1
|
Syed AA, Adam S, Miller CA, Alkhaffaf B. Obesity Management for Patients with Coronary Artery Disease and Heart Failure. Heart Fail Clin 2025; 21:257-271. [PMID: 40107803 DOI: 10.1016/j.hfc.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Obesity is causally linked to heart disease directly by triggering various adverse pathophysiological changes and indirectly through convergent risk factors such as type 2 diabetes, hypertension, dyslipidemia, and sleep disorder. Weight reduction is an important intervention for obesity-related cardiomyopathy, and antiobesity medications that target both obesity and heart failure (HF), particularly sodium-glucose cotransporter-2 inhibitors and glucagon-like peptide 1 receptor agonists, have a role in treatment. Bariatric surgery offers a viable treatment option for patients with severe obesity associated with coronary artery disease and HF but requires careful patient selection, preoperative optimization, choice of procedure, and postoperative management to minimize risks.
Collapse
Affiliation(s)
- Akheel A Syed
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Diabetes, Endocrinology & Obesity Medicine, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK.
| | - Safwaan Adam
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Diabetes & Endocrinology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, M20 4BX, UK
| | - Christopher A Miller
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK; BHF (British Heart Foundation) Manchester Centre for Heart and Lung Magnetic Resonance Research, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Wythenshawe Hospital, Manchester M23 9LT, UK
| | - Bilal Alkhaffaf
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9PL, UK; Department of Oesophago-Gastric & Bariatric Surgery, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford M6 8HD, UK
| |
Collapse
|
2
|
Gillan JL, Jaeschke L, Kuebler WM, Grune J. Immune mediators in heart-lung communication. Pflugers Arch 2025; 477:17-30. [PMID: 39256247 PMCID: PMC11711577 DOI: 10.1007/s00424-024-03013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
It is often the case that serious, end-stage manifestations of disease result from secondary complications in organs distinct from the initial site of injury or infection. This is particularly true of diseases of the heart-lung axis, given the tight anatomical connections of the two organs within a common cavity in which they collectively orchestrate the two major, intertwined circulatory pathways. Immune cells and the soluble mediators they secrete serve as effective, and targetable, messengers of signals between different regions of the body but can also contribute to the spread of pathology. In this review, we discuss the immunological basis of interorgan communication between the heart and lung in various common diseases, and in the context of organ crosstalk more generally. Gaining a greater understanding of how the heart and lung communicate in health and disease, and viewing disease progression generally from a more holistic, whole-body viewpoint have the potential to inform new diagnostic approaches and strategies for better prevention and treatment of comorbidities.
Collapse
Affiliation(s)
- Jonathan L Gillan
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Lara Jaeschke
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Wolfgang M Kuebler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Jana Grune
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Der Charité (DHZC), Virchowweg 6, 10117, Berlin, Germany.
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Ahmadi M, Bagherzadeh S, Boskabady MH, Vahabi A, Abolhasani S, Aslani MR. The effects of carvacrol on the cardiac apoptosis gene expression levels in heart tissue of obese male rats induced by high-fat diet. AVICENNA JOURNAL OF PHYTOMEDICINE 2025; 15:1059-1069. [PMID: 40292260 PMCID: PMC12033011 DOI: 10.22038/ajp.2024.25089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/07/2024] [Indexed: 04/30/2025]
Abstract
Objective Animal studies have revealed that lipid accumulation in obese mice fed with a high-fat diet (HFD) leads to alterations in the structural and functional properties of cardiovascular tissues. The current study aimed to investigate apoptosis/anti-apoptotic markers in the heart tissue of rats fed with a HFD. Materials and Methods Twenty-four male Wistar rats (weighing approximately 180 grams) were randomly divided into three groups (n=8 each group), including the control group (C), the high-fat diet group (HFD), and the high-fat diet + carvacrol group (HFD + Carva). Animals received a standard or HFD to induce obesity for three months. From day 61 to 90 in the HFD+Carva group, carvacrol was injected intraperitoneally (50 mg/kg) every other day. At the end of the study, the heart tissue was examined for pathological changes and the mRNA levels of TNF-α, Bcl2, Bax, and caspase3 in the heart tissue by Real Time-PCR. Results HFD-induced obesity led to increased TNF-α, caspase-3, and Bax and decreased Bcl-2 expression levels in heart tissue. Furthermore, histopathological changes in intracytoplasmic vacuole accumulation were evident in the HFD-obese animals. Carvacrol treatment significantly decreased the expression of Bax, TNF-α, and caspase-3 and increased the expression of Bcl-2 in heart tissue. Conclusion In the findings, carvacrol was found to decrease the histopathological changes caused by HFD in heart tissue by suppressing the expression of genes involved in the apoptosis pathway.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| | - Sadegh Bagherzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Vahabi
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sakhavat Abolhasani
- Department of Basic Sciences and Health, Sarab Faculty of Medical Sciences, Sarab, East Azerbaijan, Iran
| | - Mohammad Reza Aslani
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Physiology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
4
|
Tolu‐Akinnawo OZ, Awoyemi T, Guzman RB, Naveed A. Olanzapine-induced cardiomyopathy: A mimicker of obesity cardiomyopathy? Clin Cardiol 2024; 47:e24278. [PMID: 38767024 PMCID: PMC11103636 DOI: 10.1002/clc.24278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Olanzapine, an atypical antipsychotic medication, has gained prominence in the treatment of schizophrenia and related psychotic disorders due to its effectiveness and perceived safety profile. However, emerging evidence suggests a potential link between olanzapine use and adverse cardiovascular effects, including cardiomyopathy. This narrative review explores the mechanisms, clinical implications, and management strategies associated with olanzapine-induced cardiomyopathy. A comprehensive review of the literature was conducted to investigate the relationship between olanzapine and cardiomyopathy. The search included epidemiological studies, clinical case reports, and mechanistic research focusing on the pathophysiology of olanzapine-induced cardiomyopathy. The review also examined treatment strategies for managing this potential complication. Olanzapine-induced cardiomyopathy is hypothesized to be associated with metabolic disturbances and receptor antagonism. The metabolic effects of olanzapine, such as weight gain, insulin resistance, and dyslipidemia, share similarities with obesity-related cardiomyopathy. Additionally, olanzapine's antagonism of certain receptors may contribute to cardiovascular stress. The review highlighted that patients with new-onset heart failure and significant weight gain while on olanzapine should be closely monitored for signs of cardiomyopathy. Early detection and prompt withdrawal of olanzapine, along with initiation of goal-directed medical therapy, are crucial for mitigating this potentially life-threatening condition. The relationship between olanzapine and cardiomyopathy is complex and not yet fully understood. However, the potential for significant cardiovascular risk necessitates vigilance among healthcare providers. Early identification and management of olanzapine-induced cardiomyopathy can improve patient outcomes. Further research is needed to elucidate the precise mechanisms behind this adverse effect and to develop optimized treatment strategies for patients requiring antipsychotic therapy.
Collapse
|
5
|
Morrissette-McAlmon J, Xu WR, Teuben R, Boheler KR, Tung L. Adipocyte-mediated electrophysiological remodeling of human stem cell - derived cardiomyocytes. J Mol Cell Cardiol 2024; 189:52-65. [PMID: 38346641 DOI: 10.1016/j.yjmcc.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Adipocytes normally accumulate in the epicardial and pericardial layers around the human heart, but their infiltration into the myocardium can be proarrhythmic. METHODS AND RESULTS: Human adipose derived stem/stromal cells and human induced pluripotent stem cells (hiPSC) were differentiated, respectively into predominantly white fat-like adipocytes (hAdip) and ventricular cardiomyocytes (CMs). Adipocytes cultured in CM maintenance medium (CM medium) maintained their morphology, continued to express adipogenic markers, and retained clusters of intracellular lipid droplets. In contrast, hiPSC-CMs cultivated in adipogenic growth medium displayed abnormal cell morphologies and more clustering across the monolayer. Pre-plated hiPSC-CMs co-cultured in direct contact with hAdips in CM medium displayed prolonged action potential durations, increased triangulation, slowed conduction velocity, increased conduction velocity heterogeneity, and prolonged calcium transients. When hAdip-conditioned medium was added to monolayer cultures of hiPSC-CMs, results similar to those recorded with direct co-cultures were observed. Both co-culture and conditioned medium experiments resulted in increases in transcript abundance of SCN10A, CACNA1C, SLC8A1, and RYR2, with a decrease in KCNJ2. Human adipokine immunoblots revealed the presence of cytokines that were elevated in adipocyte-conditioned medium, including MCP-1, IL-6, IL-8 and CFD that could induce electrophysiological changes in cultured hiPSC-CMs. CONCLUSIONS: Co-culture of hiPSC-CMs with hAdips reveals a potentially pathogenic role of infiltrating human adipocytes on myocardial tissue. In the absence of structural changes, hAdip paracrine release alone is sufficient to cause CM electrophysiological dysfunction mirroring the co-culture conditions. These effects, mediated largely by paracrine mechanisms, could promote arrhythmias in the heart.
Collapse
Affiliation(s)
| | - William R Xu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Roald Teuben
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth R Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Meechem MB, Jadli AS, Patel VB. Uncovering the link between diabetes and cardiovascular diseases: insights from adipose-derived stem cells. Can J Physiol Pharmacol 2024; 102:229-241. [PMID: 38198660 DOI: 10.1139/cjpp-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of morbidity and mortality worldwide. The escalating global occurrence of obesity and diabetes mellitus (DM) has led to a significant upsurge in individuals afflicted with CVDs. As the prevalence of CVDs continues to rise, it is becoming increasingly important to identify the underlying cellular and molecular mechanisms that contribute to their development and progression, which will help discover novel therapeutic avenues. Adipose tissue (AT) is a connective tissue that plays a crucial role in maintaining lipid and glucose homeostasis. However, when AT is exposed to diseased conditions, such as DM, this tissue will alter its phenotype to become dysfunctional. AT is now recognized as a critical contributor to CVDs, especially in patients with DM. AT is comprised of a heterogeneous cellular population, which includes adipose-derived stem cells (ADSCs). ADSCs resident in AT are believed to regulate physiological cardiac function and have potential cardioprotective roles. However, recent studies have also shown that ADSCs from various adipose tissue depots become pro-apoptotic, pro-inflammatory, less angiogenic, and lose their ability to differentiate into various cell lineages upon exposure to diabetic conditions. This review aims to summarize the current understanding of the physiological roles of ADSCs, the impact of DM on ADSC phenotypic changes, and how these alterations may contribute to the pathogenesis of CVDs.
Collapse
Affiliation(s)
- Megan B Meechem
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Anshul S Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Sakboonyarat B, Poovieng J, Rangsin R. Association between obesity and new-onset heart failure among patients with hypertension in Thailand. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2024; 43:33. [PMID: 38424593 PMCID: PMC10905941 DOI: 10.1186/s41043-024-00530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND In Thailand, the epidemiological data on the relationship between obesity and heart failure (HF) among high-risk populations was limited. We assessed the association between body mass index (BMI) and the new-onset HF among people with hypertension (HTN), and also assessed the effect modifier of uncontrolled HTN on this association. METHODS We analyzed the data obtained from the 2018 Thailand DM/HT study database. Thai people with HTN aged 20 years and older receiving continuous care at outpatient clinics in hospitals nationwide were included. The new-onset HF was defined regarding the ICD-10 as I50 in the medical records within 12 months. Obesity was defined as BMI ≥ 25 kg/m2. Multivariable log-binomial regression analysis was used to determine the association between BMI and new-onset HF and presented as the adjusted risk ratio (aRR) and 95% confidence interval (CI). RESULTS A total of 35,756 participants were included in the analysis. In all, 50.0% of the participants had BP control for the last two consecutive visits. The mean BMI was 25.1 ± 4.7 kg/m2. New-onset HF occurred in 75 participants (0.21%; 95% CI 0.17-0.26). After adjusting for potential confounders, an elevated BMI was associated with new-onset HF (p value for quadratic trend < 0.001). In comparison with participants with normal BMI (18.5-22.9 kg/m2), the aRR for new-onset HF was 1.57 (95% CI 0.80-3.07) and 3.97 (95% CI 1.95-8.10) in those with BMI 25.0-29.9, and ≥ 30.0 kg/m2. For participants with obesity, aRR for new-onset HF was 2.05 (95% CI 1.24-3.39) compared to non-obese participants. The study found that among patients with control BP, obesity was associated with a higher risk of new-onset HF with an adjusted RR of 2.33 (95% CI 1.12-4.83). For those with uncontrolled BP, the adjusted RR was 1.83 (95% CI 0.93-3.58), but there was no heterogeneity with p value = 0.642. CONCLUSION An increased BMI had a higher risk for new-onset HF among Thai people with HTN. Obesity was independently associated with new-onset HF among people with HTN, regardless of uncontrolled HTN. Our findings highlight that weight reduction is crucial for mitigating the risk of HF development in HTN patients, regardless of their BP control status.
Collapse
Affiliation(s)
- Boonsub Sakboonyarat
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Jaturon Poovieng
- Pulmonary and Critical Care Division, Department of Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand
| | - Ram Rangsin
- Department of Military and Community Medicine, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
| |
Collapse
|
8
|
Nielsen MB, Çolak Y, Benn M, Mason A, Burgess S, Nordestgaard BG. Plasma adiponectin levels and risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction: large-scale observational and Mendelian randomization evidence. Cardiovasc Res 2024; 120:95-107. [PMID: 37897683 PMCID: PMC10898934 DOI: 10.1093/cvr/cvad162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/30/2023] Open
Abstract
AIMS Adiponectin may play an important protective role in heart failure and associated cardiovascular diseases. We hypothesized that plasma adiponectin is associated observationally and causally, genetically with risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. METHODS AND RESULTS In the Copenhagen General Population Study, we examined 30 045 individuals with plasma adiponectin measurements observationally and 96 903 individuals genetically in one-sample Mendelian randomization analyses using five genetic variants explaining 3% of the variation in plasma adiponectin. In the HERMES, UK Biobank, The Nord-Trøndelag Health Study (HUNT), deCODE, the Michigan Genomics Initiative (MGI), DiscovEHR, and the AFGen consortia, we performed two-sample Mendelian randomization analyses in up to 1 030 836 individuals using 12 genetic variants explaining 14% of the variation in plasma adiponectin.In observational analyses modelled linearly, a 1 unit log-transformed higher plasma adiponectin was associated with a hazard ratio of 1.51 (95% confidence interval: 1.37-1.66) for heart failure, 1.63 (1.50-1.78) for atrial fibrillation, 1.21 (1.03-1.41) for aortic valve stenosis, and 1.03 (0.93-1.14) for myocardial infarction; levels above the median were also associated with an increased risk of myocardial infarction, and non-linear U-shaped associations were more apparent for heart failure, aortic valve stenosis, and myocardial infarction in less-adjusted models. Corresponding genetic, causal risk ratios were 0.92 (0.65-1.29), 0.87 (0.68-1.12), 1.55 (0.87-2.76), and 0.93 (0.67-1.30) in one-sample Mendelian randomization analyses, and no significant associations were seen for non-linear one-sample Mendelian randomization analyses; corresponding causal risk ratios were 0.99 (0.89-1.09), 1.00 (0.92-1.08), 1.01 (0.79-1.28), and 0.99 (0.86-1.13) in two-sample Mendelian randomization analyses, respectively. CONCLUSION Observationally, elevated plasma adiponectin was associated with an increased risk of heart failure, atrial fibrillation, aortic valve stenosis, and myocardial infarction. However, genetic evidence did not support causality for these associations.
Collapse
Affiliation(s)
- Maria Booth Nielsen
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
| | - Yunus Çolak
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
- Department of Respiratory Medicine, Copenhagen University Hospital—Herlev and Gentofte, Copenhagen, Denmark
| | - Marianne Benn
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital—Rigshospitalet, Copenhagen, Denmark
| | - Amy Mason
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital—Herlev and Gentofte, Borgmester Ib Juuls Vej 73, Entrance 7, 4. Floor, M3, DK-2730 Herlev, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Copenhagen, Denmark
| |
Collapse
|
9
|
Gasser M, Lenglet S, Bararpour N, Sajic T, Vaucher J, Wiskott K, Augsburger M, Fracasso T, Gilardi F, Thomas A. Arsenic induces metabolome remodeling in mature human adipocytes. Toxicology 2023; 500:153672. [PMID: 37956786 DOI: 10.1016/j.tox.2023.153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Human lifetime exposure to arsenic through drinking water, food supply or industrial pollution leads to its accumulation in many organs such as liver, kidneys, lungs or pancreas but also adipose tissue. Recently, population-based studies revealed the association between arsenic exposure and the development of metabolic diseases such as obesity and type 2 diabetes. To shed light on the molecular bases of such association, we determined the concentration that inhibited 17% of cell viability and investigated the effects of arsenic acute exposure on adipose-derived human mesenchymal stem cells differentiated in vitro into mature adipocytes and treated with sodium arsenite (NaAsO2, 10 nM to 10 µM). Untargeted metabolomics and gene expression analyses revealed a strong dose-dependent inhibition of lipogenesis and lipolysis induction, reducing the cellular ability to store lipids. These dysregulations were emphasized by the inhibition of the cellular response to insulin, as shown by the perturbation of several genes and metabolites involved in the mentioned biological pathways. Our study highlighted the activation of an adaptive oxidative stress response with the strong induction of metallothioneins and increased glutathione levels in response to arsenic accumulation that could exacerbate the decreased insulin sensitivity of the adipocytes. Arsenic exposure strongly affected the expression of arsenic transporters, responsible for arsenic influx and efflux, and induced a pro-inflammatory state in adipocytes by enhancing the expression of the inflammatory interleukin 6 (IL6). Collectively, our data showed that an acute exposure to low levels of arsenic concentrations alters key adipocyte functions, highlighting its contribution to the development of insulin resistance and the pathogenesis of metabolic disorders.
Collapse
Affiliation(s)
- Marie Gasser
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Lenglet
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Nasim Bararpour
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Tatjana Sajic
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Vaucher
- Service of Internal Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland; Service of Internal Medicine, Fribourg Hospital and University of Fribourg, Fribourg, Switzerland
| | - Kim Wiskott
- Unit of Forensic Medicine, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Marc Augsburger
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Tony Fracasso
- Unit of Forensic Medicine, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Federica Gilardi
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Aurélien Thomas
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland; Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
10
|
GPSM1 impairs metabolic homeostasis by controlling a pro-inflammatory pathway in macrophages. Nat Commun 2022; 13:7260. [PMID: 36434066 PMCID: PMC9700814 DOI: 10.1038/s41467-022-34998-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
G-protein-signaling modulator 1 (GPSM1) exhibits strong genetic association with Type 2 diabetes (T2D) and Body Mass Index in population studies. However, how GPSM1 carries out such control and in which types of cells are poorly understood. Here, we demonstrate that myeloid GPSM1 promotes metabolic inflammation to accelerate T2D and obesity development. Mice with myeloid-specific GPSM1 ablation are protected against high fat diet-induced insulin resistance, glucose dysregulation, and liver steatosis via repression of adipose tissue pro-inflammatory states. Mechanistically, GPSM1 deficiency mainly promotes TNFAIP3 transcription via the Gαi3/cAMP/PKA/CREB axis, thus inhibiting TLR4-induced NF-κB signaling in macrophages. In addition, we identify a small-molecule compound, AN-465/42243987, which suppresses the pro-inflammatory phenotype by inhibiting GPSM1 function, which could make it a candidate for metabolic therapy. Furthermore, GPSM1 expression is upregulated in visceral fat of individuals with obesity and is correlated with clinical metabolic traits. Overall, our findings identify macrophage GPSM1 as a link between metabolic inflammation and systemic homeostasis.
Collapse
|
11
|
Man W, Song X, Xiong Z, Gu J, Lin J, Gu X, Yu D, Li C, Jiang M, Zhang X, Yang Z, Cao Y, Zhang Y, Shu X, Wu D, Wang H, Ji G, Sun D. Exosomes derived from pericardial adipose tissues attenuate cardiac remodeling following myocardial infarction by Adipsin-regulated iron homeostasis. Front Cardiovasc Med 2022; 9:1003282. [PMID: 36172581 PMCID: PMC9510661 DOI: 10.3389/fcvm.2022.1003282] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital adipokine, Adipsin is closely associated with cardiovascular risks. Nevertheless, its role in the onset and development of cardiovascular diseases remains elusive. This study was designed to examine the effect of Adipsin on survival, cardiac dysfunction and adverse remodeling in the face of myocardial infarction (MI) injury. In vitro experiments were conducted to evaluate the effects of Adipsin on cardiomyocyte function in the face of hypoxic challenge and the mechanisms involved. Our results showed that Adipsin dramatically altered expression of proteins associated with iron metabolism and ferroptosis. In vivo results demonstrated that Adipsin upregulated levels of Ferritin Heavy Chain (FTH) while downregulating that of Transferrin Receptor (TFRC) in peri-infarct regions 1 month following MI. Adipsin also relieved post-MI-associated lipid oxidative stress as evidenced by decreased expression of COX2 and increased GPX4 level. Co-immunoprecipitation and immunofluorescence imaging prove a direct interaction between Adipsin and IRP2. As expected, cardioprotection provided by Adipsin depends on the key molecule of IRP2. These findings revealed that Adipsin could be efficiently delivered to the heart by exosomes derived from pericardial adipose tissues. In addition, Adipsin interacted with IRP2 to protect cardiomyocytes against ferroptosis and maintain iron homeostasis. Therefore, Adipsin-overexpressed exosomes derived from pericardial adipose tissues may be a promising therapeutic strategy to prevent adverse cardiac remodeling following ischemic heart injury.
Collapse
Affiliation(s)
- Wanrong Man
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xinglong Song
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhenyu Xiong
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jing Gu
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Duan Yu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Mengyuan Jiang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xuebin Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhi Yang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Cao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yan Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dexi Wu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Haichang Wang
- Heart Hospital, Xi’an International Medical Center, Xi’an, China
- Haichang Wang,
| | - Gang Ji
- Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, China
- Gang Ji,
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Dongdong Sun,
| |
Collapse
|
12
|
Renu K, Mukherjee AG, Wanjari UR, Vinayagam S, Veeraraghavan VP, Vellingiri B, George A, Lagoa R, Sattu K, Dey A, Gopalakrishnan AV. Misuse of Cardiac Lipid upon Exposure to Toxic Trace Elements-A Focused Review. Molecules 2022; 27:5657. [PMID: 36080424 PMCID: PMC9457865 DOI: 10.3390/molecules27175657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022] Open
Abstract
Heavy metals and metalloids like cadmium, arsenic, mercury, and lead are frequently found in the soil, water, food, and atmosphere; trace amounts can cause serious health issues to the human organism. These toxic trace elements (TTE) affect almost all the organs, mainly the heart, kidney, liver, lungs, and the nervous system, through increased free radical formation, DNA damage, lipid peroxidation, and protein sulfhydryl depletion. This work aims to advance our understanding of the mechanisms behind lipid accumulation via increased free fatty acid levels in circulation due to TTEs. The increased lipid level in the myocardium worsens the heart function. This dysregulation of the lipid metabolism leads to damage in the structure of the myocardium, inclusive fibrosis in cardiac tissue, myocyte apoptosis, and decreased contractility due to mitochondrial dysfunction. Additionally, it is discussed herein how exposure to cadmium decreases the heart rate, contractile tension, the conductivity of the atrioventricular node, and coronary flow rate. Arsenic may induce atherosclerosis by increasing platelet aggregation and reducing fibrinolysis, as exposure interferes with apolipoprotein (Apo) levels, resulting in the rise of the Apo-B/Apo-A1 ratio and an elevated risk of acute cardiovascular events. Concerning mercury and lead, these toxicants can cause hypertension, myocardial infarction, and carotid atherosclerosis, in association with the generation of free radicals and oxidative stress. This review offers a complete overview of the critical factors and biomarkers of lipid and TTE-induced cardiotoxicity useful for developing future protective interventions.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sathishkumar Vinayagam
- Department of Biotechnology, PG Extension Centre, Periyar University, Dharmapuri 636701, Tamil Nadu, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, 2411-901 Leiria, Portugal
- Applied Molecular Biosciences Unit, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Kamaraj Sattu
- Department of Biotechnology, PG Extension Centre, Periyar University, Dharmapuri 636701, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
13
|
Martínez-Martínez E, Fernández-Irigoyen J, Santamaría E, Nieto ML, Bravo-San Pedro JM, Cachofeiro V. Mitochondrial Oxidative Stress Induces Cardiac Fibrosis in Obese Rats through Modulation of Transthyretin. Int J Mol Sci 2022; 23:ijms23158080. [PMID: 35897655 PMCID: PMC9330867 DOI: 10.3390/ijms23158080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
A proteomic approach was used to characterize potential mediators involved in the improvement in cardiac fibrosis observed with the administration of the mitochondrial antioxidant MitoQ in obese rats. Male Wistar rats were fed a standard diet (3.5% fat; CT) or a high-fat diet (35% fat; HFD) and treated with vehicle or MitoQ (200 μM) in drinking water for 7 weeks. Obesity modulated the expression of 33 proteins as compared with controls of the more than 1000 proteins identified. These include proteins related to endoplasmic reticulum (ER) stress and oxidative stress. Proteomic analyses revealed that HFD animals presented with an increase in cardiac transthyretin (TTR) protein levels, an effect that was prevented by MitoQ treatment in obese animals. This was confirmed by plasma levels, which were associated with those of cardiac levels of both binding immunoglobulin protein (BiP), a marker of ER stress, and fibrosis. TTR stimulated collagen I production and BiP in cardiac fibroblasts. This upregulation was prevented by the presence of MitoQ. In summary, the results suggest a role of TTR in cardiac fibrosis development associated with obesity and the beneficial effects of treatment with mitochondrial antioxidants.
Collapse
Affiliation(s)
- Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913-941-483 (E.M.-M.); +34-913-941-489 (V.C.)
| | - Joaquín Fernández-Irigoyen
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
| | - Enrique Santamaría
- Proteomics Platform, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; (J.F.-I.); (E.S.)
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47002 Valladolid, Spain
| | | | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28222 Madrid, Spain;
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913-941-483 (E.M.-M.); +34-913-941-489 (V.C.)
| |
Collapse
|
14
|
Gutiérrez-Cuevas J, Santos A, Armendariz-Borunda J. Pathophysiological Molecular Mechanisms of Obesity: A Link between MAFLD and NASH with Cardiovascular Diseases. Int J Mol Sci 2021; 22:11629. [PMID: 34769060 PMCID: PMC8583943 DOI: 10.3390/ijms222111629] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is now a worldwide epidemic ensuing an increase in comorbidities' prevalence, such as insulin resistance, type 2 diabetes (T2D), metabolic dysfunction-associated fatty liver disease (MAFLD), nonalcoholic steatohepatitis (NASH), hypertension, cardiovascular disease (CVD), autoimmune diseases, and some cancers, CVD being one of the main causes of death in the world. Several studies provide evidence for an association between MAFLD and atherosclerosis and cardio-metabolic disorders, including CVDs such as coronary heart disease and stroke. Therefore, the combination of MAFLD/NASH is associated with vascular risk and CVD progression, but the underlying mechanisms linking MAFLD/NASH and CVD are still under investigation. Several underlying mechanisms may probably be involved, including hepatic/systemic insulin resistance, atherogenic dyslipidemia, hypertension, as well as pro-atherogenic, pro-coagulant, and pro-inflammatory mediators released from the steatotic/inflamed liver. MAFLD is strongly associated with insulin resistance, which is involved in its pathogenesis and progression to NASH. Insulin resistance is a major cardiovascular risk factor in subjects without diabetes. However, T2D has been considered the most common link between MAFLD/NASH and CVD. This review summarizes the evidence linking obesity with MAFLD, NASH, and CVD, considering the pathophysiological molecular mechanisms involved in these diseases. We also discuss the association of MAFLD and NASH with the development and progression of CVD, including structural and functional cardiac alterations, and pharmacological strategies to treat MAFLD/NASH and cardiovascular prevention.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico;
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico;
| |
Collapse
|
15
|
Wenzl FA, Ambrosini S, Mohammed SA, Kraler S, Lüscher TF, Costantino S, Paneni F. Inflammation in Metabolic Cardiomyopathy. Front Cardiovasc Med 2021; 8:742178. [PMID: 34671656 PMCID: PMC8520939 DOI: 10.3389/fcvm.2021.742178] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Overlapping pandemics of lifestyle-related diseases pose a substantial threat to cardiovascular health. Apart from coronary artery disease, metabolic disturbances linked to obesity, insulin resistance and diabetes directly compromise myocardial structure and function through independent and shared mechanisms heavily involving inflammatory signals. Accumulating evidence indicates that metabolic dysregulation causes systemic inflammation, which in turn aggravates cardiovascular disease. Indeed, elevated systemic levels of pro-inflammatory cytokines and metabolic substrates induce an inflammatory state in different cardiac cells and lead to subcellular alterations thereby promoting maladaptive myocardial remodeling. At the cellular level, inflammation-induced oxidative stress, mitochondrial dysfunction, impaired calcium handling, and lipotoxicity contribute to cardiomyocyte hypertrophy and dysfunction, extracellular matrix accumulation and microvascular disease. In cardiometabolic patients, myocardial inflammation is maintained by innate immune cell activation mediated by pattern recognition receptors such as Toll-like receptor 4 (TLR4) and downstream activation of the NLRP3 inflammasome and NF-κB-dependent pathways. Chronic low-grade inflammation progressively alters metabolic processes in the heart, leading to a metabolic cardiomyopathy (MC) phenotype and eventually to heart failure with preserved ejection fraction (HFpEF). In accordance with preclinical data, observational studies consistently showed increased inflammatory markers and cardiometabolic features in patients with HFpEF. Future treatment approaches of MC may target inflammatory mediators as they are closely intertwined with cardiac nutrient metabolism. Here, we review current evidence on inflammatory processes involved in the development of MC and provide an overview of nutrient and cytokine-driven pro-inflammatory effects stratified by cell type.
Collapse
Affiliation(s)
- Florian A Wenzl
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Cheng YW, Zhang ZB, Lan BD, Lin JR, Chen XH, Kong LR, Xu L, Ruan CC, Gao PJ. PDGF-D activation by macrophage-derived uPA promotes AngII-induced cardiac remodeling in obese mice. J Exp Med 2021; 218:e20210252. [PMID: 34236404 PMCID: PMC8273546 DOI: 10.1084/jem.20210252] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity-induced secretory disorder of adipose tissue-derived factors is important for cardiac damage. However, whether platelet-derived growth factor-D (PDGF-D), a newly identified adipokine, regulates cardiac remodeling in angiotensin II (AngII)-infused obese mice is unclear. Here, we found obesity induced PDGF-D expression in adipose tissue as well as more severe cardiac remodeling compared with control lean mice after AngII infusion. Adipocyte-specific PDGF-D knockout attenuated hypertensive cardiac remodeling in obese mice. Consistently, adipocyte-specific PDGF-D overexpression transgenic mice (PA-Tg) showed exacerbated cardiac remodeling after AngII infusion without high-fat diet treatment. Mechanistic studies indicated that AngII-stimulated macrophages produce urokinase plasminogen activator (uPA) that activates PDGF-D by splicing full-length PDGF-D into the active PDGF-DD. Moreover, bone marrow-specific uPA knockdown decreased active PDGF-DD levels in the heart and improved cardiac remodeling in HFD hypertensive mice. Together, our data provide for the first time a new interaction pattern between macrophage and adipocyte: that macrophage-derived uPA activates adipocyte-secreted PDGF-D, which finally accelerates AngII-induced cardiac remodeling in obese mice.
Collapse
Affiliation(s)
- Yu-Wen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze-Bei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei-Di Lan
- Department of Cardiology, First Affiliated Hospital, Xi’an Jiao Tong University, Xi’an, Shanxi, China
| | - Jing-Rong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling-Ran Kong
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Iron reduces the anti-inflammatory effect of omega-3 polyunsaturated fatty acids on the heart of STZ- and HFD-induced diabetic rats. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Ren J, Wu NN, Wang S, Sowers JR, Zhang Y. Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications. Physiol Rev 2021; 101:1745-1807. [PMID: 33949876 PMCID: PMC8422427 DOI: 10.1152/physrev.00030.2020] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The prevalence of heart failure is on the rise and imposes a major health threat, in part, due to the rapidly increased prevalence of overweight and obesity. To this point, epidemiological, clinical, and experimental evidence supports the existence of a unique disease entity termed “obesity cardiomyopathy,” which develops independent of hypertension, coronary heart disease, and other heart diseases. Our contemporary review evaluates the evidence for this pathological condition, examines putative responsible mechanisms, and discusses therapeutic options for this disorder. Clinical findings have consolidated the presence of left ventricular dysfunction in obesity. Experimental investigations have uncovered pathophysiological changes in myocardial structure and function in genetically predisposed and diet-induced obesity. Indeed, contemporary evidence consolidates a wide array of cellular and molecular mechanisms underlying the etiology of obesity cardiomyopathy including adipose tissue dysfunction, systemic inflammation, metabolic disturbances (insulin resistance, abnormal glucose transport, spillover of free fatty acids, lipotoxicity, and amino acid derangement), altered intracellular especially mitochondrial Ca2+ homeostasis, oxidative stress, autophagy/mitophagy defect, myocardial fibrosis, dampened coronary flow reserve, coronary microvascular disease (microangiopathy), and endothelial impairment. Given the important role of obesity in the increased risk of heart failure, especially that with preserved systolic function and the recent rises in COVID-19-associated cardiovascular mortality, this review should provide compelling evidence for the presence of obesity cardiomyopathy, independent of various comorbid conditions, underlying mechanisms, and offer new insights into potential therapeutic approaches (pharmacological and lifestyle modification) for the clinical management of obesity cardiomyopathy.
Collapse
Affiliation(s)
- Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China.,Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Ne N Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Shuyi Wang
- School of Medicine, Shanghai University, Shanghai, China.,University of Wyoming College of Health Sciences, Laramie, Wyoming
| | - James R Sowers
- Dalton Cardiovascular Research Center, Diabetes and Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| |
Collapse
|
19
|
Weight Reduction for Obesity-Induced Heart Failure with Preserved Ejection Fraction. Curr Hypertens Rep 2020; 22:47. [DOI: 10.1007/s11906-020-01074-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
CTRP9: An emerging potential anti-aging molecule in brain. Cell Signal 2020; 73:109694. [PMID: 32540339 DOI: 10.1016/j.cellsig.2020.109694] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/10/2020] [Indexed: 12/14/2022]
Abstract
C1q/tumor necrosis factor (TNF)-related proteins (CTRPs) particularly CTRP9, have been established to be as adiponectin (APN) highly conserved paralogs which assemble several APN regulatory functions. Recently, growing body of evidences drawn significant attention to evaluate metabolic and cardiovascular effect of CTRP9. However, the potential role of CTRP9 in brain tissue has not yet fully illustrated. Here, we aimed to uncover latest advances regarding the CTRP9 related signaling pathways and during brain aging process.
Collapse
|
21
|
Gutierrez-Hervas A, Gómez-Martínez S, Izquierdo-Gómez R, Veiga OL, Perez-Bey A, Castro-Piñero J, Marcos A. Inflammation and fatness in adolescents with and without Down syndrome: UP & DOWN study. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2020; 64:170-179. [PMID: 31858639 DOI: 10.1111/jir.12697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The main objective of this study was to describe the inflammatory status of adolescents with Down syndrome (DS) and their relationship with adiposity. METHODS Ninety-five adolescents with DS (44.2% girls) and a control group of 113 adolescents (47.8% girls), aged between 11 and 18 years old, from the UP & DOWN study were included in this substudy. Serum C-reactive protein, C3 and C4 complement factors, total proteins, interleukin-6, tumour necrosis factor-α, insulin, cortisol, leptin, adiponectin, galactin-3 and visfatin were analysed; homeostatic model assessment index was calculated. In order to evaluate adiposity, we measured the following body fat variables: weight, height, waist circumference and skinfold thicknesses. Birth weight was obtained by questionnaire. In addition, body mass index, waist-to-height ratio (WHtR) and body fat percentage (BF%) were calculated. RESULTS Down syndrome group showed higher levels of body mass index, WHtR, waist circumference, BF% and lower birth weight than controls (P < 0.001). In the general linear model in the total sample, WHtR was positively associated with C3 and C4 (P < 0.001) as well as with leptin levels (P = 0.015). BF% was positively associated with total proteins (P = 0.093) and leptin levels (P < 0.001). DS was positively associated with total proteins (P < 0.001), C3 (P = 0.047) and C4 (P = 0.019). Despite the higher levels of adiposity found in DS group, no direct association was found between BF% and leptin levels, comparing with the control group. CONCLUSIONS These findings suggest that abdominal obesity should be controlled in adolescents because of its relationship with acute phase-inflammatory biomarkers but especially in DS adolescents who may show a peculiar metabolic status according to their relationship between adiposity and inflammatory biomarkers.
Collapse
Affiliation(s)
- A Gutierrez-Hervas
- Nursing Department, University of Alicante, Alicante, Spain
- Department of Nutrition and Metabolism (DMN), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - S Gómez-Martínez
- Department of Nutrition and Metabolism (DMN), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| | - R Izquierdo-Gómez
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain
- Department of Physical Education, Faculty of Education, Universidad Central de Chile, Santiago, Chile
| | - O L Veiga
- Department of Physical Education, Sport and Human Movement, Faculty of Education, Autonomous University of Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - A Perez-Bey
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain
| | - J Castro-Piñero
- Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Puerto Real, Spain
| | - A Marcos
- Department of Nutrition and Metabolism (DMN), Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
22
|
Homsi R, Yuecel S, Schlesinger-Irsch U, Meier-Schroers M, Kuetting D, Luetkens J, Sprinkart A, Schild HH, Thomas DK. Epicardial fat, left ventricular strain, and T1-relaxation times in obese individuals with a normal ejection fraction. Acta Radiol 2019; 60:1251-1257. [PMID: 30727747 DOI: 10.1177/0284185119826549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Rami Homsi
- Department of Radiology, University of Bonn, Bonn, Germany
| | - Seyrani Yuecel
- Department of Cardiology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | - Hans H. Schild
- Department of Radiology, University of Bonn, Bonn, Germany
| | | |
Collapse
|
23
|
Oh A, Okazaki R, Sam F, Valero-Muñoz M. Heart Failure With Preserved Ejection Fraction and Adipose Tissue: A Story of Two Tales. Front Cardiovasc Med 2019; 6:110. [PMID: 31428620 PMCID: PMC6687767 DOI: 10.3389/fcvm.2019.00110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by signs and symptoms of heart failure in the presence of a normal left ventricular ejection fraction. Although it accounts for up to 50% of all clinical presentations of heart failure, there are no evidence-based therapies for HFpEF to reduce morbidity and mortality. Additionally there is a lack of mechanistic understanding about the pathogenesis of HFpEF. HFpEF is associated with many comorbidities (such as obesity, hypertension, type 2 diabetes, atrial fibrillation, etc.) and is coupled with both cardiac and extra-cardiac abnormalities. Large outcome trials and registries reveal that being obese is a major risk factor for HFpEF. There is increasing focus on investigating the link between obesity and HFpEF, and the role that the adipose tissue and the heart, and the circulating milieu play in development and pathogenesis of HFpEF. This review discusses features of the obese-HFpEF phenotype and highlights proposed mechanisms implicated in the inter-tissue communication between adipose tissue and the heart in obesity-associated HFpEF.
Collapse
Affiliation(s)
- Albin Oh
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
| | - Ross Okazaki
- Boston University School of Medicine, Boston, MA, United States
| | - Flora Sam
- Evans Department of Medicine, Boston Medical Center, Boston, MA, United States
- Boston University School of Medicine, Boston, MA, United States
- Section of Cardiovascular Medicine, Boston Medical Center, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| | - Maria Valero-Muñoz
- Boston University School of Medicine, Boston, MA, United States
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
24
|
Poret JM, Battle C, Mouton AJ, Gaudet DA, Souza-Smith F, Gardner JD, Braymer HD, Harrison-Bernard L, Primeaux SD. The prevalence of cardio-metabolic risk factors is differentially elevated in obesity-prone Osborne-Mendel and obesity-resistant S5B/Pl rats. Life Sci 2019; 223:95-101. [PMID: 30872180 DOI: 10.1016/j.lfs.2019.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 01/08/2023]
Abstract
AIMS Individual susceptibility to develop obesity may impact the development of cardio-metabolic risk factors that lead to obesity-related comorbid conditions. Obesity-prone Osborne-Mendel (OM) rats expressed higher levels of visceral adipose inflammation than obesity-resistant, S5B/Pl (S5B) rats. However, the consumption of a high fat diet (HFD) differentially affected OM and S5B rats and induced an increase in visceral adipose inflammation in S5B rats. The current study examined the effects of HFD consumption on cardio-metabolic risk factors in OM and S5B rats. MATERIALS & METHODS Glucose regulation and circulating levels of lipids, adiponectin and C-reactive protein were assessed following 8 weeks of HFD or low fat diet (LFD) consumption. Left ventricle hypertrophy and mRNA expression of cardiovascular disease biomarkers were also quantified in OM and S5B rats. KEY FINDINGS Circulating levels of triglycerides were higher, while HDL cholesterol, adiponectin and glycemic control were lower in OM rats, compared to S5B rats. In the left ventricle, BNP and CTGF mRNA expression were higher in OM rats and IL-6, IL-1β, VEGF, and iNOS mRNA expression were higher in S5B rats. SIGNIFICANCE These findings support the hypothesis that cardio-metabolic risk factors are increased in obesity-prone individuals, which may increase the risk for the development of obesity-related comorbidities. In the current models, obesity-resistant S5B rats also exhibited cardiovascular risk factors supporting the importance of monitoring cardiovascular health in individuals characterized as obesity-resistant.
Collapse
Affiliation(s)
- Jonquil M Poret
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Claire Battle
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Alan J Mouton
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Darryl A Gaudet
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Flavia Souza-Smith
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Jason D Gardner
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - H Douglas Braymer
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America
| | - Lisa Harrison-Bernard
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America
| | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, New Orleans, LA 70112, United States of America; Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, United States of America.
| |
Collapse
|
25
|
Obesity cardiomyopathy: the role of obstructive sleep apnea and obesity hypoventilation syndrome. Ir J Med Sci 2019; 188:783-790. [DOI: 10.1007/s11845-018-01959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023]
|
26
|
Han H, Zhu T, Guo Y, Ruan Y, Herzog E, He J. Impact of prior bariatric surgery on outcomes of hospitalized patients with heart failure: a population-based study. Surg Obes Relat Dis 2019; 15:469-477. [PMID: 30713121 DOI: 10.1016/j.soard.2018.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 12/30/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Studies have suggested that obesity could improve prognosis in patients with heart failure (HF), known as the "obesity paradox." However, the association between bariatric surgery (BS) and HF outcomes is not well established. OBJECTIVE This study aimed to assess the effects of prior BS on outcomes of HF patients. SETTING Inpatient hospital admissions from the Nationwide Inpatient Sample. METHODS The Nationwide Inpatient Sample database for years 2006 to 2014 was queried for adults with a primary diagnosis of HF. We performed multivariable regression analyses to compare outcomes including in-hospital mortality, complications, cost, and length of stay between prior BS (body mass index <35 and ≥35 kg/m2) and morbid obesity. RESULTS Of 164,220 patients with HF, 3617 were with prior BS and 160,603 were diagnosed with morbid obesity. Prior BS patients were younger, tended to be female, and had fewer co-morbidities and complications. Multivariate regression analyses adjusting for baseline patient and hospital characteristics revealed that compared with morbid obesity, prior BS with successful weight loss (body mass index <35 kg/m2) was associated with decreased mortality (odds ratio: .47; 95% confidence interval: .37-.74), urinary tract infection (odds ratio: .72; 95% confidence interval: .62-.84), 17% shorter hospitalization (median length of stay: 2.99 and 3.95 days), and 7% lower cost (median cost: $6984 and $7775). Propensity score-matching analysis validated main findings with permissible similarity regarding covariates between groups. CONCLUSION Among HF hospitalized patients, prior BS is associated with better in-hospital outcomes, mainly in those who had successful weight loss. Our findings emphasize potential clinical and economic impact of BS on HF patients.
Collapse
Affiliation(s)
- Hedong Han
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Tiantian Zhu
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yibin Guo
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yiming Ruan
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Eyal Herzog
- Mount Sinai St. Luke's and West Medical Center, New York, New York
| | - Jia He
- Department of Health Statistics, Second Military Medical University, Shanghai, China; Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Impact of X-ray Exposure on the Proliferation and Differentiation of Human Pre-Adipocytes. Int J Mol Sci 2018; 19:ijms19092717. [PMID: 30208657 PMCID: PMC6163807 DOI: 10.3390/ijms19092717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 01/20/2023] Open
Abstract
Radiotherapy is a widely used treatment option for cancer patients as well as for patients with musculoskeletal disorders. Adipocytes, the dominant cell type of adipose tissue, are known to constitute an active part of the tumor microenvironment. Moreover, adipocytes support inflammatory processes and cartilage degradation in chronic inflammatory diseases, i.e., rheumatoid and osteoarthritis. Since the production of inflammatory factors is linked to their differentiation stages, we set out to explore the radiation response of pre-adipocytes that may influence their inflammatory potential and differentiation capacity. This is the first study investigating the effects of X-ray irradiation on the proliferation and differentiation capacity of human primary pre-adipocytes, in comparison to Simpson–Golabi–Behmel Syndrome (SGBS) pre-adipocytes, an often-used in vitro model of human primary pre-adipocytes. Our results demonstrate a dose-dependent reduction of the proliferation capacity for both cell strains, whereas the potential for differentiation was mostly unaffected by irradiation. The expression of markers of adipogenic development, such as transcription factors (PPARγ, C/EBPα and C/EBPβ), as well as the release of adipokines (visfatin, adiponectin and leptin) were not significantly changed upon irradiation. However, after irradiation with high X-ray doses, an increased lipid accumulation was observed, which suggests a radiation-induced response of adipocytes related to inflammation. Our results indicate that pre-adipocytes are radio-resistant, and it remains to be elucidated whether this holds true for the overall inflammatory response of adipocytes upon irradiation.
Collapse
|
28
|
Affiliation(s)
- Aslan T Turer
- From the Department of Internal Medicine, Division of Cardiology (A.T.T.), and Touchstone Diabetes Center (P.E.S.), University of Texas Southwestern Medical Center, Dallas
| | - Philipp E Scherer
- From the Department of Internal Medicine, Division of Cardiology (A.T.T.), and Touchstone Diabetes Center (P.E.S.), University of Texas Southwestern Medical Center, Dallas.
| |
Collapse
|
29
|
Liu Y, Li LN, Guo S, Zhao XY, Liu YZ, Liang C, Tu S, Wang D, Li L, Dong JZ, Gao L, Yang HB. Melatonin improves cardiac function in a mouse model of heart failure with preserved ejection fraction. Redox Biol 2018; 18:211-221. [PMID: 30031269 PMCID: PMC6076208 DOI: 10.1016/j.redox.2018.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 01/06/2023] Open
Abstract
Melatonin has been shown to inhibit myocardial infarction-induced apoptosis, its function in heart failure with preserved ejection fraction (HFpEF) has not been investigated. This study aimed to investigate whether melatonin attenuates obesity-related HFpEF. Male mice were fed a high-fat diet (HFD) from weaning to 6 months of age to induce HFpEF. The mice were orally administered melatonin (50 mg/kg) by 3 weeks. Diastolic function was significantly improved by melatonin supplementation in mice fed an HFD. Melatonin attenuated obesity-induced myocardial oxidative stress and apoptosis and promoted the secretion of C1q/tumour necrosis factor-related protein 3 (CTRP3) by adipose tissue. And depletion of circulating CTRP3 largely abolished melatonin-mediated cardio-protection. Melatonin-mediated secretion of adipocyte-derived CTRP3 activated NF-E2-related factor 2 (Nrf2), which were largely abrogated by knocking down CTRP3 in adipocytes or Nrf2 in cardiomyocytes. Nrf2 activation was mediated by miR-200a, and a miR-200a antagomir offset the effects of melatonin-conditioned medium on Nrf2 expression. Our results indicate that melatonin can be used to treat and prevent obesity-related HFpEF. Melatonin attenuates obesity-related heart failure with preserved ejection fraction. Melatonin attenuates obesity-induced myocardial injury via adipose tissue-derived CTRP3. Melatonin-mediated secretion of adipocyte-derived CTRP3 activates Nrf2 by miR-200a.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Na Li
- Department of Anaesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sen Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Yan Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu-Zhou Liu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cui Liang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sheng Tu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dan Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Zeng Dong
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lu Gao
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Hai-Bo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
30
|
Wardak M, Nguyen PK. The Gift of Light: Using Multiplexed Optical Imaging to Probe Cardiac Metabolism in Health and Disease. Circ Cardiovasc Imaging 2018; 11:e007597. [PMID: 29555838 DOI: 10.1161/circimaging.118.007597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mirwais Wardak
- From the Department of Radiology (M.W.), Molecular Imaging Program at Stanford (MIPS) (M.W.), Division of Cardiovascular Medicine, Department of Medicine (P.K.N.), and Stanford Cardiovascular Institute (M.W., P.K.N.), Stanford University School of Medicine, CA; and Cardiology Section, Veterans Affairs Palo Alto Health Care Administration, CA (P.K.N.)
| | - Patricia K Nguyen
- From the Department of Radiology (M.W.), Molecular Imaging Program at Stanford (MIPS) (M.W.), Division of Cardiovascular Medicine, Department of Medicine (P.K.N.), and Stanford Cardiovascular Institute (M.W., P.K.N.), Stanford University School of Medicine, CA; and Cardiology Section, Veterans Affairs Palo Alto Health Care Administration, CA (P.K.N.).
| |
Collapse
|
31
|
Rodriguez Flores M, Aguilar Salinas C, Piché ME, Auclair A, Poirier P. Effect of bariatric surgery on heart failure. Expert Rev Cardiovasc Ther 2017; 15:567-579. [PMID: 28714796 DOI: 10.1080/14779072.2017.1352471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Obesity increases the risk of heart failure (HF), which continues to be a significant proportion of all cardiovascular diseases and affects increasingly younger populations. The cross-talk between adipose and the heart involves insulin resistance, adipokine signaling and inflammation, with the capacity of adipose tissue to mediate hemodynamic signals, promoting progressive cardiomyopathy. Areas covered: From a therapeutic perspective, there is not yet a single obesity-related pathway that when addressed, can ameliorate cardiomyopathy in obese patients and this is a matter of ongoing research. There is poor evidence of the beneficial long-term effect of small nonsurgical intentional weight loss on HF outcomes, in contrast to the field of HF accompanying severe obesity where observational studies have shown that bariatric surgery is associated with improved cardiac structure/function in severely obese patients with HF and preserved ejection fraction (HFpEF) as well as with improved cardiac structure/function in those with HF and reduced ejection fraction (HFrEF). Few studies report positive outcomes in subjects with obesity and HF, both severe, who underwent bariatric surgery as a rescue treatment, including bridge to heart transplantation. Expert commentary: The fast growing prevalence of obesity will continue to require the development of appropriate interventions directed at controlling or slowing pathways of cardiac damage in these patients, but at present, bariatric surgery should be considered an option to try to decrease morbidity associated with HF in severely obese adults.
Collapse
Affiliation(s)
- Marcela Rodriguez Flores
- a Endocrinology Department , Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , Mexico
| | - Carlos Aguilar Salinas
- a Endocrinology Department , Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" , Mexico
| | - Marie-Eve Piché
- b Cardiology Department , Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec , Canada.,c Faculty of Medicine , Laval University , Québec , Canada
| | - Audrey Auclair
- b Cardiology Department , Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec , Canada
| | - Paul Poirier
- b Cardiology Department , Institut Universitaire de Cardiologie et de Pneumologie de Québec , Québec , Canada.,d Faculty of Pharmacy , Laval University , Québec , Canada
| |
Collapse
|
32
|
Frati G, Schirone L, Chimenti I, Yee D, Biondi-Zoccai G, Volpe M, Sciarretta S. An overview of the inflammatory signalling mechanisms in the myocardium underlying the development of diabetic cardiomyopathy. Cardiovasc Res 2017; 113:378-388. [PMID: 28395009 DOI: 10.1093/cvr/cvx011] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/20/2017] [Indexed: 02/05/2023] Open
Abstract
Heart failure is a highly morbid and mortal clinical condition that represents the last stage of most cardiovascular disorders. Diabetes is strongly associated with an increased incidence of heart failure and directly promotes cardiac hypertrophy, fibrosis, and apoptosis. These changes, in turn, contribute to the development of ventricular dysfunction. The clinical condition associated with the spectrum of cardiac abnormalities induced by diabetes is termed diabetic cardiomyopathy. Myocardial inflammation has recently emerged as a pathophysiological process contributing to cardiac hypertrophy, fibrosis, and dysfunction in cardiac diseases. Myocardial inflammation is also implicated in the development of diabetic cardiomyopathy. Several molecular mechanisms link diabetes to myocardial inflammation. The NF-κB signalling pathway and the renin-angiotensin-aldosterone system are strongly activated in the diabetic heart, thereby promoting myocardial inflammation. Advanced glycation end-products and damage-associated molecular pattern molecules also represent strong triggers for inflammation. The mediators resulting from this inflammatory process modulate specific intracellular signalling mechanisms in cardiac cells that promote the development of diabetic cardiomyopathy. This review article will provide an overview of the signalling molecular mechanisms linking diabetic cardiomyopathy to myocardial inflammation.
Collapse
Affiliation(s)
- Giacomo Frati
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
| | - Isotta Chimenti
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
| | - Derek Yee
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Giuseppe Biondi-Zoccai
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Massimo Volpe
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Sebastiano Sciarretta
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 04100 Latina (LT), Italy
- Department of AngioCardioNeurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| |
Collapse
|
33
|
Abstract
Excessive feeding is associated with an increase in the incidence of chronic metabolic diseases, such as obesity, insulin resistance, and type 2 diabetes. Metabolic disturbance induces chronic low-grade inflammation in metabolically-important organs, such as the liver and adipose tissue. Many of the inflammatory signalling pathways are directly triggered by nutrients. The pro-inflammatory mediators in adipocytes and macrophages infiltrating adipose tissue promote both local and systemic pro-inflammatory status. Metabolic cardiomyopathy is a chronic metabolic disease characterized by structural and functional alterations and interstitial fibrosis without coronary artery disease or hypertension. In the early stage of metabolic cardiomyopathy, metabolic disturbance is not accompanied by substantial changes in myocardial structure and cardiac function. However, metabolic disturbance induces subcellular low-grade inflammation in the heart, and in turn, subcellular component abnormalities, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, and impaired calcium handling, leading to impaired myocardial relaxation. In the advanced stage, the vicious cycle of subcellular component abnormalities, inflammatory cell infiltration, and neurohumoral activation induces cardiomyocyte injury and death, and cardiac fibrosis, resulting in impairment of both diastolic and systolic functions. This review discusses some recent advances in understanding involvement of inflammation in metabolic cardiomyopathy.
Collapse
|
34
|
|
35
|
Smekal A, Vaclavik J. Adipokines and cardiovascular disease: A comprehensive review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017; 161:31-40. [PMID: 28228651 DOI: 10.5507/bp.2017.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
Adipokines are peptides that signal the functional status of adipose tissue to the brain and other target organs. In adipose tissue dysfunction, adipokine secretion is altered, and this can contribute to a spectrum of obesity-associated conditions including cardiovascular disease. Some adipokines have anti-inflammatory and cardioprotective effects (omentin, apelin, adiponectin). Others are pro-inflammatory with negative impact on cardiovascular function (leptin, visfatin, resistin, adipocyte fatty-acid-binding protein). In the first part, this article reviews the endocrine functions of adipose tissue in general, effects of the distribution and composition of fat tissue, and the roles of cortisol and the renin-angiotensin-aldosterone system in the development of the inflammatory state of addipose tissue. In the second part, the known cardiovascular effects of different adipokines and their clinical potential are discussed in detail.
Collapse
Affiliation(s)
- Ales Smekal
- Department of Internal Medicine I - Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jan Vaclavik
- Department of Internal Medicine I - Cardiology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| |
Collapse
|
36
|
Lucas E, Vila-Bedmar R, Arcones AC, Cruces-Sande M, Cachofeiro V, Mayor F, Murga C. Obesity-induced cardiac lipid accumulation in adult mice is modulated by G protein-coupled receptor kinase 2 levels. Cardiovasc Diabetol 2016; 15:155. [PMID: 27832814 PMCID: PMC5105284 DOI: 10.1186/s12933-016-0474-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023] Open
Abstract
Background The leading cause of death among the obese population is heart failure and stroke prompted by structural and functional changes in the heart. The molecular mechanisms that underlie obesity-related cardiac remodeling are complex, and include hemodynamic and metabolic alterations that ultimately affect the functionality of the myocardium. G protein-coupled receptor kinase 2 (GRK2) is an ubiquitous kinase able to desensitize the active form of several G protein-coupled receptors (GPCR) and is known to play an important role in cardiac GPCR modulation. GRK2 has also been recently identified as a negative modulator of insulin signaling and systemic insulin resistance. Methods We investigated the effects elicited by GRK2 downregulation in obesity-related cardiac remodeling. For this aim, we used 9 month-old wild type (WT) and GRK2+/− mice, which display circa 50% lower levels of this kinase, fed with either a standard or a high fat diet (HFD) for 30 weeks. In these mice we studied different parameters related to cardiac growth and lipid accumulation. Results We find that GRK2+/− mice are protected from obesity-promoted cardiac and cardiomyocyte hypertrophy and fibrosis. Moreover, the marked intracellular lipid accumulation caused by a HFD in the heart is not observed in these mice. Interestingly, HFD significantly increases cardiac GRK2 levels in WT but not in GRK2+/− mice, suggesting that the beneficial phenotype observed in hemizygous animals correlates with the maintenance of GRK2 levels below a pathological threshold. Low GRK2 protein levels are able to keep the PKA/CREB pathway active and to prevent HFD-induced downregulation of key fatty acid metabolism modulators such as Peroxisome proliferator-activated receptor gamma co-activators (PGC1), thus preserving the expression of cardioprotective proteins such as mitochondrial fusion markers mitofusin MFN1 and OPA1. Conclusions Our data further define the cellular processes and molecular mechanisms by which GRK2 down-regulation is cardioprotective during diet-induced obesity, reinforcing the protective effect of maintaining low levels of GRK2 under nutritional stress, and showing a role for this kinase in obesity-induced cardiac remodeling and steatosis. Electronic supplementary material The online version of this article (doi:10.1186/s12933-016-0474-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Lucas
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Rocio Vila-Bedmar
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Alba C Arcones
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Marta Cruces-Sande
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain.,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Federico Mayor
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain. .,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| | - Cristina Murga
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), C/Nicolas Cabrera 1, 28049, Madrid, Spain. .,Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.
| |
Collapse
|
37
|
Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, Gu Y, Wu T, Peterson KL, Huang HD, Chen J, Wang N. Adipocyte-specific loss of PPAR γ attenuates cardiac hypertrophy. JCI Insight 2016; 1:e89908. [PMID: 27734035 DOI: 10.1172/jci.insight.89908] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Adipose tissue is a key endocrine organ that governs systemic homeostasis. PPARγ is a master regulator of adipose tissue signaling that plays an essential role in insulin sensitivity, making it an important therapeutic target. The selective PPARγ agonist rosiglitazone (RSG) has been used to treat diabetes. However, adverse cardiovascular effects have seriously hindered its clinical application. Experimental models have revealed that PPARγ activation increases cardiac hypertrophy. RSG stimulates cardiac hypertrophy and oxidative stress in cardiomyocyte-specific PPARγ knockout mice, implying that RSG might stimulate cardiac hypertrophy independently of cardiomyocyte PPARγ. However, candidate cell types responsible for RSG-induced cardiomyocyte hypertrophy remain unexplored. Utilizing cocultures of adipocytes and cardiomyocytes, we found that stimulation of PPARγ signaling in adipocytes increased miR-200a expression and secretion. Delivery of miR-200a in adipocyte-derived exosomes to cardiomyocytes resulted in decreased TSC1 and subsequent mTOR activation, leading to cardiomyocyte hypertrophy. Treatment with an antagomir to miR-200a blunted this hypertrophic response in cardiomyocytes. In vivo, specific ablation of PPARγ in adipocytes was sufficient to blunt hypertrophy induced by RSG treatment. By delineating mechanisms by which RSG elicits cardiac hypertrophy, we have identified pathways that mediate the crosstalk between adipocytes and cardiomyocytes to regulate cardiac remodeling.
Collapse
Affiliation(s)
- Xi Fang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China.,Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Matthew J Stroud
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Kunfu Ouyang
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Li Fang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China
| | - Jianlin Zhang
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Nancy D Dalton
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Yusu Gu
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Tongbin Wu
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Kirk L Peterson
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Hsien-Da Huang
- Institute of Bioinformatics and Systems Biology, Department of Biological Science and Technology, National Chiao Tung University, Hsin-Chu, Taiwan
| | - Ju Chen
- Department of Medicine, School of Medicine, UCSD, La Jolla, California, USA
| | - Nanping Wang
- Institute of Cardiovascular Science, Peking University Health Science Center, Beijing, China.,The Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Zeng Q, Dong SY, Wang ML, Li JM, Ren CL, Gao CQ. Obesity and novel cardiovascular markers in a population without diabetes and cardiovascular disease in China. Prev Med 2016; 91:62-69. [PMID: 27497658 DOI: 10.1016/j.ypmed.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE To investigate associations of novel cardiovascular markers with obesity in a general population. METHODS A total of 9361 individuals without diabetes or cardiovascular disease were studied between 2009 and 2012 in China. High-sensitivity cardiac troponin T (hs-cTnT), N-terminal pro-B-type natriuretic peptide (NT-proBNP), brachial-ankle pulse wave velocity (baPWV), pulse pressure, and central systolic blood pressure (cSBP) were assessed according to body mass index (BMI) levels and different BMI/metabolic syndrome (MetS) combinations. RESULTS 'Levels of hs-cTnT, baPWV, pulse pressure, and cSBP increased across BMI levels. Obesity was positively associated with these markers in multivariate models (P<0.05 for all). When stratified by MetS, these associations remained significant in the non-MetS group, and compared with normal weight participants, the obese participants had 1.87 (95% confidence interval: 1.48, 2.36), 1.27 (1.02, 1.57), 1.89 (1.39, 2.57), and 2.71 (2.11, 3.47) fold risks for having elevated hs-cTnT, baPWV, pulse pressure, and cSBP, respectively, and had 1.61 (1.26, 2.05), 1.75 (1.27, 2.42), 2.45 (1.46, 4.11), and 3.14 (2.13, 4.62) fold risks for having 1, 2, 3, and 4 elevated cardiovascular markers, respectively; while no relationship was observed between obesity and these novel markers in the MetS group, after multivariate adjustment. These results were unchanged when using a waist-hip ratio, body fat per cent, and visceral adiposity index to redefine obesity. CONCLUSIONS Obesity was positively associated with novel cardiovascular markers (except NT-proBNP) in participants without MetS rather than in participants with MetS. Obese participants without MetS also had higher odds of having more number of elevated cardiovascular markers.
Collapse
Affiliation(s)
- Qiang Zeng
- Health Management Institute, Chinese PLA General Hospital, Beijing 100853, China.
| | - Sheng-Yong Dong
- Healthcare Department, Agency for Offices Administration of PLA, Beijing 100034, China
| | - Man-Liu Wang
- Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Jin-Ming Li
- Healthcare Department, Agency for Offices Administration of PLA, Beijing 100034, China
| | - Chong-Lei Ren
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Chang-Qing Gao
- Department of Cardiovascular Surgery, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
39
|
Quintieri AM, Filice E, Amelio D, Pasqua T, Lupi FR, Scavello F, Cantafio P, Rocca C, Lauria A, Penna C, De Cindio B, Cerra MC, Angelone T. The innovative "Bio-Oil Spread" prevents metabolic disorders and mediates preconditioning-like cardioprotection in rats. Nutr Metab Cardiovasc Dis 2016; 26:603-613. [PMID: 27113292 DOI: 10.1016/j.numecd.2016.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 01/14/2016] [Accepted: 02/02/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Obesity is often associated with an increased cardiovascular risk. The food industry and the associated research activities focus on formulating products that are a perfect mix between an adequate fat content and health. We evaluated whether a diet enriched with Bio-Oil Spread (SD), an olive oil-based innovative food, is cardioprotective in the presence of high-fat diet (HFD)-dependent obesity. METHODS AND RESULTS Rats were fed for 16 weeks with normolipidic diet (ND; fat: 6.2%), HFD (fat: 42%), and ND enriched with SD (6.2% of fat + 35.8% of SD). Metabolic and anthropometric parameters were measured. Heart and liver structures were analyzed by histochemical examination. Ischemic susceptibility was evaluated on isolated and Langendorff-perfused cardiac preparations. Signaling was assessed by Western blotting. Compared to ND rats, HFD rats showed increased body weight and abdominal obesity, dyslipidemia, and impaired glucose tolerance. Morphological analyses showed that HFD is associated with heart and liver modifications (hypertrophy and steatosis, respectively), lesser evident in the SD group, together with metabolic and anthropometric alterations. In particular, IGF-1R immunodetection revealed a reduction of hypertrophy in SD heart sections. Notably, SD diet significantly reduced myocardial susceptibility against ischemia/reperfusion (I/R) with respect to HFD through the activation of survival signals (Akt, ERK1/2, and Bcl2). Systolic and diastolic performance was preserved in the SD group. CONCLUSIONS We suggest that SD may contribute to the prevention of metabolic disorders and cardiovascular alterations typical of severe obesity induced by an HFD, including the increased ischemic susceptibility of the myocardium. Our results pave the way to evaluate the introduction of SD in human alimentary guidelines as a strategy to reduce saturated fat intake.
Collapse
MESH Headings
- Abdominal Fat/metabolism
- Abdominal Fat/physiopathology
- Adiposity
- Animal Feed
- Animals
- Apoptosis
- Biomarkers/blood
- Blood Glucose/metabolism
- Diet, High-Fat
- Dietary Supplements
- Disease Models, Animal
- Dyslipidemias/blood
- Dyslipidemias/etiology
- Dyslipidemias/prevention & control
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Glucose Intolerance/blood
- Glucose Intolerance/etiology
- Glucose Intolerance/prevention & control
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Isolated Heart Preparation
- Lipids/blood
- Liver/metabolism
- Liver/pathology
- Metabolic Syndrome/blood
- Metabolic Syndrome/etiology
- Metabolic Syndrome/physiopathology
- Metabolic Syndrome/prevention & control
- Myocardial Infarction/blood
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/blood
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/physiopathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardium/metabolism
- Myocardium/pathology
- Non-alcoholic Fatty Liver Disease/blood
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/pathology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity, Abdominal/blood
- Obesity, Abdominal/etiology
- Obesity, Abdominal/physiopathology
- Obesity, Abdominal/prevention & control
- Olive Oil/administration & dosage
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Rats, Sprague-Dawley
- Receptor, IGF Type 1/metabolism
- Signal Transduction
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- A M Quintieri
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - E Filice
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - D Amelio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - T Pasqua
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - F R Lupi
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, Rende, Italy
| | - F Scavello
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - P Cantafio
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - C Rocca
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy
| | - A Lauria
- ASL San Marco Argentano (CS), Veterinary Medicine Section, Italy
| | - C Penna
- Department of Biological and Clinical Sciences, San Luigi Gonzaga Hospital, University of Turin, Turin, Italy
| | - B De Cindio
- Department of Information, Modeling, Electronics and System Engineering, University of Calabria, Rende, Italy
| | - M C Cerra
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy; National Institute of Cardiovascular Research, Bologna, Italy.
| | - T Angelone
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Arcavacata di Rende (CS), Italy; National Institute of Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
40
|
Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 2016; 19:206-19. [PMID: 26814590 DOI: 10.1038/nn.4202] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.
Collapse
|
41
|
Functional and Therapeutic Indications of Liposuction: Personal Experience and Review of the Literature. Ann Plast Surg 2016; 75:231-45. [PMID: 25695452 DOI: 10.1097/sap.0000000000000055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Liposuction is the most common cosmetic surgical procedure worldwide. It has evolved from being designed primarily for body contouring to becoming essential adjunct to various other aesthetic procedures, greatly enhancing their outcome. Despite its hard clear differentiation between an aesthetic and therapeutic indication for some pathologic conditions, liposuction has been increasingly applied to a gamut of disorders as a therapeutic tool or to improve function. In fact, liposuction has ceased to define a specific procedure and became synonymous to a surgical technique or tool same as the surgical knife, laser, electrocautery, suture material, or even wound-dressing products. At present, there seems to be an enormous potential for the application of the basic liposuction technique in ablative and reconstructive surgery outside the realm of purely aesthetic procedures. The present review contemplates the various nonaesthetic applications of liposuction, displaying the enormous potentials of what should be considered a basic surgical technique rather than a specific aesthetic procedure. Implications of this new definition of liposuction should induce third-party public payers and insurance companies to reconsider their remuneration and reimbursement policies.
Collapse
|
42
|
Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med 2016; 48:e217. [PMID: 26964833 PMCID: PMC4892881 DOI: 10.1038/emm.2016.20] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity, an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation, and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3) inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues.
Collapse
Affiliation(s)
| | - Erfei Song
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
43
|
Tremolada C, Ricordi C, Caplan AI, Ventura C. Mesenchymal Stem Cells in Lipogems, a Reverse Story: from Clinical Practice to Basic Science. Methods Mol Biol 2016; 1416:109-122. [PMID: 27236668 DOI: 10.1007/978-1-4939-3584-0_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The idea that basic science should be the starting point for modern clinical approaches has been consolidated over the years, and emerged as the cornerstone of Molecular Medicine. Nevertheless, there is increasing concern over the low efficiency and inherent costs related to the translation of achievements from the bench to the bedside. These burdens are also perceived with respect to the effectiveness of translating basic discoveries in stem cell biology to the newly developing field of advanced cell therapy or Regenerative Medicine. As an alternative paradigm, past and recent history in Medical Science provides remarkable reverse stories in which clinical observations at the patient's bedside have fed major advances in basic research which, in turn, led to consistent progression in clinical practice. Within this context, we discuss our recently developed method and device, which forms the core of a system (Lipogems) for processing of human adipose tissue solely with the aid of mild mechanical forces to yield a microfractured tissue product.
Collapse
Affiliation(s)
| | - Camillo Ricordi
- Cell Transplant Program and Diabetes Research Institute, University of Miami, Miami, FL, USA
| | - Arnold I Caplan
- Skeletal Research Center, Case Western Reserve University, Cleveland, OH, USA
| | - Carlo Ventura
- SWITH (Stem Wave Institute for Tissue Healing), Gruppo Villa Maria (GVM) and Ettore Sansavini Health Science Foundation - ONLUS, Lugo (Ravenna), Italy.
- National Institute of Biostructures and Biosystems (NIBB) at the S. Orsola - Malpighi Hospital, Institute of Cardiology, University of Bologna, Pavilion 21, Via Massarenti N. 9, 40138, Bologna, Italy.
| |
Collapse
|
44
|
Insulin resistance: an additional risk factor in the pathogenesis of cardiovascular disease in type 2 diabetes. Heart Fail Rev 2015; 21:11-23. [DOI: 10.1007/s10741-015-9515-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Griffin TM, Humphries KM, Kinter M, Lim HY, Szweda LI. Nutrient sensing and utilization: Getting to the heart of metabolic flexibility. Biochimie 2015; 124:74-83. [PMID: 26476002 DOI: 10.1016/j.biochi.2015.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023]
Abstract
A central feature of obesity-related cardiometabolic diseases is the impaired ability to transition between fatty acid and glucose metabolism. This impairment, referred to as "metabolic inflexibility", occurs in a number of tissues, including the heart. Although the heart normally prefers to metabolize fatty acids over glucose, the inability to upregulate glucose metabolism under energetically demanding conditions contributes to a pathological state involving energy imbalance, impaired contractility, and post-translational protein modifications. This review discusses pathophysiologic processes that contribute to cardiac metabolic inflexibility and speculates on the potential physiologic origins that lead to the current state of cardiometabolic disease in an obesogenic environment.
Collapse
Affiliation(s)
- Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Kenneth M Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Hui-Ying Lim
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Luke I Szweda
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA; Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
46
|
Fosshaug LE, Dahl CP, Risnes I, Bohov P, Berge RK, Nymo S, Geiran O, Yndestad A, Gullestad L, Aukrust P, Vinge LE, Øie E. Altered Levels of Fatty Acids and Inflammatory and Metabolic Mediators in Epicardial Adipose Tissue in Patients With Systolic Heart Failure. J Card Fail 2015; 21:916-23. [PMID: 26231517 DOI: 10.1016/j.cardfail.2015.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/26/2015] [Accepted: 07/14/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Adipose tissue has endocrine properties, secreting a wide range of mediators into the circulation, including factors involved in cardiovascular disease. However, little is known about the potential role of adipose tissue in heart failure (HF), and the aim of this study was to investigate epicardial (EAT) and subcutaneous (SAT) adipose tissue in HF patients. METHODS AND RESULTS Thirty patients with systolic HF and 30 patients with normal systolic function undergoing thoracic surgery were included in the study. Plasma was sampled and examined with the use of enzyme-linked immunosorbent assays, whereas SAT and EAT biopsies were collected and examined by means of reverse-transcription polymerase chain reaction and gas chromatography. Significantly higher expressions of mRNA encoding interleukin-6, adrenomedullin, peroxisome proliferator-activated receptor α, and fatty acid (FA)-binding protein 3, as well as higher levels of monounsaturated FA and palmitoleic acid, were seen in the EAT of HF patients, whereas the levels of docosahexaenoic acid were lower. Palmitoleic acid levels in EAT were correlated with 2 parameters of cardiac remodeling: increasing left ventricular end-diastolic diameter and N-terminal pro-B-type natriuretic peptide. CONCLUSIONS Our results demonstrate adipose tissue depot-specific alterations of synthesis of FA and inflammatory and metabolic mediators in systolic HF patients. EAT may be a source of increased circulatory and myocardial levels of these mediators through endocrine actions.
Collapse
Affiliation(s)
- Linn E Fosshaug
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Christen P Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K. G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Ivar Risnes
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pavol Bohov
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Rolf K Berge
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Ståle Nymo
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Odd Geiran
- K. G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway; Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K. G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Lars Gullestad
- Center for Heart Failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway; K. G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Leif E Vinge
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Erik Øie
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Center for Heart Failure Research, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
47
|
Patel H, Madanieh R, Kosmas CE, Vatti SK, Vittorio TJ. Reversible Cardiomyopathies. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:7-14. [PMID: 26052233 PMCID: PMC4441366 DOI: 10.4137/cmc.s19703] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/12/2015] [Accepted: 01/17/2015] [Indexed: 01/04/2023]
Abstract
Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness-induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions.
Collapse
Affiliation(s)
- Harsh Patel
- SUNY Downstate School of Medicine, Department of Internal Medicine, Brooklyn, NY, USA
| | - Raef Madanieh
- St. Francis Hospital - The Heart Center , Center for Advanced Cardiac Therapeutics, Roslyn, NY, USA
| | - Constantine E Kosmas
- Mount Sinai School of Medicine, Zena and Michael A. Wiener Cardiovascular Institute, New York, NY, USA
| | - Satya K Vatti
- St. Francis Hospital - The Heart Center , Center for Advanced Cardiac Therapeutics, Roslyn, NY, USA
| | - Timothy J Vittorio
- St. Francis Hospital - The Heart Center , Center for Advanced Cardiac Therapeutics, Roslyn, NY, USA
| |
Collapse
|
48
|
Fuller S, Stephens JM. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: mechanisms of actions and potential effects on metabolic syndrome. Adv Nutr 2015; 6:189-97. [PMID: 25770257 PMCID: PMC4352177 DOI: 10.3945/an.114.007807] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Metabolic syndrome and its complications continue to rise in prevalence and show no signs of abating in the immediate future. Therefore, the search for effective treatments is a high priority in biomedical research. Products derived from botanicals have a time-honored history of use in the treatment of metabolic diseases including type 2 diabetes. Trigonella foenum-graecum, commonly known as fenugreek, is an annual herbaceous plant that has been a staple of traditional herbal medicine in many cultures. Although fenugreek has been studied in both clinical and basic research settings, questions remain about its efficacy and biologic mechanisms of action. Diosgenin, 4-hydroxyisoleucine, and the fiber component of the plant are the most intensively studied bioactive constituents present in fenugreek. These compounds have been demonstrated to exert beneficial effects on several physiologic markers including glucose tolerance, inflammation, insulin action, liver function, blood lipids, and cardiovascular health. Although insights into the molecular mechanisms underlying the favorable effects of fenugreek have been gained, we still do not have definitive evidence establishing its role as a therapeutic agent in metabolic disease. This review aims to summarize the currently available evidence on the physiologic effects of the 3 best-characterized bioactive compounds of fenugreek, with particular emphasis on biologic mechanisms of action relevant in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Scott Fuller
- Pennington Biomedical Research Center, Baton Rouge, LA; and
| | - Jacqueline M Stephens
- Pennington Biomedical Research Center, Baton Rouge, LA; and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
49
|
Love L, Cline MG. Perioperative physiology and pharmacology in the obese small animal patient. Vet Anaesth Analg 2015; 42:119-32. [DOI: 10.1111/vaa.12219] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023]
|
50
|
Sanchez AA, Levy PT, Sekarski TJ, Arbelaez AM, Hildebolt CF, Holland MR, Singh GK. Markers of cardiovascular risk, insulin resistance, and ventricular dysfunction and remodeling in obese adolescents. J Pediatr 2015; 166:660-5. [PMID: 25556013 PMCID: PMC4344883 DOI: 10.1016/j.jpeds.2014.11.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/10/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022]
Abstract
OBJECTIVES To test our hypothesis that obese adolescents have left ventricular (LV) dysfunction and remodeling that are associated with markers of cardiovascular risk and insulin resistance (IR). STUDY DESIGN In a cross-sectional study of 44 obese and 14 lean age-, sex-, Tanner stage-, and race-matched adolescents, IR, markers of cardiovascular risks, conventional and 2-dimensional speckle tracking echocardiography measures of LV function and structure were evaluated and compared. RESULTS The obese adolescents had significantly increased body mass index Z-score, systolic blood pressure, fasting insulin, IR, and atherogenic lipids compared with the lean adolescents. A subgroup of obese adolescents had LV remodeling characterized by significantly increased LV mass index (g/m(2.7)) and relative wall thickness. Almost all obese adolescents had LV dysfunction with peak LV global longitudinal strain (GLS, %), systolic GLS rate (GLSR, %/s), and early diastolic GLSR significantly lower than in lean adolescents and in the normal pediatric population. Body mass index Z-score predicted LV remodeling (LV mass index [R(2) = 0.34] and relative wall thickness [R(2) 0.10]), and peak LV GLS (R(2) 0.15), and along with systolic blood pressure, predicted systolic GLSR (R(2) 0.16); (P ≤ .01 for all). Fasting insulin predicted early diastolic GLSR (R(2) 0.17, P ≤ .01). CONCLUSIONS Obese adolescents have subclinical ventricular dysfunction associated with the severity of obesity, increased systolic blood pressure, and IR. Ventricular remodeling is present in a subgroup of obese adolescents in association with the severity of obesity. These findings suggest that obesity may have an early impact on the cardiovascular health of obese adolescents.
Collapse
Affiliation(s)
- Aura A. Sanchez
- Department of Pediatrics. Washington University School of Medicine, Saint Louis, MO
| | - Philip T. Levy
- Department of Pediatrics. Washington University School of Medicine, Saint Louis, MO
| | - Timothy J. Sekarski
- Department of Pediatrics. Washington University School of Medicine, Saint Louis, MO
| | - Ana M Arbelaez
- Department of Pediatrics. Washington University School of Medicine, Saint Louis, MO
| | - Charles F Hildebolt
- Mallinkrodt Institute of Radiology. Washington University School of Medicine. Saint Louis, MO
| | - Mark R. Holland
- Department of Radiology & Imaging Sciences. Indiana University School of Medicine. Indianapolis, IN
| | - Gautam K. Singh
- Department of Pediatrics. Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|