1
|
Streef TJ, Smits AM. Epicardial Contribution to the Developing and Injured Heart: Exploring the Cellular Composition of the Epicardium. Front Cardiovasc Med 2021; 8:750243. [PMID: 34631842 PMCID: PMC8494983 DOI: 10.3389/fcvm.2021.750243] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
The epicardium is an essential cell population during cardiac development. It contributes different cell types to the developing heart through epithelial-to-mesenchymal transition (EMT) and it secretes paracrine factors that support cardiac tissue formation. In the adult heart the epicardium is a quiescent layer of cells which can be reactivated upon ischemic injury, initiating an embryonic-like response in the epicardium that contributes to post-injury repair processes. Therefore, the epicardial layer is considered an interesting target population to stimulate endogenous repair mechanisms. To date it is still not clear whether there are distinct cell populations in the epicardium that contribute to specific lineages or aid in cardiac repair, or that the epicardium functions as a whole. To address this putative heterogeneity, novel techniques such as single cell RNA sequencing (scRNA seq) are being applied. In this review, we summarize the role of the epicardium during development and after injury and provide an overview of the most recent insights into the cellular composition and diversity of the epicardium.
Collapse
Affiliation(s)
| | - Anke M. Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
2
|
Maar K, Hetenyi R, Maar S, Faskerti G, Hanna D, Lippai B, Takatsy A, Bock-Marquette I. Utilizing Developmentally Essential Secreted Peptides Such as Thymosin Beta-4 to Remind the Adult Organs of Their Embryonic State-New Directions in Anti-Aging Regenerative Therapies. Cells 2021; 10:1343. [PMID: 34071596 PMCID: PMC8228050 DOI: 10.3390/cells10061343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/20/2021] [Indexed: 01/10/2023] Open
Abstract
Our dream of defeating the processes of aging has occupied the curious and has challenged scientists globally for hundreds of years. The history is long, and sadly, the solution is still elusive. Our endeavors to reverse the magnitude of damaging cellular and molecular alterations resulted in only a few, yet significant advancements. Furthermore, as our lifespan increases, physicians are facing more mind-bending questions in their routine practice than ever before. Although the ultimate goal is to successfully treat the body as a whole, steps towards regenerating individual organs are even considered significant. As our initial approach to enhance the endogenous restorative capacity by delivering exogenous progenitor cells appears limited, we propose, utilizing small molecules critical during embryonic development may prove to be a powerful tool to increase regeneration and to reverse the processes associated with aging. In this review, we introduce Thymosin beta-4, a 43aa secreted peptide fulfilling our hopes and capable of numerous regenerative achievements via systemic administration in the heart. Observing the broad capacity of this small, secreted peptide, we believe it is not the only molecule which nature conceals to our benefit. Hence, the discovery and postnatal administration of developmentally relevant agents along with other approaches may result in reversing the aging process.
Collapse
Affiliation(s)
- Klaudia Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Roland Hetenyi
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Szabolcs Maar
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Gabor Faskerti
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Daniel Hanna
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Balint Lippai
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Aniko Takatsy
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| | - Ildiko Bock-Marquette
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, Szigeti Street 12., H-7624 Pecs, Hungary; (K.M.); (R.H.); (S.M.); (G.F.); (D.H.); (A.T.)
- Szentagothai Research Centre, Research Group of Regenerative Science, Sport and Medicine, University of Pecs, Ifjusag Street 20. C301, H-7624 Pecs, Hungary;
| |
Collapse
|
3
|
Mantri M, Scuderi GJ, Abedini-Nassab R, Wang MFZ, McKellar D, Shi H, Grodner B, Butcher JT, De Vlaminck I. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat Commun 2021; 12:1771. [PMID: 33741943 PMCID: PMC7979764 DOI: 10.1038/s41467-021-21892-z] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 02/17/2021] [Indexed: 01/01/2023] Open
Abstract
Single-cell RNA sequencing is a powerful tool to study developmental biology but does not preserve spatial information about tissue morphology and cellular interactions. Here, we combine single-cell and spatial transcriptomics with algorithms for data integration to study the development of the chicken heart from the early to late four-chambered heart stage. We create a census of the diverse cellular lineages in developing hearts, their spatial organization, and their interactions during development. Spatial mapping of differentiation transitions in cardiac lineages defines transcriptional differences between epithelial and mesenchymal cells within the epicardial lineage. Using spatially resolved expression analysis, we identify anatomically restricted expression programs, including expression of genes implicated in congenital heart disease. Last, we discover a persistent enrichment of the small, secreted peptide, thymosin beta-4, throughout coronary vascular development. Overall, our study identifies an intricate interplay between cellular differentiation and morphogenesis.
Collapse
Affiliation(s)
- Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Computational Biology Ph.D. Program, Cornell University, Ithaca, NY, USA
| | - Gaetano J Scuderi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Roozbeh Abedini-Nassab
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Engineering, University of Neyshabur, Neyshabur, Iran
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Computational Biology Ph.D. Program, Cornell University, Ithaca, NY, USA
| | - David McKellar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Hao Shi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Benjamin Grodner
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jonathan T Butcher
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Kassem KM, Vaid S, Peng H, Sarkar S, Rhaleb NE. Tβ4-Ac-SDKP pathway: Any relevance for the cardiovascular system? Can J Physiol Pharmacol 2019; 97:589-599. [PMID: 30854877 PMCID: PMC6824425 DOI: 10.1139/cjpp-2018-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The last 20 years witnessed the emergence of the thymosin β4 (Tβ4)-N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) pathway as a new source of future therapeutic tools to treat cardiovascular and renal diseases. In this review article, we attempted to shed light on the numerous experimental findings pertaining to the many promising cardiovascular therapeutic avenues for Tβ4 and (or) its N-terminal derivative, Ac-SDKP. Specifically, Ac-SDKP is endogenously produced from the 43-amino acid Tβ4 by 2 successive enzymes, meprin α and prolyl oligopeptidase. We also discussed the possible mechanisms involved in the Tβ4-Ac-SDKP-associated cardiovascular biological effects. In infarcted myocardium, Tβ4 and Ac-SDKP facilitate cardiac repair after infarction by promoting endothelial cell migration and myocyte survival. Additionally, Tβ4 and Ac-SDKP have antifibrotic and anti-inflammatory properties in the arteries, heart, lungs, and kidneys, and stimulate both in vitro and in vivo angiogenesis. The effects of Tβ4 can be mediated directly through a putative receptor (Ku80) or via its enzymatically released N-terminal derivative Ac-SDKP. Despite the localization and characterization of Ac-SDKP binding sites in myocardium, more studies are needed to fully identify and clone Ac-SDKP receptors. It remains promising that Ac-SDKP or its degradation-resistant analogs could serve as new therapeutic tools to treat cardiac, vascular, and renal injury and dysfunction to be used alone or in combination with the already established pharmacotherapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Kamal M Kassem
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- b Internal Medicine Department, University of Cincinnati Medical Center, Cincinnati, OH 45219, USA
| | - Sonal Vaid
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- c Internal Medicine Department, St. Vincent Indianapolis Hospital, Indianapolis, IN 46260, USA
| | - Hongmei Peng
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Sarah Sarkar
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Nour-Eddine Rhaleb
- a Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA
- d Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Hinkel R, Klett K, Bähr A, Kupatt C. Thymosin β4-mediated protective effects in the heart. Expert Opin Biol Ther 2019; 18:121-129. [PMID: 30063857 DOI: 10.1080/14712598.2018.1490409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Despite recent advances in the treatment of coronary heart disease, a significant number of patients progressively develop heart failure. Reduction of infarct size after acute myocardial infarction and normalization of microvasculature in chronic myocardial ischemia could enhance cardiac survival. AREAS COVERED Induction of neovascularization using vascular growth factors has emerged as a promising novel approach for cardiac regeneration. Thymosin β4 (Tβ4) might be a promising candidate for the treatment of ischemic heart disease. It has been characterized as a major G-actin-sequestering factor regulating cell motility, migration, and differentiation. During cardiac development, Thymosin β4 seems essential for vascularization of the myocardium. In the adult organism, Thymosin β4 has anti-inflammatory properties, increases myocyte and endothelial cell survival accompanied by differentiation of epicardial progenitor cells. In chronic myocardial ischemia, Tβ4 overexpression enhances micro- and macrovasculature in the ischemic area and thereby improves myocardial function. A comparable effect is seen in diabetic and dyslipidemic pig ischemic hearts, suggesting an attractive therapeutic potential of adeno-associated virus encoding for Tβ4 for patients with ischemic heart disease. EXPERT OPINION Induction of mature micro-vessels is a prerequisite for chronic myocardial ischemia and might be achieved via a long-term overexpression of Thymosin β4.
Collapse
Affiliation(s)
- Rabea Hinkel
- a Internal Medicine I , Klinikum rechts der Isar der TU München , Munich , Germany.,b Institut for Cardiovascular Prevention , LMU Munich , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| | - Katharina Klett
- b Institut for Cardiovascular Prevention , LMU Munich , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| | - Andrea Bähr
- a Internal Medicine I , Klinikum rechts der Isar der TU München , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| | - Christian Kupatt
- a Internal Medicine I , Klinikum rechts der Isar der TU München , Munich , Germany.,c DZHK (German Center for Cardiovascular Research) , partner site Munich Heart Alliance , Munich , Germany
| |
Collapse
|
6
|
Saunders V, Dewing JM, Sanchez-Elsner T, Wilson DI. Expression and localisation of thymosin beta-4 in the developing human early fetal heart. PLoS One 2018; 13:e0207248. [PMID: 30412598 PMCID: PMC6226193 DOI: 10.1371/journal.pone.0207248] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/26/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The objective of this study was to investigate the expression and localisation of thymosin β4 (Tβ4) in the developing human heart. Tβ4 is a cardioprotective protein which may have therapeutic potential. While Tβ4 is an endogenously produced protein with known importance during development, its role within the developing human heart is not fully understood. Elucidating the localisation of Tβ4 within the developing heart will help in understanding its role during cardiac development and is crucial for understanding its potential for cardioprotection and repair in the adult heart. METHODS Expression of Tβ4 mRNA in the early fetal human heart was assessed by PCR using both ventricular and atrial tissue. Fluorescence immunohistochemistry was used to assess the localisation of Tβ4 in sections of early fetal human heart. Co-staining with CD31, an endothelial cell marker, and with myosin heavy chain, a cardiomyocyte marker, was used to determine whether Tβ4 is localised to these cell types within the early fetal human heart. RESULTS Tβ4 mRNA was found to be expressed in both the atria and the ventricles of the early fetal human heart. Tβ4 protein was found to be primarily localised to CD31-expressing endothelial cells and the endocardium as well as being present in the epicardium. Tβ4-associated fluorescence was greater in the compact layer of the myocardial wall and the interventricular septum than in the trabecular layer of the myocardium. CONCLUSIONS The data presented illustrates expression of Tβ4 in the developing human heart and demonstrates for the first time that Tβ4 in the human heart is primarily localised to endothelial cells of the cardiac microvasculature and coronary vessels as-well as to the endothelial-like cells of the endocardium and to the epicardium.
Collapse
Affiliation(s)
- Vinay Saunders
- Institute for Developmental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jennifer M. Dewing
- Institute for Developmental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - David I. Wilson
- Institute for Developmental Science, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Sayed A, Valente M, Sassoon D. Does cardiac development provide heart research with novel therapeutic approaches? F1000Res 2018; 7. [PMID: 30450195 PMCID: PMC6221076 DOI: 10.12688/f1000research.15609.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/24/2018] [Indexed: 01/04/2023] Open
Abstract
Embryonic heart progenitors arise at specific spatiotemporal periods that contribute to the formation of distinct cardiac structures. In mammals, the embryonic and fetal heart is hypoxic by comparison to the adult heart. In parallel, the cellular metabolism of the cardiac tissue, including progenitors, undergoes a glycolytic to oxidative switch that contributes to cardiac maturation. While oxidative metabolism is energy efficient, the glycolytic-hypoxic state may serve to maintain cardiac progenitor potential. Consistent with this proposal, the adult epicardium has been shown to contain a reservoir of quiescent cardiac progenitors that are activated in response to heart injury and are hypoxic by comparison to adjacent cardiac tissues. In this review, we discuss the development and potential of the adult epicardium and how this knowledge may provide future therapeutic approaches for cardiac repair.
Collapse
Affiliation(s)
- Angeliqua Sayed
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - Mariana Valente
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| | - David Sassoon
- Cellular, Molecular, and Physiological Mechanisms of Heart Failure, Paris-Cardiovascular Research Center (PARCC), European Georges Pompidou Hospital (HEGP), INSERM U970, F-75737 Paris Cedex 15, Paris, France
| |
Collapse
|
8
|
Weinberger F, Nicol P, Starbatty J, Stubbendorff M, Becher PM, Schrepfer S, Eschenhagen T. No effect of thymosin beta-4 on the expression of the transcription factor Islet-1 in the adult murine heart. Pharmacol Res Perspect 2018; 6:e00407. [PMID: 29864245 PMCID: PMC5986028 DOI: 10.1002/prp2.407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 01/14/2023] Open
Abstract
The transcription factor Islet-1 marks a progenitor cell population of the second heart field during cardiogenesis. In the adult heart Islet-1 expression is limited to the sinoatrial node, the ventricular outflow tract, and parasympathetic ganglia. The regenerative effect in the injured mouse ventricle of thymosin beta-4 (TB4), a 43-aminoacid peptide, was associated with increased Islet-1 immunostaining, suggesting the induction of an Islet-1-positive progenitor state by TB4. Here we aimed to reassess this effect in a genetic model. Mice from the reporter mouse line Isl1-nLacZ were primed with TB4 and subsequently underwent myocardial infarction. Islet-1 expression was assessed 2, 7, and 14 days after infarction. We detected only a single Islet-1+ cell in 8 TB4 treated and infarcted hearts which located outside of the sinoatrial node, the outflow tract or cardiac ganglia (in ~2500 sections). Two cells were identified in 5 control infarcted hearts. TB4 did not induce LacZ positivity in ventricular explants cultures of Isl1-nLacZ mice nor did it affect the density of LacZ+ cells in explant cultures of nLacZ+ regions of the heart. In summary, we found no evidence that TB4 reactivates Islet-1 expression in adult mouse ventricle.
Collapse
Affiliation(s)
- Florian Weinberger
- Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
| | - Philipp Nicol
- Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
| | - Jutta Starbatty
- Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
| | - Mandy Stubbendorff
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
- Department of Cardiovascular Surgery, Transplant and Stem Cell Immunobiology (TSI) LabUniversity Heart Center HamburgHamburgGermany
| | - Peter M. Becher
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
- Department of General and Interventional CardiologyUniversity Heart Center HamburgHamburgGermany
| | - Sonja Schrepfer
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
- Department of Cardiovascular Surgery, Transplant and Stem Cell Immunobiology (TSI) LabUniversity Heart Center HamburgHamburgGermany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- DZHK, German Center for Cardiovascular Researchpartner site Hamburg/Kiel/LübeckGermany
| |
Collapse
|
9
|
Zhang QH, Yuen WS, Adhikari D, Flegg JA, FitzHarris G, Conti M, Sicinski P, Nabti I, Marangos P, Carroll J. Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J Cell Biol 2017; 216:3133-3143. [PMID: 28819014 PMCID: PMC5626527 DOI: 10.1083/jcb.201607111] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 07/04/2017] [Accepted: 07/28/2017] [Indexed: 12/17/2022] Open
Abstract
Cyclin A2 is a crucial mitotic Cdk regulatory partner that coordinates entry into mitosis and is then destroyed in prometaphase within minutes of nuclear envelope breakdown. The role of cyclin A2 in female meiosis and its dynamics during the transition from meiosis I (MI) to meiosis II (MII) remain unclear. We found that cyclin A2 decreases in prometaphase I but recovers after the first meiotic division and persists, uniquely for metaphase, in MII-arrested oocytes. Conditional deletion of cyclin A2 from mouse oocytes has no discernible effect on MI but leads to disrupted MII spindles and increased merotelic attachments. On stimulation of exit from MII, there is a dramatic increase in lagging chromosomes and an inhibition of cytokinesis. These defects are associated with an increase in microtubule stability in MII spindles, suggesting that cyclin A2 mediates the fidelity of MII by maintaining microtubule dynamics during the rapid formation of the MII spindle.
Collapse
Affiliation(s)
- Qing-Hua Zhang
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Wai Shan Yuen
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Deepak Adhikari
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | - Jennifer A Flegg
- Monash Academy for Cross and Interdisciplinary Mathematical Applications, Monash University, Melbourne, Victoria, Australia
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada
| | - Marco Conti
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA
| | - Piotr Sicinski
- Dana-Farber Cancer Institute, Boston, MA.,Department of Genetics, Harvard Medical School, Boston, MA
| | - Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Petros Marangos
- Department of Cell and Developmental Biology, University College London, London, England, UK.,Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece.,Department of Biomedical Research, Institute of Molecular Biology and Biotechnology-Foundation for Research and Technology, Ioannina, Greece
| | - John Carroll
- Development and Stem Cell Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia .,Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia.,Department of Cell and Developmental Biology, University College London, London, England, UK
| |
Collapse
|
10
|
Abstract
The hearts of lower vertebrates such as fish and salamanders display scarless regeneration following injury, although this feature is lost in adult mammals. The remarkable capacity of the neonatal mammalian heart to regenerate suggests that the underlying machinery required for the regenerative process is evolutionarily retained. Recent studies highlight the epicardial covering of the heart as an important source of the signalling factors required for the repair process. The developing epicardium is also a major source of cardiac fibroblasts, smooth muscle, endothelial cells and stem cells. Here, we examine animal models that are capable of scarless regeneration, the role of the epicardium as a source of cells, signalling mechanisms implicated in the regenerative process and how these mechanisms influence cardiomyocyte proliferation. We also discuss recent advances in cardiac stem cell research and potential therapeutic targets arising from these studies.
Collapse
Affiliation(s)
| | - Nadia Rosenthal
- National Heart and Lung Institute, Imperial College London, London, UK Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia The Jackson Laboratory, Bar Harbor, ME, USA
| |
Collapse
|
11
|
Gao X, Liang H, Hou F, Zhang Z, Nuo M, Guo X, Liu D. Thymosin Beta-4 Induces Mouse Hair Growth. PLoS One 2015; 10:e0130040. [PMID: 26083021 PMCID: PMC4470810 DOI: 10.1371/journal.pone.0130040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/15/2015] [Indexed: 01/13/2023] Open
Abstract
Thymosin beta-4 (Tβ4) is known to induce hair growth and hair follicle (HF) development; however, its mechanism of action is unknown. We generated mice that overexpressed Tβ4 in the epidermis, as well as Tβ4 global knockout mice, to study the role of Tβ4 in HF development and explore the mechanism of Tβ4 on hair growth. To study Tβ4 function, we depilated control and experimental mice and made tissue sections stained with hematoxylin and eosin (H&E). To explore the effect of Tβ4 on hair growth and HF development, the mRNA and protein levels of Tβ4 and VEGF were detected by real-time PCR and western blotting in control and experimental mice. Protein expression levels and the phosphorylation of P38, ERK and AKT were also examined by western blotting. The results of depilation indicated that hair re-growth was faster in Tβ4-overexpressing mice, but slower in knockout mice. Histological examination revealed that Tβ4-overexpressing mice had a higher number of hair shafts and HFs clustered together to form groups, while the HFs of control mice and knockout mice were separate. Hair shafts in knockout mice were significantly reduced in number compared with control mice. Increased Tβ4 expression at the mRNA and protein levels was confirmed in Tβ4-overexpressing mice, which also had increased VEGF expression. On the other hand, knockout mice had reduced levels of VEGF expression. Mechanistically, Tβ4-overexpressing mice showed increased protein expression levels and phosphorylation of P38, ERK and AKT, whereas knockout mice had decreased levels of both expression and phosphorylation of these proteins. Tβ4 appears to regulate P38/ERK/AKT signaling via its effect on VEGF expression, with a resultant effect on the speed of hair growth, the pattern of HFs and the number of hair shafts.
Collapse
Affiliation(s)
- Xiaoyu Gao
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Hao Liang
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Fang Hou
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Zhipeng Zhang
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Mingtu Nuo
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
| | - Xudong Guo
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
- * E-mail: (DL); (XG)
| | - Dongjun Liu
- National Research Center for Animal Transgenic Biotechnology, Inner Mongolia University, Hohhot, Inner Mongolia, China
- * E-mail: (DL); (XG)
| |
Collapse
|
12
|
Abstract
Coronary artery disease causes acute myocardial infarction and heart failure. Identifying coronary vascular progenitors and their developmental program could inspire novel regenerative treatments for cardiac diseases. The developmental origins of the coronary vessels have been shrouded in mystery and debated for several decades. Recent identification of progenitors for coronary vessels within the endocardium, epicardium, and sinus venosus provides new insights into this question. In addition, significant progress has been achieved in elucidating the cellular and molecular programs that orchestrate coronary artery development. Establishing adequate vascular supply will be an essential component of cardiac regenerative strategies, and these findings raise exciting new strategies for therapeutic cardiac revascularization.
Collapse
Affiliation(s)
- Xueying Tian
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences (X.T., B.Z.) and CAS Center for Excellence in Brain Science (B.Z.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - William T Pu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences (X.T., B.Z.) and CAS Center for Excellence in Brain Science (B.Z.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - Bin Zhou
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences (X.T., B.Z.) and CAS Center for Excellence in Brain Science (B.Z.), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Cardiology, Boston Children's Hospital, MA (W.T.P.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|
13
|
Michelis KC, Boehm M, Kovacic JC. New vessel formation in the context of cardiomyocyte regeneration--the role and importance of an adequate perfusing vasculature. Stem Cell Res 2014; 13:666-82. [PMID: 24841067 PMCID: PMC4213356 DOI: 10.1016/j.scr.2014.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/16/2014] [Accepted: 04/18/2014] [Indexed: 02/08/2023] Open
Abstract
The history of revascularization for cardiac ischemia dates back to the early 1960's when the first coronary artery bypass graft procedures were performed in humans. With this 50 year history of providing a new vasculature to ischemic and hibernating myocardium, a profound depth of experience has been amassed in clinical cardiovascular medicine as to what does, and does not work in the context of cardiac revascularization, alleviating ischemia and adequacy of myocardial perfusion. These issues are of central relevance to contemporary cell-based cardiac regenerative approaches. While the cardiovascular cell therapy field is surging forward on many exciting fronts, several well accepted clinical axioms related to the cardiac arterial supply appear to be almost overlooked by some of our current basic conceptual and experimental cell therapy paradigms. We present here information drawn from five decades of the clinical revascularization experience, review relevant new data on vascular formation via cell therapy, and put forward the case that for optimal cell-based cardiac regeneration due attention must be paid to providing an adequate vascular supply.
Collapse
Affiliation(s)
- Katherine C Michelis
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manfred Boehm
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
The epicardium signals the way towards heart regeneration. Stem Cell Res 2014; 13:683-92. [PMID: 24933704 PMCID: PMC4241487 DOI: 10.1016/j.scr.2014.04.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/12/2014] [Accepted: 04/18/2014] [Indexed: 11/23/2022] Open
Abstract
From historical studies of developing chick hearts to recent advances in regenerative injury models, the epicardium has arisen as a key player in heart genesis and repair. The epicardium provides paracrine signals to nurture growth of the developing heart from mid-gestation, and epicardium-derived cells act as progenitors of numerous cardiac cell types. Interference with either process is terminal for heart development and embryogenesis. In adulthood, the dormant epicardium reinstates an embryonic gene programme in response to injury. Furthermore, injury-induced epicardial signalling is essential for heart regeneration in zebrafish. Given these critical roles in development, injury response and heart regeneration, the application of epicardial signals following adult heart injury could offer therapeutic strategies for the treatment of ischaemic heart disease and heart failure. The epicardium is a dynamic signalling centre during heart development and injury. Heart repair in lower vertebrates highlights the importance of epicardial signalling. Epicardial signals may be targeted to regenerate adult mammalian hearts.
Collapse
|
15
|
|