of PIKfyve activity leads to lysosomal enlargement and cytoplasmic vacuolation, attributed to impaired lysosomal fission processes and homeostasis. However, the precise molecular mechanisms underlying these effects remain a topic of debate. In this study, we present findings from PIKfyve-deficient zebrafish embryos, revealing enlarged macrophages with giant vacuoles reminiscent of lysosomal storage disorders. Treatment with mTOR inhibitors or effective knockout of mTOR partially reverses these abnormalities and extend the lifespan of mutant larvae. Further in vivo and in vitro mechanistic investigations provide evidence that PIKfyve activity is essential for mTOR shutdown during early zebrafish development and in cells cultured under serum-deprived conditions. These findings underscore the critical role of PIKfyve activity in regulating mTOR signaling and suggest potential therapeutic applications of PIKfyve inhibitors for the treatment of lysosomal storage disorders.
Collapse
Affiliation(s)
- Jianhong Xia
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
| | - Haiyun Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (J.X.); (H.W.)
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| | - Zhihang Zhong
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Liu C, Wang Y, Zeng Y, Kang Z, Zhao H, Qi K, Wu H, Zhao L, Wang Y. Use of Deep-Learning Assisted Assessment of Cardiac Parameters in Zebrafish to Discover Cyanidin Chloride as a Novel Keap1 Inhibitor Against Doxorubicin-Induced Cardiotoxicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301136. [PMID: 37679058 PMCID: PMC10602559 DOI: 10.1002/advs.202301136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/07/2023] [Indexed: 09/09/2023]
Abstract
Doxorubicin-induced cardiomyopathy (DIC) brings tough clinical challenges as well as continued demand in developing agents for adjuvant cardioprotective therapies. Here, a zebrafish phenotypic screening with deep-learning assisted multiplex cardiac functional analysis using motion videos of larval hearts is established. Through training the model on a dataset of 2125 labeled ventricular images, ZVSegNet and HRNet exhibit superior performance over previous methods. As a result of high-content phenotypic screening, cyanidin chloride (CyCl) is identified as a potent suppressor of DIC. CyCl effectively rescues cardiac cell death and improves heart function in both in vitro and in vivo models of Doxorubicin (Dox) exposure. CyCl shows strong inhibitory effects on lipid peroxidation and mitochondrial damage and prevents ferroptosis and apoptosis-related cell death. Molecular docking and thermal shift assay further suggest a direct binding between CyCl and Keap1, which may compete for the Keap1-Nrf2 interaction, promote nuclear accumulation of Nrf2, and subsequentially transactivate Gpx4 and other antioxidant factors. Site-specific mutation of R415A in Keap1 significantly attenuates the protective effects of CyCl against Dox-induced cardiotoxicity. Taken together, the capability of deep-learning-assisted phenotypic screening in identifying promising lead compounds against DIC is exhibited, and new perspectives into drug discovery in the era of artificial intelligence are provided.
Collapse
Affiliation(s)
- Changtong Liu
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Yingchao Wang
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University291 Fucheng Road, Qiantang DistrictHangzhou310020China
| | - Yixin Zeng
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Zirong Kang
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Hong Zhao
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Kun Qi
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Hongzhi Wu
- State Key Lab of CAD&CGZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Lu Zhao
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
| | - Yi Wang
- College of Pharmaceutical SciencesZhejiang University866 Yuhangtang Road, Xihu DistrictHangzhou310058China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University291 Fucheng Road, Qiantang DistrictHangzhou310020China
- National Key Laboratory of Chinese Medicine ModernizationInnovation Center of Yangtze River DeltaZhejiang University314100JiaxingChina
| |
Collapse
|
6
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Koslow M, Zhu P, McCabe C, Xu X, Lin X. Kidney transcriptome and cystic kidney disease genes in zebrafish. Front Physiol 2023; 14:1184025. [PMID: 37256068 PMCID: PMC10226271 DOI: 10.3389/fphys.2023.1184025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/20/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction: Polycystic kidney disease (PKD) is a condition where fluid filled cysts form on the kidney which leads to overall renal failure. Zebrafish has been recently adapted to study polycystic kidney disease, because of its powerful embryology and genetics. However, there are concerns on the conservation of this lower vertebrate in modeling polycystic kidney disease. Methods: Here, we aim to assess the molecular conservation of zebrafish by searching homologues polycystic kidney disease genes and carrying transcriptome studies in this animal. Results and Discussion: We found that out of 82 human cystic kidney disease genes, 81 have corresponding zebrafish homologs. While 75 of the genes have a single homologue, only 6 of these genes have two homologs. Comparison of the expression level of the transcripts enabled us to identify one homolog over the other homolog with >70% predominance, which would be prioritized for future experimental studies. Prompted by sexual dimorphism in human and rodent kidneys, we studied transcriptome between different sexes and noted significant differences in male vs. female zebrafish, indicating that sex dimorphism also occurs in zebrafish. Comparison between zebrafish and mouse identified 10% shared genes and 38% shared signaling pathways. String analysis revealed a cluster of genes differentially expressed in male vs. female zebrafish kidneys. In summary, this report demonstrated remarkable molecular conservation, supporting zebrafish as a useful animal model for cystic kidney disease.
Collapse
Affiliation(s)
- Matthew Koslow
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Chantal McCabe
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
8
|
Ding Y, Wang M, Bu H, Li J, Lin X, Xu X. Application of an F0-based genetic assay in adult zebrafish to identify modifier genes of an inherited cardiomyopathy. Dis Model Mech 2023; 16:dmm049427. [PMID: 35481478 PMCID: PMC9239171 DOI: 10.1242/dmm.049427] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 01/08/2023] Open
Abstract
Modifier genes contribute significantly to our understanding of pathophysiology in human diseases; however, effective approaches to identify modifier genes are still lacking. Here, we aim to develop a rapid F0-based genetic assay in adult zebrafish using the bag3 gene knockout (bag3e2/e2) cardiomyopathy model as a paradigm. First, by utilizing a classic genetic breeding approach, we identified dnajb6b as a deleterious modifier gene for bag3 cardiomyopathy. Next, we established an F0-based genetic assay in adult zebrafish through injection of predicted microhomology-mediated end joining (MMEJ)-inducing single guide RNA/Cas9 protein complex. We showed that effective gene knockdown is maintained in F0 adult fish, enabling recapitulation of both salutary modifying effects of the mtor haploinsufficiency and deleterious modifying effects of the dnajb6b gene on bag3 cardiomyopathy. We finally deployed the F0-based genetic assay to screen differentially expressed genes in the bag3 cardiomyopathy model. As a result, myh9b was identified as a novel modifier gene for bag3 cardiomyopathy. Together, these data prove the feasibility of an F0 adult zebrafish-based genetic assay that can be effectively used to discover modifier genes for inherited cardiomyopathy.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiothoracic Surgery, Xiangfan Hospital, Central South University, Changsha 410008, China
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Surgery, The Second Xiangfan Hospital of Central South University, Changsha 410011, China
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Moossavi M, Lu X, Herrmann J, Xu X. Molecular mechanisms of anthracycline induced cardiotoxicity: Zebrafish come into play. Front Cardiovasc Med 2023; 10:1080299. [PMID: 36970353 PMCID: PMC10036604 DOI: 10.3389/fcvm.2023.1080299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Anthracyclines are among the most potent chemotherapeutics; however, cardiotoxicity significantly restricts their use. Indeed, anthracycline-induced cardiotoxicity (AIC) fares among the worst types of cardiomyopathy, and may only slowly and partially respond to standard heart failure therapies including β-blockers and ACE inhibitors. No therapy specifically designed to treat anthracycline cardiomyopathy at present, and neither is it known if any such strategy could be developed. To address this gap and to elucidate the molecular basis of AIC with a therapeutic goal in mind, zebrafish has been introduced as an in vivo vertebrate model about a decade ago. Here, we first review our current understanding of the basic molecular and biochemical mechanisms of AIC, and then the contribution of zebrafish to the AIC field. We summarize the generation of embryonic zebrafish AIC models (eAIC) and their use for chemical screening and assessment of genetic modifiers, and then the generation of adult zebrafish AIC models (aAIC) and their use for discovering genetic modifiers via forward mutagenesis screening, deciphering spatial-temporal-specific mechanisms of modifier genes, and prioritizing therapeutic compounds via chemical genetic tools. Several therapeutic target genes and related therapies have emerged, including a retinoic acid (RA)-based therapy for the early phase of AIC and an autophagy-based therapy that, for the first time, is able to reverse cardiac dysfunction in the late phase of AIC. We conclude that zebrafish is becoming an important in vivo model that would accelerate both mechanistic studies and therapeutic development of AIC.
Collapse
Affiliation(s)
- Maryam Moossavi
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaoguang Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
- Correspondence: Xiaolei Xu
| |
Collapse
|
10
|
Feng J, Wu Y. Endothelial-to-Mesenchymal Transition: Potential Target of Doxorubicin-Induced Cardiotoxicity. Am J Cardiovasc Drugs 2023; 23:231-246. [PMID: 36841924 DOI: 10.1007/s40256-023-00573-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2023] [Indexed: 02/27/2023]
Abstract
The use of chemotherapeutic agents is becoming more frequent as the proportion of new oncology patients increases worldwide, with prolonged survival after treatment. As one of the most popular chemotherapy drugs, doxorubicin plays a substantial role in the treatment of tumors. Unfortunately, the use of doxorubicin is associated with several adverse effects, particularly severe cardiotoxicity that can be life-threatening, which greatly limits its clinical use. For decades, scientists have tried to explore many cardioprotective agents and therapeutic approaches, but their efficacy remains controversial, and some drugs have even brought about significant adverse effects. The concrete molecular mechanism of doxorubicin-induced cardiotoxicity is still to be unraveled, yet endothelial damage is gradually being identified as an important mechanism triggering the development and progression of doxorubicin-induced cardiotoxicity. Endothelial-to-mesenchymal transition (EndMT), a fundamental process regulating morphogenesis in multicellular organisms, is recognized to be associated with endothelial damage repair and acts as an important factor in the progression of cardiovascular diseases, tumors, and rheumatic immune diseases. Mounting evidence suggests that endothelial-mesenchymal transition may play a non-negligible role in doxorubicin-induced cardiotoxicity. In this paper, we reviewed the molecular mechanisms and signaling pathways of EndMT and outlined the molecular mechanisms of doxorubicin-induced cardiotoxicity and the current therapeutic advances. Furthermore, we summarized the basic principles of doxorubicin-induced endothelial-mesenchymal transition that lead to endothelial dysfunction and cardiotoxicity, aiming to provide suggestions or new ideas for the prevention and treatment of doxorubicin-induced endothelial and cardiac injury.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
11
|
Fan X, He Y, Wu G, Chen H, Cheng X, Zhan Y, An C, Chen T, Wang X. Sirt3 activates autophagy to prevent DOX-induced senescence by inactivating PI3K/AKT/mTOR pathway in A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119411. [PMID: 36521686 DOI: 10.1016/j.bbamcr.2022.119411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/27/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022]
Abstract
Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates mitochondrial redox homeostasis and autophagy and is involved in physiological and pathological processes such as aging, cellular metabolism, and tumorigenesis. We here investigate how Sirt3 regulates doxorubicin (DOX)-induced senescence in lung cancer A549 cells. Sirt3 greatly reduced DOX-induced upregulation of senescence marker proteins p53, p16, p21 and SA-β-Gal activity as well as ROS levels. Notably, Sirt3 reversed DOX-induced autophagic flux blockage, as shown by increased p62 degradation and LC3II/LC3I ratio. Importantly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) partially abolished the antioxidant stress and antiaging effects of Sirt3, while the autophagy activator rapamycin (Rap) potentiated these effects of Sirt3, demonstrating that autophagy mediates the anti-aging effects of Sirt3. Additionally, Sirt3 inhibited the DOX-induced activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which in turn activated autophagy. The PI3K inhibitor LY294002 promoted the antioxidant stress and antiaging effects of Sirt3, while the AKT activator SC-79 reversed these effects of Sirt3. Taken together, Sirt3 counteracts DOX-induced senescence by improving autophagic flux.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuting He
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chunchun An
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
12
|
Deficiency of Adipose Triglyceride Lipase Induces Metabolic Syndrome and Cardiomyopathy in Zebrafish. Int J Mol Sci 2022; 24:ijms24010117. [PMID: 36613558 PMCID: PMC9820674 DOI: 10.3390/ijms24010117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Lipid metabolism dysfunction is related to clinical disorders including obesity, cancer, liver steatosis, and cardiomyopathy. Impaired lipolytic enzymes result in altered release of free fatty acids. The dramatic change in dyslipidemia is important in lipotoxic cardiomyopathy. Adipose triglyceride lipase (ATGL) catalyzes the lipolysis of triacylglycerol to reduce intramyocardial triglyceride levels in the heart and improve myocardial function. We examined the role of ATGL in metabolic cardiomyopathy by developing an Atgl knockout (ALKO) zebrafish model of metabolic cardiomyopathy disease by continuously expressing CRISPR/Cas9 protein and atgl gene guide RNAs (gRNAs). The expressed Cas9 protein bound to four gRNAs targeting the atgl gene locus, facilitating systemic gene KO. Ablation of Atgl interfered with lipid metabolism, which induced hyperlipidemia and hyperglycemia. ALKO adults and embryos displayed hypertrophic hearts. ALKO presented a typical dilated cardiomyopathy profile with a remarkable reduction in four sarcomere genes (myosin heavy chain 7-like, actin alpha cardiac muscle 1b, myosin binding protein C3, and troponin T type 2a) and two Ca2+ handling regulator genes (tropomyosin 4b and ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 2b). Immune cell infiltration in cardiac tissue of ALKO provided direct evidence of advanced metabolic cardiomyopathy. The presently described model could become a powerful tool to clarify the underlying mechanism between metabolic disorders and cardiomyopathies.
Collapse
|
13
|
Luo K, Zheng C, Luo R, Cao X, Sun H, Ma H, Huang J, Yang X, Wu X, Li X. Identification and functional characterization of BICD2 as a candidate disease gene in an consanguineous family with dilated cardiomyopathy. BMC Med Genomics 2022; 15:189. [PMID: 36068540 PMCID: PMC9446846 DOI: 10.1186/s12920-022-01349-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022] Open
Abstract
Background Familial dilated cardiomyopathy (DCM) is a genetic cardiomyopathy that is associated with reduced left ventricle function or systolic function. Fifty-one DCM-causative genes have been reported, most of which are inherited in an autosomal dominant manner. However, recessive DCM-causative gene is rarely observed. Methods Whole-exome sequencing (WES) was performed in a consanguineous family with DCM to identify candidate variants. Sanger sequencing was utilized to confirm the variant. We then checked the DCM candidate gene in 210 sporadic DCM cases. We next explored BICD2 function in both embryonic and adult bicd2-knockout zebrafish models. In vivo cardiac function of bicd2-knockout fish was detected by echocardiography and RNA-seq. Results We identified an autosomal recessive and evolutionarily conserved missense variant, NM_001003800.1:c.2429G > A, in BICD2, which segregated with the disease phenotype in a consanguineous family with DCM. Furthermore, we confirmed the presence of BICD2 variants in 3 sporadic cases. Knockout of bicd2 resulted in partial embryonic lethality in homozygotes, suggesting a vital role for bicd2 in embryogenesis. Heart dilation and decreased ejection fraction, cardiac output and stroke volume were observed in bicd2-knockout zebrafish, suggesting a phenotype similar to human DCM. Furthermore, RNA-seq confirmed a larger transcriptome shift in in bicd2 homozygotes than in heterozygotes. Gene set enrichment analysis of bicd2-deficient fish showed the enrichment of altered gene expression in cardiac pathways and mitochondrial energy metabolism. Conclusions Our study first shows that BICD2 is a novel candidate gene associated with familial DCM, and our findings will facilitate further insights into the molecular pathological mechanisms of DCM. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01349-y.
Collapse
Affiliation(s)
- Kai Luo
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Chenqing Zheng
- Shenzhen Aone Medical Laboratory Co., Ltd., Shenzhen, People's Republic of China
| | - Rong Luo
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xin Cao
- School of Acupuncture-Moxibustion and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Huajun Sun
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.,Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China
| | - Huihui Ma
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China
| | - Jichang Huang
- Institute of Geriatric Cardiovascular Disease, Chengdu Medical College, Chengdu, People's Republic of China
| | - Xu Yang
- Shenzhen Aone Medical Laboratory Co., Ltd., Shenzhen, People's Republic of China
| | - Xiushan Wu
- The Center for Heart Development, Hunan Normal University, Changsha, People's Republic of China. .,Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou, Guangdong, People's Republic of China.
| | - Xiaoping Li
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, Sichuan, People's Republic of China. .,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
14
|
Brandão SR, Carvalho F, Amado F, Ferreira R, Costa VM. Insights on the molecular targets of cardiotoxicity induced by anticancer drugs: A systematic review based on proteomic findings. Metabolism 2022; 134:155250. [PMID: 35809654 DOI: 10.1016/j.metabol.2022.155250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 11/27/2022]
Abstract
Several anticancer agents have been associated with cardiac toxic effects. The currently proposed mechanisms to explain cardiotoxicity differ among anticancer agents, but in fact, the specific modulation is not completely elucidated. Thus, this systematic review aims to provide an integrative perspective of the molecular mechanisms underlying the toxicity of anticancer agents on heart muscle while using a high-throughput technology, mass spectrometry (MS)-based proteomics. A literature search using PubMed database led to the selection of 27 studies, of which 13 reported results exclusively on animal models, 13 on cardiomyocyte-derived cell lines and only one included both animal and a cardiomyocyte line. The reported anticancer agents were the proteasome inhibitor carfilzomib, the anthracyclines daunorubicin, doxorubicin, epirubicin and idarubicin, the antimicrotubule agent docetaxel, the alkylating agent melphalan, the anthracenedione mitoxantrone, the tyrosine kinase inhibitors (TKIs) erlotinib, lapatinib, sorafenib and sunitinib, and the monoclonal antibody trastuzumab. Regarding the MS-based proteomic approaches, electrophoretic separation using two-dimensional (2D) gels coupled with tandem MS (MS/MS) and liquid chromatography-MS/MS (LC-MS/MS) were the most common. Overall, the studies highlighted 1826 differentially expressed proteins across 116 biological processes. Most of them were grouped in larger processes and critically analyzed in the present review. The selection of studies using proteomics on heart muscle allowed to obtain information about the anticancer therapy-induced modulation of numerous proteins in this tissue and to establish connections that have been disregarded in other studies. This systematic review provides interesting points for a comprehensive understanding of the cellular cardiotoxicity mechanisms of different anticancer drugs.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal
| | - Francisco Amado
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 28, 4050-313 Porto, Portugal.
| |
Collapse
|
15
|
Abstract
Heart disease is the leading cause of death worldwide. Despite decades of research, most heart pathologies have limited treatments, and often the only curative approach is heart transplantation. Thus, there is an urgent need to develop new therapeutic approaches for treating cardiac diseases. Animal models that reproduce the human pathophysiology are essential to uncovering the biology of diseases and discovering therapies. Traditionally, mammals have been used as models of cardiac disease, but the cost of generating and maintaining new models is exorbitant, and the studies have very low throughput. In the last decade, the zebrafish has emerged as a tractable model for cardiac diseases, owing to several characteristics that made this animal popular among developmental biologists. Zebrafish fertilization and development are external; embryos can be obtained in high numbers, are cheap and easy to maintain, and can be manipulated to create new genetic models. Moreover, zebrafish exhibit an exceptional ability to regenerate their heart after injury. This review summarizes 25 years of research using the zebrafish to study the heart, from the classical forward screenings to the contemporary methods to model mutations found in patients with cardiac disease. We discuss the advantages and limitations of this model organism and introduce the experimental approaches exploited in zebrafish, including forward and reverse genetics and chemical screenings. Last, we review the models used to induce cardiac injury and essential ideas derived from studying natural regeneration. Studies using zebrafish have the potential to accelerate the discovery of new strategies to treat cardiac diseases.
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center, Massachusetts General Hospital Research Institute, Harvard Medical School, Charlestown, MA
| |
Collapse
|
16
|
Lu F, Leach LL, Gross JM. mTOR activity is essential for retinal pigment epithelium regeneration in zebrafish. PLoS Genet 2022; 18:e1009628. [PMID: 35271573 PMCID: PMC8939802 DOI: 10.1371/journal.pgen.1009628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 03/22/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022] Open
Abstract
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration.
Collapse
Affiliation(s)
- Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lyndsay L. Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jeffrey M. Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Huang J, Wu R, Chen L, Yang Z, Yan D, Li M. Understanding Anthracycline Cardiotoxicity From Mitochondrial Aspect. Front Pharmacol 2022; 13:811406. [PMID: 35211017 PMCID: PMC8861498 DOI: 10.3389/fphar.2022.811406] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Anthracyclines, such as doxorubicin, represent one group of chemotherapy drugs with the most cardiotoxicity. Despite that anthracyclines are capable of treating assorted solid tumors and hematological malignancies, the side effect of inducing cardiac dysfunction has hampered their clinical use. Currently, the mechanism underlying anthracycline cardiotoxicity remains obscure. Increasing evidence points to mitochondria, the energy factory of cardiomyocytes, as a major target of anthracyclines. In this review, we will summarize recent findings about mitochondrial mechanism during anthracycline cardiotoxicity. In particular, we will focus on the following aspects: 1) the traditional view about anthracycline-induced reactive oxygen species (ROS), which is produced by mitochondria, but in turn causes mitochondrial injury. 2) Mitochondrial iron-overload and ferroptosis during anthracycline cardiotoxicity. 3) Autophagy, mitophagy and mitochondrial dynamics during anthracycline cardiotoxicity. 4) Anthracycline-induced disruption of cardiac metabolism.
Collapse
Affiliation(s)
- Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rundong Wu
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Linyi Chen
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ziqiang Yang
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Daoguang Yan
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Mingchuan Li
- Department of Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Bu H, Ding Y, Li J, Zhu P, Shih YH, Wang M, Zhang Y, Lin X, Xu X. Inhibition of mTOR or MAPK ameliorates vmhcl/myh7 cardiomyopathy in zebrafish. JCI Insight 2021; 6:154215. [PMID: 34935644 PMCID: PMC8783688 DOI: 10.1172/jci.insight.154215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/03/2021] [Indexed: 01/25/2023] Open
Abstract
Myosin heavy chain 7 (MYH7) is a major causative gene for hypertrophic cardiomyopathy, but the affected signaling pathways and therapeutics remain elusive. In this research, we identified ventricle myosin heavy chain like (vmhcl) as a zebrafish homolog of human MYH7, and we generated vmhcl frameshift mutants. We noted vmhcl-based embryonic cardiac dysfunction (VEC) in the vmhcl homozygous mutants and vmhcl-based adult cardiomyopathy (VAC) phenotypes in the vmhcl heterozygous mutants. Using the VEC model, we assessed 7 known cardiomyopathy signaling pathways pharmacologically and 11 candidate genes genetically via CRISPR/Cas9 genome editing technology based on microhomology-mediated end joining (MMEJ). Both studies converged on therapeutic benefits of mTOR or mitogen-activated protein kinase (MAPK) inhibition of VEC. While mTOR inhibition rescued the enlarged nuclear size of cardiomyocytes, MAPK inhibition restored the prolonged cell shape in the VEC model. The therapeutic effects of mTOR and MAPK inhibition were later validated in the VAC model. Together, vmhcl/myh7 loss of function is sufficient to induce cardiomyopathy in zebrafish. The VEC and VAC models in zebrafish are amenable to both efficient genetic and chemical genetic tools, offering a rapid in vivo platform for discovering candidate signaling pathways of MYH7 cardiomyopathy.
Collapse
Affiliation(s)
- Haisong Bu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiothoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jiarong Li
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yu-Huan Shih
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
19
|
The Akt-mTOR Pathway Drives Myelin Sheath Growth by Regulating Cap-Dependent Translation. J Neurosci 2021; 41:8532-8544. [PMID: 34475201 DOI: 10.1523/jneurosci.0783-21.2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/21/2022] Open
Abstract
In the vertebrate CNS, oligodendrocytes produce myelin, a specialized membrane, to insulate and support axons. Individual oligodendrocytes wrap multiple axons with myelin sheaths of variable lengths and thicknesses. Myelin grows at the distal ends of oligodendrocyte processes, and multiple lines of work have provided evidence that mRNAs and RNA binding proteins localize to myelin, together supporting a model where local translation controls myelin sheath growth. What signal transduction mechanisms could control this? One strong candidate is the Akt-mTOR pathway, a major cellular signaling hub that coordinates transcription, translation, metabolism, and cytoskeletal organization. Here, using zebrafish as a model system, we found that Akt-mTOR signaling promotes myelin sheath growth and stability during development. Through cell-specific manipulations to oligodendrocytes, we show that the Akt-mTOR pathway drives cap-dependent translation to promote myelination and that restoration of cap-dependent translation is sufficient to rescue myelin deficits in mTOR loss-of-function animals. Moreover, an mTOR-dependent translational regulator was phosphorylated and colocalized with mRNA encoding a canonically myelin-translated protein in vivo, and bioinformatic investigation revealed numerous putative translational targets in the myelin transcriptome. Together, these data raise the possibility that Akt-mTOR signaling in nascent myelin sheaths promotes sheath growth via translation of myelin-resident mRNAs during development.SIGNIFICANCE STATEMENT In the brain and spinal cord, oligodendrocytes extend processes that tightly wrap axons with myelin, a protein- and lipid-rich membrane that increases electrical impulses and provides trophic support. Myelin membrane grows dramatically following initial axon wrapping in a process that demands protein and lipid synthesis. How protein and lipid synthesis is coordinated with the need for myelin to be generated in certain locations remains unknown. Our study reveals that the Akt-mTOR signaling pathway promotes myelin sheath growth by regulating protein translation. Because we found translational regulators of the Akt-mTOR pathway in myelin, our data raise the possibility that Akt-mTOR activity regulates translation in myelin sheaths to deliver myelin on demand to the places it is needed.
Collapse
|
20
|
Wang Y, Lu X, Wang X, Qiu Q, Zhu P, Ma L, Ma X, Herrmann J, Lin X, Wang W, Xu X. atg7-Based Autophagy Activation Reverses Doxorubicin-Induced Cardiotoxicity. Circ Res 2021; 129:e166-e182. [PMID: 34384247 PMCID: PMC8484060 DOI: 10.1161/circresaha.121.319104] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yong Wang
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoguang Lu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Institute of Clinical Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Ma
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Joerg Herrmann
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Xueying Lin
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaolei Xu
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
- Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Ma X, Xu X. A Swimming-based Assay to Determine the Exercise Capacity of Adult Zebrafish Cardiomyopathy Models. Bio Protoc 2021; 11:e4114. [PMID: 34458408 DOI: 10.21769/bioprotoc.4114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/18/2021] [Accepted: 04/26/2021] [Indexed: 11/02/2022] Open
Abstract
Exercise capacity, measured by treadmill in humans and other mammals, is an important diagnostic and prognostic index for patients with cardiomyopathy and heart failure. The adult zebrafish is increasingly used as a vertebrate model to study human cardiomyopathy due to its conserved cardiovascular physiology, convenience for genetic manipulation, and amenability to high-throughput genetic and compound screening. Owing to the small size of its body and heart, new phenotyping assays are needed to unveil phenotypic traits of cardiomyopathy in adult zebrafish. Here, we describe a swimming-based functional assay that measures exercise capacity in an adult zebrafish doxorubicin-induced cardiomyopathy model. This protocol can be applied to any adult zebrafish model of acquired or inherited cardiomyopathy and potentially to other cardiovascular diseases. Graphic abstract: Clinical relevance of the swimming-based phenotyping assay in adult zebrafish cardiomyopathy models.
Collapse
Affiliation(s)
- Xiao Ma
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
22
|
Disruption of MAP7D1 Gene Function Increases the Risk of Doxorubicin-Induced Cardiomyopathy and Heart Failure. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8569921. [PMID: 34327238 PMCID: PMC8302367 DOI: 10.1155/2021/8569921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
Doxorubicin is a cornerstone chemotherapeutic drug widely used to treat various cancers; its dose-dependent cardiomyopathy, however, is one of the leading causes of treatment-associated mortality in cancer survivors. Patients' threshold doses leading to doxorubicin-induced cardiomyopathy (DIC) and heart failure are highly variable, mostly due to genetic variations in individuals' genomes. However, genetic susceptibility to DIC remains largely unidentified. Here, we combined a genetic approach in the zebrafish (Danio rerio) animal model with a genome-wide association study (GWAS) in humans to identify genetic susceptibility to DIC and heart failure. We firstly reported the cardiac and skeletal muscle-specific expression and sarcomeric localization of the microtubule-associated protein 7 domain-containing protein 1b (Map7d1b) in zebrafish, followed by expression validation in mice. We then revealed that disruption of the map7d1b gene function exaggerated DIC effects in adult zebrafish. Mechanistically, the exacerbated DIC are likely conveyed by impaired autophagic degradation and elevated protein aggregation. Lastly, we identified 2 MAP7D1 gene variants associated with cardiac functional decline and heart failure in cancer patients who received doxorubicin therapy. Together, this study identifies MAP7D1 as a clinically relevant susceptibility gene to DIC and heart failure, providing useful information to stratify cancer patients with a high risk of incurring severe cardiomyopathy and heart failure after receiving chemotherapy.
Collapse
|
23
|
Kim M, Lu L, Dvornikov AV, Ma X, Ding Y, Zhu P, Olson TM, Lin X, Xu X. TFEB Overexpression, Not mTOR Inhibition, Ameliorates RagC S75Y Cardiomyopathy. Int J Mol Sci 2021; 22:5494. [PMID: 34071043 PMCID: PMC8197163 DOI: 10.3390/ijms22115494] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
A de novo missense variant in Rag GTPase protein C (RagCS75Y) was recently identified in a syndromic dilated cardiomyopathy (DCM) patient. However, its pathogenicity and the related therapeutic strategy remain unclear. We generated a zebrafish RragcS56Y (corresponding to human RagCS75Y) knock-in (KI) line via TALEN technology. The KI fish manifested cardiomyopathy-like phenotypes and poor survival. Overexpression of RagCS75Y via adenovirus infection also led to increased cell size and fetal gene reprogramming in neonatal rat ventricle cardiomyocytes (NRVCMs), indicating a conserved mechanism. Further characterization identified aberrant mammalian target of rapamycin complex 1 (mTORC1) and transcription factor EB (TFEB) signaling, as well as metabolic abnormalities including dysregulated autophagy. However, mTOR inhibition failed to ameliorate cardiac phenotypes in the RagCS75Y cardiomyopathy models, concomitant with a failure to promote TFEB nuclear translocation. This observation was at least partially explained by increased and mTOR-independent physical interaction between RagCS75Y and TFEB in the cytosol. Importantly, TFEB overexpression resulted in more nuclear TFEB and rescued cardiomyopathy phenotypes. These findings suggest that S75Y is a pathogenic gain-of-function mutation in RagC that leads to cardiomyopathy. A primary pathological step of RagCS75Y cardiomyopathy is defective mTOR-TFEB signaling, which can be corrected by TFEB overexpression, but not mTOR inhibition.
Collapse
Affiliation(s)
- Maengjo Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Linghui Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Alexey V. Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Timothy M. Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
- Department of Pediatric and Adolescent Medicine, Division of Pediatric Cardiology, Mayo Clinic, Rochester, MN 55901, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55901, USA; (M.K.); (L.L.); (A.V.D.); (X.M.); (Y.D.); (P.Z.); (X.L.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55901, USA;
| |
Collapse
|
24
|
Zhu P, Qiu Q, Harris PC, Xu X, Lin X. mtor Haploinsufficiency Ameliorates Renal Cysts and Cilia Abnormality in Adult Zebrafish tmem67 Mutants. J Am Soc Nephrol 2021; 32:822-836. [PMID: 33574160 PMCID: PMC8017545 DOI: 10.1681/asn.2020070991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/21/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Although zebrafish embryos have been used to study ciliogenesis and model polycystic kidney disease (PKD), adult zebrafish remain unexplored. METHODS Transcription activator-like effector nucleases (TALEN) technology was used to generate mutant for tmem67, the homolog of the mammalian causative gene for Meckel syndrome type 3 (MKS3). Classic 2D and optical-clearing 3D imaging of an isolated adult zebrafish kidney were used to examine cystic and ciliary phenotypes. A hypomorphic mtor strain or rapamycin was used to inhibit mTOR activity. RESULTS Adult tmem67 zebrafish developed progressive mesonephric cysts that share conserved features of mammalian cystogenesis, including a switch of cyst origin with age and an increase in proliferation of cyst-lining epithelial cells. The mutants had shorter and fewer distal single cilia and greater numbers of multiciliated cells (MCCs). Absence of a single cilium preceded cystogenesis, and expansion of MCCs occurred after pronephric cyst formation and was inversely correlated with the severity of renal cysts in young adult zebrafish, suggesting a primary defect and an adaptive action, respectively. Finally, the mutants exhibited hyperactive mTOR signaling. mTOR inhibition ameliorated renal cysts in both the embryonic and adult zebrafish models; however, it only rescued ciliary abnormalities in the adult mutants. CONCLUSIONS Adult zebrafish tmem67 mutants offer a new vertebrate model for renal cystic diseases, in which cilia morphology can be analyzed at a single-nephron resolution and mTOR inhibition proves to be a candidate therapeutic strategy.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Qi Qiu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Peter C. Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
25
|
Lu X, Lu L, Gao L, Wang Y, Wang W. Calycosin attenuates doxorubicin-induced cardiotoxicity via autophagy regulation in zebrafish models. Biomed Pharmacother 2021; 137:111375. [PMID: 33761601 DOI: 10.1016/j.biopha.2021.111375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
Anthracyclines are highly effective chemotherapeutics for antineoplastic treatment. However, cumulative cardiotoxicity is the main side effect with poor prognosis. No mechanism-based therapy is currently available to reverse chronic anthracycline-induced cardiotoxicity (AIC) after the deterioration of cardiac function. Calycosin (CA) is the main compound extracted from the traditional Chinese medicine Astragalus, and it has diverse beneficial effects, including autophagy modulation, anti-inflammatory and anti-tumor effects. Autophagy dysregulation is an important pathological event in AIC. Our study demonstrated a cardioprotective effect of CA in a zebrafish embryonic AIC model. To assess the effect of CA on late-onset chronic AIC, adult zebrafish were treated with CA 28 days after doxorubicin (DOX) injection, at which point heart function was obviously impaired. The results demonstrated that DOX blocked autophagic activity in adult zebrafish 8 weeks post-injection, and CA treatment improved heart function and restored autophagy. Further in vitro experiments demonstrated that atg7, which encodes an E1-like activating enzyme, may play an essential role in the CA regulation of autophagy. In conclusion, we used a rapid pharmacological screening system in embryo-adult zebrafish in vivo and elucidated the mechanism of gene targeting in vitro.
Collapse
Affiliation(s)
- Xiaoguang Lu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linghui Lu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Li Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
26
|
Anthracycline-induced cardiomyopathy: cellular and molecular mechanisms. Clin Sci (Lond) 2021; 134:1859-1885. [PMID: 32677679 DOI: 10.1042/cs20190653] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
Despite the known risk of cardiotoxicity, anthracyclines are widely prescribed chemotherapeutic agents. They are broadly characterized as being a robust effector of cellular apoptosis in rapidly proliferating cells through its actions in the nucleus and formation of reactive oxygen species (ROS). And, despite the early use of dexrazoxane, no effective treatment strategy has emerged to prevent the development of cardiomyopathy, despite decades of study, suggesting that much more insight into the underlying mechanism of the development of cardiomyopathy is needed. In this review, we detail the specific intracellular activities of anthracyclines, from the cell membrane to the sarcoplasmic reticulum, and highlight potential therapeutic windows that represent the forefront of research into the underlying causes of anthracycline-induced cardiomyopathy.
Collapse
|
27
|
Santiago CF, Huttner IG, Fatkin D. Mechanisms of TTNtv-Related Dilated Cardiomyopathy: Insights from Zebrafish Models. J Cardiovasc Dev Dis 2021; 8:jcdd8020010. [PMID: 33504111 PMCID: PMC7912658 DOI: 10.3390/jcdd8020010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder characterized by ventricular dilation and contractile dysfunction that is associated with significant morbidity and mortality. New insights into disease mechanisms and strategies for treatment and prevention are urgently needed. Truncating variants in the TTN gene, which encodes the giant sarcomeric protein titin (TTNtv), are the most common genetic cause of DCM, but exactly how TTNtv promote cardiomyocyte dysfunction is not known. Although rodent models have been widely used to investigate titin biology, they have had limited utility for TTNtv-related DCM. In recent years, zebrafish (Danio rerio) have emerged as a powerful alternative model system for studying titin function in the healthy and diseased heart. Optically transparent embryonic zebrafish models have demonstrated key roles of titin in sarcomere assembly and cardiac development. The increasing availability of sophisticated imaging tools for assessment of heart function in adult zebrafish has revolutionized the field and opened new opportunities for modelling human genetic disorders. Genetically modified zebrafish that carry a human A-band TTNtv have now been generated and shown to spontaneously develop DCM with age. This zebrafish model will be a valuable resource for elucidating the phenotype modifying effects of genetic and environmental factors, and for exploring new drug therapies.
Collapse
Affiliation(s)
- Celine F. Santiago
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Inken G. Huttner
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; (C.F.S.); (I.G.H.)
- St. Vincent’s Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW 2052, Australia
- Cardiology Department, St. Vincent’s Hospital, Darlinghurst, NSW 2010, Australia
- Correspondence:
| |
Collapse
|
28
|
Lane S, More LA, Asnani A. Zebrafish Models of Cancer Therapy-Induced Cardiovascular Toxicity. J Cardiovasc Dev Dis 2021; 8:jcdd8020008. [PMID: 33499052 PMCID: PMC7911266 DOI: 10.3390/jcdd8020008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose of review: Both traditional and novel cancer therapies can cause cardiovascular toxicity in patients. In vivo models integrating both cardiovascular and cancer phenotypes allow for the study of on- and off-target mechanisms of toxicity arising from these agents. The zebrafish is the optimal whole organism model to screen for cardiotoxicity in a high throughput manner, while simultaneously assessing the role of cardiotoxicity pathways on the cancer therapy’s antitumor effect. Here we highlight established zebrafish models of human cardiovascular disease and cancer, the unique advantages of zebrafish to study mechanisms of cancer therapy-associated cardiovascular toxicity, and finally, important limitations to consider when using the zebrafish to study toxicity. Recent findings: Cancer therapy-associated cardiovascular toxicities range from cardiomyopathy with traditional agents to arrhythmias and thrombotic complications associated with newer targeted therapies. The zebrafish can be used to identify novel therapeutic strategies that selectively protect the heart from cancer therapy without affecting antitumor activity. Advances in genome editing technology have enabled the creation of several transgenic zebrafish lines valuable to the study of cardiovascular and cancer pathophysiology. Summary: The high degree of genetic conservation between zebrafish and humans, as well as the ability to recapitulate cardiotoxic phenotypes observed in patients with cancer, make the zebrafish an effective model to study cancer therapy-associated cardiovascular toxicity. Though this model provides several key benefits over existing in vitro and in vivo models, limitations of the zebrafish model include the early developmental stage required for most high-throughput applications.
Collapse
Affiliation(s)
- Sarah Lane
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.L.); (L.A.M.)
| | - Luis Alberto More
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.L.); (L.A.M.)
| | - Aarti Asnani
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; (S.L.); (L.A.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Correspondence:
| |
Collapse
|
29
|
Ding Y, Gudapati V, Lin R, Fei Y, Sevag Packard RR, Song S, Chang CC, Baek KI, Wang Z, Roustaei M, Kuang D, Jay Kuo CC, Hsiai TK. Saak Transform-Based Machine Learning for Light-Sheet Imaging of Cardiac Trabeculation. IEEE Trans Biomed Eng 2021; 68:225-235. [PMID: 32365015 PMCID: PMC7606319 DOI: 10.1109/tbme.2020.2991754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Recent advances in light-sheet fluorescence microscopy (LSFM) enable 3-dimensional (3-D) imaging of cardiac architecture and mechanics in toto. However, segmentation of the cardiac trabecular network to quantify cardiac injury remains a challenge. METHODS We hereby employed "subspace approximation with augmented kernels (Saak) transform" for accurate and efficient quantification of the light-sheet image stacks following chemotherapy-treatment. We established a machine learning framework with augmented kernels based on the Karhunen-Loeve Transform (KLT) to preserve linearity and reversibility of rectification. RESULTS The Saak transform-based machine learning enhances computational efficiency and obviates iterative optimization of cost function needed for neural networks, minimizing the number of training datasets for segmentation in our scenario. The integration of forward and inverse Saak transforms can also serve as a light-weight module to filter adversarial perturbations and reconstruct estimated images, salvaging robustness of existing classification methods. The accuracy and robustness of the Saak transform are evident following the tests of dice similarity coefficients and various adversary perturbation algorithms, respectively. The addition of edge detection further allows for quantifying the surface area to volume ratio (SVR) of the myocardium in response to chemotherapy-induced cardiac remodeling. CONCLUSION The combination of Saak transform, random forest, and edge detection augments segmentation efficiency by 20-fold as compared to manual processing. SIGNIFICANCE This new methodology establishes a robust framework for post light-sheet imaging processing, and creating a data-driven machine learning for automated quantification of cardiac ultra-structure.
Collapse
Affiliation(s)
- Yichen Ding
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Varun Gudapati
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Ruiyuan Lin
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Yanan Fei
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - René R Sevag Packard
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Sibo Song
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Chih-Chiang Chang
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Kyung In Baek
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Zhaoqiang Wang
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Mehrdad Roustaei
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| | - Dengfeng Kuang
- Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, and Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - C.-C. Jay Kuo
- Ming-Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089 USA
| | - Tzung K. Hsiai
- Henry Samueli School of Engineering and David Geffen School of Medicine, University of California, Los Angeles, CA 90095 USA
| |
Collapse
|
30
|
Ding Y, Bu H, Xu X. Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 2020; 11:599244. [PMID: 33329049 PMCID: PMC7717946 DOI: 10.3389/fphys.2020.599244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More than 100 causative genes have been linked to various cardiomyopathies, which explain about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic signaling pathways have been identified; however, precision medicine is not being used to treat the various types of cardiomyopathy because knowledge is lacking for how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio) have a higher throughout than rodents and are an emerging vertebrate model for studying cardiomyopathy. Herein, we review progress in the past decade that has proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies of distinct etiology, identifying effective therapeutic strategies for a particular type of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic strategies via a forward genetic approach. On the basis of this progress, we discuss future research that would benefit from integrating this emerging model, including discovery of remaining causative genes and development of genotype-based therapies. Studies using this efficient vertebrate model are anticipated to significantly accelerate the implementation of precision medicine for inherited cardiomyopathies.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
31
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
32
|
Li R, Zupanic A, Talikka M, Belcastro V, Madan S, Dörpinghaus J, Berg CV, Szostak J, Martin F, Peitsch MC, Hoeng J. Systems Toxicology Approach for Testing Chemical Cardiotoxicity in Larval Zebrafish. Chem Res Toxicol 2020; 33:2550-2564. [PMID: 32638588 DOI: 10.1021/acs.chemrestox.0c00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcriptomic approaches can give insight into molecular mechanisms underlying chemical toxicity and are increasingly being used as part of toxicological assessments. To aid the interpretation of transcriptomic data, we have developed a systems toxicology method that relies on a computable biological network model. We created the first network model describing cardiotoxicity in zebrafish larvae-a valuable emerging model species in testing cardiotoxicity associated with drugs and chemicals. The network is based on scientific literature and represents hierarchical molecular pathways that lead from receptor activation to cardiac pathologies. To test the ability of our approach to detect cardiotoxic outcomes from transcriptomic data, we have selected three publicly available data sets that reported chemically induced heart pathologies in zebrafish larvae for five different chemicals. Network-based analysis detected cardiac perturbations for four out of five chemicals tested, for two of them using transcriptomic data collected up to 3 days before the onset of a visible phenotype. Additionally, we identified distinct molecular pathways that were activated by the different chemicals. The results demonstrate that the proposed integrational method can be used for evaluating the effects of chemicals on the zebrafish cardiac function and, together with observed cardiac apical end points, can provide a comprehensive method for connecting molecular events to organ toxicity. The computable network model is freely available and may be used to generate mechanistic hypotheses and quantifiable perturbation values from any zebrafish transcriptomic data.
Collapse
Affiliation(s)
- Roman Li
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.,PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Anze Zupanic
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Marja Talikka
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sumit Madan
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin 53754, Germany
| | - Jens Dörpinghaus
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, Sankt Augustin 53754, Germany
| | - Colette Vom Berg
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
33
|
El Maï M, Marzullo M, de Castro IP, Ferreira MG. Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. eLife 2020; 9:54935. [PMID: 32427102 PMCID: PMC7237213 DOI: 10.7554/elife.54935] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Progressive telomere shortening during lifespan is associated with restriction of cell proliferation, genome instability and aging. Apoptosis and senescence are the two major outcomes upon irreversible cellular damage. Here, we show a transition of these two cell fates during aging of telomerase deficient zebrafish. In young telomerase mutants, proliferative tissues exhibit DNA damage and p53-dependent apoptosis, but no senescence. However, these tissues in older animals display loss of cellularity and senescence becomes predominant. Tissue alterations are accompanied by a pro-proliferative stimulus mediated by AKT signaling. Upon AKT activation, FoxO transcription factors are phosphorylated and translocated out of the nucleus. This results in reduced SOD2 expression causing an increase of ROS and mitochondrial dysfunction. These alterations induce p15/16 growth arrest and senescence. We propose that, upon telomere shortening, early apoptosis leads to cell depletion and insufficient compensatory proliferation. Following tissue damage, the mTOR/AKT is activated causing mitochondrial dysfunction and p15/16-dependent senescence.
Collapse
Affiliation(s)
- Mounir El Maï
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, Nice, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | - Miguel Godinho Ferreira
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, Nice, France.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
34
|
Fang Y, Sun Y, Luo C, Gu J, Shi Z, Lu G, Silvestre JS, Chen Z. Evaluation of cardiac dysfunction in adult zebrafish using high frequency echocardiography. Life Sci 2020; 253:117732. [PMID: 32360570 DOI: 10.1016/j.lfs.2020.117732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/18/2020] [Accepted: 04/25/2020] [Indexed: 11/20/2022]
Abstract
AIMS Recently, the zebrafish has gained attention as an innovative experimental model to decipher molecular and cellular mechanisms involved in cardiovascular development and diseases. Nevertheless, the use of zebrafish models has been challenged because the transparency of these fish, which allows for accurate cardiac evaluation, disappears in adulthood. In this study, the epicardial outline method was performed to investigate the feasibility of echocardiography in assessing cardiac function in pathological adult zebrafish. MATERIALS AND METHODS We attempted to estimate heart failure in adult zebrafish treated with three distinct regulators of cardiac function: phenylhydrazine hydrochloride (PHZ), doxorubicin (DOX), and ethanol. B-mode and Doppler images were evaluated at frequencies of up to 50 MHz and 40 MHz, respectively. The correlation between alterations in cardiac function, haemoglobin concentration, and myocardial histopathology were assessed. KEY FINDINGS Cardiac output (CO) in PHZ-treated zebrafish was significantly higher than that in control zebrafish (151 ± 67 vs. 84 ± 37 μl/min, P = 0.004), whereas ejection fraction (EF) was lower (36.3 ± 10.9 vs. 50.9 ± 8.7%, P < 0.001), indicating typical high output heart failure derived from anaemia. Additionally, ventricular dysfunction in DOX-treated zebrafish was characterised by low CO (57 ± 38 μl/min) and EF (28.8 ± 10.4%), accompanied by an enlarged ventricle in diastole and systole, representing low output heart failure. For ethanol-treated zebrafish, EF was markedly reduced (39.6 ± 7.2%) indicating a dilated heart, while CO remained unchanged (90 ± 40 μl/min). SIGNIFICANCE The epicardial outline method is an effective way of using echocardiography to assess cardiac dysfunction in pathological adult zebrafish, unlocking a major bottleneck in this research field with limited cardiac functional assays.
Collapse
Affiliation(s)
- Yuehua Fang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanyi Sun
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chen Luo
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianing Gu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhongwei Shi
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guoping Lu
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Zhenyue Chen
- Department of Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
35
|
Ma X, Zhu P, Ding Y, Zhang H, Qiu Q, Dvornikov AV, Wang Z, Kim M, Wang Y, Lowerison M, Yu Y, Norton N, Herrmann J, Ekker SC, Hsiai TK, Lin X, Xu X. Retinoid X receptor alpha is a spatiotemporally predominant therapeutic target for anthracycline-induced cardiotoxicity. SCIENCE ADVANCES 2020; 6:eaay2939. [PMID: 32064346 PMCID: PMC6989136 DOI: 10.1126/sciadv.aay2939] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/22/2019] [Indexed: 05/03/2023]
Abstract
To uncover the genetic basis of anthracycline-induced cardiotoxicity (AIC), we recently established a genetic suppressor screening strategy in zebrafish. Here, we report the molecular and cellular nature of GBT0419, a salutary modifier mutant that affects retinoid x receptor alpha a (rxraa). We showed that endothelial, but not myocardial or epicardial, RXRA activation confers AIC protection. We then identified isotretinoin and bexarotene, two FDA-approved RXRA agonists, which exert cardioprotective effects. The therapeutic effects of these drugs only occur when administered during early, but not late, phase of AIC or as pretreatment. Mechanistically, these spatially- and temporally-predominant benefits of RXRA activation can be ascribed to repair of damaged endothelial cell-barrier via regulating tight-junction protein Zonula occludens-1. Together, our study provides the first in vivo genetic evidence supporting RXRA as the therapeutic target for AIC, and uncovers a previously unrecognized spatiotemporally-predominant mechanism that shall inform future translational efforts.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi Qiu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Institute of Clinical Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Alexey V. Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zheng Wang
- Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Maengjo Kim
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Yong Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Institute of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | | | - Yue Yu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Joerg Herrmann
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen C. Ekker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Tzung K. Hsiai
- School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Chang K, Kang P, Liu Y, Huang K, Miao T, Sagona AP, Nezis IP, Bodmer R, Ocorr K, Bai H. TGFB-INHB/activin signaling regulates age-dependent autophagy and cardiac health through inhibition of MTORC2. Autophagy 2019; 16:1807-1822. [PMID: 31884871 PMCID: PMC8386626 DOI: 10.1080/15548627.2019.1704117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Age-related impairment of macroautophagy/autophagy and loss of cardiac tissue homeostasis contribute significantly to cardiovascular diseases later in life. MTOR (mechanistic target of rapamycin kinase) signaling is the most well-known regulator of autophagy, cellular homeostasis, and longevity. The MTOR signaling consists of two structurally and functionally distinct multiprotein complexes, MTORC1 and MTORC2. While MTORC1 is well characterized but the role of MTORC2 in aging and autophagy remains poorly understood. Here we identified TGFB-INHB/activin signaling as a novel upstream regulator of MTORC2 to control autophagy and cardiac health during aging. Using Drosophila heart as a model system, we show that cardiac-specific knockdown of TGFB-INHB/activin-like protein daw induces autophagy and alleviates age-related heart dysfunction, including cardiac arrhythmias and bradycardia. Interestingly, the downregulation of daw activates TORC2 signaling to regulate cardiac autophagy. Activation of TORC2 alone through overexpressing its subunit protein rictor promotes autophagic flux and preserves cardiac function with aging. In contrast, activation of TORC1 does not block autophagy induction in daw knockdown flies. Lastly, either daw knockdown or rictor overexpression in fly hearts prolongs lifespan, suggesting that manipulation of these pathways in the heart has systemic effects on longevity control. Thus, our studies discover the TGFB-INHB/activin-mediated inhibition of TORC2 as a novel mechanism for age-dependent decreases in autophagic activity and cardiac health. Abbreviations: AI: arrhythmia index; BafA1: bafilomycin A1; BMP: bone morphogenetic protein; CQ: chloroquine; CVD: cardiovascular diseases; DI: diastolic interval; ER: endoplasmic reticulum; HP: heart period; HR: heart rate; MTOR: mechanistic target of rapamycin kinase; NGS: normal goat serum; PBST: PBS with 0.1% Triton X-100; PDPK1: 3-phosphoinositide dependent protein kinase 1; RICTOR: RPTOR independent companion of MTOR complex 2; ROI: region of interest; ROUT: robust regression and outlier removal; ROS: reactive oxygen species; R-SMAD: receptor-activated SMAD; SI: systolic interval; SOHA: semi-automatic optical heartbeat analysis; TGFB: transformation growth factor beta; TSC1: TSC complex subunit 1.
Collapse
Affiliation(s)
- Kai Chang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ping Kang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ying Liu
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Kerui Huang
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | - Ting Miao
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| | | | - Ioannis P Nezis
- School of Life Sciences, University of Warwick , Coventry, UK
| | - Rolf Bodmer
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Karen Ocorr
- Development, Aging, and Regeneration Program, Sanford-Burnham-Prebys Medical Discovery Institute , La Jolla, CA, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University , Ames, IA, USA
| |
Collapse
|
37
|
Dong G, Zhang Z, Duan K, Shi W, Huang R, Wang B, Luo L, Zhang Y, Ruan H, Huang H. Beclin 1 deficiency causes hepatic cell apoptosis via endoplasmic reticulum stress in zebrafish larvae. FEBS Lett 2019; 594:1155-1165. [PMID: 31823348 DOI: 10.1002/1873-3468.13712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 01/05/2023]
Abstract
Beclin 1/Atg6 is an essential autophagy gene, and deficiency of this gene in organisms leads to impaired autophagic flux, usually with cell apoptosis; however, the causative mechanism of cell apoptosis is not clear. Here, we knocked out the beclin 1 gene in zebrafish and found that autophagic flux is disrupted in mutants. Beclin 1-deficient zebrafish live through embryogenesis but die at larval stage. We found accumulated protein aggregates and vigorous apoptosis in mutant larvae, predominantly in the liver. The hepatic cell apoptosis in mutants results from an endoplasmic reticulum (ER) stress response; however, it is not the leading cause of mutant larval lethality. Our work proposes that ER stress induces cell apoptosis in Beclin 1-deficient organisms.
Collapse
Affiliation(s)
- Guoping Dong
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Zhe Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Kun Duan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Wenpeng Shi
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Rui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Bangjun Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Yaoguang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Hua Ruan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | - Honghui Huang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, State Key Laboratory Breeding Base of Eco-Environments and Bio-Resources of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
38
|
Khor ES, Noor SM, Wong PF. Understanding the Role of ztor in Aging-related Diseases Using the Zebrafish Model. In Vivo 2019; 33:1713-1720. [PMID: 31662495 DOI: 10.21873/invivo.11661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022]
Abstract
The mammalian target of rapamycin (mTOR), a 289 kDa serine/threonine protein kinase of the phosphoinositide 3-kinase (PI3K)-related family is known for its role in regulating lifespan and the aging process in humans and rodents. Aging in zebrafish very much resembles aging in humans. Aged zebrafish often manifest with spinal curvature, cataracts and cognitive frailty, akin to human age-related phenotypical effects such as osteoarthritis, dwindling vision and cognitive dysfunction. However, the role of the zebrafish orthologue of mTOR, ztor, is less defined in these areas. This review paper discusses the tale of growing old in the zebrafish, the physiological roles of ztor in normal developmental processes and its involvement in the pathogenesis of aging-related diseases such as metabolic disorders and cancers.
Collapse
Affiliation(s)
- Eng-Soon Khor
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suzita Mohd Noor
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Maruska KP, Sohn YC, Fernald RD. Mechanistic target of rapamycin (mTOR) implicated in plasticity of the reproductive axis during social status transitions. Gen Comp Endocrinol 2019; 282:113209. [PMID: 31226256 PMCID: PMC6718321 DOI: 10.1016/j.ygcen.2019.113209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/04/2023]
Abstract
The highly conserved brain-pituitary-gonadal (BPG) axis controls reproduction in all vertebrates, so analyzing the regulation of this signaling cascade is important for understanding reproductive competence. The protein kinase mechanistic target of rapamycin (mTOR) functions as a conserved regulator of cellular growth and metabolism in all eukaryotes, and also regulates the reproductive axis in mammals. However, whether mTOR might also regulate the BPG axis in non-mammalian vertebrates remains unexplored. We used complementary experimental approaches in an African cichlid fish, Astatotilapia burtoni, to demonstrate that mTOR is involved in regulation of the brain, pituitary, and testes when males rise in rank to social dominance. mTOR or downstream components of its signaling pathway (p-p70S6K) were detected in gonadotropin-releasing hormone (GnRH1) neurons, the pituitary, and testes. Transcript levels of mtor in the pituitary and testes also varied when reproductively-suppressed subordinate males rose in social rank to become dominant reproductively-active males, a transition similar to puberty in mammals. Intracerebroventricular injection of the mTORC1 inhibitor, rapamycin, revealed a role for mTOR in the socially-induced hypertrophy of GnRH1 neurons. Rapamycin treatment also had effects at the pituitary and testes, suggesting involvement of the mTORC1 complex at multiple levels of the reproductive axis. Thus, we show that mTOR regulation of BPG function is conserved to fishes, likely playing important roles in regulating reproduction and fertility across all male vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, CA 94305, United States
| |
Collapse
|
40
|
Ding Y, Dvornikov AV, Ma X, Zhang H, Wang Y, Lowerison M, Packard RR, Wang L, Chen J, Zhang Y, Hsiai T, Lin X, Xu X. Haploinsufficiency of mechanistic target of rapamycin ameliorates bag3 cardiomyopathy in adult zebrafish. Dis Model Mech 2019; 12:dmm040154. [PMID: 31492659 PMCID: PMC6826022 DOI: 10.1242/dmm.040154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 08/28/2019] [Indexed: 12/14/2022] Open
Abstract
The adult zebrafish is an emerging vertebrate model for studying human cardiomyopathies; however, whether the simple zebrafish heart can model different subtypes of cardiomyopathies, such as dilated cardiomyopathy (DCM), remains elusive. Here, we generated and characterized an inherited DCM model in adult zebrafish and used this model to search for therapeutic strategies. We employed transcription activator-like effector nuclease (TALEN) genome editing technology to generate frame-shift mutants for the zebrafish ortholog of human BCL2-associated athanogene 3 (BAG3), an established DCM-causative gene. As in mammals, the zebrafish bag3 homozygous mutant (bag3e2/e2 ) exhibited aberrant proteostasis, as indicated by impaired autophagy flux and elevated ubiquitinated protein aggregation. Through comprehensive phenotyping analysis of the mutant, we identified phenotypic traits that resembled DCM phenotypes in mammals, including cardiac chamber enlargement, reduced ejection fraction characterized by increased end-systolic volume/body weight (ESV/BW), and reduced contractile myofibril activation kinetics. Nonbiased transcriptome analysis identified the hyperactivation of the mechanistic target of rapamycin (mTOR) signaling in bag3e2/e2 mutant hearts. Further genetic studies showed that mtorxu015/+ , an mTOR haploinsufficiency mutant, repaired abnormal proteostasis, improved cardiac function and rescued the survival of the bag3e2/e2 mutant. This study established the bag3e2/e2 mutant as a DCM model in adult zebrafish and suggested mtor as a candidate therapeutic target gene for BAG3 cardiomyopathy.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Clinical Center for Gene Diagnosis and Therapy, the Second Xiangya Hospital of Central South University, Changsha, China 410011
| | - Yong Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Institute of Life Science, Beijing University of Chinese Medicine, Beijing, China 100029
| | | | - Rene R Packard
- School of Medicine, University of California Los Angeles, Los Angeles, CA 90073, USA
| | - Lei Wang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jun Chen
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuji Zhang
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tzung Hsiai
- School of Medicine, University of California Los Angeles, Los Angeles, CA 90073, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN 55905, USA
- Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
41
|
Grund A, Szaroszyk M, Korf-Klingebiel M, Malek Mohammadi M, Trogisch FA, Schrameck U, Gigina A, Tiedje C, Gaestel M, Kraft T, Hegermann J, Batkai S, Thum T, Perrot A, Remedios CD, Riechert E, Völkers M, Doroudgar S, Jungmann A, Bauer R, Yin X, Mayr M, Wollert KC, Pich A, Xiao H, Katus HA, Bauersachs J, Müller OJ, Heineke J. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol Med 2019; 11:e10018. [PMID: 31468715 PMCID: PMC6783653 DOI: 10.15252/emmm.201810018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022] Open
Abstract
Pathological cardiac overload induces myocardial protein synthesis and hypertrophy, which predisposes to heart failure. To inhibit hypertrophy therapeutically, the identification of negative regulators of cardiomyocyte protein synthesis is needed. Here, we identified the tumor suppressor protein TIP30 as novel inhibitor of cardiac hypertrophy and dysfunction. Reduced TIP30 levels in mice entailed exaggerated cardiac growth during experimental pressure overload, which was associated with cardiomyocyte cellular hypertrophy, increased myocardial protein synthesis, reduced capillary density, and left ventricular dysfunction. Pharmacological inhibition of protein synthesis improved these defects. Our results are relevant for human disease, since we found diminished cardiac TIP30 levels in samples from patients suffering from end‐stage heart failure or hypertrophic cardiomyopathy. Importantly, therapeutic overexpression of TIP30 in mouse hearts inhibited cardiac hypertrophy and improved left ventricular function during pressure overload and in cardiomyopathic mdx mice. Mechanistically, we identified a previously unknown anti‐hypertrophic mechanism, whereby TIP30 binds the eukaryotic elongation factor 1A (eEF1A) to prevent the interaction with its essential co‐factor eEF1B2 and translational elongation. Therefore, TIP30 could be a therapeutic target to counteract cardiac hypertrophy.
Collapse
Affiliation(s)
- Andrea Grund
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malgorzata Szaroszyk
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | | - Mona Malek Mohammadi
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Felix A Trogisch
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrike Schrameck
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Anna Gigina
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute for Molecular and Cellphysiology, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Sandor Batkai
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Perrot
- Experimental and Clinical Research Center, A Joint Cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Eva Riechert
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Mirko Völkers
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Shirin Doroudgar
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Jungmann
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ralf Bauer
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Xiaoke Yin
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Kai C Wollert
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Unit Proteomics, Hannover Medical School, Hannover, Germany
| | - Hua Xiao
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Hugo A Katus
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Johann Bauersachs
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany
| | - Oliver J Müller
- Department of Cardiology, Angiology and Pneumology, Medical Faculty of Heidelberg, University of Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.,Department of Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Joerg Heineke
- Department for Cardiology and Angiology, Hannover Medical School, Hannover, Germany.,Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cluster of Excellence Rebirth, Hannover Medical School, Hannover, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| |
Collapse
|
42
|
Dvornikov AV, Wang M, Yang J, Zhu P, Le T, Lin X, Cao H, Xu X. Phenotyping an adult zebrafish lamp2 cardiomyopathy model identifies mTOR inhibition as a candidate therapy. J Mol Cell Cardiol 2019; 133:199-208. [PMID: 31228518 PMCID: PMC6705397 DOI: 10.1016/j.yjmcc.2019.06.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/31/2019] [Accepted: 06/18/2019] [Indexed: 12/23/2022]
Abstract
Adult zebrafish is an emerging vertebrate model for studying genetic basis of cardiomyopathies; but whether the simple fish heart can model essential features of hypertrophic cardiomyopathy (HCM) remained unknown. Here, we report a comprehensive phenotyping of a lamp2 knockout (KO) mutant. LAMP2 encodes a lysosomal protein and is a causative gene of Danon disease that is characterized by HCM and massive autophagic vacuoles accumulation in the tissues. There is no effective therapy yet to treat this most lethal cardiomyopathy in the young. First, we did find the autophagic vacuoles accumulation in cardiac tissues from lamp2 KO. Next, through employing a set of emerging phenotyping tools, we revealed heart failure phenotypes in the lamp2 KO mutants, including decreased ventricular ejection fraction, reduced physical exercise capacity, blunted β-adrenergic contractile response, and enlarged atrium. We also noted changes of the following indices suggesting cardiac hypertrophic remodeling in lamp2 KO: a rounded heart shape, increased end-systolic ventricular volume and density of ventricular myocardium, elevated actomyosin activation kinetics together with increased maximal isometric tension at the level of cardiac myofibrils. Lastly, we assessed the function of lysosomal-localized mTOR on the lamp2-associated Danon disease. We found that haploinsufficiency of mtor was able to normalize some characteristics of the lamp2 KO, including ejection fraction, β-adrenergic response, and the actomyosin activation kinetics. In summary, we demonstrate the feasibility of modeling the inherited HCM in the adult zebrafish, which can be used to develop potential therapies.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mingmin Wang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA; Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingchun Yang
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ping Zhu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tai Le
- Department of Electrical Engineering and Computer Science, University of California Irvine, CA, USA
| | - Xueying Lin
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Hung Cao
- Department of Electrical Engineering and Computer Science, University of California Irvine, CA, USA; Department of Biomedical Engineering, University of California Irvine, CA, USA
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
43
|
Pandey S, Kuo WW, Shen CY, Yeh YL, Ho TJ, Chen RJ, Chang RL, Pai PY, Viswanadha VP, Huang CY, Huang CY. Insulin-like growth factor II receptor-α is a novel stress-inducible contributor to cardiac damage underpinning doxorubicin-induced oxidative stress and perturbed mitochondrial autophagy. Am J Physiol Cell Physiol 2019; 317:C235-C243. [PMID: 31116582 DOI: 10.1152/ajpcell.00079.2019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Doxorubicin (DOX) is an anthracycline antibiotic commonly employed for the treatment of various cancers. However, its therapeutic uses are hampered by side effects associated with cumulative doses during the course of treatment. Whereas deregulation of autophagy in the myocardium has been involved in a variety of cardiovascular diseases, the role of autophagy in DOX-induced cardiomyopathy remains debated. Our earlier studies have shown that DOX treatment in a rat animal model leads to increased expression of the novel stress-inducible protein insulin-like growth factor II receptor-α (IGF-IIRα) in cardiac tissues, which exacerbated the cardiac injury by enhancing oxidative stress and p53-mediated mitochondria-dependent cardiac apoptosis. Through this study, we investigated the contribution of IGF-IIRα to dysregulation of autophagy in heart using both in vitro H9c2 cells (DOX treated, 1 µM) and in vivo transgenic rat models (DOX treated, 5 mg/kg ip for 6 wk) overexpressing IGF-IIRα specifically in the heart. We found that IGF-IIRα primarily localized to mitochondria, causing increased mitochondrial oxidative stress that was severely aggravated by DOX treatment. This was accompanied by a significant perturbation in mitochondrial membrane potential and increased leakage of cytochrome c, causing increased cleaved caspase-3 activity. There were significant alterations in phosphorylated AMP-activated protein kinase (p-AMPK), phosphorylated Unc-51 like kinase-1 (p-ULK1), PARKIN, PTEN-induced kinase 1 (PINK1), microtubule-associated protein 1 light chain 3 (LC3), and p62 proteins, which were more severely disrupted under the combined effect of IGF-IIRα overexpression plus DOX. Finally, LysoTracker Red staining showed that IGF-IIRα overexpression causes lysosomal impairment, which was rescued by rapamycin treatment. Taken together, we found that IGF-IIRα leads to mitochondrial oxidative stress, decreased antioxidant levels, disrupted mitochondrial membrane potential, and perturbed mitochondrial autophagy contributing to DOX-induced cardiomyopathy.
Collapse
Affiliation(s)
- Sudhir Pandey
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Mei Ho University, Pingtung, Taiwan
| | - Yu-Lan Yeh
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ruey-Lin Chang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | | | - Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Chinese Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
44
|
Cioni JM, Wong HHW, Bressan D, Kodama L, Harris WA, Holt CE. Axon-Axon Interactions Regulate Topographic Optic Tract Sorting via CYFIP2-Dependent WAVE Complex Function. Neuron 2019. [PMID: 29518358 PMCID: PMC5855093 DOI: 10.1016/j.neuron.2018.01.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The axons of retinal ganglion cells (RGCs) are topographically sorted before they arrive at the optic tectum. This pre-target sorting, typical of axon tracts throughout the brain, is poorly understood. Here, we show that cytoplasmic FMR1-interacting proteins (CYFIPs) fulfill non-redundant functions in RGCs, with CYFIP1 mediating axon growth and CYFIP2 specifically involved in axon sorting. We find that CYFIP2 mediates homotypic and heterotypic contact-triggered fasciculation and repulsion responses between dorsal and ventral axons. CYFIP2 associates with transporting ribonucleoprotein particles in axons and regulates translation. Axon-axon contact stimulates CYFIP2 to move into growth cones where it joins the actin nucleating WAVE regulatory complex (WRC) in the periphery and regulates actin remodeling and filopodial dynamics. CYFIP2’s function in axon sorting is mediated by its binding to the WRC but not its translational regulation. Together, these findings uncover CYFIP2 as a key regulatory link between axon-axon interactions, filopodial dynamics, and optic tract sorting. CYFIP1 and CYFIP2 serve non-redundant functions in retinal axon growth and guidance CYFIP2 regulates growth cone filopodial dynamics and axon-axon responses CYFIP2 interacts with RNPs and the WRC in distinct cellular compartments Axon sorting is mediated by CYFIP2’s interaction with the WRC
Collapse
Affiliation(s)
- Jean-Michel Cioni
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Hovy Ho-Wai Wong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Dario Bressan
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Lay Kodama
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - William A Harris
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
45
|
Chaturantabut S, Shwartz A, Evason KJ, Cox AG, Labella K, Schepers AG, Yang S, Aravena M, Houvras Y, Mancio-Silva L, Romano S, Gorelick DA, Cohen DE, Zon LI, Bhatia SN, North TE, Goessling W. Estrogen Activation of G-Protein-Coupled Estrogen Receptor 1 Regulates Phosphoinositide 3-Kinase and mTOR Signaling to Promote Liver Growth in Zebrafish and Proliferation of Human Hepatocytes. Gastroenterology 2019; 156:1788-1804.e13. [PMID: 30641053 PMCID: PMC6532055 DOI: 10.1053/j.gastro.2019.01.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Patients with cirrhosis are at high risk for hepatocellular carcinoma (HCC) and often have increased serum levels of estrogen. It is not clear how estrogen promotes hepatic growth. We investigated the effects of estrogen on hepatocyte proliferation during zebrafish development, liver regeneration, and carcinogenesis. We also studied human hepatocytes and liver tissues. METHODS Zebrafish were exposed to selective modifiers of estrogen signaling at larval and adult stages. Liver growth was assessed by gene expression, fluorescent imaging, and histologic analyses. We monitored liver regeneration after hepatocyte ablation and HCC development after administration of chemical carcinogens (dimethylbenzanthrazene). Proliferation of human hepatocytes was measured in a coculture system. We measured levels of G-protein-coupled estrogen receptor (GPER1) in HCC and nontumor liver tissues from 68 patients by immunohistochemistry. RESULTS Exposure to 17β-estradiol (E2) increased proliferation of hepatocytes and liver volume and mass in larval and adult zebrafish. Chemical genetic and epistasis experiments showed that GPER1 mediates the effects of E2 via the phosphoinositide 3-kinase-protein kinase B-mechanistic target of rapamycin pathway: gper1-knockout and mtor-knockout zebrafish did not increase liver growth in response to E2. HCC samples from patients had increased levels of GPER1 compared with nontumor tissue samples; estrogen promoted proliferation of human primary hepatocytes. Estrogen accelerated hepatocarcinogenesis specifically in male zebrafish. Chemical inhibition or genetic loss of GPER1 significantly reduced tumor development in the zebrafish. CONCLUSIONS In an analysis of zebrafish and human liver cells and tissues, we found GPER1 to be a hepatic estrogen sensor that regulates liver growth during development, regeneration, and tumorigenesis. Inhibitors of GPER1 might be developed for liver cancer prevention or treatment. TRANSCRIPT PROFILING The accession number in the Gene Expression Omnibus is GSE92544.
Collapse
Affiliation(s)
- Saireudee Chaturantabut
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arkadi Shwartz
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Andrew G. Cox
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts;,Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kyle Labella
- Genetics Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Arnout G. Schepers
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Song Yang
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts
| | - Marianna Aravena
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Yariv Houvras
- Departments of Surgery and Medicine, Weill Cornell Medical College, New York, New York
| | - Liliana Mancio-Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Shannon Romano
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel A. Gorelick
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David E. Cohen
- Division of Gastroenterology and Hepatology, Weill Cornell Medical College, New York, New York
| | - Leonard I. Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Howard Hughes Medical Institute, Chevy Chase, Maryland;,Harvard Stem Cell Institute, Cambridge, Massachusetts;,Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Sangeeta N. Bhatia
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts;,Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts;,Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Trista E. North
- Stem Cell Program, Division of Hematology/Oncology, Boston Children’s Hospital, Boston, Massachusetts;,Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Wolfram Goessling
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Boston, Massachusetts; Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Divison of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
46
|
Jiang WD, Zhou XQ, Zhang L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Shi HQ, Feng L. Vitamin A deficiency impairs intestinal physical barrier function of fish. FISH & SHELLFISH IMMUNOLOGY 2019; 87:546-558. [PMID: 30716522 DOI: 10.1016/j.fsi.2019.01.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
The present study was the first to investigate the effects of dietary vitamin A (VA) on the intestinal physical barrier function associated with oxidation, antioxidant system, apoptosis and cell-cellular tight junction (TJ) in the proximal (PI), mid (MI) and distal (DI) intestines of young grass carp (Ctenopharyngodon idella). Fish were fed graded levels of dietary VA for 10 weeks, and then a challenge test using an injection of Aeromonas hydrophila was conducted for 14 days. Results indicated that dietary VA deficiency caused oxidative damage to fish intestine partly by the reduced non-enzymatic antioxidant components glutathione (GSH) and VA contents as well as reduced antioxidant enzyme activities [not including manganese superoxide dismutase (MnSOD)]. Further results observed that the decreased antioxidant enzyme activities by VA deficiency were partly related to the down-regulation of their corresponding mRNA levels which were regulated by the down-regulation of NF-E2-related factor 2 (Nrf2) mRNA levels and up-regulation of kelch-like-ECH-associated protein (Keap1a) (rather than Keap1b) mRNA levels in three intestinal segments of fish. Meanwhile, VA deficiency up-regulated the mRNA levels of the apoptosis signalling [caspase-3, caspase-8, caspase-9 (rather than caspase-7)] associated with the inhibition of the target of rapamycin (TOR) signalling pathway in three intestinal segments of fish. Additionally, VA deficiency decreased the mRNA levels of TJ complexes [claudin-b, claudin-c, claudin-3, claudin-12, claudin-15a, occludin and zonula occludens-1 (ZO-1) in the PI, MI and DI, as well as claudin-7 and claudin-11a in the MI and DI] linked to the up-regulation of myosin light chain kinase (MLCK) signalling. These results suggested that VA deficiency impaired structural integrity in three intestinal segments of fish. Meanwhile, excessive VA also showed similar negative effects on these indexes. Taken together, the current study firstly demonstrated that VA deficiency impaired physical barrier functions associated with impaired antioxidant capacity, aggravated cell apoptosis and disrupted TJ complexes in the PI, MI and DI, but different segments performed different actions in fish. Based on protecting fish against protein oxidation, the optimal VA levels for grass carp were estimated to be 2622 IU/kg diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou, 510663, Guangdong, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
47
|
Meireles AM, Shen K, Zoupi L, Iyer H, Bouchard EL, Williams A, Talbot WS. The Lysosomal Transcription Factor TFEB Represses Myelination Downstream of the Rag-Ragulator Complex. Dev Cell 2018; 47:319-330.e5. [PMID: 30399334 PMCID: PMC6250074 DOI: 10.1016/j.devcel.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/28/2018] [Accepted: 10/03/2018] [Indexed: 12/30/2022]
Abstract
Myelin allows for fast and efficient axonal conduction, but much remains to be determined about the mechanisms that regulate myelin formation. To investigate the genetic basis of myelination, we carried out a genetic screen using zebrafish. Here, we show that the lysosomal G protein RagA is essential for CNS myelination. In rraga-/- mutant oligodendrocytes, target genes of the lysosomal transcription factor Tfeb are upregulated, consistent with previous evidence that RagA represses Tfeb activity. Loss of Tfeb function is sufficient to restore myelination in RagA mutants, indicating that hyperactive Tfeb represses myelination. Conversely, tfeb-/- single mutants exhibit ectopic myelin, further indicating that Tfeb represses myelination during development. In a mouse model of de- and remyelination, TFEB expression is increased in oligodendrocytes, but the protein is localized to the cytoplasm, and hence inactive, especially during remyelination. These results define essential regulators of myelination and may advance approaches to therapeutic remyelination.
Collapse
Affiliation(s)
- Ana M Meireles
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kimberle Shen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lida Zoupi
- University of Edinburgh/MS Society Centre for MS Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Harini Iyer
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ellen L Bouchard
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna Williams
- University of Edinburgh/MS Society Centre for MS Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh Bioquarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
48
|
Baek KI, Ding Y, Chang CC, Chang M, Sevag Packard RR, Hsu JJ, Fei P, Hsiai TK. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:105-115. [PMID: 29752956 PMCID: PMC6226366 DOI: 10.1016/j.pbiomolbio.2018.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/20/2022]
Abstract
The advent of 4-dimensional (4D) light-sheet fluorescence microscopy (LSFM) has provided an entry point for rapid image acquisition to uncover real-time cardiovascular structure and function with high axial resolution and minimal photo-bleaching/-toxicity. We hereby review the fundamental principles of our LSFM system to investigate cardiovascular morphogenesis and regeneration after injury. LSFM enables us to reveal the micro-circulation of blood cells in the zebrafish embryo and assess cardiac ventricular remodeling in response to chemotherapy-induced injury using an automated segmentation approach. Next, we review two distinct mechanisms underlying zebrafish vascular regeneration following tail amputation. We elucidate the role of endothelial Notch signaling to restore vascular regeneration after exposure to the redox active ultrafine particles (UFP) in air pollutants. By manipulating the blood viscosity and subsequently, endothelial wall shear stress, we demonstrate the mechanism whereby hemodynamic shear forces impart both mechanical and metabolic effects to modulate vascular regeneration. Overall, the implementation of 4D LSFM allows for the elucidation of mechanisms governing cardiovascular injury and regeneration with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Kyung In Baek
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Yichen Ding
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chih-Chiang Chang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Megan Chang
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - René R Sevag Packard
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Jeffrey J Hsu
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Peng Fei
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Tzung K Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA 90095, USA; Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA.
| |
Collapse
|
49
|
Dvornikov AV, de Tombe PP, Xu X. Phenotyping cardiomyopathy in adult zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:116-125. [PMID: 29884423 PMCID: PMC6269218 DOI: 10.1016/j.pbiomolbio.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high-throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Pieter P de Tombe
- University of Illinois at Chicago, Department of Physiology and Biophysics, Chicago, IL, USA; Magdi Yacoub Institute, Cardiac Biophysics Division, Harefield, UK; Imperial College, Heart and Lung Institute, London, UK; Freiburg University, Institute for Experimental Cardiovascular Medicine, Germany
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Zhang H, Dvornikov AV, Huttner IG, Ma X, Santiago CF, Fatkin D, Xu X. A Langendorff-like system to quantify cardiac pump function in adult zebrafish. Dis Model Mech 2018; 11:dmm.034819. [PMID: 30012855 PMCID: PMC6177000 DOI: 10.1242/dmm.034819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Cardiovascular Surgery Department, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Clinical and Translational Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55092, USA
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|