1
|
Reckman YJ, Haas J, van der Made I, Williams SG, Diaz IG, Akhtar M, Mogensen J, Rasmussen TB, Villard E, Charron P, Elliott P, Keavney BD, Monserrat L, Pinto YM, Meder B, Tijsen AJ. Rare DCM associated variants in pre-miR-208a disrupt miRNA maturation and function. Hum Mol Genet 2025:ddaf069. [PMID: 40327887 DOI: 10.1093/hmg/ddaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/24/2025] [Indexed: 05/08/2025] Open
Abstract
Dilated cardiomyopathy (DCM) is a major cause of heart failure (HF) defined by ventricular dilatation and systolic dysfunction. Although microRNAs (miRNAs) are known to affect HF development, little is known about the contribution of genetic variants in miRNAs or their precursors to the susceptibility or pathogenesis of DCM. We screened 1640 DCM cases for variants in cardiac miR-208a and miR-208b and their precursors. We identified four variants in the miR-208a pre-miRNA, which are present at very low frequencies in the general population. Two of these variants (+42G > T and +68G > T) alter a highly conserved nucleotide and the predicted pre-miRNA secondary structure. Both variants result in reduced mature miR-208a levels in overexpression experiments. The variant +42G > T also increased pre-miR-208a levels in these experiments, which indicates a maturation deficiency. Co-transfection of the overexpression constructs with a luciferase construct containing six miRNA binding sites revealed that both variants also impair repression of luciferase expression by miR-208a, indicative of also a loss of miR208a function. Together this indicates that these DCM-associated variants impair formation of mature miR208a. Combined with the role of miR-208a in cardiac contractility this suggests that variants +42G > T and +68G > T in pre-miR-208a may contribute to the DCM phenotype observed in these patients.
Collapse
Affiliation(s)
- Yolan J Reckman
- Amsterdam UMC, University of Amsterdam, Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Jan Haas
- Department of Internal Medicine III, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg , Germany
| | - Ingeborg van der Made
- Amsterdam UMC, University of Amsterdam, Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Simon G Williams
- Division of Cardiovascular Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
| | - Iria Gomez Diaz
- Scientific Department, Health in Code S.L., Av. de Arteixo 43, 15008 A Coruña, Spain
| | - Mohammed Akhtar
- Inherited Cardiac Diseases Unit, The Heart Hospital, University College London, Gower St, London WC1E 6BT, United Kingdom
| | - Jens Mogensen
- Department of Cardiology, Odense University Hospital, J. B. Winsløws Vej 4, 5000 Odense, Denmark
| | - Torsten B Rasmussen
- Department of Cardiology, Aarhus Universitetshospital, Palle Juul-Jensens Boulevard 69, 8200 Aarhus, Denmark
| | - Eric Villard
- AP-HP, Department of Cardiology & Department of Genetics, Sorbonne University, INSERM UMRS-1166, ICAN Institute, Pitié-Salpêtrière Hospital, 47-83 Bd de l'Hôpital, 75013 Paris, France
| | - Philippe Charron
- AP-HP, Department of Cardiology & Department of Genetics, Sorbonne University, INSERM UMRS-1166, ICAN Institute, Pitié-Salpêtrière Hospital, 47-83 Bd de l'Hôpital, 75013 Paris, France
- Member of the European Reference Network for rare, low prevalence and complex diseases of the heart: ERN GUARD-Heart
| | - Perry Elliott
- Inherited Cardiac Diseases Unit, The Heart Hospital, University College London, Gower St, London WC1E 6BT, United Kingdom
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Medical Department, Dilemma Solutions SL, Rúa Antonio Insua Rivas, 56, 15008 A Coruña, Spain
| | - Lorenzo Monserrat
- Manchester NIHR Biomedical Research Centre, Manchester University NHS Foundation Trust, Oxford Rd, Manchester M13 9WL, United Kingdom
| | - Yigal M Pinto
- Amsterdam UMC, University of Amsterdam, Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- Member of the European Reference Network for rare, low prevalence and complex diseases of the heart: ERN GUARD-Heart
| | - Benjamin Meder
- Department of Internal Medicine III, Medical Faculty, Heidelberg University, Im Neuenheimer Feld 672, 69120 Heidelberg , Germany
| | - Anke J Tijsen
- Amsterdam UMC, University of Amsterdam, Experimental Cardiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kuang Z, Wu J, Tan Y, Zhu G, Li J, Wu M. MicroRNA in the Diagnosis and Treatment of Doxorubicin-Induced Cardiotoxicity. Biomolecules 2023; 13:biom13030568. [PMID: 36979503 PMCID: PMC10046787 DOI: 10.3390/biom13030568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Doxorubicin (DOX), a broad-spectrum chemotherapy drug, is widely applied to the treatment of cancer; however, DOX-induced cardiotoxicity (DIC) limits its clinical therapeutic utility. However, it is difficult to monitor and detect DIC at an early stage using conventional detection methods. Thus, sensitive, accurate, and specific methods of diagnosis and treatment are important in clinical practice. MicroRNAs (miRNAs) belong to non-coding RNAs (ncRNAs) and are stable and easy to detect. Moreover, miRNAs are expected to become biomarkers and therapeutic targets for DIC; thus, there are currently many studies focusing on the role of miRNAs in DIC. In this review, we list the prominent studies on the diagnosis and treatment of miRNAs in DIC, explore the feasibility and difficulties of using miRNAs as diagnostic biomarkers and therapeutic targets, and provide recommendations for future research.
Collapse
Affiliation(s)
- Ziyu Kuang
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jingyuan Wu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ying Tan
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Guanghui Zhu
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Li
- Oncology Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Min Wu
- Cardiovascular Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
3
|
Bozgeyik E, Bozgeyik İ. Non-coding RNA variations in oral cancers: a comprehensive review. Gene 2022; 851:147012. [PMID: 36349577 DOI: 10.1016/j.gene.2022.147012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/04/2022]
|
4
|
Tabasi F, Hasanpour V, Sarhadi S, Kaykhaei MA, Pourzand P, Heravi M, Langari AA, Bahari G, Taheri M, Hashemi M, Ghavami S. Association of miR-499 Polymorphism and Its Regulatory Networks with Hashimoto Thyroiditis Susceptibility: A Population-Based Case-Control Study. Int J Mol Sci 2021; 22:10094. [PMID: 34576267 PMCID: PMC8470033 DOI: 10.3390/ijms221810094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic background. Several genetic factors have been suggested, yet numerous genetic contributors remain to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators critically involved in biological processes, of which polymorphisms can alter their function, leading to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444 polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore, we investigated the potential interacting regulatory network of the miR-499. This case-control study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in heterozygous (OR = 3.32, 95%CI = 2.00-5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI = 1.30-6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97-5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI = 1.62-4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92, 95%CI = 1.37-2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated in regulating immune system functions, including immunorecognition and complement activity. We demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However, predicted regulatory networks revealed that this polymorphism is contributing to the regulation of immune system pathways.
Collapse
Affiliation(s)
- Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Vahed Hasanpour
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Shamim Sarhadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran;
| | - Mahmoud Ali Kaykhaei
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
- Department of Endocrinology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Mehrdad Heravi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Ahmad Alinaghi Langari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
5
|
de Carvalho JB, de Morais GL, Vieira TCDS, Rabelo NC, Llerena JC, Gonzalez SMDC, de Vasconcelos ATR. miRNA Genetic Variants Alter Their Secondary Structure and Expression in Patients With RASopathies Syndromes. Front Genet 2019; 10:1144. [PMID: 31798637 PMCID: PMC6863982 DOI: 10.3389/fgene.2019.01144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
RASopathies are a group of rare genetic diseases caused by germline mutations in genes involved in the RAS–mitogen-activated protein kinase (RAS-MAPK) pathway. Whole-exome sequencing (WES) is a powerful approach for identifying new variants in coding and noncoding DNA sequences, including miRNAs. miRNAs are fine-tuning negative regulators of gene expression. The presence of variants in miRNAs could lead to malfunctions of regulation, resulting in diseases. Here, we identified 41 variants in mature miRNAs through WES analysis in five patients with previous clinical diagnosis of RASopathies syndromes. The pathways, biological processes, and diseases that were over-represented among the target genes of the mature miRNAs harboring variants included the RAS, MAPK, RAP1, and PIK3-Akt signaling pathways, neuronal differentiation, neurogenesis and nervous system development, congenital cardiac defects (hypertrophic cardiomyopathy, dilated cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy), and the phenotypes and syndromes of RASopathies (Noonan syndrome, Legius syndrome, Costello syndrome, Cafe au lait spots multiple, subaortic stenosis, pulmonary valve stenosis, and LEOPARD syndrome). Furthermore, eight selected variants in nine mature miRNAs (hsa-miR-1304, hsa-miR-146a, hsa-miR-196a2, hsa-miR-499a/hsa-miR-499b, hsa-miR-449b, hsa-miR-548l, hsa-miR-575, and hsa-miR-593) may have caused alterations in the secondary structures of miRNA precursor. Selected miRNAs containing variants such as hsa-miR-146a-3p, hsa-miR-196a-3p, hsa-miR-548l, hsa-miR-449b-5p, hsa-miR-575, and hsa-miR499a-3p could regulate classical genes associated with Rasopathies and RAS-MAPK pathways, contributing to modify the expression pattern of miRNAs in patients. RT-qPCR expression analysis revealed four differentially expressed miRNAs that were downregulated: miRNA-146a-3p in P1, P2, P3, P4, and P5, miR-1304-3p in P2, P3, P4, and P5, miR-196a2-3p in P3, and miR-499b-5p in P1. miR-499a-3p was upregulated in P1, P3, and P5. These results indicate that miRNAs show different expression patterns when these variants are present in patients. Therefore, this study characterized the role of miRNAs harboring variants related to RASopathies for the first time and indicated the possible implications of these variants for phenotypes of RASopathies such as congenital cardiac defects and cardio-cerebrovascular diseases. The expression and existence of miRNA variants may be used in the study of biomarkers of the RASopathies.
Collapse
Affiliation(s)
- Joseane Biso de Carvalho
- Bioinformatics Laboratory (LABINFO), National Laboratory for Scientific Computing (LNCC), Petrópolis, Brazil
| | - Guilherme Loss de Morais
- Bioinformatics Laboratory (LABINFO), National Laboratory for Scientific Computing (LNCC), Petrópolis, Brazil
| | - Thays Cristine Dos Santos Vieira
- Laboratory of Genomic Medicine, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, Brazil
| | - Natana Chaves Rabelo
- Laboratory of Genomic Medicine, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, Brazil
| | - Juan Clinton Llerena
- Department of Medical Genetics, National Institute of Women, Children and Adolescents Health Fernades Figueira, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
| | - Sayonara Maria de Carvalho Gonzalez
- Laboratory of Genomic Medicine, National Institute of Women, Children and Adolescents Health Fernandes Figueira (IFF/FIOCRUZ), Rio de Janeiro, Brazil
| | | |
Collapse
|
6
|
Ghanbari M, Munshi ST, Ma B, Lendemeijer B, Bansal S, Adams HH, Wang W, Goth K, Slump DE, den Hout MC, IJcken WF, Bellusci S, Pan Q, Erkeland SJ, Vrij FM, Kushner SA, Ikram MA. A functional variant in the miR‐142 promoter modulating its expression and conferring risk of Alzheimer disease. Hum Mutat 2019; 40:2131-2145. [DOI: 10.1002/humu.23872] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/13/2019] [Accepted: 07/11/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Genetics, School of Medicine Mashhad University of Medical Sciences Mashhad Iran
| | - Shashini T. Munshi
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Buyun Ma
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Sakshi Bansal
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Hieab H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Wenshi Wang
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Kerstin Goth
- Department of Lung Matrix Remodeling, Excellence Cluster Cardio‐Pulmonary System (ECCPS) University Justus Liebig Giessen Giessen Germany
| | - Denise E. Slump
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Mirjam C.G.N. den Hout
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Wilfred F.J. IJcken
- Center for Biomics, Department of Cell Biology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Saverio Bellusci
- Department of Lung Matrix Remodeling, Excellence Cluster Cardio‐Pulmonary System (ECCPS) University Justus Liebig Giessen Giessen Germany
| | - Qiuwei Pan
- Department of Gastroenterology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Stefan J. Erkeland
- Department of Immunology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Femke M.S. Vrij
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - Steven A. Kushner
- Department of Psychiatry, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center Rotterdam Rotterdam the Netherlands
| |
Collapse
|
7
|
Nagy O, Baráth S, Ujfalusi A. The role of microRNAs in congenital heart disease. EJIFCC 2019; 30:165-178. [PMID: 31263391 PMCID: PMC6599193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Congenital heart diseases (CHDs) are the leading inherited cause of perinatal and infant mortality. CHD refers to structural anomalies of the heart and blood vessels that arise during cardiac development and represents a broad spectrum of malformations, including septal and valve defects, lesions affecting the outflow tract and ventricules. Advanced treatment strategies have greatly improved life expectancy and led to expanded population of adult patients with CHD. Thus, a better understanding of the pathogenesis and molecular mechanisms underlying CHDs is essential to improve the diagnosis and prognosis of patients. The etiology of CHD is largely unknown, genetic and environmental factors may contribute to the disease. In addition to the mutations affecting genomic DNA, epigenetic changes are being increasingly acknowledged as key factors in the development and progression of CHDs. The posttranscriptional regulation of gene expression by microRNAs (miRs) controls the highly complex multi-cell lineage process of cardiac tissue formation. In recent years, multiplex experimental models have provided evidence that changes in expression levels of miRs are associated with human cardiovascular disease, including CHD. The newly described correlations between miRs and heart development suggest the potential importance of miRs as diagnostic markers in human cardiovascular diseases. In the future, more intensive research is likely to be carried out to clarify their contribution to personalized management and treatment of CHD patients. In this paper, we discuss the current knowledge on the causative role of miRs in cardiac development and CHDs.
Collapse
Affiliation(s)
| | | | - Anikó Ujfalusi
- Corresponding author: Anikó Ujfalusi Department of Laboratory Medicine Faculty of Medicine University of Debrecen Nagyerdei krt. 98. Debrecen H-4032 Hungary Phone: +36 52 340 006 Fax: +36 52 417 631 E-mail:
| |
Collapse
|
8
|
Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, Shen G, Wang F. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol 2019; 292:188-196. [PMID: 30967276 DOI: 10.1016/j.ijcard.2019.04.006] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are emerging as powerful regulators of cardiac development and disease. Nevertheless, detailed studies describing circRNA-mediated regulation of cardiac fibroblasts (CFs) biology and their role in cardiac fibrosis remain limited. METHODS PCR and Sanger sequencing were performed to identify the expression of circHIPK3 in CFs. Edu corporation assays, Transwell migration assays, and immunofluorescence staining assays were conducted to detect the function of circHIPK3 in CFs in vitro. Bioinformatics analysis, dual luciferase activity assays, RNA immunoprecipitation, and fluorescent in situ hybridization experiments were conducted to investigate the mechanism of circHIPK3-mediated cardiac fibrosis. Echocardiographic analysis, Sirius Red staining and immunofluorescence staining were performed to investigate the function of circHIPK3 in angiotensin II (Ang II) induced cardiac fibrosis in vivo. RESULTS circHIPK3 expression markedly increased in CFs and heart tissues after the treatment of Ang II. circHIPK3 silencing attenuates CFs proliferation, migration and the upregulation of a-SMA expression levels induced by Ang II in vitro. circHIPK3 acted as a miR-29b-3p sponge and overexpression of circHIPK3 effectively reverses miR-29b-3p-induced inhibition of CFs proliferation and migration and alters the expression levels of miR-29b-3p targeting genes (a-SMA, COL1A1, COL3A1) in vitro. Combination of circHIPK3 silencing and miR-29b-3p overexpression had a stronger effect on cardiac fibrosis suppression in vivo than did circHIPK3 silencing or miR-29b-3p overexpression alone. CONCLUSIONS Our data suggest that circHIPK3 serves as a miR-29b-3p sponge to regulate CF proliferation, migration and development of cardiac fibrosis, revealing a potential new target for the prevention of Ang II-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Huaner Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Shuang Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Yang Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Gu Shen
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China.
| |
Collapse
|
9
|
Ding W, Li M, Sun T, Han D, Guo X, Chen X, Wan Q, Zhang X, Wang J. A polymorphism rs3746444 within the pre-miR-499 alters the maturation of miR-499-5p and its antiapoptotic function. J Cell Mol Med 2018; 22:5418-5428. [PMID: 30102014 PMCID: PMC6201352 DOI: 10.1111/jcmm.13813] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRNAs) are non‐coding RNAs that function as post‐transcriptional regulators of cardiac development and cardiovascular diseases. Single nucleotide polymorphisms (SNPs) in miRNA genes are a novel class of genetic variations in the human genome that confer the risk of cardiovascular diseases. Here, we identified a polymorphism A→G (rs3746444) in miR‐499 precursor (pre‐miR‐499) that affects the maturation of miR‐499‐5p and alters its antiapoptotic function by converting stable A‐U base pair to wobble G‐U base pair in pre‐miR‐499 secondary structure. Furthermore, our results showed that the concentrations of plasma miR‐499‐5p could be correlated with myocardial infarction (MI) and heart failure (HF) patients in comparison with control subjects and polymorphism rs3746444 in miR‐499 could influence its abundance in plasma. Finally, our results also showed that the variant of polymorphism in miR‐499 influenced the severity of the myocardial infarction significantly. This is the first report to highlight the biological significance of this polymorphism on the maturation of miR‐499‐5p and its antiapoptotic role during MI. These findings may pave a way to better understand the individual variability based on miRNA SNPs in heart diseases and may contribute to better treatment for disease severity on a personalized level.
Collapse
Affiliation(s)
- Wei Ding
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Mengyang Li
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Teng Sun
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Di Han
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiaoci Guo
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Xiao Chen
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Qinggong Wan
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Xuejuan Zhang
- Department of General Medicine, The Affiliated Hospital, Qingdao University, Qingdao, China
| | - Jianxun Wang
- Institute for Translational Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Zhou K, Yue P, Ma F, Yan H, Zhang Y, Wang C, Qiu D, Hua Y, Li Y. Interpreting the various associations of MiRNA polymorphisms with susceptibilities of cardiovascular diseases: Current evidence based on a systematic review and meta-analysis. Medicine (Baltimore) 2018; 97:e10712. [PMID: 29794746 PMCID: PMC6393131 DOI: 10.1097/md.0000000000010712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND To interpret the various associations between miRNA polymorphisms and cardiovascular diseases (CVD). METHODS Literature search has identified relevant studies up to June 2016. A meta-analysis was performed followed the guidelines from the Cochrane review group and the PRISMA statement. Studies were identified by searching the Cochrane Library, EMBASE, PUBMED and WHO clinical trials registry center. A meta-analysis has been done with a fixed/random-effect model using STATA 14.0, which also has been used to estimate the publication bias and meta-regression. RESULTS The results from 11 case-control studies were included. The miR-146a G/C makes a contribution to the causing of CVD as recessive genetic model. And the miR-499 G/A raised the risks of cardiomyopathy, however it could still accelerate the procedure of CVD combined with myocardial infraction. At this point, we consider that it could deepen the adverse of outcomes from coronary artery disease (CAD), but it's hard to draw an association between miR-499 G/A and CAD. At last the miR-196a2 T/C demonstrated a contrary role between development problem and metabolic issues, which protects the development procedure and impairs the metabolism to cause different disease phenotypes. CONCLUSION Despite inter-study variability, the polymorphisms from miR-146a, miR-499 and miR-196a2 have impacts on cardiovascular disease. Each type of miRNA has individual role in either cardiac development or the origins of CVD.
Collapse
Affiliation(s)
- Kaiyu Zhou
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University
| | - Peng Yue
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Fan Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Hualin Yan
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yi Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| | - Dajian Qiu
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| | - Yimin Hua
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
- Program for Changjiang Scholars and Innovative Research Team in University, West China Second University Hospital, Sichuan University
| | - Yifei Li
- Department of Pediatrics, West China Second University Hospital, Sichuan University
- Ministry of Education Key Laboratory of Women and Children's Diseases and Birth Defects, West China Second University Hospital, Sichuan University
| |
Collapse
|
11
|
Chai J, Chen L, Luo Z, Zhang T, Chen L, Lou P, Sun W, Long X, Lan J, Wang J, Pu H, Qiu J, Shuai S, Guo Z. Spontaneous single nucleotide polymorphism in porcine microRNA-378 seed region leads to functional alteration. Biosci Biotechnol Biochem 2018; 82:1081-1089. [PMID: 29658390 DOI: 10.1080/09168451.2018.1459175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sequence variation in a microRNA (miRNA) seed region can influence its biogenesis and effects on target mRNAs; however, in mammals, few seed region mutations leading to functional alterations have been reported to date. Here, we report the identification of a single nucleotide polymorphism (SNP) with functional consequence located in the seed region of porcine miR-378. In vitro analysis of this rs331295049 A17G SNP showed significantly up-regulated expression of the mature miR-378 (miR-378/G). In silico target prediction indicated that the SNP would modulate secondary structure and result in functional loss affecting >85% of the known target genes of the wild-type miR-378 (miR-378/A), and functional gain affecting >700 new target genes, and dual-luciferase reporter assay verified this result. This report of a SNP in the seed region of miR-378 leads to functional alteration and indicates the potential for substantive functional consequences to the molecular physiology of a mammalian organism.
Collapse
Affiliation(s)
- Jie Chai
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China.,b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Lei Chen
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Zonggang Luo
- c Department of Animal Science , Southwest University , Chongqing , China
| | - Tinghuan Zhang
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Li Chen
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Pengbo Lou
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Wenyang Sun
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Xi Long
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Jing Lan
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Jinyong Wang
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Hongzhou Pu
- d Agricultural Bureau of Nanjiang , Nanjiang , China
| | - Jinjie Qiu
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| | - Surong Shuai
- a College of Animal Science and Technology , Sichuan Agricultural University , Chengdu , China
| | - Zongyi Guo
- b Key Laboratory of Pig Industry Sciences (Ministry of Agriculture) , Chongqing Academy of Animal Science , Chongqing , China
| |
Collapse
|
12
|
Zheng J, Hu L, Cheng J, Xu J, Zhong Z, Yang Y, Yuan Z. lncRNA PVT1 promotes the angiogenesis of vascular endothelial cell by targeting miR‑26b to activate CTGF/ANGPT2. Int J Mol Med 2018; 42:489-496. [PMID: 29620147 DOI: 10.3892/ijmm.2018.3595] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/22/2018] [Indexed: 11/06/2022] Open
Abstract
Angiogenesis is essential for various biological processes, including tumor blood supply delivery, cancer cell growth, invasion and metastasis. Plasmacytoma variant translocation 1 (PVT1) long noncoding RNA (lncRNA) has been previously reported to affect angiogenesis of glioma microvascular endothelial cells by regulating microRNA (miR)‑186 expression level. However, the specific underlying molecular mechanism of PVT1 regulation of angiogenesis in vascular endothelial cells remains to be elucidated. The present study investigated the role of PVT1 in cell proliferation, migration and vascular tube formation of human umbilical vein endothelial cells (HUVECs) using MTT assay, Transwell migration assay and in vitro vascular tube formation assay, respectively. In order to determine the effect of miR‑26b on cell proliferation, migration and vascular tube formation of HUVECs, miR‑26 mimic or miR‑26b inhibitor were transfected into HUVECs. Reverse transcription‑quantitative polymerase chain reaction and western blotting were conducted to quantify the mRNA and protein expression levels of target genes. The present study confirmed that miR‑26b bound 3'‑untranslated region (3'‑UTR) and subsequently influenced gene expression level using dual luciferase reporter assay. The current study observed that PVT1 affected cell proliferation, migration and in vitro vascular tube formation of HUVECs. In addition, it was determined that PVT1 was able to bind and degrade miR‑26b to promote connective tissue growth factor (CTGF) and angiopoietin 2 (ANGPT2) expression. miR‑26b was also identified to have a suppressive role in cell proliferation, migration and in vitro vascular tube formation of HUVECs via binding 3'‑UTR regions and downregulating CTGF and ANGPT2 expression levels. The current findings may improve the understanding of the underlying mechanism of PVT1 contributing to angiogenesis of vascular endothelial cells and offer rationale for targeting PVT1 to treat angiogenesis dysfunction‑associated diseases, including cancer metastasis.
Collapse
Affiliation(s)
- Jifu Zheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lili Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Cheng
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Xu
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhiqiang Zhong
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yuan Yang
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zheng Yuan
- Department of Hematology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
13
|
Woon MT, Long PA, Reilly L, Evans JM, Keefe AM, Lea MR, Beglinger CJ, Balijepalli RC, Lee Y, Olson TM, Kamp TJ. Pediatric Dilated Cardiomyopathy-Associated LRRC10 (Leucine-Rich Repeat-Containing 10) Variant Reveals LRRC10 as an Auxiliary Subunit of Cardiac L-Type Ca 2+ Channels. J Am Heart Assoc 2018; 7:e006428. [PMID: 29431102 PMCID: PMC5850229 DOI: 10.1161/jaha.117.006428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 11/10/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Genetic causes of dilated cardiomyopathy (DCM) are incompletely understood. LRRC10 (leucine-rich repeat-containing 10) is a cardiac-specific protein of unknown function. Heterozygous mutations in LRRC10 have been suggested to cause DCM, and deletion of Lrrc10 in mice results in DCM. METHODS AND RESULTS Whole-exome sequencing was carried out on a patient who presented at 6 weeks of age with DCM and her unaffected parents, filtering for rare, deleterious, recessive, and de novo variants. Whole-exome sequencing followed by trio-based filtering identified a homozygous recessive variant in LRRC10, I195T. Coexpression of I195T LRRC10 with the L-type Ca2+ channel (Cav1.2, β2CN2, and α2δ subunits) in HEK293 cells resulted in a significant ≈0.5-fold decrease in ICa,L at 0 mV, in contrast to the ≈1.4-fold increase in ICa,L by coexpression of LRRC10 (n=9-12, P<0.05). Coexpression of LRRC10 or I195T LRRC10 did not alter the surface membrane expression of Cav1.2. LRRC10 coexpression with Cav1.2 in the absence of auxiliary β2CN2 and α2δ subunits revealed coassociation of Cav1.2 and LRRC10 and a hyperpolarizing shift in the voltage dependence of activation (n=6-9, P<0.05). Ventricular myocytes from Lrrc10-/- mice had significantly smaller ICa,L, and coimmunoprecipitation experiments confirmed association between LRRC10 and the Cav1.2 subunit in mouse hearts. CONCLUSIONS Examination of a patient with DCM revealed homozygosity for a previously unreported LRRC10 variant: I195T. Wild-type and I195T LRRC10 function as cardiac-specific subunits of L-type Ca2+ channels and exert dramatically different effects on channel gating, providing a potential link to DCM.
Collapse
Affiliation(s)
- Marites T Woon
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Pamela A Long
- Mayo Graduate School, Molecular Pharmacology and Experimental Therapeutics Track, Mayo Clinic, Rochester, MN
| | - Louise Reilly
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Jared M Evans
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | - Alexis M Keefe
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Martin R Lea
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Carl J Beglinger
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Ravi C Balijepalli
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | - Youngsook Lee
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | - Timothy M Olson
- Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Timothy J Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
14
|
Gao X, Yang L, Luo H, Tan F, Ma X, Lu C. A Rare Rs139365823 Polymorphism in Pre-miR-138 Is Associated with Risk of Congenital Heart Disease in a Chinese Population. DNA Cell Biol 2018; 37:109-116. [PMID: 29298094 DOI: 10.1089/dna.2017.4013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
miR-138 modulates cardiac morphogenesis in zebrafish. We explored whether a genetic polymorphism in miR-138 might contribute to the occurrence of sporadic congenital heart disease (CHD) and the potential mechanism. We performed a case-control study consisting of 857 CHD cases and 938 non-CHD controls by genotyping miR-138 in a Chinese population. Two SNPs, including rare rs139365823 located in the pre-miR-138 sequence and rs76987351 located in the pri-miR-138 sequence, were identified by sequencing miR-138. The results demonstrated that the genotypes and allele frequencies of the rs139365823 minor allele A were significantly associated with the increased risk of CHD cases overall or in the Tetralogy of Fallot (TOF) subtype, but not with the rs76987351 A/G allele. Real-time PCR data showed that the rs139365823 minor allele A significantly increased the expression of mature miR-138, whereas the rs76987351 minor allele A had the opposite effect. As TOF is caused by severe outflow tract (OFT) development and an alignment defect, we identified Dvl2, involved in OFT development, as a direct target of miR-138. Further, the rs139365823 minor allele A enhanced the miR-138-mediated inhibitory regulation of Dvl2. Taken together, our results demonstrated for the first time that the functional variant rs139365823 in pre-miR-138 altered the expression of mature miR-138 and its inhibitory effect on target genes and conferred the risk for CHD in the population studied here.
Collapse
Affiliation(s)
- Xiaobo Gao
- 1 Department of Genetics, National Research Institute for Family Planning , Beijing, China .,2 Graduate School of Peking Union Medical College , Beijing, China
| | - Liping Yang
- 3 Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University , Fuzhou, China
| | - Haiyan Luo
- 2 Graduate School of Peking Union Medical College , Beijing, China
| | - Fengwei Tan
- 4 Department of Thoracic Surgery, National Cancer Center/Cancer Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Ma
- 1 Department of Genetics, National Research Institute for Family Planning , Beijing, China .,2 Graduate School of Peking Union Medical College , Beijing, China
| | - Cailing Lu
- 1 Department of Genetics, National Research Institute for Family Planning , Beijing, China .,2 Graduate School of Peking Union Medical College , Beijing, China
| |
Collapse
|
15
|
Yang Y, Yu T, Jiang S, Zhang Y, Li M, Tang N, Ponnusamy M, Wang JX, Li PF. miRNAs as potential therapeutic targets and diagnostic biomarkers for cardiovascular disease with a particular focus on WO2010091204. Expert Opin Ther Pat 2017. [PMID: 28627982 DOI: 10.1080/13543776.2017.1344217] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION A number of miRNAs have been reported to be critically involved in the regulation of cardiovascular disease (CVDs). Therefore, the development of potent analogues/inhibitors for miRNAs have thus become a key focus in the present drug discovery. In this review, we discuss the basic research and clinical use of miRNAs as the early diagnosis and therapeutic targets for CVD. We have also focused on the efficiency of therapeutically targeting miR-499, which is considered as one of the most promising molecules for treating CVDs. Areas covered: In this review, we have discussed the patents and patent applications related to miRNAs detected in CVD patients published in recent years. This review also covers the expression pattern of miR-499, as well as it highlights functions of its inhibitors in CVD. We used Google and Pubmed search engines to find relevant patents. Expert opinion: Although a massive number of miRNAs are patented as CVD biomarkers, further work is absolutely required to evaluate the reliable diagnostic values and therapeutic potential of these candidates. Overall, targeting miRNAs is definitely a promising strategy to be investigated for diagnosis and treatment of CVDs in future, however, the delivery system and off-targets effects are still a difficult challenge need to be elucidated.
Collapse
Affiliation(s)
- Yanyan Yang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Tao Yu
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Shaoyan Jiang
- b Department of cardiology , The Affiliated Cardiovascular Hospital of Qingdao University , Qingdao , People's Republic of China
| | - Yinfeng Zhang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Mengpeng Li
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Ningning Tang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Murugavel Ponnusamy
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Jian-Xun Wang
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| | - Pei-Feng Li
- a Institue for translational medicine , Qingdao University , Qingdao , People's Republic of China
| |
Collapse
|
16
|
Hu Y, Ehli EA, Boomsma DI. MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: Current progress in genetic association studies, expression profiling, and translational research. Autism Res 2017; 10:1184-1203. [PMID: 28419777 DOI: 10.1002/aur.1789] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/20/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are a group of small noncoding RNA molecules, 18-25 nucleotides in length, which can negatively regulate gene expression at the post-transcriptional level by binding to messenger RNAs. About half of all identified miRNAs in humans are expressed in the brain and display regulatory functions important for many biological processes related to the development of the central nervous system (CNS). Disruptions in miRNA biogenesis and miRNA-target interaction have been related to CNS diseases, including psychiatric disorders. In this review, we focus on the role of miRNAs in autism spectrum disorder (ASD) and summarize recent findings about ASD-associated genetic variants in miRNA genes, in miRNA biogenesis genes, and miRNA targets. We discuss deregulation of miRNA expression in ASD and functional validation of ASD-related miRNAs in animal models. Including miRNAs in studies of ASD will contribute to our understanding of its etiology and pathogenesis and facilitate the discrimination between different disease subgroups. Autism Res 2017. © 2017 International Society for Autism Research, Wiley Periodicals, Inc. Autism Res 2017, 10: 1184-1203. © 2017 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yubin Hu
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), The Netherlands
| | - Erik A Ehli
- Avera Institute for Human Genetics, Sioux Falls, South Dakota
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, The Netherlands.,Neuroscience Campus Amsterdam (NCA), The Netherlands.,Avera Institute for Human Genetics, Sioux Falls, South Dakota
| |
Collapse
|
17
|
Das S, Kohr M, Dunkerly-Eyring B, Lee DI, Bedja D, Kent OA, Leung AKL, Henao-Mejia J, Flavell RA, Steenbergen C. Divergent Effects of miR-181 Family Members on Myocardial Function Through Protective Cytosolic and Detrimental Mitochondrial microRNA Targets. J Am Heart Assoc 2017; 6:JAHA.116.004694. [PMID: 28242633 PMCID: PMC5524005 DOI: 10.1161/jaha.116.004694] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background MicroRNA (miRNA) is a type of noncoding RNA that can repress the expression of target genes through posttranscriptional regulation. In addition to numerous physiologic roles for miRNAs, they play an important role in pathophysiologic processes affecting cardiovascular health. Previously, we reported that nuclear encoded microRNA (miR‐181c) is present in heart mitochondria, and importantly, its overexpression affects mitochondrial function by regulating mitochondrial gene expression. Methods and Results To investigate further how the miR‐181 family affects the heart, we suppressed miR‐181 using a miR‐181‐sponge containing 10 repeated complementary miR‐181 “seed” sequences and generated a set of H9c2 cells, a cell line derived from rat myoblast, by stably expressing either a scrambled or miR‐181‐sponge sequence. Sponge‐H9c2 cells showed a decrease in reactive oxygen species production and reduced basal mitochondrial respiration and protection against doxorubicin‐induced oxidative stress. We also found that miR‐181a/b targets phosphatase and tensin homolog (PTEN), and the sponge‐expressing stable cells had increased PTEN activity and decreased PI3K signaling. In addition, we have used miR‐181a/b−/− and miR‐181c/d−/− knockout mice and subjected them to ischemia‐reperfusion injury. Our results suggest divergent effects of different miR‐181 family members: miR‐181a/b targets PTEN in the cytosol, resulting in an increase in infarct size in miR‐181a/b−/− mice due to increased PTEN signaling, whereas miR‐181c targets mt‐COX1 in the mitochondria, resulting in decreased infarct size in miR‐181c/d−/− mice. Conclusions The miR‐181 family alters the myocardial response to oxidative stress, notably with detrimental effects by targeting mt‐COX1 (miR‐181c) or with protection by targeting PTEN (miR‐181a/b).
Collapse
Affiliation(s)
- Samarjit Das
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Mark Kohr
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | | | - Dong I Lee
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Djahida Bedja
- Department of Cardiology, Johns Hopkins School of Medicine, Baltimore, MD.,Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Oliver A Kent
- Princess Margaret Cancer Centre, University of Toronto, Ontario, Canada
| | - Anthony K L Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA.,Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, Philadelphia, PA
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
| | | |
Collapse
|
18
|
Makhdoumi P, Roohbakhsh A, Karimi G. MicroRNAs regulate mitochondrial apoptotic pathway in myocardial ischemia-reperfusion-injury. Biomed Pharmacother 2016; 84:1635-1644. [DOI: 10.1016/j.biopha.2016.10.073] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/30/2022] Open
|
19
|
Zheng Y, Lin J, Li J, Zhang H, Ai W, Wang X, Dahlgren RA, Wang H. Effects of β-diketone antibiotics on F1-zebrafish (Danio rerio) based on high throughput miRNA sequencing under exposure to parents. CHEMOSPHERE 2016; 164:41-51. [PMID: 27574813 DOI: 10.1016/j.chemosphere.2016.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The toxicity of β-diketone antibiotics (DKAs), a class of ''pseudo-persistent'' environmental pollutants, to F0-zebrafish (Danio rerio) was investigated using 7-dpf F1-zebrafish miRNA sequencing and bioinformatics analyses. Based on relative expression, 47, 134 and 118 of 193 mature miRNAs were differentially expressed between control vs 6.25 mg/L, control vs 12.5 mg/L and 6.25 vs 12.5 mg/L treatments, respectively. Utilizing three databases, 2523 potential target genes were predicted, and they were assigned to 19 high-abundance KEGG pathways and 20 functional categories by COG analysis. Among 11 significantly differential expression and high-abundance miRNAs, the expression levels for 7 miRNAs (miR-144, -124, -499, -125b, -430b, -430c and -152) assessed by qRT-PCR were consistent with those determined by sRNA-seq. A potential network was plotted between 11 miRNAs and their target genes based on differential expression and binding effectiveness. The high degree of connectivity between miRNA-gene pairs suggests that these miRNAs play critical roles in zebrafish development. The expression of miR-124 and miR-499 in whole-mount in situ hybridization was in general agreement with those from qRT-PCR and miRNA-seq and were DKA concentration-dependent. DKA exposure induced severe histopathological changes and damage in F0-zebrafish ovary tissue, as reflected by an increased number of early developmental oocytes, irregular cell distribution, decreased yolk granules, cytoplasmic shrinkage, cell lysis in mature oocytes, and dissolution of internal corona radiata. Chronic DKA exposure affected reproduction of F0-zebrafish and development of F1-zebrafish. These observations demonstrate the toxic effect transfer relation across parent and their offspring, and enhance our understanding of drug-induced diseases.
Collapse
Affiliation(s)
- Yuansi Zheng
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiebo Lin
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieyi Li
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haifeng Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Weiming Ai
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
20
|
Genome-wide identification of microRNA-related variants associated with risk of Alzheimer's disease. Sci Rep 2016; 6:28387. [PMID: 27328823 PMCID: PMC4916596 DOI: 10.1038/srep28387] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 06/03/2016] [Indexed: 01/16/2023] Open
Abstract
MicroRNAs (miRNAs) serve as key post-transcriptional regulators of gene expression. Genetic variation in miRNAs and miRNA-binding sites may affect miRNA function and contribute to disease risk. Here, we investigated the extent to which variants within miRNA-related sequences could constitute a part of the functional variants involved in developing Alzheimer’s disease (AD), using the largest available genome-wide association study of AD. First, among 237 variants in miRNAs, we found rs2291418 in the miR-1229 precursor to be significantly associated with AD (p-value = 6.8 × 10−5, OR = 1.2). Our in-silico analysis and in-vitro miRNA expression experiments demonstrated that the variant’s mutant allele enhances the production of miR-1229-3p. Next, we found miR-1229-3p target genes that are associated with AD and might mediate the miRNA function. We demonstrated that miR-1229-3p directly controls the expression of its top AD-associated target gene (SORL1) using luciferase reporter assays. Additionally, we showed that miR-1229-3p and SORL1 are both expressed in the human brain. Second, among 42,855 variants in miRNA-binding sites, we identified 10 variants (in the 3′ UTR of 9 genes) that are significantly associated with AD, including rs6857 that increases the miR-320e-mediated regulation of PVRL2. Collectively, this study shows that miRNA-related variants are associated with AD and suggests miRNA-dependent regulation of several AD genes.
Collapse
|
21
|
Chaggar PS, Williams SG, Yonan N, Fildes J, Venkateswaran R, Shaw SM. Myocardial recovery with mechanical circulatory support. Eur J Heart Fail 2016; 18:1220-1227. [DOI: 10.1002/ejhf.575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/24/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Affiliation(s)
- Parminder S. Chaggar
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
- The Manchester Collaborative Centre for Inflammation Research; University of Manchester; Manchester UK
| | - Simon G. Williams
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - Nizar Yonan
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - James Fildes
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
- The Manchester Collaborative Centre for Inflammation Research; University of Manchester; Manchester UK
| | - Rajamiyer Venkateswaran
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| | - Steven M. Shaw
- The Transplant Unit; University Hospital of South Manchester; Southmoor Road Manchester M23 9LT UK
| |
Collapse
|
22
|
Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis. PLoS One 2016; 11:e0156065. [PMID: 27196440 PMCID: PMC4873136 DOI: 10.1371/journal.pone.0156065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/09/2016] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology.
Collapse
|
23
|
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94:107-121. [PMID: 27056419 DOI: 10.1016/j.yjmcc.2016.03.015] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 03/24/2016] [Indexed: 12/21/2022]
Abstract
Cardiac miRNAs (miR-1, miR133a, miR-208a/b, and miR-499) are abundantly expressed in the myocardium. They play a central role in cardiogenesis, heart function and pathology. While miR-1 and miR-133a predominantly control early stages of cardiogenesis supporting commitment of cardiac-specific muscle lineage from embryonic stem cells and mesodermal precursors, miR-208 and miR-499 are involved in the late cardiogenic stages mediating differentiation of cardioblasts to cardiomyocytes and fast/slow muscle fiber specification. In the heart, miR-1/133a control cardiac conductance and automaticity by regulating all phases of the cardiac action potential. miR-208/499 located in introns of the heavy chain myosin genes regulate expression of sarcomeric contractile proteins. In cardiac pathology including myocardial infarction (MI), expression of cardiac miRNAs is markedly altered that leads to deleterious effects associated with heart wounding, arrhythmia, increased apoptosis, fibrosis, hypertrophy, and tissue remodeling. In acute MI, circulating levels of cardiac miRNAs are significantly elevated making them to be a promising diagnostic marker for early diagnosis of acute MI. Great cardiospecific capacity of these miRNAs is very helpful for enhancing regenerative properties and survival of stem cell and cardiac progenitor transplants and for reprogramming of mature non-cardiac cells to cardiomyocytes.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, 119991 Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Department of Biophysics, Biological Faculty, Moscow State University, Moscow 119991, Russia; Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow 121609, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow 125315, Russia; Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; School of Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia.
| |
Collapse
|
24
|
Vásquez-Trincado C, García-Carvajal I, Pennanen C, Parra V, Hill JA, Rothermel BA, Lavandero S. Mitochondrial dynamics, mitophagy and cardiovascular disease. J Physiol 2016; 594:509-25. [PMID: 26537557 DOI: 10.1113/jp271301] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/30/2015] [Indexed: 12/14/2022] Open
Abstract
Cardiac hypertrophy is often initiated as an adaptive response to haemodynamic stress or myocardial injury, and allows the heart to meet an increased demand for oxygen. Although initially beneficial, hypertrophy can ultimately contribute to the progression of cardiac disease, leading to an increase in interstitial fibrosis and a decrease in ventricular function. Metabolic changes have emerged as key mechanisms involved in the development and progression of pathological remodelling. As the myocardium is a highly oxidative tissue, mitochondria play a central role in maintaining optimal performance of the heart. 'Mitochondrial dynamics', the processes of mitochondrial fusion, fission, biogenesis and mitophagy that determine mitochondrial morphology, quality and abundance have recently been implicated in cardiovascular disease. Studies link mitochondrial dynamics to the balance between energy demand and nutrient supply, suggesting that changes in mitochondrial morphology may act as a mechanism for bioenergetic adaptation during cardiac pathological remodelling. Another critical function of mitochondrial dynamics is the removal of damaged and dysfunctional mitochondria through mitophagy, which is dependent on the fission/fusion cycle. In this article, we discuss the latest findings regarding the impact of mitochondrial dynamics and mitophagy on the development and progression of cardiovascular pathologies, including diabetic cardiomyopathy, atherosclerosis, damage from ischaemia-reperfusion, cardiac hypertrophy and decompensated heart failure. We will address the ability of mitochondrial fusion and fission to impact all cell types within the myocardium, including cardiac myocytes, cardiac fibroblasts and vascular smooth muscle cells. Finally, we will discuss how these findings can be applied to improve the treatment and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- César Vásquez-Trincado
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne García-Carvajal
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Christian Pennanen
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Beverly A Rothermel
- Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Centre, Dallas, TX, USA
| | - Sergio Lavandero
- Advanced Centre for Chronic Disease (ACCDiS), Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Centre for Molecular Studies of the Cell, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Centre, Dallas, TX, USA
| |
Collapse
|
25
|
Guo M, Guo G, Ji X. Genetic polymorphisms associated with heart failure: A literature review. J Int Med Res 2016; 44:15-29. [PMID: 26769713 PMCID: PMC5536573 DOI: 10.1177/0300060515604755] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 08/03/2015] [Indexed: 12/22/2022] Open
Abstract
Objective To review possible associations reported between genetic variants and the risk, therapeutic response and prognosis of heart failure. Methods Electronic databases (PubMed, Web of Science and CNKI) were systematically searched for relevant papers, published between January 1995 and February 2015. Results Eighty-two articles covering 29 genes and 39 polymorphisms were identified. Conclusion Genetic association studies of heart failure have been highly controversial. There may be interaction or synergism of several genetic variants that together result in the ultimate pathological phenotype for heart failure.
Collapse
Affiliation(s)
- Mengqi Guo
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| | - Guanlun Guo
- Hubei Key Laboratory of Advanced Technology of Automotive Components, School of Automotive Engineering, Wuhan University of Technology, Wuhan, China
| | - Xiaoping Ji
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
26
|
Liu M, Chen Y, Song G, Chen B, Wang L, Li X, Kong X, Shen Y, Qian L. MicroRNA-29c overexpression inhibits proliferation and promotes apoptosis and differentiation in P19 embryonal carcinoma cells. Gene 2016; 576:304-11. [DOI: 10.1016/j.gene.2015.10.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/24/2015] [Accepted: 10/15/2015] [Indexed: 10/22/2022]
|
27
|
Katz MG, Fargnoli AS, Kendle AP, Hajjar RJ, Bridges CR. The role of microRNAs in cardiac development and regenerative capacity. Am J Physiol Heart Circ Physiol 2015; 310:H528-41. [PMID: 26702142 DOI: 10.1152/ajpheart.00181.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
The mammalian heart has long been considered to be a postmitotic organ. It was thought that, in the postnatal period, the heart underwent a transition from hyperplasic growth (more cells) to hypertrophic growth (larger cells) due to the conversion of cardiomyocytes from a proliferative state to one of terminal differentiation. This hypothesis was gradually disproven, as data were published showing that the myocardium is a more dynamic tissue in which cardiomyocyte karyokinesis and cytokinesis produce new cells, leading to the hyperplasic regeneration of some of the muscle mass lost in various pathological processes. microRNAs have been shown to be critical regulators of cardiomyocyte differentiation and proliferation and may offer the novel opportunity of regenerative hyperplasic therapy. Here we summarize the relevant processes and recent progress regarding the functions of specific microRNAs in cardiac development and regeneration.
Collapse
Affiliation(s)
- Michael G Katz
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Anthony S Fargnoli
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| | - Andrew P Kendle
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| | - Roger J Hajjar
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York
| | - Charles R Bridges
- Sanger Heart & Vascular Institute, Carolinas HealthCare System, Charlotte, North Carolina; and
| |
Collapse
|
28
|
Tuna M, Machado AS, Calin GA. Genetic and epigenetic alterations of microRNAs and implications for human cancers and other diseases. Genes Chromosomes Cancer 2015; 55:193-214. [PMID: 26651018 DOI: 10.1002/gcc.22332] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a well-studied group of noncoding RNAs that control gene expression by interacting mainly with messenger RNA. It is known that miRNAs and their biogenesis regulatory machineries have crucial roles in multiple cell processes; thus, alterations in these genes often lead to disease, such as cancer. Disruption of these genes can occur through epigenetic and genetic alterations, resulting in aberrant expression of miRNAs and subsequently of their target genes. This review focuses on the disruption of miRNAs and their key regulatory machineries by genetic alterations, with emphasis on mutations and epigenetic changes in cancer and other diseases.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - Andreia S Machado
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
29
|
Matkovich SJ, Dorn GW, Grossenheider TC, Hecker PA. Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs. ACTA ACUST UNITED AC 2015; 8:774-84. [PMID: 26553694 DOI: 10.1161/circgenetics.115.001237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs are key players in cardiac stress responses, but the mRNAs, whose abundance and translational potential are primarily affected by changes in cardiac microRNAs, are not well defined. Stimulus-induced, large-scale alterations in the cardiac transcriptome, together with consideration of the law of mass action, further suggest that the mRNAs most substantively targeted by individual microRNAs will vary between unstressed and stressed conditions. To test the hypothesis that microRNA target profiles differ in health and disease, we traced the fate of empirically determined miR-133a and miR-378 targets in mouse hearts undergoing pressure overload hypertrophy. METHODS AND RESULTS Ago2 immunoprecipitation with RNA sequencing (RNA-induced silencing complex sequencing) was used for unbiased definition of microRNA-dependent and microRNA-independent alterations occurring among ≈13 000 mRNAs in response to transverse aortic constriction (TAC). Of 37 direct targets of miR-133a defined in unstressed hearts (fold change ≥25%, false discovery rate <0.02), only 4 (11%) continued to be targeted by miR-133a during TAC, whereas for miR-378 direct targets, 3 of 32 targets (9%) were maintained during TAC. Similarly, only 16% (for miR-133a) and 53% (for miR-378) of hundreds of indirectly affected mRNAs underwent comparable regulation, demonstrating that the effect of TAC on microRNA direct target selection resulted in widespread alterations of signaling function. Numerous microRNA-mediated regulatory events occurring exclusively during pressure overload revealed signaling networks that may be responsive to the endogenous decreases in miR-133a during TAC. CONCLUSIONS Pressure overload-mediated changes in overall cardiac RNA content alter microRNA targeting profiles, reinforcing the need to define microRNA targets in tissue-, cell-, and status-specific contexts.
Collapse
Affiliation(s)
- Scot J Matkovich
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO.
| | - Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | - Tiffani C Grossenheider
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | - Peter A Hecker
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
30
|
miRNA therapeutics: a new class of drugs with potential therapeutic applications in the heart. Future Med Chem 2015; 7:1771-92. [PMID: 26399457 DOI: 10.4155/fmc.15.107] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
miRNAs are small non-coding RNAs (ncRNAs), which regulate gene expression. Here, the authors describe the contribution of miRNAs to cardiac biology and disease. They discuss various strategies for manipulating miRNA activity including antisense oligonucleotides (antimiRs, blockmiRs), mimics, miRNA sponges, Tough Decoys and miRNA mowers. They review developments in chemistries (e.g., locked nucleic acid) and modifications (sugar, 'ZEN', peptide nucleic acids) and miRNA delivery tools (viral vectors, liposomes, nanoparticles, pHLIP). They summarize potential miRNA therapeutic targets for heart disease based on preclinical studies. Finally, the authors review current progress of miRNA therapeutics in clinical development for HCV and cancer, and discuss challenges that will need to be overcome for similar therapies to enter the clinic for patients with cardiac disease.
Collapse
|
31
|
Wilson KD, Shen P, Fung E, Karakikes I, Zhang A, InanlooRahatloo K, Odegaard J, Sallam K, Davis RW, Lui GK, Ashley EA, Scharfe C, Wu JC. A Rapid, High-Quality, Cost-Effective, Comprehensive and Expandable Targeted Next-Generation Sequencing Assay for Inherited Heart Diseases. Circ Res 2015; 117:603-11. [PMID: 26265630 DOI: 10.1161/circresaha.115.306723] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/27/2015] [Indexed: 12/21/2022]
Abstract
RATIONALE Thousands of mutations across >50 genes have been implicated in inherited cardiomyopathies. However, options for sequencing this rapidly evolving gene set are limited because many sequencing services and off-the-shelf kits suffer from slow turnaround, inefficient capture of genomic DNA, and high cost. Furthermore, customization of these assays to cover emerging targets that suit individual needs is often expensive and time consuming. OBJECTIVE We sought to develop a custom high throughput, clinical-grade next-generation sequencing assay for detecting cardiac disease gene mutations with improved accuracy, flexibility, turnaround, and cost. METHODS AND RESULTS We used double-stranded probes (complementary long padlock probes), an inexpensive and customizable capture technology, to efficiently capture and amplify the entire coding region and flanking intronic and regulatory sequences of 88 genes and 40 microRNAs associated with inherited cardiomyopathies, congenital heart disease, and cardiac development. Multiplexing 11 samples per sequencing run resulted in a mean base pair coverage of 420, of which 97% had >20× coverage and >99% were concordant with known heterozygous single nucleotide polymorphisms. The assay correctly detected germline variants in 24 individuals and revealed several polymorphic regions in miR-499. Total run time was 3 days at an approximate cost of $100 per sample. CONCLUSIONS Accurate, high-throughput detection of mutations across numerous cardiac genes is achievable with complementary long padlock probe technology. Moreover, this format allows facile insertion of additional probes as more cardiomyopathy and congenital heart disease genes are discovered, giving researchers a powerful new tool for DNA mutation detection and discovery.
Collapse
Affiliation(s)
- Kitchener D Wilson
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA.
| | - Peidong Shen
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Eula Fung
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Ioannis Karakikes
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Angela Zhang
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Kolsoum InanlooRahatloo
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Justin Odegaard
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Karim Sallam
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Ronald W Davis
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - George K Lui
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Euan A Ashley
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Curt Scharfe
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA
| | - Joseph C Wu
- From the Department of Pathology (K.D.W., E.F., J.O., C.S.), and Department of Biochemistry (P.S., R.W.D.), Stanford Cardiovascular Institute (K.D.W., I.K., A.Z., K.I., J.O., K.S., G.K.L., E.A.A., J.C.W.), Stanford Genome Technology Center (P.S., E.F., R.W.D., C.S.), Department of Medicine, Division of Cardiology (K.S., G.K.L., E.A.A., J.C.W.), Stanford Adult Congenital Heart Disease Clinic (J.C.W., G.K.L.), and Department of Radiology (J.C.W.), Stanford University, CA.
| |
Collapse
|
32
|
Ghanbari M, de Vries PS, de Looper H, Peters MJ, Schurmann C, Yaghootkar H, Dörr M, Frayling TM, Uitterlinden AG, Hofman A, van Meurs JBJ, Erkeland SJ, Franco OH, Dehghan A. A genetic variant in the seed region of miR-4513 shows pleiotropic effects on lipid and glucose homeostasis, blood pressure, and coronary artery disease. Hum Mutat 2015; 35:1524-31. [PMID: 25256095 DOI: 10.1002/humu.22706] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNA) play a crucial role in the regulation of diverse biological processes by post-transcriptional modulation of gene expression. Genetic polymorphisms in miRNA-related genes can potentially contribute to a wide range of phenotypes. The effect of such variants on cardiometabolic diseases has not yet been defined. We systematically investigated the association of genetic variants in the seed region of miRNAs with cardiometabolic phenotypes, using the thus far largest genome-wide association studies on 17 cardiometabolic traits/diseases. We found that rs2168518:G>A, a seed region variant of miR-4513, associates with fasting glucose, low-density lipoprotein-cholesterol, total cholesterol, systolic and diastolic blood pressure, and risk of coronary artery disease. We experimentally showed that miR-4513 expression is significantly reduced in the presence of the rs2168518 mutant allele. We sought to identify miR-4513 target genes that may mediate these associations and revealed five genes (PCSK1, BNC2, MTMR3, ANK3, and GOSR2) through which these effects might be taking place. Using luciferase reporter assays, we validated GOSR2 as a target of miR-4513 and further demonstrated that the miRNA-mediated regulation of this gene is changed by rs2168518. Our findings indicate a pleiotropic effect of miR-4513 on cardiometabolic phenotypes and may improve our understanding of the pathophysiology of cardiometabolic diseases.
Collapse
Affiliation(s)
- Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Update on the Pathogenic Implications and Clinical Potential of microRNAs in Cardiac Disease. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221581 PMCID: PMC4499420 DOI: 10.1155/2015/105620] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
miRNAs, a unique class of endogenous noncoding RNAs, are highly conserved across species, repress gene translation upon binding to mRNA, and thereby influence many biological processes. As such, they have been recently recognized as regulators of virtually all aspects of cardiac biology, from the development and cell lineage specification of different cell populations within the heart to the survival of cardiomyocytes under stress conditions. Various miRNAs have been recently established as powerful mediators of distinctive aspects in many cardiac disorders. For instance, acute myocardial infarction induces cardiac tissue necrosis and apoptosis but also initiates a pathological remodelling response of the left ventricle that includes hypertrophic growth of cardiomyocytes and fibrotic deposition of extracellular matrix components. In this regard, recent findings place various miRNAs as unquestionable contributing factors in the pathogenesis of cardiac disorders, thus begging the question of whether miRNA modulation could become a novel strategy for clinical intervention. In the present review, we aim to expose the latest mechanistic concepts regarding miRNA function within the context of CVD and analyse the reported roles of specific miRNAs in the different stages of left ventricular remodelling as well as their potential use as a new class of disease-modifying clinical options.
Collapse
|
34
|
Ginsenoside-Rb1 Protects Hypoxic- and Ischemic-Damaged Cardiomyocytes by Regulating Expression of miRNAs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:171306. [PMID: 26074986 PMCID: PMC4449925 DOI: 10.1155/2015/171306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/25/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Ginsenoside (GS-Rb1) is one of the most important active compounds of ginseng, with extensive evidence of its cardioprotective properties. However, the miRNA mediated mechanism of GS-Rb1 on cardiomyocytes remains unclear. Here, the roles of miRNAs in cardioprotective activity of GS-Rb1 were investigated in hypoxic- and ischemic-damaged cardiomyocytes. Neonatal rat cardiomyocytes (NRCMs) were first isolated, cultured, and then incubated with or without GS-Rb1 (2.5–40 μM) in vitro under conditions of hypoxia and ischemia. Cell growth, proliferation, and apoptosis were detected by MTT and flow cytometry. Expressions of various microRNAs were analyzed by real-time PCR. Compared with that of the control group, GS-Rb1 significantly decreased cell death in a dose-dependent manner and expressions of mir-1, mir-29a, and mir-208 obviously increased in the experimental model groups. In contrast, expressions of mir-21 and mir-320 were significantly downregulated and GS-Rb1 could reverse the differences in a certain extent. The miRNAs might be involved in the protective effect of GS-Rb1 on the hypoxia/ischemia injuries in cardiomyocytes. The effect might be based on the upregulation of mir-1, mir-29a, and mir-208 and downregulation of mir-21 and mir-320. This might provide us a new target to explore the novel strategy for ischemic cardioprotection.
Collapse
|
35
|
Yang J, Xu WW, Hu SJ. Heart failure: advanced development in genetics and epigenetics. BIOMED RESEARCH INTERNATIONAL 2015; 2015:352734. [PMID: 25949994 PMCID: PMC4407520 DOI: 10.1155/2015/352734] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/25/2015] [Accepted: 03/19/2015] [Indexed: 01/16/2023]
Abstract
Heart failure (HF) is a complex pathophysiological syndrome that arises from a primary defect in the ability of the heart to take in and/or eject sufficient blood. Genetic mutations associated with familial dilated cardiomyopathy, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy can contribute to the various pathologies of HF. Therefore, genetic screening could be an approach for guiding individualized therapies and surveillance. In addition, epigenetic regulation occurs via key mechanisms, including ATP-dependent chromatin remodeling, DNA methylation, histone modification, and RNA-based mechanisms. MicroRNA is also a hot spot in HF research. This review gives an overview of genetic mutations associated with cardiomyopathy and the roles of some epigenetic mechanisms in HF.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Wei-wei Xu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| | - Shen-jiang Hu
- Department of Cardiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, No. 79, Qing-Chun Road, Hangzhou 310003, China
| |
Collapse
|
36
|
Abstract
MicroRNAs play central roles in cardiovascular disease, and their therapeutic manipulation raises exciting opportunities as well as challenges in the path toward clinical development.
Collapse
Affiliation(s)
- Eric N Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
37
|
Curila K, Benesova L, Tomasov P, Belsanova B, Widimsky P, Minarik M, Zemanek D, Veselka J, Gregor P. Variants in miRNA regulating cardiac growth are not a common cause of hypertrophic cardiomyopathy. Cardiology 2015; 130:137-42. [PMID: 25633875 DOI: 10.1159/000369247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022]
Abstract
OBJECTIVES A substantial proportion of patients with hypertrophic cardiomyopathy (HCM) do not have causative mutations in the genes for heart sarcomere. The purpose of this study was to evaluate the association between microRNA (miRNA) sequence variants and HCM. METHODS We performed genetic testing on 56 HCM patients who had previously been found to be negative for mutations in the 4 major genes for sarcomeric proteins. The coding and adjacent regions (120-220 nt) of selected miRNAs were analyzed for the presence of sequence variants. The testing was based on PCR amplification of DNA-encoding miRNAs and subsequent denaturing capillary electrophoresis. RESULTS A total of 3 different variants were detected in the 11 selected miRNAs. These included polymorphisms rs45489294 in miRNA 208b, rs13136737 in miRNA 367 and rs9989532 in miRNA 1-2. In the patient group, the most frequent polymorphism was in miRNA 208b (10 times) followed by miRNA 367 (7 times). Both polymorphisms were found to occur with similar frequencies in the group of healthy controls. The remaining detected variant was not present in the control group, but was not connected with the HCM phenotype in the children of the probands. CONCLUSION Sequence variants in miRNAs of patients with HCM are not frequent and the contribution of these variants to the development of this disease was not demonstrated.
Collapse
Affiliation(s)
- Karol Curila
- Cardiocenter, Department of Cardiology, 3rd Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Matkovich SJ, Dorn GW. Deep sequencing of cardiac microRNA-mRNA interactomes in clinical and experimental cardiomyopathy. Methods Mol Biol 2015; 1299:27-49. [PMID: 25836573 DOI: 10.1007/978-1-4939-2572-8_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs are a family of short (~21 nucleotide) noncoding RNAs that serve key roles in cellular growth and differentiation and the response of the heart to stress stimuli. As the sequence-specific recognition element of RNA-induced silencing complexes (RISCs), microRNAs bind mRNAs and prevent their translation via mechanisms that may include transcript degradation and/or prevention of ribosome binding. Short microRNA sequences and the ability of microRNAs to bind to mRNA sites having only partial/imperfect sequence complementarity complicate purely computational analyses of microRNA-mRNA interactomes. Furthermore, computational microRNA target prediction programs typically ignore biological context, and therefore the principal determinants of microRNA-mRNA binding: the presence and quantity of each. To address these deficiencies we describe an empirical method, developed via studies of stressed and failing hearts, to determine disease-induced changes in microRNAs, mRNAs, and the mRNAs targeted to the RISC, without cross-linking mRNAs to RISC proteins. Deep sequencing methods are used to determine RNA abundances, delivering unbiased, quantitative RNA data limited only by their annotation in the genome of interest. We describe the laboratory bench steps required to perform these experiments, experimental design strategies to achieve an appropriate number of sequencing reads per biological replicate, and computer-based processing tools and procedures to convert large raw sequencing data files into gene expression measures useful for differential expression analyses.
Collapse
Affiliation(s)
- Scot J Matkovich
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA,
| | | |
Collapse
|
39
|
Papagregoriou G. MicroRNAs in Disease. GENOMIC ELEMENTS IN HEALTH, DISEASE AND EVOLUTION 2015:17-46. [DOI: 10.1007/978-1-4939-3070-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
40
|
Dorn GW, Matkovich SJ. Epitranscriptional regulation of cardiovascular development and disease. J Physiol 2014; 593:1799-808. [PMID: 25433070 DOI: 10.1113/jphysiol.2014.283234] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 11/14/2014] [Indexed: 12/18/2022] Open
Abstract
Development, homeostasis and responses to stress in the heart all depend on appropriate control of mRNA expression programmes, which may be enacted at the level of DNA sequence, DNA accessibility and RNA-mediated control of mRNA output. Diverse mechanisms underlie promoter-driven transcription of coding mRNAs and their translation into protein, and the ways in which sequence alteration of DNA can make an impact on these processes have been studied for some time. The field of epigenetics explores changes in DNA structure that influence its accessibility by transcriptional machinery, and we are continuing to develop our understanding of how these processes modify cardiac RNA production. In this topical review, we do not focus on how DNA sequence and methylation, and histone interactions, may alter its accessibility, but rather on newly described mechanisms by which some transcribed RNAs may alter initial transcription or downstream processing of other RNAs, involving both short non-coding RNAs (microRNAs) and long non-coding RNAs (lncRNAs). Here we present examples of how these two classes of non-coding RNAs mediate widespread effects on cardiac transcription and protein output in processes for which we use the broad term 'epitranscriptional regulation' and that are complementary to the DNA methylation and histone modification events studied by classical epigenetics.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
41
|
Abstract
Cardiovascular disease remains the most prevalent cause of human morbidity and mortality in ageing Western societies. Basic and translational scientific efforts have focused on the development and improvement of diagnostic and therapeutic strategies to limit the burden of associated diseases, such as stroke and myocardial infarction, and diabetes mellitus and arterial hypertension. Progress in molecular medicine and biology has unravelled a complex epigenetic and post-transcriptional gene-regulating machinery in humans which may limit disease development. An increasing number of attractive molecular strategies, which use the potential of modulating noncoding RNAs, have surfaced over the last decade. Currently, the most extensively studied gene-regulating RNA subspecies are microRNAs, which have been shown to adjust the translational output of coding transcripts by enforcing their degradation and inhibiting their translation into protein. Key findings indicate that microRNAs act as crucial regulators in the majority of human pathologies. Thus, recent research has focused on detecting and modulating microRNAs for therapeutic and biomarker purposes. This review focuses on main and repeated discoveries regarding the role and the therapeutic and biomarker feasibility of microRNAs during cardiovascular disease development and exacerbation.
Collapse
Affiliation(s)
- L Maegdefessel
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
42
|
Goretti E, Wagner DR, Devaux Y. miRNAs as biomarkers of myocardial infarction: a step forward towards personalized medicine? Trends Mol Med 2014; 20:716-25. [PMID: 25457620 DOI: 10.1016/j.molmed.2014.10.006] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
miRNAs are small noncoding RNAs known to post-transcriptionally regulate gene expression. miRNAs are expressed in the heart where they regulate multiple pathophysiological processes. The discovery of stable cardiac miRNAs in the bloodstream has also motivated the investigation of their potential as biomarkers. This review gathers the current knowledge on the use of miRNAs as novel biomarkers to improve risk stratification, diagnosis, and prognosis of patients with myocardial infarction. In the rapidly evolving era of biomarkers, the potential of miRNAs as promising tools to move personalized medicine a step forward is discussed.
Collapse
Affiliation(s)
- Emeline Goretti
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP-Santé), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Daniel R Wagner
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP-Santé), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg; Division of Cardiology, Centre Hospitalier, 4 rue Barblé, L-1210 Luxembourg, Luxembourg
| | - Yvan Devaux
- Laboratory of Cardiovascular Research, Centre de Recherche Public de la Santé (CRP-Santé), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
43
|
Matkovich SJ. MicroRNAs in the Stressed Heart: Sorting the Signal from the Noise. Cells 2014; 3:778-801. [PMID: 25100019 PMCID: PMC4197633 DOI: 10.3390/cells3030778] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/16/2014] [Accepted: 07/23/2014] [Indexed: 12/19/2022] Open
Abstract
The short noncoding RNAs, known as microRNAs, are of undisputed importance in cellular signaling during differentiation and development, and during adaptive and maladaptive responses of adult tissues, including those that comprise the heart. Cardiac microRNAs are regulated by hemodynamic overload resulting from exercise or hypertension, in the response of surviving myocardium to myocardial infarction, and in response to environmental or systemic disruptions to homeostasis, such as those arising from diabetes. A large body of work has explored microRNA responses in both physiological and pathological contexts but there is still much to learn about their integrated actions on individual mRNAs and signaling pathways. This review will highlight key studies of microRNA regulation in cardiac stress and suggest possible approaches for more precise identification of microRNA targets, with a view to exploiting the resulting data for therapeutic purposes.
Collapse
Affiliation(s)
- Scot J Matkovich
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63130, USA.
| |
Collapse
|
44
|
Yang L, Gao X, Luo H, Huang Q, Wei Y, Zhang G, Huang G, Su D, Chen L, Lu C, Yang J, Ma X. No association of pri-miR-143 rs41291957 polymorphism with the risk of congenital heart disease in a Chinese population. Pediatr Cardiol 2014; 35:1057-61. [PMID: 24752771 DOI: 10.1007/s00246-014-0898-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/25/2014] [Indexed: 10/25/2022]
Abstract
MiR-143 plays an important role in the heart development of zebra fish. The rs41291957 variant located in the pri-miR-143 sequence is associated with colorectal carcinogenesis. Therefore, the authors hypothesized that rs41291957 in pri-miR-143 might be involved in the risk of sporadic congenital heart disease (CHD). The authors conducted a case-control study of CHD in a Chinese population to test their hypothesis by genotyping pri-miR-143 rs41291957 in 1,109 CHD cases and 915 non-CHD control subjects. Logistic regression analyses showed no significant association of genotype or allele frequencies of pri-miR-143 rs41291957 A/G polymorphism with the CHD cases in overall or various subtypes compared with the control group. To the authors' knowledge, this is the first study to investigate the relationship between miR-143 and CHD cases. The results demonstrated that rs41291957 in pri-miR-143 has no major role in genetic susceptibility to sporadic CHD, at least in the current study population.
Collapse
Affiliation(s)
- Liping Yang
- Department of Cardiovascular Surgery,Union Hospital, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Gerald W Dorn
- From the Department of Internal Medicine, Center for Pharmacogenomics, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
46
|
Icli B, Dorbala P, Feinberg MW. An emerging role for the miR-26 family in cardiovascular disease. Trends Cardiovasc Med 2014; 24:241-8. [PMID: 25066487 DOI: 10.1016/j.tcm.2014.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 06/06/2014] [Accepted: 06/06/2014] [Indexed: 12/26/2022]
Abstract
In response to acute myocardial infarction (MI), a complex series of cellular and molecular signaling events orchestrate the myocardial remodeling that ensues weeks to months after injury. Clinical, epidemiological, and pathological studies demonstrate that inadequate or impaired angiogenesis after myocardial injury is often associated with decreased left ventricular (LV) function and clinical outcomes. The microRNA family, miR-26, plays diverse roles in regulating key aspects of cellular growth, development, and activation. Recent evidence supports a central role for the miR-26 family in cardiovascular disease by controlling critical signaling pathways, such as BMP/SMAD1 signaling, and targets relevant to endothelial cell growth, angiogenesis, and LV function post-MI. Emerging studies of the miR-26 family in other cell types including vascular smooth muscle cells, cardiac fibroblasts, and cardiomyocytes suggest that miR-26 may bear important implications for a range of cardiovascular repair mechanisms. This review examines the current knowledge of the miR-26 family's role in key cell types that critically control cardiovascular disease under pathological and physiological stimuli.
Collapse
Affiliation(s)
- Basak Icli
- Department of Medicine, Cardiovascular Division, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA
| | - Pranav Dorbala
- Department of Medicine, Cardiovascular Division, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
47
|
Hedley PL, Carlsen AL, Christiansen KM, Kanters JK, Behr ER, Corfield VA, Christiansen M. MicroRNAs in cardiac arrhythmia: DNA sequence variation of MiR-1 and MiR-133A in long QT syndrome. Scandinavian Journal of Clinical and Laboratory Investigation 2014; 74:485-91. [PMID: 24809446 PMCID: PMC4196592 DOI: 10.3109/00365513.2014.905696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Long QT syndrome (LQTS) is a genetic cardiac condition associated with prolonged ventricular repolarization, primarily a result of perturbations in cardiac ion channels, which predisposes individuals to life-threatening arrhythmias. Using DNA screening and sequencing methods, over 700 different LQTS-causing mutations have been identified in 13 genes worldwide. Despite this, the genetic cause of 30-50% of LQTS is presently unknown. MicroRNAs (miRNAs) are small (∼ 22 nucleotides) noncoding RNAs which post-transcriptionally regulate gene expression by binding complementary sequences within messenger RNAs (mRNAs). The human genome encodes over 1800 miRNAs, which target about 60% of human genes. Consequently, miRNAs are likely to regulate many complex processes in the body, indeed aberrant expression of various miRNA species has been implicated in numerous disease states, including cardiovascular diseases. MiR-1 and MiR-133A are the most abundant miRNAs in the heart and have both been reported to regulate cardiac ion channels. We hypothesized that, as a consequence of their role in regulating cardiac ion channels, genetic variation in the genes which encode MiR-1 and MiR-133A might explain some cases of LQTS. Four miRNA genes (miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2), which encode MiR-1 and MiR-133A, were sequenced in 125 LQTS probands. No genetic variants were identified in miR-1-1 or miR-133a-1; but in miR-1-2 we identified a single substitution (n.100A> G) and in miR-133a-2 we identified two substitutions (n.-19G> A and n.98C> T). None of the variants affect the mature miRNA products. Our findings indicate that sequence variants of miR-1-1, miR-1-2, miR-133a-1 and miR-133a-2 are not a cause of LQTS in this cohort.
Collapse
Affiliation(s)
- Paula L Hedley
- Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut , Copenhagen , Denmark
| | | | | | | | | | | | | |
Collapse
|
48
|
miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PLoS One 2014; 9:e96820. [PMID: 24810628 PMCID: PMC4014556 DOI: 10.1371/journal.pone.0096820] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/11/2014] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, which inhibit the stability and/or translation of a mRNA. miRNAs have been found to play a powerful role in various cardiovascular diseases. Recently, we have demonstrated that a microRNA (miR-181c) can be encoded in the nucleus, processed to the mature form in the cytosol, translocated into the mitochondria, and ultimately can regulate mitochondrial gene expression. However the in vivo impact of miR-181c is unknown. Here we report an in-vivo method for administration of miR-181c in rats, which leads to reduced exercise capacity and signs of heart failure, by targeting the 3′-end of mt-COX1 (cytochrome c oxidase subunit 1). We cloned miR-181c and packaged it in lipid-based nanoparticles for systemic delivery. The plasmid DNA complexed nanovector shows no apparent toxicity. We find that the mRNA levels of mitochondrial complex IV genes in the heart, but not any other mitochondrial genes, are significantly altered with miR-181c overexpression, suggesting selective mitochondrial complex IV remodeling due to miR-181c targeting mt-COX1. Isolated heart mitochondrial studies showed significantly altered O2-consumption, ROS production, matrix calcium, and mitochondrial membrane potential in miR-181c-treated animals. For the first time, this study shows that miRNA delivered to the heart in-vivo can lead to cardiac dysfunction by regulating mitochondrial genes.
Collapse
|
49
|
Rawal S, Manning P, Katare R. Cardiovascular microRNAs: as modulators and diagnostic biomarkers of diabetic heart disease. Cardiovasc Diabetol 2014; 13:44. [PMID: 24528626 PMCID: PMC3976030 DOI: 10.1186/1475-2840-13-44] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 02/10/2014] [Indexed: 02/06/2023] Open
Abstract
Diabetic heart disease (DHD) is the leading cause of morbidity and mortality among the people with diabetes, with approximately 80% of the deaths in diabetics are due to cardiovascular complications. Importantly, heart disease in the diabetics develop at a much earlier stage, although remaining asymptomatic till the later stage of the disease, thereby restricting its early detection and active therapeutic management. Thus, a better understanding of the modulators involved in the pathophysiology of DHD is necessary for the early diagnosis and development of novel therapeutic implications for diabetes-associated cardiovascular complications. microRNAs (miRs) have recently been evolved as key players in the various cardiovascular events through the regulation of cardiac gene expression. Besides their credible involvement in controlling the cellular processes, they are also released in to the circulation in disease states where they serve as potential diagnostic biomarkers for cardiovascular disease. However, their potential role in DHD as modulators as well as diagnostic biomarkers is largely unexplored. In this review, we describe the putative mechanisms of the selected cardiovascular miRs in relation to cardiovascular diseases and discuss their possible involvement in the pathophysiology and early diagnosis of DHD.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Patrick Manning
- Department of Medicine, Dunedin Hospital, Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
50
|
Fatkin D, Seidman CE, Seidman JG. Genetics and disease of ventricular muscle. Cold Spring Harb Perspect Med 2014; 4:a021063. [PMID: 24384818 DOI: 10.1101/cshperspect.a021063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiomyopathies are a heterogeneous group of heart muscle diseases associated with heart failure, arrhythmias, and death. Genetic variation has a critical role in the pathogenesis of cardiomyopathies, and numerous single-gene mutations have been associated with distinctive cardiomyopathy phenotypes. Contemporaneously with these discoveries, there has been enormous growth of genome-wide sequencing studies in large populations, data that show extensive genomic variation within every individual. The considerable allelic diversity in cardiomyopathy genes and in genes predicted to impact clinical expression of disease mutations indicates the need for a more nuanced interpretation of single-gene mutation in cardiomyopathies. These findings highlight the need to find new ways to interpret the functional significance of suites of genetic variants, as well as the need for new disease models that take global genetic variant burdens, epigenetic factors, and cardiac environmental factors into account.
Collapse
Affiliation(s)
- Diane Fatkin
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | | | | |
Collapse
|