1
|
Zhao Y, Du B, Chakraborty P, Denham N, Massé S, Lai PF, Azam MA, Billia F, Thavendiranathan P, Abdel‐Qadir H, Lopaschuk GD, Nanthakumar K. Impaired Cardiac AMPK (5'-Adenosine Monophosphate-Activated Protein Kinase) and Ca 2+-Handling, and Action Potential Duration Heterogeneity in Ibrutinib-Induced Ventricular Arrhythmia Vulnerability. J Am Heart Assoc 2024; 13:e032357. [PMID: 38842296 PMCID: PMC11255774 DOI: 10.1161/jaha.123.032357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/03/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND We recently demonstrated that acute administration of ibrutinib, a Bruton's tyrosine kinase inhibitor used in chemotherapy for blood malignancies, increases ventricular arrhythmia (VA) vulnerability. A pathway of ibrutinib-induced vulnerability to VA that can be modulated for cardioprotection remains unclear. METHODS AND RESULTS The effects of ibrutinib on cardiac electrical activity and Ca2+ dynamics were investigated in Langendorff-perfused hearts using optical mapping. We also conducted Western blotting analysis to evaluate the impact of ibrutinib on various regulatory and Ca2+-handling proteins in rat cardiac tissues. Treatment with ibrutinib (10 mg/kg per day) for 4 weeks was associated with an increased VA inducibility (72.2%±6.3% versus 38.9±7.0% in controls, P<0.002) and shorter action potential durations during pacing at various frequencies (P<0.05). Ibrutinib also decreased heart rate thresholds for beat-to-beat duration alternans of the cardiac action potential (P<0.05). Significant changes in myocardial Ca2+ transients included lower amplitude alternans ratios (P<0.05), longer times-to-peak (P<0.05), and greater spontaneous intracellular Ca2+ elevations (P<0.01). We also found lower abundance and phosphorylation of myocardial AMPK (5'-adenosine monophosphate-activated protein kinase), indicating reduced AMPK activity in hearts after ibrutinib treatment. An acute treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside ameliorated abnormalities in action potential and Ca2+ dynamics, and significantly reduced VA inducibility (37.1%±13.4% versus 72.2%±6.3% in the absence of 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, P<0.05) in hearts from ibrutinib-treated rats. CONCLUSIONS VA vulnerability inflicted by ibrutinib may be mediated in part by an impairment of myocardial AMPK activity. Pharmacological activation of AMPK may be a protective strategy against ibrutinib-induced cardiotoxicity.
Collapse
MESH Headings
- Animals
- Adenine/analogs & derivatives
- Adenine/pharmacology
- Piperidines/pharmacology
- Action Potentials/drug effects
- Pyrimidines/pharmacology
- AMP-Activated Protein Kinases/metabolism
- Pyrazoles/pharmacology
- Male
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/metabolism
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Protein Kinase Inhibitors/pharmacology
- Heart Rate/drug effects
- Isolated Heart Preparation
- Calcium/metabolism
- Rats
- Disease Models, Animal
- Rats, Sprague-Dawley
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Calcium Signaling/drug effects
- Time Factors
Collapse
Affiliation(s)
- Yanan Zhao
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
- China‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Beibei Du
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
- China‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Nathan Denham
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Patrick F.H. Lai
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Mohammed Ali Azam
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| | - Filio Billia
- Toronto General Hospital Research InstituteTorontoCanada
- Ted Rogers Centre for Heart ResearchTorontoCanada
| | | | - Husam Abdel‐Qadir
- Toronto General Hospital Research InstituteTorontoCanada
- Ted Rogers Centre for Heart ResearchTorontoCanada
| | | | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General HospitalTorontoCanada
- Toronto General Hospital Research InstituteTorontoCanada
| |
Collapse
|
2
|
Janssens JV, Raaijmakers AJA, Weeks KL, Bell JR, Mellor KM, Curl CL, Delbridge LMD. The cardiomyocyte origins of diastolic dysfunction: cellular components of myocardial "stiffness". Am J Physiol Heart Circ Physiol 2024; 326:H584-H598. [PMID: 38180448 DOI: 10.1152/ajpheart.00334.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The impaired ability of the heart to relax and stretch to accommodate venous return is generally understood to represent a state of "diastolic dysfunction" and often described using the all-purpose noun "stiffness." Despite the now common qualitative usage of this term in fields of cardiac patho/physiology, the specific quantitative concept of stiffness as a molecular and biophysical entity with real practical interpretation in healthy and diseased hearts is sometimes obscure. The focus of this review is to characterize the concept of cardiomyocyte stiffness and to develop interpretation of "stiffness" attributes at the cellular and molecular levels. Here, we consider "stiffness"-related terminology interpretation and make links between cardiomyocyte stiffness and aspects of functional and structural cardiac performance. We discuss cross bridge-derived stiffness sources, considering the contributions of diastolic myofilament activation and impaired relaxation. This includes commentary relating to the role of cardiomyocyte Ca2+ flux and Ca2+ levels in diastole, the troponin-tropomyosin complex role as a Ca2+ effector in diastole, the myosin ADP dissociation rate as a modulator of cross bridge attachment and regulation of cross-bridge attachment by myosin binding protein C. We also discuss non-cross bridge-derived stiffness sources, including the titin sarcomeric spring protein, microtubule and intermediate filaments, and cytoskeletal extracellular matrix interactions. As the prevalence of conditions involving diastolic heart failure has escalated, a more sophisticated understanding of the molecular, cellular, and tissue determinants of cardiomyocyte stiffness offers potential to develop imaging and molecular intervention tools.
Collapse
Affiliation(s)
- Johannes V Janssens
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Antonia J A Raaijmakers
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Monash University, Parkville, Victoria, Australia
| | - James R Bell
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, Victoria, Australia
| | - Kimberley M Mellor
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Physiology, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Claire L Curl
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Comparison of 10 Control hPSC Lines for Drug Screening in an Engineered Heart Tissue Format. Stem Cell Reports 2021; 15:983-998. [PMID: 33053362 PMCID: PMC7561618 DOI: 10.1016/j.stemcr.2020.09.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) are commercially available, and cardiac differentiation established routine. Systematic evaluation of several control hiPSC-CM is lacking. We investigated 10 different control hiPSC-CM lines and analyzed function and suitability for drug screening. Five commercial and 5 academic hPSC-CM lines were casted in engineered heart tissue (EHT) format. Spontaneous and stimulated EHT contractions were analyzed, and 7 inotropic indicator compounds investigated on 8 cell lines. Baseline contractile force, kinetics, and rate varied widely among the different lines (e.g., relaxation time range: 118-471 ms). In contrast, the qualitative correctness of responses to BayK-8644, nifedipine, EMD-57033, isoprenaline, and digoxin in terms of force and kinetics varied only between 80% and 93%. Large baseline differences between control cell lines support the request for isogenic controls in disease modeling. Variability appears less relevant for drug screening but needs to be considered, arguing for studies with more than one line.
Collapse
|
4
|
Wang L, Myles RC, Lee IJ, Bers DM, Ripplinger CM. Role of Reduced Sarco-Endoplasmic Reticulum Ca 2+-ATPase Function on Sarcoplasmic Reticulum Ca 2+ Alternans in the Intact Rabbit Heart. Front Physiol 2021; 12:656516. [PMID: 34045974 PMCID: PMC8144333 DOI: 10.3389/fphys.2021.656516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/29/2021] [Indexed: 01/16/2023] Open
Abstract
Sarcoplasmic reticulum (SR) Ca2+ cycling is tightly regulated by ryanodine receptor (RyR) Ca2+ release and sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) Ca2+ uptake during each excitation–contraction coupling cycle. We previously showed that RyR refractoriness plays a key role in the onset of SR Ca2+ alternans in the intact rabbit heart, which contributes to arrhythmogenic action potential duration (APD) alternans. Recent studies have also implicated impaired SERCA function, a key feature of heart failure, in cardiac alternans and arrhythmias. However, the relationship between reduced SERCA function and SR Ca2+ alternans is not well understood. Simultaneous optical mapping of transmembrane potential (Vm) and SR Ca2+ was performed in isolated rabbit hearts (n = 10) using the voltage-sensitive dye RH237 and the low-affinity Ca2+ indicator Fluo-5N-AM. Alternans was induced by rapid ventricular pacing. SERCA was inhibited with cyclopiazonic acid (CPA; 1–10 μM). SERCA inhibition (1, 5, and 10 μM of CPA) resulted in dose-dependent slowing of SR Ca2+ reuptake, with the time constant (tau) increasing from 70.8 ± 3.5 ms at baseline to 85.5 ± 6.6, 129.9 ± 20.7, and 271.3 ± 37.6 ms, respectively (p < 0.05 vs. baseline for all doses). At fast pacing frequencies, CPA significantly increased the magnitude of SR Ca2+ and APD alternans, most strongly at 10 μM (pacing cycle length = 220 ms: SR Ca2+ alternans magnitude: 57.1 ± 4.7 vs. 13.4 ± 8.9 AU; APD alternans magnitude 3.8 ± 1.9 vs. 0.2 ± 0.19 AU; p < 0.05 10 μM of CPA vs. baseline for both). SERCA inhibition also promoted the emergence of spatially discordant alternans. Notably, at all CPA doses, alternation of SR Ca2+ release occurred prior to alternation of diastolic SR Ca2+ load as pacing frequency increased. Simultaneous optical mapping of SR Ca2+ and Vm in the intact rabbit heart revealed that SERCA inhibition exacerbates pacing-induced SR Ca2+ and APD alternans magnitude, particularly at fast pacing frequencies. Importantly, SR Ca2+ release alternans always occurred before the onset of SR Ca2+ load alternans. These findings suggest that even in settings of diminished SERCA function, relative refractoriness of RyR Ca2+ release governs the onset of intracellular Ca2+ alternans.
Collapse
Affiliation(s)
- Lianguo Wang
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel C Myles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - I-Ju Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Donald M Bers
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020; 76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Adverse cardiac remodelling clinically manifests as deleterious changes to heart architecture (size, mass and geometry) and function. These changes, which include alterations to ventricular wall thickness, chamber dilation and poor contractility, are important because they progressively drive patients with cardiac disease towards heart failure and are associated with poor prognosis. Cysteine cathepsins contribute to key signalling pathways involved in adverse cardiac remodelling including synthesis and degradation of the cardiac extracellular matrix (ECM), cardiomyocyte hypertrophy, impaired cardiomyocyte contractility and apoptosis. In this review, we highlight the role of cathepsins in these signalling pathways as well as their translational potential as therapeutic targets in cardiac disease.
Collapse
Affiliation(s)
- Dylan O'Toole
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Ali Abdullah I Zaeri
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Anne T French
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| |
Collapse
|
6
|
Riddell A, McBride M, Braun T, Nicklin SA, Cameron E, Loughrey CM, Martin TP. RUNX1: an emerging therapeutic target for cardiovascular disease. Cardiovasc Res 2020; 116:1410-1423. [PMID: 32154891 PMCID: PMC7314639 DOI: 10.1093/cvr/cvaa034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Runt-related transcription factor-1 (RUNX1), also known as acute myeloid leukaemia 1 protein (AML1), is a member of the core-binding factor family of transcription factors which modulate cell proliferation, differentiation, and survival in multiple systems. It is a master-regulator transcription factor, which has been implicated in diverse signalling pathways and cellular mechanisms during normal development and disease. RUNX1 is best characterized for its indispensable role for definitive haematopoiesis and its involvement in haematological malignancies. However, more recently RUNX1 has been identified as a key regulator of adverse cardiac remodelling following myocardial infarction. This review discusses the role RUNX1 plays in the heart and highlights its therapeutic potential as a target to limit the progression of adverse cardiac remodelling and heart failure.
Collapse
Affiliation(s)
- Alexandra Riddell
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Martin McBride
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Ludwigstr. 43, 61231 Bad Nauheim, Germany
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ewan Cameron
- School of Veterinary Medicine, University of Glasgow, Garscube Campus, Glasgow G61 1BD, UK
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
7
|
Eisner DA, Caldwell JL, Trafford AW, Hutchings DC. The Control of Diastolic Calcium in the Heart: Basic Mechanisms and Functional Implications. Circ Res 2020; 126:395-412. [PMID: 31999537 PMCID: PMC7004450 DOI: 10.1161/circresaha.119.315891] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Normal cardiac function requires that intracellular Ca2+ concentration be reduced to low levels in diastole so that the ventricle can relax and refill with blood. Heart failure is often associated with impaired cardiac relaxation. Little, however, is known about how diastolic intracellular Ca2+ concentration is regulated. This article first discusses the reasons for this ignorance before reviewing the basic mechanisms that control diastolic intracellular Ca2+ concentration. It then considers how the control of systolic and diastolic intracellular Ca2+ concentration is intimately connected. Finally, it discusses the changes that occur in heart failure and how these may result in heart failure with preserved versus reduced ejection fraction.
Collapse
Affiliation(s)
- David A Eisner
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Jessica L Caldwell
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - Andrew W Trafford
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| | - David C Hutchings
- From the Unit of Cardiac Physiology, Division of Cardiovascular Sciences, University of Manchester, United Kingdom
| |
Collapse
|
8
|
Luo L, Ning F, Du Y, Song B, Yang D, Salvage SC, Wang Y, Fraser JA, Zhang S, Ma A, Wang T. Calcium-dependent Nedd4-2 upregulation mediates degradation of the cardiac sodium channel Nav1.5: implications for heart failure. Acta Physiol (Oxf) 2017; 221:44-58. [PMID: 28296171 DOI: 10.1111/apha.12872] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 12/08/2016] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
AIM Reductions in voltage-gated sodium channel (Nav1.5) function/expression provide a slowed-conduction substrate for cardiac arrhythmias. Nedd4-2, which is activated by calcium, post-translationally modulates Nav1.5. We aim to investigate whether elevated intracellular calcium ([Ca2+ ]i ) reduces Nav1.5 through Nedd4-2 and its role in heart failure (HF). METHODS Using a combination of biochemical, electrophysiological, cellular and in vivo methods, we tested the effect and mechanism of calcium on Nedd4-2 and in turn Nav1.5. RESULTS Increased [Ca2+ ]i , following 24-h ionomycin treatment, decreased sodium current (INa ) density and Nav1.5 protein without altering its mRNA in both neonatal rat cardiomyocytes (NRCMs) and HEK 293 cells stably expressing Nav1.5. The calcium chelator BAPTA-AM restored the reduced Nav1.5 and INa in NRCMs pre-treated by ionomycin. Nav1.5 was decreased by Nedd4-2 transfection and further decreased by 6-h ionomycin treatment. These effects were not observed in cells transfected with the catalytically inactive mutant, Nedd4-2 C801S, or with Y1977A-Nav1.5 mutant containing the impaired Nedd4-2 binding motif. Furthermore, elevated [Ca2+ ]i increased Nedd4-2, the interaction between Nedd4-2 and Nav1.5, and Nav1.5 ubiquitination. Nav1.5 protein is decreased, whereas Nedd4-2 is increased in volume-overload HF rat hearts, with increased co-localization of Nav1.5 with ubiquitin or Nedd4-2 as indicated by immunofluorescence staining. BAPTA-AM rescued the reduced Nav1.5 protein, INa and increased Nedd4-2 in hypertrophied NRCMs induced by isoproterenol or angiotensin II. CONCLUSION Calcium-mediated increases in Nedd4-2 downregulate Nav1.5 by ubiquitination. Nav1.5 is downregulated and co-localizes with Nedd4-2 and ubiquitin in failing rat heart. These data suggest a role of Nedd4-2 in Nav1.5 downregulation in HF.
Collapse
Affiliation(s)
- L. Luo
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - F. Ning
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - Y. Du
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - B. Song
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - D. Yang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - S. C. Salvage
- Physiological Laboratory; University of Cambridge; Cambridge UK
| | - Y. Wang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
| | - J. A. Fraser
- Physiological Laboratory; University of Cambridge; Cambridge UK
| | - S. Zhang
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston Ontario Canada
| | - A. Ma
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Key Laboratory of Molecular Cardiology; Xi'an Shaanxi Province China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an China
| | - T. Wang
- Department of Cardiovascular Medicine; First Affiliated Hospital of Xi'an Jiaotong University; Xi'an China
- Key Laboratory of Molecular Cardiology; Xi'an Shaanxi Province China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University); Ministry of Education; Xi'an China
| |
Collapse
|
9
|
Fattah C, Nather K, McCarroll CS, Hortigon-Vinagre MP, Zamora V, Flores-Munoz M, McArthur L, Zentilin L, Giacca M, Touyz RM, Smith GL, Loughrey CM, Nicklin SA. Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction. J Am Coll Cardiol 2017; 68:2652-2666. [PMID: 27978950 PMCID: PMC5158000 DOI: 10.1016/j.jacc.2016.09.946] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 01/16/2023]
Abstract
Background Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). Objectives The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. Methods C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. Results Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A–dependent mechanism. Conclusions Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A–dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI.
Collapse
Affiliation(s)
- Caroline Fattah
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica Flores-Munoz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; Universidad Veracruzana, Xalapa, Mexico
| | - Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
10
|
Induced pluripotent stem cell-derived cardiac myocytes to understand and test calcium handling: Pie in the sky? J Mol Cell Cardiol 2015; 89:376-8. [DOI: 10.1016/j.yjmcc.2015.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/19/2015] [Indexed: 11/17/2022]
|
11
|
Heinis FI, Andersson KB, Christensen G, Metzger JM. Prominent heart organ-level performance deficits in a genetic model of targeted severe and progressive SERCA2 deficiency. PLoS One 2013; 8:e79609. [PMID: 24223976 PMCID: PMC3817129 DOI: 10.1371/journal.pone.0079609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/24/2013] [Indexed: 11/28/2022] Open
Abstract
The cardiac SERCA2 Ca2+ pump is critical for maintaining normal Ca2+ handling in the heart. Reduced SERCA2a content and blunted Ca2+ reuptake are frequently observed in failing hearts and evidence implicates poor cardiac Ca2+ handling in the progression of heart failure. To gain insight into mechanism we investigated a novel genetic mouse model of inducible severe and progressive SERCA2 deficiency (inducible Serca2 knockout, SERCA2 KO). These mice eventually die from overt heart failure 7-10 weeks after knockout but as yet there have been no reports on intrinsic mechanical performance at the isolated whole heart organ level. Thus we studied whole-organ ex vivo function of hearts isolated from SERCA2 KO mice at one and four weeks post-knockout in adult animals. We found that isolated KO heart function was only modestly impaired one week post-knockout, when SERCA2a protein was 32% of normal. At four weeks post-knockout, function was severely impaired with near non-detectable levels of SERCA2. During perfusion with 10 mM caffeine, LV developed pressures were similar between 4-week KO and control hearts, and end-diastolic pressures were lower in KO. When hearts were subjected to ischemia-reperfusion injury, recovery was not different between control and KO hearts at either one or four weeks post-knockout. Our findings indicate that ex vivo function of isolated SERCA2 KO hearts is severely impaired long before symptoms appear in vivo, suggesting that physiologically relevant heart function in vivo can be sustained for weeks in the absence of robust SR Ca2+ flux.
Collapse
Affiliation(s)
- Frazer I. Heinis
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristin B. Andersson
- Institute for Experimental Medical Research, Oslo University Hospital Ullevaal and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevaal and University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
12
|
Calcium flux balance in the heart. J Mol Cell Cardiol 2012; 58:110-7. [PMID: 23220128 DOI: 10.1016/j.yjmcc.2012.11.017] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 11/08/2012] [Accepted: 11/22/2012] [Indexed: 11/22/2022]
Abstract
This article reviews the consequences of the need for the cardiac cell to be in calcium flux balance in the steady state. We first discuss how this steady state condition affects the control of resting [Ca(2+)]i. The next section considers how sarcoplasmic reticulum (SR) Ca content is controlled by a feedback mechanism whereby changes of SR Ca affect the amplitude of the Ca transient and this, in turn, controls sarcolemmal Ca fluxes. Subsequent sections review the effects of altering the activity of individual Ca handling proteins. Increasing the activity of the SR Ca-ATPase (SERCA) increases both the amplitude and rate constant of decay of the systolic Ca transient. The Ca flux balance condition requires that this must be achieved with no change of Ca efflux placing constraints on the magnitude of change of amplitude and decay rate. We analyze the quantitative dependence of Ca transient amplitude and SR content on SERCA activity. Increasing the open probability of the RyR during systole is predicted to have no steady state effect on the amplitude of the systolic Ca transient. We discuss the effects of changing the amplitude of the L-type Ca current in the context of both triggering Ca release from the SR and loading the cell with calcium. These manoeuvres are considered in the context of the effects of β-adrenergic stimulation. Finally, we review calcium flux balance in the presence of Ca waves.
Collapse
|
13
|
Hypoxia in early pregnancy induces cardiac dysfunction in adult offspring of Rattus norvegicus, a non-hypoxia-adapted species. Comp Biochem Physiol A Mol Integr Physiol 2012; 163:278-85. [DOI: 10.1016/j.cbpa.2012.07.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/31/2012] [Accepted: 07/31/2012] [Indexed: 11/21/2022]
|