1
|
Mattiazzi A, Jaquenod De Giusti C, Valverde CA. CaMKII at the crossroads: calcium dysregulation, and post-translational modifications driving cell death. J Physiol 2025. [PMID: 39907446 DOI: 10.1113/jp285941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/08/2025] [Indexed: 02/06/2025] Open
Abstract
The multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) regulates numerous proteins involved in excitation-contraction-relaxation coupling and cardiac excitability. However, its overactivation induces severe Ca2+/handling alterations, playing a significant role in the pathogenesis of diseases such as hypertrophy, arrhythmias and cell death, which can ultimately lead to heart failure. Being a suitable target for various aberrant signals that characterize several diseases, such as Ca2+ overload, oxidative stress or excessive glycosylation, CaMKII shifts under these conditions from a physiological regulator to a pathological molecule. In this review, we explore the evolution of knowledge regarding the role of CaMKII activation on cell death across different pathological contexts, focusing on the converging mechanisms that transform the enzyme from an ally into a villain.
Collapse
Affiliation(s)
- Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares 'Dr Horacio E. Cingolani,' CCT-La Plata/CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| |
Collapse
|
2
|
Cupelli M, Ginjupalli VKM, Reisqs JB, Sleiman Y, El-Sherif N, Gourdon G, Puymirat J, Chahine M, Boutjdir M. Calcium handling abnormalities increase arrhythmia susceptibility in DMSXL myotonic dystrophy type 1 mice. Biomed Pharmacother 2024; 180:117562. [PMID: 39423753 DOI: 10.1016/j.biopha.2024.117562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Myotonic dystrophy type 1 (DM1) is a multiorgan disorder with significant cardiac involvement. ECG abnormalities, including arrhythmias, occur in 80 % of DM1 patients and are the second-most common cause of death after respiratory complications; however, the mechanisms underlying the arrhythmogenesis remain unclear. The objective of this study was to investigate the basis of the electrophysiological abnormalities in DM1 using the DMSXL mouse model. METHODS ECG parameters were evaluated at baseline and post flecainide challenge. Calcium transient and action potential parameters were evaluated in Langendorff-perfused hearts using fluorescence optical mapping. Calcium transient/sparks were evaluated in ventricular myocytes via confocal microscopy. Protein and mRNA levels for calcium handling proteins were evaluated using western blot and RT-qPCR, respectively. RESULTS DMSXL mice showed arrhythmic events on ECG including premature ventricular contractions and sinus block. DMSXL mice showed increased calcium transient time to peak without any change to voltage parameters. Calcium alternans and both sustained and non-sustained ventricular tachyarrhythmias were readily inducible in DMSXL mice. The confocal experiments also showed calcium transient alternans and increased frequency of calcium sparks in DMSXL cardiomyocytes. These calcium abnormalities were correlated with increased RyR2 phosphorylation without changes to the other calcium handling proteins. CONCLUSIONS The DMSXL mouse model of DM1 exhibited enhanced arrhythmogenicity associated with abnormal intracellular calcium handling due to hyperphosphorylation of RyR2, pointing to RyR2 as a potential new therapeutic target in DM1 treatment.
Collapse
Affiliation(s)
- Michael Cupelli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA
| | - Vamsi Krishna Murthy Ginjupalli
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA
| | - Jean-Baptiste Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA
| | - Yvonne Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA
| | - Nabil El-Sherif
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA
| | - Geneviève Gourdon
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Québec City, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Canada; CERVO Research Centre, Institut Universitaire en Santé Mentale de Québec, Québec City, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY, USA; Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, New York, NY, USA; Department of Medicine, NYU Langone School of Medicine, New York, NY, USA.
| |
Collapse
|
3
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
4
|
Dewenter M, Seitz T, Steinbrecher JH, Westenbrink BD, Ling H, Lehnart SE, Wehrens XH, Backs J, Brown JH, Maier LS, Neef S. Ca2+/calmodulin-dependent kinase IIδC-induced chronic heart failure does not depend on sarcoplasmic reticulum Ca2+ leak. ESC Heart Fail 2024; 11:2191-2199. [PMID: 38616546 PMCID: PMC11287324 DOI: 10.1002/ehf2.14772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS Hyperactivity of Ca2+/calmodulin-dependent protein kinase II (CaMKII) has emerged as a central cause of pathologic remodelling in heart failure. It has been suggested that CaMKII-induced hyperphosphorylation of the ryanodine receptor 2 (RyR2) and consequently increased diastolic Ca2+ leak from the sarcoplasmic reticulum (SR) is a crucial mechanism by which increased CaMKII activity leads to contractile dysfunction. We aim to evaluate the relevance of CaMKII-dependent RyR2 phosphorylation for CaMKII-induced heart failure development in vivo. METHODS AND RESULTS We crossbred CaMKIIδC overexpressing [transgenic (TG)] mice with RyR2-S2814A knock-in mice that are resistant to CaMKII-dependent RyR2 phosphorylation. Ca2+-spark measurements on isolated ventricular myocytes confirmed the severe diastolic SR Ca2+ leak previously reported in CaMKIIδC TG [4.65 ± 0.73 mF/F0 vs. 1.88 ± 0.30 mF/F0 in wild type (WT)]. Crossing in the S2814A mutation completely prevented SR Ca2+-leak induction in the CaMKIIδC TG, both regarding Ca2+-spark size and frequency, demonstrating that the CaMKIIδC-induced SR Ca2+ leak entirely depends on the CaMKII-specific RyR2-S2814 phosphorylation. Yet, the RyR2-S2814A mutation did not affect the massive contractile dysfunction (ejection fraction = 12.17 ± 2.05% vs. 45.15 ± 3.46% in WT), cardiac hypertrophy (heart weight/tibia length = 24.84 ± 3.00 vs. 9.81 ± 0.50 mg/mm in WT), or severe premature mortality (median survival of 12 weeks) associated with cardiac CaMKIIδC overexpression. In the face of a prevented SR Ca2+ leak, the phosphorylation status of other critical CaMKII downstream targets that can drive heart failure, including transcriptional regulator histone deacetylase 4, as well as markers of pathological gene expression including Xirp2, Il6, and Col1a1, was equally increased in hearts from CaMKIIδC TG on a RyR WT and S2814A background. CONCLUSIONS S2814 phosphoresistance of RyR2 prevents the CaMKII-dependent SR Ca2+ leak induction but does not prevent the cardiomyopathic phenotype caused by enhanced CaMKIIδC activity. Our data indicate that additional mechanisms-independent of SR Ca2+ leak-are critical for the maladaptive effects of chronically increased CaMKIIδC activity with respect to heart failure.
Collapse
Affiliation(s)
- Matthias Dewenter
- Medical Faculty Heidelberg, Institute of Experimental CardiologyHeidelberg UniversityHeidelbergGermany
- Department of Internal Medicine 8Heidelberg University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), Partner Sites Heidelberg/Mannheim and GöttingenHeidelberg/Mannheim and GöttingenGermany
| | - Tilmann Seitz
- DZHK (German Centre for Cardiovascular Research), Partner Sites Heidelberg/Mannheim and GöttingenHeidelberg/Mannheim and GöttingenGermany
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG)Georg August University of GöttingenGöttingenGermany
| | - Julia H. Steinbrecher
- DZHK (German Centre for Cardiovascular Research), Partner Sites Heidelberg/Mannheim and GöttingenHeidelberg/Mannheim and GöttingenGermany
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG)Georg August University of GöttingenGöttingenGermany
| | - B. Daan Westenbrink
- Department of PharmacologyUniversity of California San DiegoSan DiegoCAUSA
- Department of Cardiology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Haiyun Ling
- Department of PharmacologyUniversity of California San DiegoSan DiegoCAUSA
- Genomics Institute of the Novartis Research FoundationSan DiegoCAUSA
| | - Stephan E. Lehnart
- DZHK (German Centre for Cardiovascular Research), Partner Sites Heidelberg/Mannheim and GöttingenHeidelberg/Mannheim and GöttingenGermany
- Department of Cardiology and Pneumology, University Medical Center Göttingen (UMG)Georg August University of GöttingenGöttingenGermany
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute and Department of Molecular Physiology and BiophysicsBaylor College of MedicineHoustonTXUSA
| | - Johannes Backs
- Medical Faculty Heidelberg, Institute of Experimental CardiologyHeidelberg UniversityHeidelbergGermany
- Department of Internal Medicine 8Heidelberg University HospitalHeidelbergGermany
- DZHK (German Centre for Cardiovascular Research), Partner Sites Heidelberg/Mannheim and GöttingenHeidelberg/Mannheim and GöttingenGermany
- Molecular Medicine Partnership UnitHeidelberg University & EMBLHeidelbergGermany
- Helmholtz Institute for Translational AngioCardioScience (HI‐TAC)—a branch of the MDC at Heidelberg UniversityHeidelbergGermany
| | - Joan Heller Brown
- Department of PharmacologyUniversity of California San DiegoSan DiegoCAUSA
| | - Lars S. Maier
- Department of Internal Medicine IIUniversity Hospital RegensburgFranz‐Josef‐Strauss‐Allee 11RegensburgGermany
| | - Stefan Neef
- Department of Internal Medicine IIUniversity Hospital RegensburgFranz‐Josef‐Strauss‐Allee 11RegensburgGermany
| |
Collapse
|
5
|
Zheng J, Dooge HC, Valdivia HH, Alvarado FJ. Ablation of three major phospho-sites in RyR2 preserves the global adrenergic response but creates an arrhythmogenic substrate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602617. [PMID: 39026734 PMCID: PMC11257526 DOI: 10.1101/2024.07.08.602617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Background Ryanodine receptor 2 (RyR2) is one of the first substrates undergoing phosphorylation upon catecholaminergic stimulation. Yet, the role of RyR2 phosphorylation in the adrenergic response remains debated. To date, three residues in RyR2 are known to undergo phosphorylation upon adrenergic stimulation. We generated a model of RyR2 phospho-ablation of all three canonical phospho-sites (RyR2-S2031A/S2808A/S2814A, triple phospho-mutant, TPM) to elucidate the role of phosphorylation at these residues in the adrenergic response. Methods Cardiac structure and function, cellular Ca 2+ dynamics and electrophysiology, and RyR2 channel activity both under basal conditions and under isoproterenol (Iso) stimulation were systematically evaluated. We used echocardiography and electrocardiography in anesthetized mice, single-cell Ca 2+ imaging and whole-cell patch clamp in isolated adult cardiomyocytes, and biochemical assays. Results Iso stimulation produced normal chronotropic and inotropic responses in TPM mice as well as an increase in the global Ca 2+ transients in isolated cardiomyocytes. Functional studies revealed fewer Ca 2+ sparks in permeabilized TPM myocytes, and reduced RyR2-mediated Ca 2+ leak in intact myocytes under Iso stimulation, suggesting that the canonical sites may regulate RyR2-mediated Ca 2+ leak. TPM mice also displayed increased propensity for arrhythmia. TPM myocytes were prone to develop early afterdepolarizations (EADs), which were abolished by chelating intracellular Ca 2+ with EGTA, indicating that EADs require SR Ca 2+ release. EADs were also blocked by a low concentration of tetrodotoxin, further suggesting reactivation of the sodium current ( I Na ) as the underlying cause. Conclusion Phosphorylation of the three canonical residues on RyR2 may not be essential for the global adrenergic responses. However, these sites play a vital role in maintaining electrical stability during catecholamine stimulation by fine-tuning RyR2-mediated Ca 2+ leak. These findings underscore the importance of RyR2 phosphorylation and a finite diastolic Ca 2+ leak in maintaining electrical stability during catecholamine stimulation.
Collapse
|
6
|
Gao Y, Li S, Liu X, Si D, Chen W, Yang F, Sun H, Yang P. RyR2 Stabilizer Attenuates Cardiac Hypertrophy by Downregulating TNF-α/NF-κB/NLRP3 Signaling Pathway through Inhibiting Calcineurin. J Cardiovasc Transl Res 2024; 17:481-495. [PMID: 38652413 DOI: 10.1007/s12265-023-10376-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/13/2023] [Indexed: 04/25/2024]
Abstract
The effect of Ryanodine receptor2 (RyR2) and its stabilizer on cardiac hypertrophy is not well known. C57/BL6 mice underwent transverse aortic contraction (TAC) or sham surgery were administered dantrolene, the RyR2 stabilizer, or control drug. Dantrolene significantly alleviated TAC-induced cardiac hypertrophy in mice, and RNA sequencing was performed implying calcineurin/NFAT3 and TNF-α/NF-κB/NLRP3 as critical signaling pathways. Further expression analysis and Western blot with heart tissue as well as neonatal rat cardiomyocyte (NRCM) model confirmed dantrolene decreases the activation of calcineurin/NFAT3 signaling pathway and TNF-α/NF-κB/NLRP3 signaling pathway, which was similar to FK506 and might be attenuated by calcineurin overexpression. The present study shows for the first time that RyR2 stabilizer dantrolene attenuates cardiac hypertrophy by inhibiting the calcineurin, therefore downregulating the TNF-α/NF-κB/NLRP3 pathway.
Collapse
MESH Headings
- Animals
- Signal Transduction/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Ryanodine Receptor Calcium Release Channel/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/drug effects
- Calcineurin/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Disease Models, Animal
- NF-kappa B/metabolism
- Down-Regulation
- Dantrolene/pharmacology
- Male
- Calcineurin Inhibitors/pharmacology
- NFATC Transcription Factors/metabolism
- Cells, Cultured
- Cardiomegaly/metabolism
- Cardiomegaly/prevention & control
- Cardiomegaly/pathology
- Cardiomegaly/drug therapy
- Rats, Sprague-Dawley
- Rats
- Hypertrophy, Left Ventricular/prevention & control
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
Collapse
Affiliation(s)
- Yi Gao
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Shuai Li
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Daoyuan Si
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Weiwei Chen
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China
| | - Huan Sun
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China.
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China.
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China.
- Jilin Provincial International Joint Research Center of Cardiovascular Disease Precision Medicine, Changchun, China.
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Changchun, China.
| |
Collapse
|
7
|
Asghari P, Scriven DR, Shahrasebi S, Valdivia HH, Alsina KM, Valdivia CR, Navarro-Garcia JA, Wehrens XH, Moore ED. Phosphorylation of RyR2 simultaneously expands the dyad and rearranges the tetramers. J Gen Physiol 2024; 156:e202213108. [PMID: 38385988 PMCID: PMC10883851 DOI: 10.1085/jgp.202213108] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 01/23/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately, making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. Here, we used the β-agonist isoproterenol and mice homozygous for one of the following clinically relevant mutations: S2030A, S2808A, S2814A, or S2814D. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that the S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers, suggesting a direct link between the phosphorylation state of the tetramer and its microarchitecture. S2808A and S2814A mutant mice, as well as wild types, had significant expansions of their dyads in response to isoproterenol, while S2030A mutants did not. In agreement with functional data from these mutants, S2030 and S2808 were necessary for a complete β-adrenergic response, unlike S2814 mutants. Additionally, all mutants had unique effects on the organization of their tetramer arrays. Lastly, the correlation of structural with functional changes suggests that tetramer-tetramer contacts play an important functional role. We thus conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a β-adrenergic receptor agonist.
Collapse
Affiliation(s)
- Parisa Asghari
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - David R.L. Scriven
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Saba Shahrasebi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Hector H. Valdivia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Carmen R. Valdivia
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - J. Alberto Navarro-Garcia
- Department of Integrative Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander H.T. Wehrens
- Department of Integrative Physiology, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Edwin D.W. Moore
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Carvajal C, Yan J, Nani A, DeSantiago J, Wan X, Deschenes I, Ai X, Fill M. Isolated Cardiac Ryanodine Receptor Function Varies Between Mammals. J Membr Biol 2024; 257:25-36. [PMID: 38285125 PMCID: PMC11299243 DOI: 10.1007/s00232-023-00301-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
Concerted robust opening of cardiac ryanodine receptors' (RyR2) Ca2+ release 1oplasmic reticulum (SR) is fundamental for normal systolic cardiac function. During diastole, infrequent spontaneous RyR2 openings mediate the SR Ca2+ leak that normally constrains SR Ca2+ load. Abnormal large diastolic RyR2-mediated Ca2+ leak events can cause delayed after depolarizations (DADs) and arrhythmias. The RyR2-associated mechanisms underlying these processes are being extensively studied at multiple levels utilizing various model animals. Since there are well-described species-specific differences in cardiac intracellular Ca2+ handing in situ, we tested whether or not single RyR2 function in vitro retains this species specificity. We isolated RyR2-rich heavy SR microsomes from mouse, rat, rabbit, and human ventricular muscle and quantified RyR2 function using identical solutions and methods. The single RyR2 cytosolic Ca2+ sensitivity was similar across these species. However, there were significant species differences in single RyR2 mean open times in both systole and diastole-like solutions. In diastole-like solutions, single rat/mouse RyR2 open probability and frequency of long openings (> 6 ms) were similar, but these values were significantly greater than those of either single rabbit or human RyR2s. We propose these in vitro single RyR2 functional differences across species stem from the species-specific RyR2 regulatory environment present in the source tissue. Our results show the single rabbit RyR2 functional attributes, particularly in diastole-like conditions, replicate those of single human RyR2 best among the species tested.
Collapse
Affiliation(s)
- Catherine Carvajal
- Department of Physiology & Biophysics, Section of Cellular Signaling, Rush University Medical Center, 1750 W. Harrison Avenue, Chicago, IL, 60612, USA
| | - Jiajie Yan
- Department of Physiology & Biophysics, Section of Cellular Signaling, Rush University Medical Center, 1750 W. Harrison Avenue, Chicago, IL, 60612, USA
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, 333 W. 10Th Avenue, Columbus, OH, 43210, USA
| | - Alma Nani
- Department of Physiology & Biophysics, Section of Cellular Signaling, Rush University Medical Center, 1750 W. Harrison Avenue, Chicago, IL, 60612, USA
| | - Jaime DeSantiago
- Department of Physiology & Biophysics, Section of Cellular Signaling, Rush University Medical Center, 1750 W. Harrison Avenue, Chicago, IL, 60612, USA
| | - Xiaoping Wan
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, 333 W. 10Th Avenue, Columbus, OH, 43210, USA
| | - Isabelle Deschenes
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, 333 W. 10Th Avenue, Columbus, OH, 43210, USA
| | - Xun Ai
- Department of Physiology & Biophysics, Section of Cellular Signaling, Rush University Medical Center, 1750 W. Harrison Avenue, Chicago, IL, 60612, USA.
- Department of Physiology & Cell Biology, College of Medicine, The Ohio State University, 333 W. 10Th Avenue, Columbus, OH, 43210, USA.
| | - Michael Fill
- Department of Physiology & Biophysics, Section of Cellular Signaling, Rush University Medical Center, 1750 W. Harrison Avenue, Chicago, IL, 60612, USA.
- Department of Molecular Biophysics & Physiology, Rush University Medical Center, 1750 West Harrison Street, Columbus, OH, 43210, USA.
| |
Collapse
|
9
|
Gochman A, Do TQ, Kim K, Schwarz JA, Thorpe MP, Blackwell DJ, Ritschel PA, Smith AN, Rebbeck RT, Akers WS, Cornea RL, Laver DR, Johnston JN, Knollmann BC. ent-Verticilide B1 Inhibits Type 2 Ryanodine Receptor Channels and is Antiarrhythmic in Casq2 -/- Mice. Mol Pharmacol 2024; 105:194-201. [PMID: 38253398 PMCID: PMC10877729 DOI: 10.1124/molpharm.123.000752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/20/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intracellular Ca2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent-(+)-verticilide (ent-1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product (nat-(-)-verticilide). Here, we examined its 18-membered ring-size oligomer (ent-verticilide B1; "ent-B1") in RyR2 single channel and [3H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent-B1 inhibited RyR2 single channels and RyR2-mediated spontaneous Ca2+ release in Casq2 -/- cardiomyocytes with sub-micromolar potency. ent-B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent-B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 minutes and half-life of 45 minutes after intraperitoneal administration of 3 mg/kg in mice. In vivo, ent-B1 significantly reduced catecholamine-induced ventricular arrhythmias in Casq2 -/- mice in a dose-dependent manner. Hence, we have identified a novel chemical entity - ent-B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. SIGNIFICANCE STATEMENT: The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.
Collapse
Affiliation(s)
- Aaron Gochman
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Tri Q Do
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Kyungsoo Kim
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Jacob A Schwarz
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Madelaine P Thorpe
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Paxton A Ritschel
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Abigail N Smith
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Robyn T Rebbeck
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Wendell S Akers
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Razvan L Cornea
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Derek R Laver
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Jeffrey N Johnston
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee (A.G., T.Q.D. K.K., D.J.B., P.A.R., B.C.K.); Vanderbilt Department of Chemistry and Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee (M.P.T., A.N.S., J.N.J.); Pharmaceutical Sciences Research Center, Lipscomb University College of Pharmacy, Nashville, Tennessee (W.S.A.); Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota (J.A.S., R.L.C., R.T.R.); and School of Biomedical Sciences and Pharmacy, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2308, Australia (D.R.L.)
| |
Collapse
|
10
|
Waddell HMM, Mereacre V, Alvarado FJ, Munro ML. Clustering properties of the cardiac ryanodine receptor in health and heart failure. J Mol Cell Cardiol 2023; 185:38-49. [PMID: 37890552 PMCID: PMC10717225 DOI: 10.1016/j.yjmcc.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/09/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
The cardiac ryanodine receptor (RyR2) is an intracellular Ca2+ release channel vital for the function of the heart. Physiologically, RyR2 is triggered to release Ca2+ from the sarcoplasmic reticulum (SR) which enables cardiac contraction; however, spontaneous Ca2+ leak from RyR2 has been implicated in the pathophysiology of heart failure (HF). RyR2 channels have been well documented to assemble into clusters within the SR membrane, with the organisation of RyR2 clusters recently gaining interest as a mechanism by which the occurrence of pathological Ca2+ leak is regulated, including in HF. In this review, we explain the terminology relating to key nanoscale RyR2 clustering properties as both single clusters and functionally grouped Ca2+ release units, with a focus on the advancements in super-resolution imaging approaches which have enabled the detailed study of cluster organisation. Further, we discuss proposed mechanisms for modulating RyR2 channel organisation and the debate regarding the potential impact of cluster organisation on Ca2+ leak activity. Finally, recent experimental evidence investigating the nanoscale remodelling and functional alterations of RyR2 clusters in HF is discussed with consideration of the clinical implications.
Collapse
Affiliation(s)
- Helen M M Waddell
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Valeria Mereacre
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Michelle L Munro
- Department of Physiology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
11
|
Czornobil R, Abou-Assali O, Remily-Wood E, Lynch DR, Noujaim SF, Chidipi B. The Cardiac Calcium Handling Machinery is Remodeled in Friedreich's Ataxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.09.566141. [PMID: 38014032 PMCID: PMC10680642 DOI: 10.1101/2023.11.09.566141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Background Friedreich's ataxia (FA) is an inherited neurodegenerative disorder that causes progressive nervous system damage resulting in impaired muscle coordination. FA is the most common autosomal recessive form of ataxia and is caused by an expansion of the DNA triplet guanine-adenine-adenine (GAA) in the first intron of the Frataxin gene (FXN), located on chromosome 9q13. In the unaffected population, the number of GAA repeats ranges from 6 to 27 repetitions. In FA patients, GAA repeat expansions range from 44 to 1,700 repeats which decreases frataxin protein expression. Frataxin is a mitochondrial protein essential for various cellular functions, including iron metabolism. Reduced frataxin expression is thought to negatively affect mitochondrial iron metabolism, leading to increased oxidative damage. Although FA is considered a neurodegenerative disorder, FA patients display heart disease that includes hypertrophy, heart failure, arrhythmias, conduction abnormalities, and cardiac fibrosis. Objective In this work, we investigated whether abnormal Ca 2+ handling machinery is the molecular mechanism that perpetuates cardiac dysfunction in FA. Methods We used the frataxin knock-out (FXN-KO) mouse model of FA as well as human heart samples from donors with FA and from unaffected donors. ECG and echocardiography were used to assess cardiac function in the mice. Expression of calcium handling machinery proteins was assessed with proteomics and western blot. In left ventricular myocytes from FXN-KO and FXN-WT mice, the IonOptix system was used for calcium imaging, the seahorse assay was utilized to measure oxygen consumption rate (OCR), and confocal imaging was used to quantify the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS). Results We found that major contractile proteins, including SERCA2a and Ryr2, were downregulated in human left ventricular samples from deceased donors with FA compared to unaffected donors, similar to the downregulation of these proteins in the left ventricular tissue from FXN-KO compared to FXN-WT. On the ECG, the RR, PR, QRS, and QTc were significantly longer in the FXN-KO mice compared to FXN-WT. The ejection fraction and fractional shortening were significantly decreased and left ventricular wall thickness and diameter were significantly increased in the FXN-KO mice versus FXN-WT. The mitochondrial membrane potential Δψm was depolarized, ROS levels were elevated, and OCR was decreased in ventricular myocytes from FXN-KO versus FXN-WT. Conclusion The development of left ventricular contractile dysfunction in FA is associated with reduced expression of calcium handling proteins and mitochondrial dysfunction.
Collapse
|
12
|
Ricchiuti N, Chenoweth K, Gao X, Bare DJ, Yan J, Ai X. Long-Term Alcohol-Activated c-Jun N-terminal Kinase Isoform 2 Preserves Cardiac Function but Drives Ca 2+-Triggered Arrhythmias. Cells 2023; 12:2233. [PMID: 37759456 PMCID: PMC10527640 DOI: 10.3390/cells12182233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Long-term alcohol consumption leads to cardiac arrhythmias including atrial fibrillation (AF), the most common alcohol-related arrhythmia. While AF significantly increases morbidity and mortality in patients, it takes years for an alcoholic individual undergoing an adaptive status with normal cardiac function to reach alcoholic cardiomyopathy. The underlying mechanism remains unclear to date. In this study, we assessed the functional role of JNK2 in long-term alcohol-evoked atrial arrhythmogenicity but preserved cardiac function. Wild-type (WT) mice and cardiac-specific JNK2dn mice (with an overexpression of inactive dominant negative (dn) JNK2) were treated with alcohol (2 g/kg daily for 2 months; 2 Mo). Confocal Ca2+ imaging in the intact mouse hearts showed that long-term alcohol prolonged intracellular Ca2+ transient decay, and increased pacing-induced Ca2+ waves, compared to that of sham controls, while cardiac-specific JNK2 inhibition in JNK2dn mice precluded alcohol-evoked Ca2+-triggered activities. Moreover, activated JNK2 enhances diastolic SR Ca2+ leak in 24 h and 48 h alcohol-exposed HL-1 atrial myocytes as well as HEK-RyR2 cells (inducible expression of human RyR2) with the overexpression of tGFP-tagged active JNK2-tGFP or inactive JNK2dn-tGFP. Meanwhile, the SR Ca2+ load and systolic Ca2+ transient amplitude were both increased in ventricular myocytes, along with the preserved cardiac function in 2 Mo alcohol-exposed mice. Moreover, the role of activated JNK2 in SR Ca2+ overload and enhanced transient amplitude was also confirmed in long-term alcohol-exposed HL-1 atrial myocytes. In conclusion, our findings suggest that long-term alcohol-activated JNK2 is a key driver in preserved cardiac function, but at the expense of enhanced cardiac arrhythmogenicity. Modulating JNK2 activity could be a novel anti-arrhythmia therapeutic strategy.
Collapse
Affiliation(s)
| | | | | | | | - Jiajie Yan
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, 333 W 10th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Dries E, Gilbert G, Roderick HL, Sipido KR. The ryanodine receptor microdomain in cardiomyocytes. Cell Calcium 2023; 114:102769. [PMID: 37390591 DOI: 10.1016/j.ceca.2023.102769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023]
Abstract
The ryanodine receptor type 2 (RyR) is a key player in Ca2+ handling during excitation-contraction coupling. During each heartbeat, RyR channels are responsible for linking the action potential with the contractile machinery of the cardiomyocyte by releasing Ca2+ from the sarcoplasmic reticulum. RyR function is fine-tuned by associated signalling molecules, arrangement in clusters and subcellular localization. These parameters together define RyR function within microdomains and are subject to disease remodelling. This review describes the latest findings on RyR microdomain organization, the alterations with disease which result in increased subcellular heterogeneity and emergence of microdomains with enhanced arrhythmogenic potential, and presents novel technologies that guide future research to study and target RyR channels within specific microdomains.
Collapse
Affiliation(s)
- Eef Dries
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.
| | - Guillaume Gilbert
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Laboratoire ORPHY EA 4324, Université de Brest, Brest, France
| | - H Llewelyn Roderick
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Karin R Sipido
- Lab of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
14
|
Gochman A, Do TQ, Kim K, Schwarz JA, Thorpe MP, Blackwell DJ, Smith AN, Akers WS, Cornea RL, Laver DR, Johnston JN, Knollmann BC. ent -Verticilide B1 inhibits type 2 ryanodine receptor channels and is antiarrhythmic in Casq2-/- mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547578. [PMID: 37461611 PMCID: PMC10349981 DOI: 10.1101/2023.07.03.547578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Ca 2+ leak from cardiac ryanodine receptor (RyR2) is an established mechanism of sudden cardiac death (SCD), whereby dysregulated Ca 2+ handling causes ventricular arrhythmias. We previously discovered the RyR2-selective inhibitor ent- (+)-verticilide ( ent -1), a 24-membered cyclooligomeric depsipeptide that is the enantiomeric form of a natural product ( nat -(-)-verticilide). Here, we examined its 18-membered ring-size oligomer ( ent -verticilide B1; " ent -B1") in single RyR2 channel assays, [ 3 H]ryanodine binding assays, and in Casq2 -/- cardiomyocytes and mice, a gene-targeted model of SCD. ent -B1 inhibited RyR2 single-channels and [ 3 H]ryanodine binding with low micromolar potency, and RyR2-mediated spontaneous Ca 2+ release in Casq2-/- cardiomyocytes with sub-micromolar potency. ent -B1 was a partial RyR2 inhibitor, with maximal inhibitory efficacy of less than 50%. ent -B1 was stable in plasma, with a peak plasma concentration of 1460 ng/ml at 10 min and half-life of 45 min after intraperitoneal administration of 3 mg/kg in mice. Both 3 mg/kg and 30 mg/kg ent -B1 significantly reduced catecholamine-induced ventricular arrhythmia in Casq2-/- mice. Hence, we have identified a novel chemical entity - ent -B1 - that preserves the mechanism of action of a hit compound and shows therapeutic efficacy. These findings strengthen RyR2 as an antiarrhythmic drug target and highlight the potential of investigating the mirror-image isomers of natural products to discover new therapeutics. Significance statement The cardiac ryanodine receptor (RyR2) is an untapped target in the stagnant field of antiarrhythmic drug development. We have confirmed RyR2 as an antiarrhythmic target in a mouse model of sudden cardiac death and shown the therapeutic efficacy of a second enantiomeric natural product.
Collapse
|
15
|
Asghari P, Scriven DRL, Shahrasebi S, Valdivia HH, Wehrens XHT, Moore EDW. PHOSPHORYLATION OF RyR2 SIMULTANEOUSLY EXPANDS THE DYAD AND REARRANGES THE TETRAMERS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.23.541024. [PMID: 37292875 PMCID: PMC10245935 DOI: 10.1101/2023.05.23.541024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We have previously demonstrated that type II ryanodine receptors (RyR2) tetramers can be rapidly rearranged in response to a phosphorylation cocktail. The cocktail modified downstream targets indiscriminately making it impossible to determine whether phosphorylation of RyR2 was an essential element of the response. We therefore used the β-agonist isoproterenol and mice with one of the homozygous mutations, S2030A +/+ , S2808A +/+ , S2814A +/+ , or S2814D +/+ , to address this question and to elucidate the role of these clinically relevant mutations. We measured the length of the dyad using transmission electron microscopy (TEM) and directly visualized RyR2 distribution using dual-tilt electron tomography. We found that: 1) The S2814D mutation, by itself, significantly expanded the dyad and reorganized the tetramers suggesting a direct link between the phosphorylation state of the tetramer and the microarchitecture. 2) All of the wild-type, as well as the S2808A and S2814A mice, had significant expansions of their dyads in response to ISO, while S2030A did not. 3) In agreement with functional data from the same mutants, S2030 and S2808 were necessary for a complete β-adrenergic response, whereas S2814 was not. 4) All the mutated residues had unique effects on the organization of their tetramer arrays. 5) The correlation of structure with function suggests that tetramer-tetramer contacts play an important functional role. We conclude that both the size of the dyad and the arrangement of the tetramers are linked to the state of the channel tetramer and can be dynamically altered by a β-adrenergic receptor agonist. Summary Analysis of RyR2 mutants suggests a direct link between the phosphorylation state of the channel tetramer and the microarchitecture of the dyad. All phosphorylation site mutations produced significant and unique effects on the structure of the dyad and its response to isoproterenol.
Collapse
|
16
|
Nikolaienko R, Bovo E, Yuen SL, Treinen LM, Berg K, Aldrich CC, Thomas DD, Cornea RL, Zima AV. New N-aryl-N-alkyl-thiophene-2-carboxamide compound enhances intracellular Ca 2+ dynamics by increasing SERCA2a Ca 2+ pumping. Biophys J 2023; 122:386-396. [PMID: 36463408 PMCID: PMC9892616 DOI: 10.1016/j.bpj.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The type 2a sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) plays a central role in the intracellular Ca2+ homeostasis of cardiac myocytes, pumping Ca2+ from the cytoplasm into the sarcoplasmic reticulum (SR) lumen to maintain relaxation (diastole) and prepare for contraction (systole). Diminished SERCA2a function has been reported in several pathological conditions, including heart failure. Therefore, development of new drugs that improve SERCA2a Ca2+ transport is of great clinical significance. In this study, we characterized the effect of a recently identified N-aryl-N-alkyl-thiophene-2-carboxamide (or compound 1) on SERCA2a Ca2+-ATPase and Ca2+ transport activities in cardiac SR vesicles, and on Ca2+ regulation in a HEK293 cell expression system and in mouse ventricular myocytes. We found that compound 1 enhances SERCA2a Ca2+-ATPase and Ca2+ transport in SR vesicles. Fluorescence lifetime measurements of fluorescence resonance energy transfer between SERCA2a and phospholamban indicated that compound 1 interacts with the SERCA-phospholamban complex. Measurement of endoplasmic reticulum Ca2+ dynamics in HEK293 cells expressing human SERCA2a showed that compound 1 increases endoplasmic reticulum Ca2+ load by enhancing SERCA2a-mediated Ca2+ transport. Analysis of cytosolic Ca2+ dynamics in mouse ventricular myocytes revealed that compound 1 increases the action potential-induced Ca2+ transients and SR Ca2+ load, with negligible effects on L-type Ca2+ channels and Na+/Ca2+ exchanger. However, during adrenergic receptor activation, compound 1 did not further increase Ca2+ transients and SR Ca2+ load, but it decreased the propensity toward Ca2+ waves. Suggestive of concurrent desirable effects of compound 1 on RyR2, [3H]-ryanodine binding to cardiac SR vesicles shows a small decrease in nM Ca2+ and a small increase in μM Ca2+. Accordingly, compound 1 slightly decreased Ca2+ sparks in permeabilized myocytes. Thus, this novel compound shows promising characteristics to improve intracellular Ca2+ dynamics in cardiomyocytes that exhibit reduced SERCA2a Ca2+ uptake, as found in failing hearts.
Collapse
Affiliation(s)
- Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois
| | - Samantha L Yuen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Levy M Treinen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Kaja Berg
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois.
| |
Collapse
|
17
|
Deb A, Tow BD, Qing Y, Walker M, Hodges ER, Stewart JA, Knollmann BC, Zheng Y, Wang Y, Liu B. Genetic Inhibition of Mitochondrial Permeability Transition Pore Exacerbates Ryanodine Receptor 2 Dysfunction in Arrhythmic Disease. Cells 2023; 12:204. [PMID: 36672139 PMCID: PMC9856515 DOI: 10.3390/cells12020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The brief opening mode of the mitochondrial permeability transition pore (mPTP) serves as a calcium (Ca2+) release valve to prevent mitochondrial Ca2+ (mCa2+) overload. Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a stress-induced arrhythmic syndrome due to mutations in the Ca2+ release channel complex of ryanodine receptor 2 (RyR2). We hypothesize that inhibiting the mPTP opening in CPVT exacerbates the disease phenotype. By crossbreeding a CPVT model of CASQ2 knockout (KO) with a mouse missing CypD, an activator of mPTP, a double KO model (DKO) was generated. Echocardiography, cardiac histology, and live-cell imaging were employed to assess the severity of cardiac pathology. Western blot and RNAseq were performed to evaluate the contribution of various signaling pathways. Although exacerbated arrhythmias were reported, the DKO model did not exhibit pathological remodeling. Myocyte Ca2+ handling was similar to that of the CASQ2 KO mouse at a low pacing frequency. However, increased ROS production, activation of the CaMKII pathway, and hyperphosphorylation of RyR2 were detected in DKO. Transcriptome analysis identified altered gene expression profiles associated with electrical instability in DKO. Our study provides evidence that genetic inhibition of mPTP exacerbates RyR2 dysfunction in CPVT by increasing activation of the CaMKII pathway and subsequent hyperphosphorylation of RyR2.
Collapse
Affiliation(s)
- Arpita Deb
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Brian D. Tow
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - You Qing
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Madelyn Walker
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Emmanuel R. Hodges
- School of Pharmacy, Division of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - James A. Stewart
- School of Pharmacy, Division of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Björn C. Knollmann
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yi Zheng
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Bioinformatics Center, Beijing University of Agriculture, Beijing 102206, China
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA
| |
Collapse
|
18
|
Sy MR, Keefe JA, Sutton JP, Wehrens XHT. Cardiac function, structural, and electrical remodeling by microgravity exposure. Am J Physiol Heart Circ Physiol 2023; 324:H1-H13. [PMID: 36399385 PMCID: PMC9762974 DOI: 10.1152/ajpheart.00611.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Space medicine is key to the human exploration of outer space and pushes the boundaries of science, technology, and medicine. Because of harsh environmental conditions related to microgravity and other factors and hazards in outer space, astronauts and spaceflight participants face unique health and medical challenges, including those related to the heart. In this review, we summarize the literature regarding the effects of spaceflight on cardiac structure and function. We also provide an in-depth review of the literature regarding the effects of microgravity on cardiac calcium handling. Our review can inform future mechanistic and therapeutic studies and is applicable to other physiological states similar to microgravity such as prolonged horizontal bed rest and immobilization.
Collapse
Affiliation(s)
- Mary R Sy
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey P Sutton
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas
- Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
19
|
Hegner P, Drzymalski M, Biedermann A, Memmel B, Durczok M, Wester M, Floerchinger B, Provaznik Z, Schmid C, Zausig Y, Maier LS, Wagner S. SAR296968, a Novel Selective Na+/Ca2+ Exchanger Inhibitor, Improves Ca2+ Handling and Contractile Function in Human Atrial Cardiomyocytes. Biomedicines 2022; 10:biomedicines10081932. [PMID: 36009478 PMCID: PMC9406204 DOI: 10.3390/biomedicines10081932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/30/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: In reverse-mode, cardiac sodium-calcium exchanger (NCX) can increase the cytoplasmic Ca2+ concentration in response to high intracellular Na+ levels, which may contribute to diastolic contractile dysfunction. Furthermore, increased spontaneous Ca2+ release from intracellular stores can activate forward mode NCX. The resulting transient inward current causes delayed afterdepolarization (DAD)-dependent arrhythmias. Moreover, recently, NCX has been associated with impaired relaxation and reduced cardiac function in heart failure with preserved ejection fraction (HFpEF). Since NCX is upregulated in human chronic atrial fibrillation (AF) as well as heart failure (HF), specific inhibition may have therapeutic potential. Objective: We tested the antiarrhythmic, lusitropic and inotropic effects of a novel selective NCX-inhibitor (SAR296968) in human atrial myocardium. Methods and Results: Right atrial appendage biopsies of 46 patients undergoing elective cardiac surgery in a predominant HFpEF cohort (n = 24/46) were investigated. In isolated human atrial cardiomyocytes, SAR296968 reduced the frequency of spontaneous SR Ca2+ release events and increased caffeine transient amplitude. In accordance, in isolated atrial trabeculae, SAR296968 enhanced the developed tension after a 30 s pause of electrical stimulation consistent with reduced diastolic sarcoplasmic reticulum (SR) Ca2+ leak. Moreover, compared to vehicle, SAR296968 decreased steady-state diastolic tension (at 1 Hz) without impairing developed systolic tension. Importantly, SAR296968 did not affect the safety parameters, such as resting membrane potential or action potential duration as measured by patch clamp. Conclusion: The novel selective NCX-inhibitor SAR296968 inhibits atrial pro-arrhythmic activity and improves diastolic and contractile function in human atrial myocardium, which may have therapeutic implications, especially for treatment of HFpEF.
Collapse
Affiliation(s)
- Philipp Hegner
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Marzena Drzymalski
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Alexander Biedermann
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Bernadette Memmel
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Melanie Durczok
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Michael Wester
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Bernhard Floerchinger
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Zdenek Provaznik
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - York Zausig
- Department of Anesthesiology, University Medical Center Regensburg, 93053 Regensburg, Germany
- Department of Anesthesiology and Operative Intensive Care Medicine, Aschaffenburg-Alzenau Hospital, 63739 Aschaffenburg, Germany
| | - Lars S. Maier
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Stefan Wagner
- Department of Internal Medicine II, University Medical Center Regensburg, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-7206
| |
Collapse
|
20
|
Zheng J, Dooge HC, Pérez-Hernández M, Zhao YT, Chen X, Hernandez JJ, Valdivia CR, Palomeque J, Rothenberg E, Delmar M, Valdivia HH, Alvarado FJ. Preserved cardiac performance and adrenergic response in a rabbit model with decreased ryanodine receptor 2 expression. J Mol Cell Cardiol 2022; 167:118-128. [PMID: 35413295 PMCID: PMC9610860 DOI: 10.1016/j.yjmcc.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022]
Abstract
Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA; Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Holly C Dooge
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Marta Pérez-Hernández
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Yan-Ting Zhao
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Xi Chen
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Jonathan J Hernandez
- Department of Pediatrics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Carmen R Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Ciencias Médicas, UNLP, La Plata, Argentina
| | - Eli Rothenberg
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mario Delmar
- Leon H Charney Division of Cardiology, New York University Grossman School of Medicine,. New York, NY, United States of America
| | - Héctor H Valdivia
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
21
|
Hu Q, Chen H, Shen C, Zhang B, Weng X, Sun X, Liu J, Dong Z, Hu K, Ge J, Sun A. Impact and potential mechanism of effects of chronic moderate alcohol consumption on cardiac function in aldehyde dehydrogenase 2 gene heterozygous mice. Alcohol Clin Exp Res 2022; 46:707-723. [PMID: 35315077 PMCID: PMC9321750 DOI: 10.1111/acer.14811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/01/2022]
Abstract
Background Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in alcohol metabolism. The ALDH2*2 mutations are found in approximately 45% of East Asians, with 40% being heterozygous (HE) ALDH2*1/*2 and 5% homozygous (HO) ALDH2*2/*2. Studies have shown that HO mice lack cardioprotective effects induced by moderate alcohol consumption. However, the impact of moderate alcohol consumption on cardiac function in HE mice is unknown. Methods In this study, HO, HE, and wild‐type (WT) mice were subjected to a 6‐week moderate alcohol drinking protocol, following which myocardial tissue and cardiomyocytes of the mice were extracted. Results We found that moderate alcohol exposure did not increase mortality, myocardial fibrosis, apoptosis, or inflammation in HE mice, which differs from the effects observed in HO mice. After exposure to the 6‐week alcohol drinking protocol, there was impaired cardiac function, cardiomyocyte contractility, and intracellular Ca2+ homeostasis and mitochondrial function in both HE and HO mice as compared to WT mice. Moreover, these animals showed overt oxidative stress production and increased levels of the activated forms of calmodulin‐dependent protein kinase II (CaMKII) and ryanodine receptor type 2 (RYR2) phosphorylation protein. Conclusion We found that moderate alcohol exposure impaired cardiac function in HE mice, possibly by increasing reactive oxygen species (ROS)/CaMKII/RYR2‐mediated Ca2+ handling abnormalities. Hence, we advocate that people with ALDH2*1/*2 genotypes rigorously avoid alcohol consumption to prevent potential cardiovascular harm induced by moderate alcohol consumption.
Collapse
Affiliation(s)
- Qinfeng Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hang Chen
- Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, China.,Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Shen
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Beijian Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinyu Weng
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiaolei Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jin Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhen Dong
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Kai Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Aijun Sun
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Viral Heart Diseases, Shanghai, China.,Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
22
|
Therapeutic Approaches of Ryanodine Receptor-Associated Heart Diseases. Int J Mol Sci 2022; 23:ijms23084435. [PMID: 35457253 PMCID: PMC9031589 DOI: 10.3390/ijms23084435] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/08/2023] Open
Abstract
Cardiac diseases are the leading causes of death, with a growing number of cases worldwide, posing a challenge for both healthcare and research. Therefore, the most relevant aim of cardiac research is to unravel the molecular pathomechanisms and identify new therapeutic targets. Cardiac ryanodine receptor (RyR2), the Ca2+ release channel of the sarcoplasmic reticulum, is believed to be a good therapeutic target in a group of certain heart diseases, collectively called cardiac ryanopathies. Ryanopathies are associated with the impaired function of the RyR, leading to heart diseases such as congestive heart failure (CHF), catecholaminergic polymorphic ventricular tachycardia (CPVT), arrhythmogenic right ventricular dysplasia type 2 (ARVD2), and calcium release deficiency syndrome (CRDS). The aim of the current review is to provide a short insight into the pathological mechanisms of ryanopathies and discuss the pharmacological approaches targeting RyR2.
Collapse
|
23
|
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia despite substantial efforts to understand the pathophysiology of the condition and develop improved treatments. Identifying the underlying causative mechanisms of AF in individual patients is difficult and the efficacy of current therapies is suboptimal. Consequently, the incidence of AF is steadily rising and there is a pressing need for novel therapies. Research has revealed that defects in specific molecular pathways underlie AF pathogenesis, resulting in electrical conduction disorders that drive AF. The severity of this so-called electropathology correlates with the stage of AF disease progression and determines the response to AF treatment. Therefore, unravelling the molecular mechanisms underlying electropathology is expected to fuel the development of innovative personalized diagnostic tools and mechanism-based therapies. Moreover, the co-creation of AF studies with patients to implement novel diagnostic tools and therapies is a prerequisite for successful personalized AF management. Currently, various treatment modalities targeting AF-related electropathology, including lifestyle changes, pharmaceutical and nutraceutical therapy, substrate-based ablative therapy, and neuromodulation, are available to maintain sinus rhythm and might offer a novel holistic strategy to treat AF.
Collapse
Affiliation(s)
- Bianca J J M Brundel
- Department of Physiology, Amsterdam University Medical Centers, VU Universiteit, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands.
| | - Xun Ai
- Department of Physiology and Cell Biology, College of Medicine/Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | | | - Myrthe F Kuipers
- AFIPonline.org, Atrial Fibrillation Innovation Platform, Amsterdam, Netherlands
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
24
|
The function and regulation of calsequestrin-2: implications in calcium-mediated arrhythmias. Biophys Rev 2022; 14:329-352. [PMID: 35340602 PMCID: PMC8921388 DOI: 10.1007/s12551-021-00914-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/14/2021] [Indexed: 01/09/2023] Open
Abstract
Cardiac arrhythmias are life-threatening events in which the heart develops an irregular rhythm. Mishandling of Ca2+ within the myocytes of the heart has been widely demonstrated to be an underlying mechanism of arrhythmogenesis. This includes altered function of the ryanodine receptor (RyR2)-the primary Ca2+ release channel located to the sarcoplasmic reticulum (SR). The spontaneous leak of SR Ca2+ via RyR2 is a well-established contributor in the development of arrhythmic contractions. This leak is associated with increased channel activity in response to changes in SR Ca2+ load. RyR2 activity can be regulated through several avenues, including interactions with numerous accessory proteins. One such protein is calsequestrin-2 (CSQ2), which is the primary Ca2+-buffering protein within the SR. The capacity of CSQ2 to buffer Ca2+ is tightly associated with the ability of the protein to polymerise in response to changing Ca2+ levels. CSQ2 can itself be regulated through phosphorylation and glycosylation modifications, which impact protein polymerisation and trafficking. Changes in CSQ2 modifications are implicated in cardiac pathologies, while mutations in CSQ2 have been identified in arrhythmic patients. Here, we review the role of CSQ2 in arrhythmogenesis including evidence for the indirect and direct regulation of RyR2 by CSQ2, and the consequences of a loss of functional CSQ2 in Ca2+ homeostasis and Ca2+-mediated arrhythmias. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00914-6.
Collapse
|
25
|
Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P, Thomas D. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells 2021; 10:2767. [PMID: 34685747 PMCID: PMC8534398 DOI: 10.3390/cells10102767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmias contribute significantly to morbidity and mortality in patients with heart failure (HF). Pathomechanisms underlying arrhythmogenicity in patients with structural heart disease and impaired cardiac function include myocardial fibrosis and the remodeling of ion channels, affecting electrophysiologic properties of ventricular cardiomyocytes. The dysregulation of ion channel expression has been associated with cardiomyopathy and with the development of arrhythmias. However, the underlying molecular signaling pathways are increasingly recognized. This review summarizes clinical and cellular electrophysiologic characteristics observed in dilated cardiomyopathy (DCM) with ionic and structural alterations at the ventricular level. Furthermore, potential translational strategies and therapeutic options are highlighted.
Collapse
Affiliation(s)
- Christine Mages
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
26
|
Gaitán-González P, Sánchez-Hernández R, Arias-Montaño JA, Rueda A. Tale of two kinases: Protein kinase A and Ca 2+/calmodulin-dependent protein kinase II in pre-diabetic cardiomyopathy. World J Diabetes 2021; 12:1704-1718. [PMID: 34754372 PMCID: PMC8554373 DOI: 10.4239/wjd.v12.i10.1704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic syndrome is a pre-diabetic state characterized by several biochemical and physiological alterations, including insulin resistance, visceral fat accumulation, and dyslipidemias, which increase the risk for developing cardiovascular disease. Metabolic syndrome is associated with augmented sympathetic tone, which could account for the etiology of pre-diabetic cardiomyopathy. This review summarizes the current knowledge of the pathophysiological consequences of enhanced and sustained β-adrenergic response in pre-diabetes, focusing on cardiac dysfunction reported in diet-induced experimental models of pre-diabetic cardiomyopathy. The research reviewed indicates that both protein kinase A and Ca2+/calmodulin-dependent protein kinase II play important roles in functional responses mediated by β1-adrenoceptors; therefore, alterations in the expression or function of these kinases can be deleterious. This review also outlines recent information on the role of protein kinase A and Ca2+/calmodulin-dependent protein kinase II in abnormal Ca2+ handling by cardiomyocytes from diet-induced models of pre-diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Pamela Gaitán-González
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Rommel Sánchez-Hernández
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - José-Antonio Arias-Montaño
- Department of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| | - Angélica Rueda
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico
| |
Collapse
|
27
|
Ni L, Lahiri SK, Nie J, Pan X, Abu-Taha I, Reynolds JO, Campbell HM, Wang H, Kamler M, Schmitz W, Müller FU, Li N, Wei X, Wang DW, Dobrev D, Wehrens XHT. Genetic inhibition of Nuclear Factor of Activated T-cell c2 (NFATc2) prevents atrial fibrillation in CREM transgenic mice. Cardiovasc Res 2021; 118:2805-2818. [PMID: 34648001 PMCID: PMC9586567 DOI: 10.1093/cvr/cvab325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 10/11/2021] [Indexed: 11/14/2022] Open
Abstract
AIMS Abnormal intracellular calcium handling contributes to the progressive nature of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Evidence in mouse models suggests that activation of the nuclear factor of activated T-cell (NFAT) signaling pathway contributes to atrial remodeling. Our aim was to determine the role of NFATc2 in AF in humans and mouse models. METHODS AND RESULTS Expression levels of NFATc1-c4 isoforms were assessed by quantitative reverse transcription-polymerase chain reaction in right atrial appendages from patients with chronic AF. NFATc1 and NFATc2 mRNA levels were elevated in chronic AF (cAF) patients compared with those in sinus rhythm (SR). Western blotting revealed increased cytosolic and nuclear levels of NFATc2 in AF patients. Similar findings were obtained in CREM-IbΔC-X transgenic (CREM) mice, a model of progressive AF. Telemetry ECG recordings revealed age-dependent spontaneous AF in CREM mice, which was prevented by NFATc2 knockout in CREM: NFATc2-/- mice. Programmed electrical stimulation revealed that CREM: NFATc2-/- mice lacked an AF substrate. Morphometric analysis and histology revealed increased atrial weight and atrial fibrosis in CREM mice compared with WT controls, which was reversed in CREM: NFATc2-/- mice. Confocal microscopy showed an increased Ca2+ spark frequency despite a reduced sarcoplasmic reticulum (SR) Ca2+ load in CREM mice compared with controls, whereas these abnormalities were normalized in CREM: NFATc2-/- mice. Western blotting revealed that genetic inhibition of Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of S2814 on RyR2 in CREM: RyR2-S2814A mice suppressed NFATc2 activation observed in CREM mice, suggesting that NFATc2 is activated by excessive SR Ca2+ leak via RyR2. Finally, chromatin immunoprecipitation sequencing from AF patients identified Ras And EF-Hand Domain-Containing Protein (RASEF) as a direct target of NFATc2 mediated transcription. CONCLUSION Our findings reveal activation of the NFAT signaling pathway in patients of Chinese and European descent. NFATc2 knockout prevents the progression of AF in the CREM mouse model. TRANSLATIONAL PERSPECTIVE Atrial fibrillation (AF) is a progressive disease characterized by electrical and structural remodeling which promotes atrial arrhythmias. This study provides evidence for increased 'nuclear factor of activated T-cell' (NFAT) signaling in patients with chronic AF. Studies in the CREM transgenic model of progressive AF revealed that the NFATc2 isoform mediates atrial remodeling associated with AF substrate development. Chromatin immunoprecipitation sequencing of atrial biopsies from AF patients identified 'Ras And EF-Hand Domain-Containing Protein' (RASEF) as a downstream target of NFATc2-mediated transcription, suggesting that targeting these factors might be beneficial for curtailing AF progression.
Collapse
Affiliation(s)
- Li Ni
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Satadru K Lahiri
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Xiaolu Pan
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Issam Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Julia O Reynolds
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hannah M Campbell
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Haihao Wang
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Markus Kamler
- Cardiac Surgery II Essen-Huttrop, University Hospital, West German Heart Center, University of Essen, Germany
| | - Wilhelm Schmitz
- Institute of Pharmacology and Toxicology, University of Münster, Germany
| | | | - Na Li
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Institute of Pharmacology and Toxicology, University of Münster, Germany
| | - Xiang Wei
- Division of Cardiovascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute.,Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, 77030 USA.,Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, 77030 USA.,Department of Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030 USA
| |
Collapse
|
28
|
Benitah JP, Perrier R, Mercadier JJ, Pereira L, Gómez AM. RyR2 and Calcium Release in Heart Failure. Front Physiol 2021; 12:734210. [PMID: 34690808 PMCID: PMC8533677 DOI: 10.3389/fphys.2021.734210] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Heart Failure (HF) is defined as the inability of the heart to efficiently pump out enough blood to maintain the body's needs, first at exercise and then also at rest. Alterations in Ca2+ handling contributes to the diminished contraction and relaxation of the failing heart. While most Ca2+ handling protein expression and/or function has been shown to be altered in many models of experimental HF, in this review, we focus in the sarcoplasmic reticulum (SR) Ca2+ release channel, the type 2 ryanodine receptor (RyR2). Various modifications of this channel inducing alterations in its function have been reported. The first was the fact that RyR2 is less responsive to activation by Ca2+ entry through the L-Type calcium channel, which is the functional result of an ultrastructural remodeling of the ventricular cardiomyocyte, with fewer and disorganized transverse (T) tubules. HF is associated with an elevated sympathetic tone and in an oxidant environment. In this line, enhanced RyR2 phosphorylation and oxidation have been shown in human and experimental HF. After several controversies, it is now generally accepted that phosphorylation of RyR2 at the Calmodulin Kinase II site (S2814) is involved in both the depressed contractile function and the enhanced arrhythmic susceptibility of the failing heart. Diminished expression of the FK506 binding protein, FKBP12.6, may also contribute. While these alterations have been mostly studied in the left ventricle of HF with reduced ejection fraction, recent studies are looking at HF with preserved ejection fraction. Moreover, alterations in the RyR2 in HF may also contribute to supraventricular defects associated with HF such as sinus node dysfunction and atrial fibrillation.
Collapse
Affiliation(s)
| | | | | | | | - Ana M. Gómez
- Signaling and Cardiovascular Pathophysiology—UMR-S 1180, INSERM, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
29
|
Norton N, Weil RM, Advani PP. Inter-Individual Variation and Cardioprotection in Anthracycline-Induced Heart Failure. J Clin Med 2021; 10:jcm10184079. [PMID: 34575190 PMCID: PMC8465671 DOI: 10.3390/jcm10184079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Anthracyclines are one of the most widely used and effective chemotherapies in oncology, but their most important side effect is the cumulative, dose-related cardiotoxicity leading to congestive heart failure in ~5% of individuals. Methodology and pharmacogenetic studies for predicting which individuals are at high risk and subsequently the development of targeted and individualized cardioprotective plans are beginning to make progress. Here, we review current putative risk genes and variants, the strength of evidence for each genetic association and the interaction between risk genes, in the context of known clinical risk factors and potential novel cardioprotective strategies.
Collapse
Affiliation(s)
- Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
- Correspondence: ; Tel.: +1-(904)-953-6352
| | - Raegan M. Weil
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA;
| | - Pooja P. Advani
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, FL 32224, USA;
| |
Collapse
|
30
|
Baier MJ, Noack J, Seitz MT, Maier LS, Neef S. Phosphorylation of RyR2 Ser-2814 by CaMKII mediates β1-adrenergic stress induced Ca 2+ -leak from the sarcoplasmic reticulum. FEBS Open Bio 2021; 11:2756-2762. [PMID: 34403217 PMCID: PMC8487045 DOI: 10.1002/2211-5463.13274] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Adrenergic stimulation, while being the central mechanism of cardiac positive inotropy, is a universally acknowledged inductor of undesirable sarcoplasmic reticulum (SR) Ca2+ leak. However, the exact mechanisms for this remained unspecified so far. This study shows that Ca2+/calmodulin‐dependent protein kinase II (CaMKII)‐specific phosphorylation of ryanodine receptor type 2 at Ser‐2814 is the pivotal mechanism by which SR Ca2+ leak develops downstream of β1‐adrenergic stress by increase of the leak/load relationship. Cardiomyocytes with a Ser‐2814 phosphoresistant mutation (S2814A) were protected from isoproterenol‐induced SR Ca2+ leak and consequently displayed improved postrest potentiation of systolic Ca2+ release under adrenergic stress compared to littermate wild‐type cells.
Collapse
Affiliation(s)
- Maria J Baier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Jannis Noack
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Mark Tilmann Seitz
- Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Medical Center Regensburg, Germany
| |
Collapse
|
31
|
Di Fonso A, Pietrangelo L, D’Onofrio L, Michelucci A, Boncompagni S, Protasi F. Ageing Causes Ultrastructural Modification to Calcium Release Units and Mitochondria in Cardiomyocytes. Int J Mol Sci 2021; 22:8364. [PMID: 34445071 PMCID: PMC8395047 DOI: 10.3390/ijms22168364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022] Open
Abstract
Ageing is associated with an increase in the incidence of heart failure, even if the existence of a real age-related cardiomyopathy remains controversial. Effective contraction and relaxation of cardiomyocytes depend on efficient production of ATP (handled by mitochondria) and on proper Ca2+ supply to myofibrils during excitation-contraction (EC) coupling (handled by Ca2+ release units, CRUs). Here, we analyzed mitochondria and CRUs in hearts of adult (4 months old) and aged (≥24 months old) mice. Analysis by confocal and electron microscopy (CM and EM, respectively) revealed an age-related loss of proper organization and disposition of both mitochondria and EC coupling units: (a) mitochondria are improperly disposed and often damaged (percentage of severely damaged mitochondria: adults 3.5 ± 1.1%; aged 16.5 ± 3.5%); (b) CRUs that are often misoriented (longitudinal) and/or misplaced from the correct position at the Z line. Immunolabeling with antibodies that mark either the SR or T-tubules indicates that in aged cardiomyocytes the sarcotubular system displays an extensive disarray. This disarray could be in part caused by the decreased expression of Cav-3 and JP-2 detected by western blot (WB), two proteins involved in formation of T-tubules and in docking SR to T-tubules in dyads. By WB analysis, we also detected increased levels of 3-NT in whole hearts homogenates of aged mice, a product of nitration of protein tyrosine residues, recognized as marker of oxidative stress. Finally, a detailed EM analysis of CRUs (formed by association of SR with T-tubules) points to ultrastructural modifications, i.e., a decrease in their frequency (adult: 5.1 ± 0.5; aged: 3.9 ± 0.4 n./50 μm2) and size (adult: 362 ± 40 nm; aged: 254 ± 60 nm). The changes in morphology and disposition of mitochondria and CRUs highlighted by our results may underlie an inefficient supply of Ca2+ ions and ATP to the contractile elements, and possibly contribute to cardiac dysfunction in ageing.
Collapse
Affiliation(s)
- Alessia Di Fonso
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| | - Laura D’Onofrio
- IZSAM, Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise G. Caporale of Teramo, 64100 Teramo, Italy;
| | - Antonio Michelucci
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy; (A.D.F.); (A.M.); (S.B.); (F.P.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio (Ud’A) of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
32
|
Kwon HK, Choi H, Park SG, Park WJ, Kim, DH, Park ZY. Integrated Quantitative Phosphoproteomics and Cell-based Functional Screening Reveals Specific Pathological Cardiac Hypertrophy-related Phosphorylation Sites. Mol Cells 2021; 44:500-516. [PMID: 34158421 PMCID: PMC8334354 DOI: 10.14348/molcells.2021.4002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
Cardiac hypertrophic signaling cascades resulting in heart failure diseases are mediated by protein phosphorylation. Recent developments in mass spectrometry-based phosphoproteomics have led to the identification of thousands of differentially phosphorylated proteins and their phosphorylation sites. However, functional studies of these differentially phosphorylated proteins have not been conducted in a large-scale or high-throughput manner due to a lack of methods capable of revealing the functional relevance of each phosphorylation site. In this study, an integrated approach combining quantitative phosphoproteomics and cell-based functional screening using phosphorylation competition peptides was developed. A pathological cardiac hypertrophy model, junctate-1 transgenic mice and control mice, were analyzed using label-free quantitative phosphoproteomics to identify differentially phosphorylated proteins and sites. A cell-based functional assay system measuring hypertrophic cell growth of neonatal rat ventricle cardiomyocytes (NRVMs) following phenylephrine treatment was applied, and changes in phosphorylation of individual differentially phosphorylated sites were induced by incorporation of phosphorylation competition peptides conjugated with cell-penetrating peptides. Cell-based functional screening against 18 selected phosphorylation sites identified three phosphorylation sites (Ser-98, Ser-179 of Ldb3, and Ser-1146 of palladin) displaying near-complete inhibition of cardiac hypertrophic growth of NRVMs. Changes in phosphorylation levels of Ser-98 and Ser-179 in Ldb3 were further confirmed in NRVMs and other pathological/physiological hypertrophy models, including transverse aortic constriction and swimming models, using site-specific phospho-antibodies. Our integrated approach can be used to identify functionally important phosphorylation sites among differentially phosphorylated sites, and unlike conventional approaches, it is easily applicable for large-scale and/or high-throughput analyses.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Hyunwoo Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Woo Jin Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Do Han Kim,
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| |
Collapse
|
33
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
35
|
Chiang DY, Lahiri S, Wang G, Karch J, Wang MC, Jung SY, Heck AJR, Scholten A, Wehrens XHT. Phosphorylation-Dependent Interactome of Ryanodine Receptor Type 2 in the Heart. Proteomes 2021; 9:proteomes9020027. [PMID: 34200203 PMCID: PMC8293434 DOI: 10.3390/proteomes9020027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Hyperphosphorylation of the calcium release channel/ryanodine receptor type 2 (RyR2) at serine 2814 (S2814) is associated with multiple cardiac diseases including atrial fibrillation and heart failure. Despite recent advances, the molecular mechanisms driving pathological changes associated with RyR2 S2814 phosphorylation are still not well understood. Methods: Using affinity-purification coupled to mass spectrometry (AP-MS), we investigated the RyR2 interactome in ventricles from wild-type (WT) mice and two S2814 knock-in mutants: the unphosphorylated alanine mutant (S2814A) and hyperphosphorylated mimic aspartic acid mutant (S2814D). Western blots were used for validation. Results: In WT mouse ventricular lysates, we identified 22 proteins which were enriched with RyR2 pull-down relative to both IgG control and no antibody (beads-only) pull-downs. Parallel AP-MS using WT, S2814A, and S2814D mouse ventricles identified 72 proteins, with 20 being high confidence RyR2 interactors. Of these, 14 had an increase in their binding to RyR2 S2814A but a decrease in their binding to RyR2 S2814D. We independently validated three protein hits, Idh3b, Aifm1, and Cpt1b, as RyR2 interactors by western blots and showed that Aifm1 and Idh3b had significantly decreased binding to RyR2 S2814D compared to WT and S2814A, consistent with MS findings. Conclusion: By applying state-of-the-art proteomic approaches, we discovered a number of novel RyR2 interactors in the mouse heart. In addition, we found and defined specific alterations in the RyR2 interactome that were dependent on the phosphorylation status of RyR2 at S2814. These findings yield mechanistic insights into RyR2 regulation which may guide future drug designs.
Collapse
Affiliation(s)
- David Y. Chiang
- Cardiovascular Division, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| | - Satadru Lahiri
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guoliang Wang
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
| | - Jason Karch
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Meng C. Wang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung Y. Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Arjen Scholten
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 Utrecht, The Netherlands; (A.J.R.H.); (A.S.)
- Netherlands Proteomics Centre, 3584 Utrecht, The Netherlands
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute, Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; (S.L.); (G.W.); (J.K.)
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-798-4261
| |
Collapse
|
36
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
37
|
Liu X, Wang S, Guo X, Li Y, Ogurlu R, Lu F, Prondzynski M, Buzon SDLS, Ma Q, Zhang D, Wang G, Cotton J, Guo Y, Xiao L, Milan DJ, Xu Y, Schlame M, Bezzerides VJ, Pu WT. Increased Reactive Oxygen Species-Mediated Ca 2+/Calmodulin-Dependent Protein Kinase II Activation Contributes to Calcium Handling Abnormalities and Impaired Contraction in Barth Syndrome. Circulation 2021; 143:1894-1911. [PMID: 33793303 PMCID: PMC8691127 DOI: 10.1161/circulationaha.120.048698] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Mutations in tafazzin (TAZ), a gene required for biogenesis of cardiolipin, the signature phospholipid of the inner mitochondrial membrane, causes Barth syndrome (BTHS). Cardiomyopathy and risk of sudden cardiac death are prominent features of BTHS, but the mechanisms by which impaired cardiolipin biogenesis causes cardiac muscle weakness and arrhythmia are poorly understood. METHODS We performed in vivo electrophysiology to define arrhythmia vulnerability in cardiac-specific TAZ knockout mice. Using cardiomyocytes derived from human induced pluripotent stem cells and cardiac-specific TAZ knockout mice as model systems, we investigated the effect of TAZ inactivation on Ca2+ handling. Through genome editing and pharmacology, we defined a molecular link between TAZ mutation and abnormal Ca2+ handling and contractility. RESULTS A subset of mice with cardiac-specific TAZ inactivation developed arrhythmias, including bidirectional ventricular tachycardia, atrial tachycardia, and complete atrioventricular block. Compared with wild-type controls, BTHS-induced pluripotent stem cell-derived cardiomyocytes had increased diastolic Ca2+ and decreased Ca2+ transient amplitude. BTHS-induced pluripotent stem cell-derived cardiomyocytes had higher levels of mitochondrial and cellular reactive oxygen species than wild-type controls, which activated CaMKII (Ca2+/calmodulin-dependent protein kinase II). Activated CaMKII phosphorylated the RYR2 (ryanodine receptor 2) on serine 2814, increasing Ca2+ leak through RYR2. Inhibition of this reactive oxygen species-CaMKII-RYR2 pathway through pharmacological inhibitors or genome editing normalized aberrant Ca2+ handling in BTHS-induced pluripotent stem cell-derived cardiomyocytes and improved their contractile function. Murine Taz knockout cardiomyocytes also exhibited elevated diastolic Ca2+ and decreased Ca2+ transient amplitude. These abnormalities were ameliorated by Ca2+/calmodulin-dependent protein kinase II or reactive oxygen species inhibition. CONCLUSIONS This study identified a molecular pathway that links TAZ mutation with abnormal Ca2+ handling and decreased cardiomyocyte contractility. This pathway may offer therapeutic opportunities to treat BTHS and potentially other diseases with elevated mitochondrial reactive oxygen species production.
Collapse
Affiliation(s)
- Xujie Liu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Radiology, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Suya Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xiaoling Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Center of Scientific Research, the Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Roza Ogurlu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Fujian Lu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | | | - Qing Ma
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Donghui Zhang
- State key laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, Hubei 430062, China
| | - Gang Wang
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Justin Cotton
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard College, Cambridge, MA 02138, USA
| | - Yuxuan Guo
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Ling Xiao
- Department of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David J. Milan
- Department of Cardiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, New York
| | - Michael Schlame
- Department of Anesthesiology, New York University School of Medicine, New York, New York
| | | | - William T. Pu
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
38
|
Wang L, Ginnan RG, Wang YX, Zheng YM. Interactive Roles of CaMKII/Ryanodine Receptor Signaling and Inflammation in Lung Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:305-317. [PMID: 33788199 DOI: 10.1007/978-3-030-63046-1_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional protein kinase and has been recently recognized to play a vital role in pathological events in the pulmonary system. CaMKII has diverse downstream targets that promote vascular disease, asthma, and cancer, so improved understanding of CaMKII signaling has the potential to lead to new therapies for lung diseases. Multiple studies have demonstrated that CaMKII is involved in redox modulation of ryanodine receptors (RyRs). CaMKII can be directly activated by reactive oxygen species (ROS) which then regulates RyR activity, which is essential for Ca2+-dependent processes in lung diseases. Furthermore, both CaMKII and RyRs participate in the inflammation process. However, their role in the pulmonary physiology in response to ROS is still an ambiguous one. Because CaMKII and RyRs are important in pulmonary biology, cell survival, cell cycle control, and inflammation, it is possible that the relationship between ROS and CaMKII/RyRs signal complex will be necessary for understanding and treating lung diseases. Here, we review roles of CaMKII/RyRs in lung diseases to understand with how CaMKII/RyRs may act as a transduction signal to connect prooxidant conditions into specific downstream pathological effects that are relevant to rare and common forms of pulmonary disease.
Collapse
Affiliation(s)
- Lan Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.,Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Roman G Ginnan
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
39
|
Baine S, Bonilla I, Belevych A, Stepanov A, Dorn LE, Terentyeva R, Terentyev D, Accornero F, Carnes CA, Gyorke S. Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1-mediated calcium entry in heart failure. J Cell Mol Med 2021; 25:4637-4648. [PMID: 33755308 PMCID: PMC8107086 DOI: 10.1111/jcmm.16356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022] Open
Abstract
Heart failure (HF) is characterized by asymmetrical autonomic balance. Treatments to restore parasympathetic activity in human heart failure trials have shown beneficial effects. However, mechanisms of parasympathetic-mediated improvement in cardiac function remain unclear. The present study examined the effects and underpinning mechanisms of chronic treatment with the cholinesterase inhibitor, pyridostigmine (PYR), in pressure overload HF induced by transverse aortic constriction (TAC) in mice. TAC mice exhibited characteristic adverse structural (left ventricular hypertrophy) and functional remodelling (reduced ejection fraction, altered myocyte calcium (Ca) handling, increased arrhythmogenesis) with enhanced predisposition to arrhythmogenic aberrant sarcoplasmic reticulum (SR) Ca release, cardiac ryanodine receptor (RyR2) hyper-phosphorylation and up-regulated store-operated Ca entry (SOCE). PYR treatment resulted in improved cardiac contractile performance and rhythmic activity relative to untreated TAC mice. Chronic PYR treatment inhibited altered intracellular Ca handling by alleviating aberrant Ca release and diminishing pathologically enhanced SOCE in TAC myocytes. At the molecular level, these PYR-induced changes in Ca handling were associated with reductions of pathologically enhanced phosphorylation of RyR2 serine-2814 and STIM1 expression in HF myocytes. These results suggest that chronic cholinergic augmentation alleviates HF via normalization of both canonical RyR2-mediated SR Ca release and non-canonical hypertrophic Ca signaling via STIM1-dependent SOCE.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Andrei Stepanov
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Lisa E Dorn
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Federica Accornero
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Cynthia A Carnes
- College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
40
|
Dridi H, Wu W, Reiken SR, Ofer RM, Liu Y, Yuan Q, Sittenfeld L, Kushner J, Muchir A, Worman HJ, Marks AR. Ryanodine receptor remodeling in cardiomyopathy and muscular dystrophy caused by lamin A/C gene mutation. Hum Mol Genet 2021; 29:3919-3934. [PMID: 33388782 PMCID: PMC7906753 DOI: 10.1093/hmg/ddaa278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/08/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023] Open
Abstract
Mutations in the lamin A/C gene (LMNA), which encodes A-type lamins, cause several diseases called laminopathies, the most common of which is dilated cardiomyopathy with muscular dystrophy. The role of Ca2+ regulation in these diseases remain poorly understood. We now show biochemical remodeling of the ryanodine receptor (RyR)/intracellular Ca2+ release channel in heart samples from human subjects with LMNA mutations, including protein kinase A-catalyzed phosphorylation, oxidation and depletion of the stabilizing subunit calstabin. In the LmnaH222P/H222P murine model of Emery-Dreifuss muscular dystrophy caused by LMNA mutation, we demonstrate an age-dependent biochemical remodeling of RyR2 in the heart and RyR1 in skeletal muscle. This RyR remodeling is associated with heart and skeletal muscle dysfunction. Defective heart and muscle function are ameliorated by treatment with a novel Rycal small molecule drug (S107) that fixes 'leaky' RyRs. SMAD3 phosphorylation is increased in hearts and diaphragms of LmnaH222P/H222P mice, which enhances NADPH oxidase binding to RyR channels, contributing to their oxidation. There is also increased generalized protein oxidation, increased calcium/calmodulin-dependent protein kinase II-catalyzed phosphorylation of RyRs and increased protein kinase A activity in these tissues. Our data show that RyR remodeling plays a role in cardiomyopathy and skeletal muscle dysfunction caused by LMNA mutation and identify these Ca2+ channels as a potential therapeutic target.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Wei Wu
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Steven R Reiken
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Rachel M Ofer
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Jared Kushner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| | - Antoine Muchir
- Sorbonne University, INSERM, Institute of Myology, Center of Research in Myology, 75013 Paris, France
| | - Howard J Worman
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Wu Center for Molecular Cardiology, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia, University, New York, NY 10032, USA
| |
Collapse
|
41
|
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk. Pflugers Arch 2021; 473:363-375. [PMID: 33590296 PMCID: PMC7940337 DOI: 10.1007/s00424-021-02533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 01/25/2023]
Abstract
Calcium homeostasis in the cardiomyocyte is critical to the regulation of normal cardiac function. Abnormal calcium dynamics such as altered uptake by the sarcoplasmic reticulum (SR) Ca2+-ATPase and increased diastolic SR calcium leak are involved in the development of maladaptive cardiac remodeling under pathological conditions. Ca2+/calmodulin-dependent protein kinase II-δ (CaMKIIδ) is a well-recognized key molecule in calcium dysregulation in cardiomyocytes. Elevated cellular stress is known as a common feature during pathological remodeling, and c-jun N-terminal kinase (JNK) is an important stress kinase that is activated in response to intrinsic and extrinsic stress stimuli. Our lab recently identified specific actions of JNK isoform 2 (JNK2) in CaMKIIδ expression, activation, and CaMKIIδ-dependent SR Ca2+ mishandling in the stressed heart. This review focuses on the current understanding of cardiac SR calcium handling under physiological and pathological conditions as well as the newly identified contribution of the stress kinase JNK2 in CaMKIIδ-dependent SR Ca2+ abnormal mishandling. The new findings identifying dual roles of JNK2 in CaMKIIδ expression and activation are also discussed in this review.
Collapse
|
42
|
Pathological conformations of disease mutant Ryanodine Receptors revealed by cryo-EM. Nat Commun 2021; 12:807. [PMID: 33547325 PMCID: PMC7864917 DOI: 10.1038/s41467-021-21141-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Ryanodine Receptors (RyRs) are massive channels that release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Hundreds of mutations are linked to malignant hyperthermia (MH), myopathies, and arrhythmias. Here, we explore the first MH mutation identified in humans by providing cryo-EM snapshots of the pig homolog, R615C, showing that it affects an interface between three solenoid regions. We also show the impact of apo-calmodulin (apoCaM) and how it can induce opening by bending of the bridging solenoid, mediated by its N-terminal lobe. For R615C RyR1, apoCaM binding abolishes a pathological ‘intermediate’ conformation, distributing the population to a mixture of open and closed channels, both different from the structure without apoCaM. Comparisons show that the mutation primarily affects the closed state, inducing partial movements linked to channel activation. This shows that disease mutations can cause distinct pathological conformations of the RyR and facilitate channel opening by disrupting interactions between different solenoid regions. Ryanodine Receptors (RyRs) release Ca2+ from the endoplasmic and sarcoplasmic reticulum. Mutations in RyR are linked to malignant hyperthermia (MH), myopathies, and arrhythmias. Here, a collection of cryoEM structures provides insights into the molecular consequences of MHrelated RyR mutation R615C, and how apoCaM opens RyR1.
Collapse
|
43
|
Danielsen TK, Sadredini M, Manotheepan R, Aronsen JM, Frisk M, Hansen MH, Andressen KW, Hougen K, Levy FO, Louch WE, Sejersted OM, Sjaastad I, Stokke MK. Exercise Training Stabilizes RyR2-Dependent Ca 2+ Release in Post-infarction Heart Failure. Front Cardiovasc Med 2021; 7:623922. [PMID: 33569394 PMCID: PMC7868397 DOI: 10.3389/fcvm.2020.623922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Aim: Dysfunction of the cardiac ryanodine receptor (RyR2) is an almost ubiquitous finding in animal models of heart failure (HF) and results in abnormal Ca2+ release in cardiomyocytes that contributes to contractile impairment and arrhythmias. We tested whether exercise training (ET), as recommended by current guidelines, had the potential to stabilize RyR2-dependent Ca2+ release in rats with post-myocardial infarction HF. Materials and Methods: We subjected male Wistar rats to left coronary artery ligation or sham operations. After 1 week, animals were characterized by echocardiography and randomized to high-intensity interval ET on treadmills or to sedentary behavior (SED). Running speed was adjusted based on a weekly VO2max test. We repeated echocardiography after 5 weeks of ET and harvested left ventricular cardiomyocytes for analysis of RyR2-dependent systolic and spontaneous Ca2+ release. Phosphoproteins were analyzed by Western blotting, and beta-adrenoceptor density was quantified by radioligand binding. Results: ET increased VO2max in HF-ET rats to 127% of HF-SED (P < 0.05). This coincided with attenuated spontaneous SR Ca2+ release in left ventricular cardiomyocytes from HF-ET but also reduced Ca2+ transient amplitude and slowed Ca2+ reuptake during adrenoceptor activation. However, ventricular diameter and fractional shortening were unaffected by ET. Analysis of Ca2+ homeostasis and major proteins involved in the regulation of SR Ca2+ release and reuptake could not explain the attenuated spontaneous SR Ca2+ release or reduced Ca2+ transient amplitude. Importantly, measurements of beta-adrenoceptors showed a normalization of beta1-adrenoceptor density and beta1:beta2-adrenoceptor ratio in HF-ET. Conclusion: ET increased aerobic capacity in post-myocardial infarction HF rats and stabilized RyR2-dependent Ca2+ release. Our data show that these effects of ET can be gained without major alterations in SR Ca2+ regulatory proteins and indicate that future studies should include upstream parts of the sympathetic signaling pathway.
Collapse
Affiliation(s)
- Tore Kristian Danielsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mani Sadredini
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ravinea Manotheepan
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Bjørknes College, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Marie Haugsten Hansen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Karina Hougen
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology, Institute of Clinical Medicine, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ole Mathias Sejersted
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Mathis Korseberg Stokke
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway.,Kristian Gerhard (KG) Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
44
|
Gross P, Johnson J, Romero CM, Eaton DM, Poulet C, Sanchez-Alonso J, Lucarelli C, Ross J, Gibb AA, Garbincius JF, Lambert J, Varol E, Yang Y, Wallner M, Feldsott EA, Kubo H, Berretta RM, Yu D, Rizzo V, Elrod J, Sabri A, Gorelik J, Chen X, Houser SR. Interaction of the Joining Region in Junctophilin-2 With the L-Type Ca 2+ Channel Is Pivotal for Cardiac Dyad Assembly and Intracellular Ca 2+ Dynamics. Circ Res 2021; 128:92-114. [PMID: 33092464 PMCID: PMC7790862 DOI: 10.1161/circresaha.119.315715] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/21/2020] [Indexed: 02/06/2023]
Abstract
RATIONALE Ca2+-induced Ca2+ release (CICR) in normal hearts requires close approximation of L-type calcium channels (LTCCs) within the transverse tubules (T-tubules) and RyR (ryanodine receptors) within the junctional sarcoplasmic reticulum. CICR is disrupted in cardiac hypertrophy and heart failure, which is associated with loss of T-tubules and disruption of cardiac dyads. In these conditions, LTCCs are redistributed from the T-tubules to disrupt CICR. The molecular mechanism responsible for LTCCs recruitment to and from the T-tubules is not well known. JPH (junctophilin) 2 enables close association between T-tubules and the junctional sarcoplasmic reticulum to ensure efficient CICR. JPH2 has a so-called joining region that is located near domains that interact with T-tubular plasma membrane, where LTCCs are housed. The idea that this joining region directly interacts with LTCCs and contributes to LTCC recruitment to T-tubules is unknown. OBJECTIVE To determine if the joining region in JPH2 recruits LTCCs to T-tubules through direct molecular interaction in cardiomyocytes to enable efficient CICR. METHODS AND RESULTS Modified abundance of JPH2 and redistribution of LTCC were studied in left ventricular hypertrophy in vivo and in cultured adult feline and rat ventricular myocytes. Protein-protein interaction studies showed that the joining region in JPH2 interacts with LTCC-α1C subunit and causes LTCCs distribution to the dyads, where they colocalize with RyRs. A JPH2 with induced mutations in the joining region (mutPG1JPH2) caused T-tubule remodeling and dyad loss, showing that an interaction between LTCC and JPH2 is crucial for T-tubule stabilization. mutPG1JPH2 caused asynchronous Ca2+-release with impaired excitation-contraction coupling after β-adrenergic stimulation. The disturbed Ca2+ regulation in mutPG1JPH2 overexpressing myocytes caused calcium/calmodulin-dependent kinase II activation and altered myocyte bioenergetics. CONCLUSIONS The interaction between LTCC and the joining region in JPH2 facilitates dyad assembly and maintains normal CICR in cardiomyocytes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calcium Channels, L-Type/genetics
- Calcium Channels, L-Type/metabolism
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Cats
- Cells, Cultured
- Disease Models, Animal
- Excitation Contraction Coupling
- Humans
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Kinetics
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Muscle Proteins/genetics
- Muscle Proteins/metabolism
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Organelle Biogenesis
- Protein Binding
- Protein Interaction Domains and Motifs
- Rats, Sprague-Dawley
- Ryanodine Receptor Calcium Release Channel
- Rats
Collapse
Affiliation(s)
- Polina Gross
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Jaslyn Johnson
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Carlos M. Romero
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Deborah M. Eaton
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Claire Poulet
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jose Sanchez-Alonso
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Carla Lucarelli
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Jean Ross
- Bioimaging Center Research, Delaware Biotechnology Institute, Newark
| | - Andrew A. Gibb
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Joanne F. Garbincius
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Jonathan Lambert
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Erdem Varol
- Columbia University, Center for Theoretical Neuroscience, Department of Statistics, New York, NY
| | - Yijun Yang
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Markus Wallner
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
- Medical University of Graz, Division of Cardiology, Graz, Austria
- Center for Biomarker Research in Medicine, CBmed GmbH, Graz, Austria
| | - Eric A. Feldsott
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Hajime Kubo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Remus M. Berretta
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Daohai Yu
- Clinical Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia
| | - Victor Rizzo
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - John Elrod
- Lewis Katz Temple University School of Medicine, Center for Translational Medicine, Department of Pharmacology, Philadelphia
| | - Abdelkarim Sabri
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Julia Gorelik
- Imperial College London, Department of Cardiovascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, London
| | - Xiongwen Chen
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| | - Steven R. Houser
- Lewis Katz Temple University School of Medicine, Cardiovascular Research Center, Department of Physiology, Philadelphia
| |
Collapse
|
45
|
Zeng Z, Ma H, Chen J, Huang N, Zhang Y, Su Y, Zhang H. Knockdown of miR-1275 protects against cardiomyocytes injury through promoting neuromedin U type 1 receptor. Cell Cycle 2020; 19:3639-3649. [PMID: 33323026 DOI: 10.1080/15384101.2020.1860310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to assess the role of miR-1275 in cardiac ischemia reperfusion injury. H9 human embryonic stem cell (hESC)-derived cardiomyocytes stimulated by oxygen-glucose deprivation/reoxygenation (OGD/R) were used to simulate myocardial injury in vitro. miR-1275 expression levels in cells were measured by RT-qPCR. The release of lactate dehydrogenase (LDH) and creatine kinase (CK) was examined through LDH and CK ELISA kits. Cell apoptosis was detected through flow cytometry. A Fura-2 Calcium Flux Assay Kit and a Fluo-4 assay kit were used to determine the Ca2+ concentration. Expression levels of proteins were tested by Western blotting. The binding effect of miR-1275 and neuromedin U type 1 receptor (NMUR1) was detected by dual-luciferase activity assay. The results showed that miR-1275 was upregulated in OGD/R-stimulated cardiomyocytes. Inhibition of miR-1275 suppressed the increased activity of LDH and CK, cell apoptosis, reactive oxygen species (ROS) production, intracellular Ca2+ concentration and sarcoplasmic reticulum (SR) Ca2+ leak induced by OGD/R treatment in cardiomyocytes. miR-1275 directly targets 3'UTR of NMUR1 and negatively regulates NMUR1 expression. Silence of NMUR1 abolished the protecting effect of the miR-1275 antagomir on myocardial OGD/R injury. Our study indicated that the miR-1275 antagomir protects cardiomyocytes from OGD/R injury through the promotion of NMUR1.
Collapse
Affiliation(s)
- Zhu Zeng
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Haixin Ma
- Medical Department, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Jing Chen
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Nina Huang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Yudan Zhang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Yufei Su
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| | - Huifang Zhang
- Department of Emergency, The Affiliated Children Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi, China
| |
Collapse
|
46
|
Dridi H, Kushnir A, Zalk R, Yuan Q, Melville Z, Marks AR. Intracellular calcium leak in heart failure and atrial fibrillation: a unifying mechanism and therapeutic target. Nat Rev Cardiol 2020; 17:732-747. [PMID: 32555383 PMCID: PMC8362847 DOI: 10.1038/s41569-020-0394-8] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
Ca2+ is a fundamental second messenger in all cell types and is required for numerous essential cellular functions, including cardiac and skeletal muscle contraction. The intracellular concentration of free Ca2+ ([Ca2+]) is regulated primarily by ion channels, pumps (ATPases), exchangers and Ca2+-binding proteins. Defective regulation of [Ca2+] is found in a diverse spectrum of pathological states that affect all the major organs. In the heart, abnormalities in the regulation of cytosolic and mitochondrial [Ca2+] occur in heart failure (HF) and atrial fibrillation (AF), two common forms of heart disease and leading contributors to morbidity and mortality. In this Review, we focus on the mechanisms that regulate ryanodine receptor 2 (RYR2), the major sarcoplasmic reticulum (SR) Ca2+-release channel in the heart, how RYR2 becomes dysfunctional in HF and AF, and its potential as a therapeutic target. Inherited RYR2 mutations and/or stress-induced phosphorylation and oxidation of the protein destabilize the closed state of the channel, resulting in a pathological diastolic Ca2+ leak from the SR that both triggers arrhythmias and impairs contractility. On the basis of our increased understanding of SR Ca2+ leak as a shared Ca2+-dependent pathological mechanism in HF and AF, a new class of drugs developed in our laboratory, known as rycals, which stabilize RYR2 channels and prevent Ca2+ leak from the SR, are undergoing investigation in clinical trials.
Collapse
Affiliation(s)
- Haikel Dridi
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alexander Kushnir
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Ran Zalk
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Clyde and Helen Wu Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
47
|
|
48
|
Njegic A, Wilson C, Cartwright EJ. Targeting Ca 2 + Handling Proteins for the Treatment of Heart Failure and Arrhythmias. Front Physiol 2020; 11:1068. [PMID: 33013458 PMCID: PMC7498719 DOI: 10.3389/fphys.2020.01068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Diseases of the heart, such as heart failure and cardiac arrhythmias, are a growing socio-economic burden. Calcium (Ca2+) dysregulation is key hallmark of the failing myocardium and has long been touted as a potential therapeutic target in the treatment of a variety of cardiovascular diseases (CVD). In the heart, Ca2+ is essential for maintaining normal cardiac function through the generation of the cardiac action potential and its involvement in excitation contraction coupling. As such, the proteins which regulate Ca2+ cycling and signaling play a vital role in maintaining Ca2+ homeostasis. Changes to the expression levels and function of Ca2+-channels, pumps and associated intracellular handling proteins contribute to altered Ca2+ homeostasis in CVD. The remodeling of Ca2+-handling proteins therefore results in impaired Ca2+ cycling, Ca2+ leak from the sarcoplasmic reticulum and reduced Ca2+ clearance, all of which contributes to increased intracellular Ca2+. Currently, approved treatments for targeting Ca2+ handling dysfunction in CVD are focused on Ca2+ channel blockers. However, whilst Ca2+ channel blockers have been successful in the treatment of some arrhythmic disorders, they are not universally prescribed to heart failure patients owing to their ability to depress cardiac function. Despite the progress in CVD treatments, there remains a clear need for novel therapeutic approaches which are able to reverse pathophysiology associated with heart failure and arrhythmias. Given that heart failure and cardiac arrhythmias are closely associated with altered Ca2+ homeostasis, this review will address the molecular changes to proteins associated with both Ca2+-handling and -signaling; their potential as novel therapeutic targets will be discussed in the context of pre-clinical and, where available, clinical data.
Collapse
Affiliation(s)
- Alexandra Njegic
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Claire Wilson
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom.,Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
49
|
Romero-García T, Landa-Galvan HV, Pavón N, Mercado-Morales M, Valdivia HH, Rueda A. Autonomous activation of CaMKII exacerbates diastolic calcium leak during beta-adrenergic stimulation in cardiomyocytes of metabolic syndrome rats. Cell Calcium 2020; 91:102267. [PMID: 32920522 DOI: 10.1016/j.ceca.2020.102267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
Autonomous Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation induces abnormal diastolic Ca2+ leak, which leads to triggered arrhythmias in a wide range of cardiovascular diseases, including diabetic cardiomyopathy. In hyperglycemia, Ca2+ handling alterations can be aggravated under stress conditions via the β-adrenergic signaling pathway, which also involves CaMKII activation. However, little is known about intracellular Ca2+ handling disturbances under β-adrenergic stimulation in cardiomyocytes of the prediabetic metabolic syndrome (MetS) model with obesity, and the participation of CaMKII in these alterations. MetS was induced in male Wistar rats by administering 30 % sucrose in drinking water for 16 weeks. Fluo 3-loaded MetS cardiomyocytes exhibited augmented diastolic Ca2+ leak (in the form of spontaneous Ca2+ waves) under basal conditions and that Ca2+ leakage was exacerbated by isoproterenol (ISO, 100 nM). At the molecular level, [3H]-ryanodine binding and basal phosphorylation of cardiac ryanodine receptor (RyR2) at Ser2814, a CaMKII site, were increased in heart homogenates of MetS rats with no changes in RyR2 expression. These alterations were not further augmented by Isoproterenol. SERCA pump activity was augmented 48 % in MetS hearts before β-adrenergic stimuli, which is associated to augmented PLN phosphorylation at T17, a target of CaMKII. In MetS hearts. CaMKII auto-phosphorylation (T287) was increased by 80 %. The augmented diastolic Ca2+ leak was prevented by CaMKII inhibition with AIP. In conclusion, CaMKII autonomous activation in cardiomyocytes of MetS rats with central obesity significantly contributes to abnormal diastolic Ca2+ leak, increasing the propensity for β-adrenergic receptor-driven lethal arrhythmias.
Collapse
Affiliation(s)
- Tatiana Romero-García
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav-IPN, Mexico City, 07300 Mexico
| | - Huguet V Landa-Galvan
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav-IPN, Mexico City, 07300 Mexico
| | - Natalia Pavón
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chavez", Mexico City, Mexico
| | - Martha Mercado-Morales
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav-IPN, Mexico City, 07300 Mexico
| | - Héctor H Valdivia
- Department of Medicine, Division of Cardiovascular Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Angélica Rueda
- Department of Biochemistry, Centro de Investigación y de Estudios Avanzados del IPN, Cinvestav-IPN, Mexico City, 07300 Mexico.
| |
Collapse
|
50
|
Lindner M, Mehel H, David A, Leroy C, Burtin M, Friedlander G, Terzi F, Mika D, Fischmeister R, Prié D. Fibroblast growth factor 23 decreases PDE4 expression in heart increasing the risk of cardiac arrhythmia; Klotho opposes these effects. Basic Res Cardiol 2020; 115:51. [PMID: 32699940 DOI: 10.1007/s00395-020-0810-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/01/2020] [Indexed: 02/01/2023]
Abstract
The concentration of fibroblast growth factor 23 (FGF23) rises progressively in renal failure (RF). High FGF23 concentrations have been consistently associated with adverse cardiovascular outcomes or death, in chronic kidney disease (CKD), heart failure or liver cirrhosis. We identified the mechanisms whereby high concentrations of FGF23 can increase the risk of death of cardiovascular origin. We studied the effects of FGF23 and Klotho in adult rat ventricular cardiomyocytes (ARVMs) and on the heart of mice with CKD. We show that FGF23 increases the frequency of spontaneous calcium waves (SCWs), a marker of cardiomyocyte arrhythmogenicity, in ARVMs. FGF23 increased sarcoplasmic reticulum Ca2+ leakage, basal phosphorylation of Ca2+-cycling proteins including phospholamban and ryanodine receptor type 2. These effects are secondary to a decrease in phosphodiesterase 4B (PDE4B) in ARVMs and in heart of mice with RF. Soluble Klotho, a circulating form of the FGF23 receptor, prevents FGF23 effects on ARVMs by increasing PDE3A and PDE3B expression. Our results suggest that the combination of high FGF23 and low sKlotho concentrations decreases PDE activity in ARVMs, which favors the occurrence of ventricular arrhythmias and may participate in the high death rate observed in patients with CKD.
Collapse
Affiliation(s)
| | - Hind Mehel
- INSERM U1151-CNRS UMR8253, Paris, France
| | | | | | | | - Gérard Friedlander
- INSERM U1151-CNRS UMR8253, Paris, France
- Université de Paris Faculté de Médecine, Paris, France
- Service de Physiologie Explorations Fonctionnelles Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Delphine Mika
- Université Paris-Saclay, Inserm U1180, 92296, Châtenay-Malabry, France
| | | | - Dominique Prié
- INSERM U1151-CNRS UMR8253, Paris, France.
- Université de Paris Faculté de Médecine, Paris, France.
- Service de Physiologie Explorations Fonctionnelles Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|