1
|
Ziegler KA, Engelhardt S, Carnevale D, McAlpine CS, Guzik TJ, Dimmeler S, Swirski FK. Neural Mechanisms in Cardiovascular Health and Disease. Circ Res 2025; 136:1233-1261. [PMID: 40403111 DOI: 10.1161/circresaha.125.325580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/24/2025]
Abstract
Although the neurocardiac axis is central to cardiovascular homeostasis, its dysregulation drives heart failure and cardiometabolic diseases. This review examines the bidirectional interplay between the autonomic nervous system and the heart, highlighting the role of this interplay in disease progression and its therapeutic potential. The autonomic nervous system modulates cardiac function and vascular tone through its sympathetic and parasympathetic branches. However, in heart failure, chronic sympathetic overdrive and parasympathetic withdrawal exacerbate myocardial remodeling and metabolic dysfunction, both of which are exacerbated by cardiometabolic conditions such as obesity and diabetes. These conditions are increasingly recognized to impair neurocardiac regulation, thereby promoting inflammation and adverse outcomes. An important emerging area concerns neuroimmune control, in which the brain orchestrates systemic inflammation through circuits involving the bone marrow, spleen, and other organs, thereby amplifying cardiovascular damage. This neuroimmune axis integrates peripheral signals to influence immune responses that contribute to disease progression. Lifestyle factors, such as stress, sleep, exercise, and diet, affect autonomic and immune balance and, thus, cardiovascular disease. Therapeutically, targeting neurocardiac and neuroimmune pathways pharmacologically or via neuromodulation (eg, vagal or splenic nerve stimulation) offers promise although the clinical translation of the latter remains challenging. In this review, we synthesize preclinical and clinical data to highlight the neurocardiac axis as a critical nexus in heart failure and cardiometabolic disease. Harnessing neuroimmune and neurocardiac interactions may inform precision approaches to reduce the burden of these conditions.
Collapse
Affiliation(s)
- Karin A Ziegler
- Institute of Pharmacology and Toxicology, School of Medicine and Health, Technical University of Munich, Germany (K.A.Z., S.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (K.A.Z., S.E.)
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, School of Medicine and Health, Technical University of Munich, Germany (K.A.Z., S.E.)
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany (K.A.Z., S.E.)
| | - Daniela Carnevale
- Faculty of Pharmacy and Medicine, Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy (D.C.)
- Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy (D.C.)
| | - Cameron S McAlpine
- Cardiovascular Research Institute, The Friedman Brain Institute, and Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.S.M., F.K.S.)
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, The University of Edinburgh, United Kingdom (T.J.G.)
- Department of Internal Medicine (T.J.G.), Jagiellonian University Medical College, Kraków, Poland
- Center for Medical Genomics OMICRON (T.J.G.), Jagiellonian University Medical College, Kraków, Poland
| | - Stefanie Dimmeler
- Goethe University Frankfurt, Institute for Cardiovascular Regeneration, Germany (S.D.)
- German Centre for Cardiovascular Research (DZHK), Frankfurt am Main, Germany (S.D.)
- Cardiopulmonary Institute, Goethe University Frankfurt am Main, Germany (S.D.)
| | - Filip K Swirski
- Cardiovascular Research Institute, The Friedman Brain Institute, and Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY (C.S.M., F.K.S.)
| |
Collapse
|
2
|
McDonald KS, Kalogeris TJ, Veteto AB, Davis DJ, Hanft LM. Myosin binding protein-C modulates loaded sarcomere shortening in rodent permeabilized cardiac myocytes. J Gen Physiol 2025; 157:e202413678. [PMID: 40126337 PMCID: PMC11932042 DOI: 10.1085/jgp.202413678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/29/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025] Open
Abstract
During the ejection phase of the cardiac cycle, left ventricular (LV) cardiac myocytes undergo loaded shortening and generate power. However, few studies have measured sarcomere shortening during loaded contractions. Here, we simultaneously monitored muscle length (ML) and sarcomere length (SL) during isotonic contractions in rodent permeabilized LV cardiac myocyte preparations. In permeabilized cardiac myocyte preparations from rats, we found that ML and SL traces were closely matched, as SL velocities were within ∼77% of ML velocities during half-maximal Ca2+ activations. We next tested whether cardiac myosin binding protein-C (cMyBP-C) regulates loaded shortening and power output by modulating cross-bridge availability. We characterized force-velocity and power-load relationships in wildtype (WT) and cMyBP-C deficient (Mybpc3-/-) mouse permeabilized cardiac myocyte preparations, at both the ML and SL level, before and after treatment with the small molecule myosin inhibitor, mavacamten. We found that SL traces closely matched ML traces in both WT and Mybpc3-/- cardiac myocytes. However, Mybpc3-/- cardiac myocytes exhibited disproportionately high sarcomere shortening velocities at high loads. Interestingly, in Mybpc3-/- cardiac myocytes, 0.5 µM mavacamten slowed SL-loaded shortening across the force-velocity curve and normalized SL shortening velocity at high loads. Overall, these results suggest that cMyBP-C moderates sarcomere-loaded shortening, especially at high loads, at least in part, by modulating cross-bridge availability.
Collapse
Affiliation(s)
- Kerry S. McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Adam B. Veteto
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Daniel J. Davis
- Department of Veterinary Pathology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Laurin M. Hanft
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
3
|
Wu T, Huang T, Ren H, Shen C, Qian J, Fu X, Liu S, Xie C, Lin X, Wan J, Xiong S, Ji Y, Liu M, Zheng H, Liang T, Liu W, Zou Y, Lai K, Yang M, Song Z, Lan P, Li X, Wu Y, Yang M, Li H, Huang X, Chen H, Tan J, Cai W. Metabolic Coordination Structures Contribute to Diabetic Myocardial Dysfunction. Circ Res 2025; 136:946-967. [PMID: 40190276 DOI: 10.1161/circresaha.124.326044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Individuals with diabetes are susceptible to cardiac dysfunction and heart failure, potentially resulting in mortality. Metabolic disorders frequently occur in patients with diabetes, and diabetes usually leads to remodeling of heart structure and cardiac dysfunction. However, the contribution and underlying mechanisms of metabolic and structural coupling in diabetic cardiac dysfunction remain elusive. METHODS Two mouse models of type 2 diabetes (T2DM) were used to assess alterations in glucose/lipid metabolism and cardiac structure. The potential metabolic-structural coupling molecule ACBP (acyl-coenzyme A-binding protein) was screened from 4 published datasets of T2DM-associated heart disease. In vivo loss-of-function and gain-of-function approaches were used to investigate the role of ACBP in diabetic cardiac dysfunction. The underlying mechanisms of metabolic and structural coupling were investigated by stable-isotope tracing metabolomics, coimmunoprecipitation coupled with mass spectrometry, and chromatin immunoprecipitation sequencing. RESULTS Diabetic mouse hearts exhibit enhanced lipid metabolism and impaired ultrastructure with marked cardiac systolic and diastolic dysfunction. Analysis of 4 T2DM public datasets revealed that Acbp was a significant lipid metabolism gene whose expression was upregulated. Consistently, ACBP expression levels were markedly elevated in the hearts of patients with diabetes and diabetic mice. Moreover, we constructed cardiomyocyte-specific Acbp knockout mice that exhibited attenuation of T2DM-induced cardiac remodeling and cardiac dysfunction, including attenuation of cardiac hypertrophy, fibrosis, ultrastructural damage, and enhanced cardiomyocyte contractility and cardiac function. Conversely, cardiac-specific Acbp overexpression via adeno-associated virus type 9, which encodes Acbp under the cTnT (cardiac troponin T) promoter, recapitulated cardiac dysfunction. Mechanistically, cardiac-specific Acbp knockout enhances glucose utilization in diabetic cardiomyocytes, suggesting a potential compensatory mechanism for insufficient ATP levels, highlighting its metabolic role. In addition, combined with mass spectrometry analysis revealed that ACBP binds MyBPC3 (myosin-binding protein C3) in T2DM individuals, which potentially prevents MyBPC3 from assisting the formation of cross-bridge structures between myosin and actin, thereby impairing myocardial contraction. Importantly, chromatin immunoprecipitation sequencing revealed that peroxisome proliferator-activated receptor γ regulates the transcriptional activity of Acbp. CONCLUSIONS Our findings demonstrated that ACBP mediates the bidirectional regulation of cardiomyocyte metabolic and structural associations and identified a promising therapeutic target for ameliorating cardiac dysfunction in patients with T2DM.
Collapse
Affiliation(s)
- Teng Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital (T.W., T.L., W.L., P.L., H.C.), Sun Yat-sen University, Guangzhou, China
| | - Tongsheng Huang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Honglin Ren
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Conghui Shen
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Jiang Qian
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Xinlu Fu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Shangyuan Liu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China (S.L., C.X.)
| | - Chengshu Xie
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, China (S.L., C.X.)
| | - Xi Lin
- ZEISS Microscopy Customer Center China, Shanghai (X. Lin)
| | - Junhong Wan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Shijie Xiong
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Yuanjun Ji
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Mengying Liu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Huiting Zheng
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Ting Liang
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital (T.W., T.L., W.L., P.L., H.C.), Sun Yat-sen University, Guangzhou, China
| | - Wenyi Liu
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital (T.W., T.L., W.L., P.L., H.C.), Sun Yat-sen University, Guangzhou, China
| | - Yan Zou
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Kingwai Lai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Maoquan Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Zeyi Song
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Peixuan Lan
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital (T.W., T.L., W.L., P.L., H.C.), Sun Yat-sen University, Guangzhou, China
| | - Xinghui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Yandi Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Ming Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Xuezhe Huang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Hui Chen
- Reproductive Medicine Center, Sun Yat-sen Memorial Hospital (T.W., T.L., W.L., P.L., H.C.), Sun Yat-sen University, Guangzhou, China
| | - Jing Tan
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center (T.W., T.H., H.R., C.S., J.Q., X.F., J.W., S.X., Y.J., M.L., H.Z., Y.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, H.L., X.H., J.T., W.C.), Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine (T.W., T.H., H.R., C.S., J.W., S.X., Y.J., M.L., H.Z., K.L., Maoquan Yang, Z.S., X. Li, Y.W., Ming Yang, J.T., W.C.), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Ekhator ES, Fazzari M, Newman RH. Redox Regulation of cAMP-Dependent Protein Kinase and Its Role in Health and Disease. Life (Basel) 2025; 15:655. [PMID: 40283209 PMCID: PMC12029036 DOI: 10.3390/life15040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular signaling that regulates key physiological processes such as metabolism, cell proliferation, and neuronal function. While its activation by the second messenger 3',5'-cyclic adenosine triphosphate (cAMP) is well characterized, recent research highlights additional regulatory mechanisms, particularly oxidative post-translational modifications, that influence PKA's structure, activity, and substrate specificity. Both the regulatory and catalytic subunits of PKA are susceptible to redox modifications, which have been shown to play important roles in the regulation of key cellular functions, including cardiac contractility, lipid metabolism, and the immune response. Likewise, redox-dependent modulation of PKA signaling has been implicated in numerous diseases, including cardiovascular disorders, diabetes, and neurodegenerative conditions, making it a potential therapeutic target. However, the mechanisms of crosstalk between redox- and PKA-dependent signaling remain poorly understood. This review examines the structural and functional regulation of PKA, with a focus on redox-dependent modifications and their impact on PKA-dependent signaling. A deeper understanding of these mechanisms may provide new strategies for targeting oxidative stress in disease and restoring balanced PKA signaling in cells.
Collapse
Affiliation(s)
- Ese S. Ekhator
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Robert H. Newman
- Department of Biology, North Carolina A&T State University, Greensboro, NC 27411, USA;
| |
Collapse
|
5
|
Phan TA, Fitzsimons DP. Modeling the effects of thin filament near-neighbor cooperative interactions in mammalian myocardium. J Gen Physiol 2025; 157:e202413582. [PMID: 39869069 PMCID: PMC11771317 DOI: 10.1085/jgp.202413582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/09/2024] [Accepted: 12/25/2024] [Indexed: 01/28/2025] Open
Abstract
The mechanisms underlying cooperative activation and inactivation of myocardial force extend from local, near-neighbor interactions involving troponin-tropomyosin regulatory units (RU) and crossbridges (XB) to more global interactions across the sarcomere. To better understand these mechanisms in the hearts of small and large mammals, we undertook a simplified mathematical approach to assess the contribution of three types of near-neighbor cooperative interactions, i.e., RU-induced, RU-activation (RU-RU), crossbridge-induced, crossbridge-binding (XB-XB), and XB-induced, RU-activation (XB-RU). We measured the Ca2+ and activation dependence of the rate constant of force redevelopment in murine- and porcine-permeabilized ventricular myocardium. Mathematical modeling of these three near-neighbor interactions yielded nonlinear expressions for the RU-RU and XB-RU rate coefficients (kon and koff) and XB-XB rate coefficients describing the attachment of force-generating crossbridges (f and f'). The derivation of single cooperative coefficient parameters (u = RU-RU, w = XB-RU, and v = XB-XB) permitted an initial assessment of the strength of each near-neighbor interaction. The parameter sets describing the effects of discrete XB-XB or XB-RU interactions failed to adequately fit the in vitro contractility data in either murine or porcine myocardium. However, the Ca2+ dependence of ktr in murine and porcine ventricular myocardium was well fit by parameter sets incorporating the RU-RU cooperative interaction. Our results indicate that a significantly stronger RU-RU interaction is present in porcine ventricular myocardium compared with murine ventricular myocardium and that the relative strength of the near-neighbor RU-RU interaction contributes to species-specific myocardial contractile dynamics in small and large mammals.
Collapse
Affiliation(s)
- Tuan A. Phan
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, ID, USA
| | - Daniel P. Fitzsimons
- Department of Animal, Veterinary, and Food Sciences, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|
6
|
Greenman AC, Sadler RL, Harris SP. Autoinhibition of cMyBP-C by its middle domains. J Mol Cell Cardiol 2025; 200:82-92. [PMID: 39923987 PMCID: PMC11963209 DOI: 10.1016/j.yjmcc.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Cardiac myosin binding protein-C (cMyBP-C) is a sarcomere regulatory protein consisting of 11 well-folded immunoglobulin-like (Ig-like) and fibronectin type-III domains with the individual domains numbered C0-C10. Despite progress in understanding the functions of the N' and C'-terminal ends of the protein, our understanding of the functional effects of the middle domains (C3-C4-C5-C6-C7) is still limited. Here we aimed to determine the functional significance of the middle domains by replacing endogenous cMyBP-C with recombinant proteins with and without the middle domains using our "cut and paste" SpyC3 mouse model. Specifically, we deleted domains C3-C7 or substituted these domains with unrelated Ig-like domains from titin to behave as inert "spacer" domains. Replacement with the spacer constructs resulted in a significant increase in myofilament calcium sensitivity, an almost instantaneous redevelopment of tension after a slack re-stretch protocol, and altered stretch activation responses, suggesting that the middle domains are functionally relevant and normally exert inhibitory effects on force development. We also investigated the significance of a potentially flexible linker between domains C4 and C5 and a unique 28 amino acid loop insertion in C5. Whereas deletion of the C5 loop had no effect on force, deletion of the linker between C4 and C5 had comparable effects to deletion of domains C3-C7. Taken together, these data indicate that the middle domains play an important role in limiting the activating effects of the C0-C2 domains and that the C4C5 linker contributes to these effects.
Collapse
Affiliation(s)
| | - Rachel L Sadler
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
7
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
8
|
Morotti I, Caremani M, Marcello M, Pertici I, Squarci C, Bianco P, Narayanan T, Piazzesi G, Reconditi M, Lombardi V, Linari M. An integrated picture of the structural pathways controlling the heart performance. Proc Natl Acad Sci U S A 2024; 121:e2410893121. [PMID: 39630866 DOI: 10.1073/pnas.2410893121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
The regulation of heart function is attributed to a dual filament mechanism: i) the Ca2+-dependent structural changes in the regulatory proteins of the thin, actin-containing filament making actin available for myosin motor attachment, and ii) the release of motors from their folded (OFF) state on the surface of the thick filament allowing them to attach and pull the actin filament. Thick filament mechanosensing is thought to control the number of motors switching ON in relation to the systolic performance, but its molecular basis is still controversial. Here, we use high spatial resolution X-ray diffraction data from electrically paced rat trabeculae and papillary muscles to provide a molecular explanation of the modulation of heart performance that calls for a revision of the mechanosensing hypothesis. We find that upon stimulation, titin-mediated structural changes in the thick filament switch motors ON throughout the filament within ~½ the maximum systolic force. These structural changes also drive Myosin Binding Protein-C (MyBP-C) to promote first motor attachments to actin from the central 1/3 of the half-thick filament. Progression of attachments toward the periphery of half-thick filament with increase in systolic force is carried on by near-neighbor cooperative thin filament activation by attached motors. The identification of the roles of MyBP-C, titin, thin and thick filaments in heart regulation enables their targeting for potential therapeutic interventions.
Collapse
Affiliation(s)
- Ilaria Morotti
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Caremani
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Matteo Marcello
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Irene Pertici
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Caterina Squarci
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Pasquale Bianco
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | | | - Gabriella Piazzesi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Massimo Reconditi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | - Vincenzo Lombardi
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| | - Marco Linari
- PhysioLab, University of Florence, Sesto Fiorentino 50019, Italy
- Department of Biology, University of Florence, Sesto Fiorentino 50019, Italy
| |
Collapse
|
9
|
Mertens J, De Lange WJ, Farrell ET, Harbaugh EC, Gauchan A, Fitzsimons DP, Moss RL, Ralphe JC. The W792R HCM missense mutation in the C6 domain of cardiac myosin binding protein-C increases contractility in neonatal mouse myocardium. J Mol Cell Cardiol 2024; 195:14-23. [PMID: 39059462 DOI: 10.1016/j.yjmcc.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Missense mutations in cardiac myosin binding protein C (cMyBP-C) are known to cause hypertrophic cardiomyopathy (HCM). The W792R mutation in the C6 domain of cMyBP-C causes severe, early onset HCM in humans, yet its impact on the function of cMyBP-C and the mechanism through which it causes disease remain unknown. To fully characterize the effect of the W792R mutation on cardiac morphology and function in vivo, we generated a murine knock-in model. We crossed heterozygous W792RWR mice to produce homozygous mutant W792RRR, heterozygous W792RWR, and control W792RWW mice. W792RRR mice present with cardiac hypertrophy, myofibrillar disarray and fibrosis by postnatal day 10 (PND10), and do not survive past PND21. Full-length cMyBP-C is present at similar levels in W792RWW, W792RWR and W792RRR mice and is properly incorporated into the sarcomere. Heterozygous W792RWR mice displayed normal heart morphology and contractility. Permeabilized myocardium from PND10 W792RRR mice showed increased Ca2+ sensitivity, accelerated cross-bridge cycling kinetics, decreased cooperativity in the activation of force, and increased expression of hypertrophy-related genes. In silico modeling suggests that the W792R mutation destabilizes the fold of the C6 domain and increases torsion in the C5-C7 region, possibly impacting regulatory interactions of cMyBP-C with myosin and actin. Based on the data presented here, we propose a model in which mutant W792R cMyBP-C preferentially forms Ca2+ sensitizing interactions with actin, rather than inhibitory interactions with myosin. The W792R-cMyBP-C mouse model provides mechanistic insights into the pathology of this mutation and may provide a mechanism by which other central domain missense mutations in cMyBP-C may alter contractility, leading to HCM.
Collapse
Affiliation(s)
- Jasmine Mertens
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Willem J De Lange
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Emily T Farrell
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Ella C Harbaugh
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Angeela Gauchan
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Daniel P Fitzsimons
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - Richard L Moss
- UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America
| | - J Carter Ralphe
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America; UW Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, United States of America.
| |
Collapse
|
10
|
Spudich JA, Nandwani N, Robert-Paganin J, Houdusse A, Ruppel KM. Reassessing the unifying hypothesis for hypercontractility caused by myosin mutations in hypertrophic cardiomyopathy. EMBO J 2024; 43:4139-4155. [PMID: 39192034 PMCID: PMC11445530 DOI: 10.1038/s44318-024-00199-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Significant advances in structural and biochemical research validate the 9-year-old hypothesis that cardiac hypercontractility seen in patients with hypertrophic cardiomyopathy is primarily caused by sarcomeric mutations that increase the number of myosin molecules available for actin interaction.
Collapse
Affiliation(s)
- James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Julien Robert-Paganin
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, CNRS UMR144, F-75005, Paris, France
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
12
|
Crocini C, Woulfe KC, Ozeroff CD, Perni S, Cardiello J, Walker CJ, Wilson CE, Anseth K, Allen MA, Leinwand LA. Postprandial cardiac hypertrophy is sustained by mechanics, epigenetic, and metabolic reprogramming in pythons. Proc Natl Acad Sci U S A 2024; 121:e2322726121. [PMID: 39159386 PMCID: PMC11388396 DOI: 10.1073/pnas.2322726121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/18/2024] [Indexed: 08/21/2024] Open
Abstract
Constricting pythons, known for their ability to consume infrequent, massive meals, exhibit rapid and reversible cardiac hypertrophy following feeding. Our primary goal was to investigate how python hearts achieve this adaptive response after feeding. Isolated myofibrils increased force after feeding without changes in sarcomere ultrastructure and without increasing energy cost. Ca2+ transients were prolonged after feeding with no changes in myofibril Ca2+ sensitivity. Feeding reduced titin-based tension, resulting in decreased cardiac tissue stiffness. Feeding also reduced the activity of sirtuins, a metabolically linked class of histone deacetylases, and increased chromatin accessibility. Transcription factor enrichment analysis on transposase-accessible chromatin with sequencing revealed the prominent role of transcription factors Yin Yang1 and NRF1 in postfeeding cardiac adaptation. Gene expression also changed with the enrichment of translation and metabolism. Finally, metabolomics analysis and adenosine triphosphate production demonstrated that cardiac adaptation after feeding not only increased energy demand but also energy production. These findings have broad implications for our understanding of cardiac adaptation across species and hold promise for the development of innovative approaches to address cardiovascular diseases.
Collapse
Affiliation(s)
- Claudia Crocini
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité University Medicine Berlin, Berlin 10115, Germany
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Christopher D Ozeroff
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| | - Stefano Perni
- Department of Physiology and Biophysics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045
| | - Joseph Cardiello
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Cierra J Walker
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Cortney E Wilson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kristi Anseth
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Mary Ann Allen
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303
| |
Collapse
|
13
|
Han YS, Pakkam M, Fogarty MJ, Sieck GC, Brozovich FV. Alterations in cardiac contractile and regulatory proteins contribute to age-related cardiac dysfunction in male rats. Physiol Rep 2024; 12:e70012. [PMID: 39169429 PMCID: PMC11338742 DOI: 10.14814/phy2.70012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats. There are no age-related changes in SERCA2 expression or phospholamban phosphorylation. Additionally, neither titin isoform expression nor phosphorylation differed. However, there is a significant increase in β-isoform of the myosin heavy chain (MyHC) expression and phosphorylation of TnI and MyBP-C during aging. In permeabilized strips of papillary muscle, force and Ca2+ sensitivity are reduced during aging, consistent with the increase in β-MyHC expression and TnI phosphorylation. However, the increase in MyBP-C phosphorylation during aging may represent a mechanism to compensate for age-related contractile deficits. In isolated cardiomyocytes loaded with Fura-2, the peak of the Ca2+ transient is reduced, but the kinetics of the Ca2+ transient are not altered. Furthermore, the extent of shortening and the rates of both sarcomere shortening and re-lengthening are reduced. These results demonstrate that aging is associated with changes in contractile and regulatory protein expression and phosphorylation, which affect the mechanical properties of cardiac muscle.
Collapse
Affiliation(s)
- Young Soo Han
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Madona Pakkam
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Gary C. Sieck
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Frank V. Brozovich
- Department of Physiology & Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Cardiovascular DiseasesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
14
|
Chen X, Gu J, Zhang X. Brain-Heart Axis and the Inflammatory Response: Connecting Stroke and Cardiac Dysfunction. Cardiology 2024; 149:369-382. [PMID: 38574466 PMCID: PMC11309082 DOI: 10.1159/000538409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND In recent years, the mechanistic interaction between the brain and heart has been explored in detail, which explains the effects of brain injuries on the heart and those of cardiac dysfunction on the brain. Brain injuries are the predominant cause of post-stroke deaths, and cardiac dysfunction is the second leading cause of mortality after stroke onset. SUMMARY Several studies have reported the association between brain injuries and cardiac dysfunction. Therefore, it is necessary to study the influence on the heart post-stroke to understand the underlying mechanisms of stroke and cardiac dysfunction. This review focuses on the mechanisms and the effects of cardiac dysfunction after the onset of stroke (ischemic or hemorrhagic stroke). KEY MESSAGES The role of the site of stroke and the underlying mechanisms of the brain-heart axis after stroke onset, including the hypothalamic-pituitary-adrenal axis, inflammatory and immune responses, brain-multi-organ axis, are discussed.
Collapse
Affiliation(s)
- Xiaosheng Chen
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Jiajie Gu
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xiaojia Zhang
- Department of Neurosurgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Elmahdy A, Shekka Espinosa A, Kakaei Y, Pylova T, Jha A, Zulfaj E, Krasnikova M, Al-Awar A, Sheybani Z, Sevastianova V, Berger E, Nejat A, Molander L, Andersson EA, Omerovic E, Hussain S, Redfors B. Ischemic preconditioning affects phosphosites and accentuates myocardial stunning while reducing infarction size in rats. Front Cardiovasc Med 2024; 11:1376367. [PMID: 38559672 PMCID: PMC10978780 DOI: 10.3389/fcvm.2024.1376367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024] Open
Abstract
Background and aims Ischemic preconditioning (IPC), i.e., brief periods of ischemia, protect the heart from subsequent prolonged ischemic injury, and reduces infarction size. Myocardial stunning refers to transient loss of contractility in the heart after myocardial ischemia that recovers without permanent damage. The relationship between IPC and myocardial stunning remains incompletely understood. This study aimed primarily to examine the effects of IPC on the relationship between ischemia duration, stunning, and infarct size in an ischemia-reperfusion injury model. Secondarily, this study aimed to examine to which extent the phosphoproteomic changes induced by IPC relate to myocardial contractile function. Methods and results Rats were subjected to different durations of left anterior descending artery (LAD) occlusion, with or without preceding IPC. Echocardiograms were acquired to assess cardiac contraction in the affected myocardial segment. Infarction size was evaluated using triphenyl tetrazolium chloride staining. Phosphoproteomic analysis was performed in heart tissue from preconditioned and non-preconditioned animals. In contrast to rats without IPC, reversible akinesia was observed in a majority of the rats that were subjected to IPC and subsequently exposed to ischemia of 13.5 or 15 min of ischemia. Phosphoproteomic analysis revealed significant differential regulation of 786 phosphopeptides between IPC and non-IPC groups, with significant associations with the sarcomere, Z-disc, and actin binding. Conclusion IPC induces changes in phosphosites of proteins involved in myocardial contraction; and both accentuates post-ischemic myocardial stunning and reduces infarct size.
Collapse
Affiliation(s)
- Ahmed Elmahdy
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Aaron Shekka Espinosa
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Yalda Kakaei
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Tetiana Pylova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Abhishek Jha
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Ermir Zulfaj
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryna Krasnikova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Zahra Sheybani
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentyna Sevastianova
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Evelin Berger
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amirali Nejat
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linnea Molander
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Axel Andersson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Elmir Omerovic
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Björn Redfors
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Chen L, Liu J, Rastegarpouyani H, Janssen PML, Pinto JR, Taylor KA. Structure of mavacamten-free human cardiac thick filaments within the sarcomere by cryoelectron tomography. Proc Natl Acad Sci U S A 2024; 121:e2311883121. [PMID: 38386705 PMCID: PMC10907299 DOI: 10.1073/pnas.2311883121] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
Heart muscle has the unique property that it can never rest; all cardiomyocytes contract with each heartbeat which requires a complex control mechanism to regulate cardiac output to physiological requirements. Changes in calcium concentration regulate the thin filament activation. A separate but linked mechanism regulates the thick filament activation, which frees sufficient myosin heads to bind the thin filament, thereby producing the required force. Thick filaments contain additional nonmyosin proteins, myosin-binding protein C and titin, the latter being the protein that transmits applied tension to the thick filament. How these three proteins interact to control thick filament activation is poorly understood. Here, we show using 3-D image reconstruction of frozen-hydrated human cardiac muscle myofibrils lacking exogenous drugs that the thick filament is structured to provide three levels of myosin activation corresponding to the three crowns of myosin heads in each 429Å repeat. In one crown, the myosin heads are almost completely activated and disordered. In another crown, many myosin heads are inactive, ordered into a structure called the interacting heads motif. At the third crown, the myosin heads are ordered into the interacting heads motif, but the stability of that motif is affected by myosin-binding protein C. We think that this hierarchy of control explains many of the effects of length-dependent activation as well as stretch activation in cardiac muscle control.
Collapse
Affiliation(s)
- Liang Chen
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
| | - Jun Liu
- Microbial Sciences Institute, Yale University, West Haven, CT06516
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Hosna Rastegarpouyani
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH43210
| | - Jose R. Pinto
- Department of Biomedical Sciences, Florida State College of Medicine, Florida State University, Tallahassee, FL32306
| | - Kenneth A. Taylor
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL32306
- Department of Biological Science, Florida State University, Tallahassee, FL32306
| |
Collapse
|
17
|
Ananthamohan K, Stelzer JE, Sadayappan S. Hypertrophic cardiomyopathy in MYBPC3 carriers in aging. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:9. [PMID: 38406555 PMCID: PMC10883298 DOI: 10.20517/jca.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by abnormal thickening of the myocardium, leading to arrhythmias, heart failure, and elevated risk of sudden cardiac death, particularly among the young. This inherited disease is predominantly caused by mutations in sarcomeric genes, among which those in the cardiac myosin binding protein-C3 (MYBPC3) gene are major contributors. HCM associated with MYBPC3 mutations usually presents in the elderly and ranges from asymptomatic to symptomatic forms, affecting numerous cardiac functions and presenting significant health risks with a spectrum of clinical manifestations. Regulation of MYBPC3 expression involves various transcriptional and translational mechanisms, yet the destiny of mutant MYBPC3 mRNA and protein in late-onset HCM remains unclear. Pathogenesis related to MYBPC3 mutations includes nonsense-mediated decay, alternative splicing, and ubiquitin-proteasome system events, leading to allelic imbalance and haploinsufficiency. Aging further exacerbates the severity of HCM in carriers of MYBPC3 mutations. Advancements in high-throughput omics techniques have identified crucial molecular events and regulatory disruptions in cardiomyocytes expressing MYBPC3 variants. This review assesses the pathogenic mechanisms that promote late-onset HCM through the lens of transcriptional, post-transcriptional, and post-translational modulation of MYBPC3, underscoring its significance in HCM across carriers. The review also evaluates the influence of aging on these processes and MYBPC3 levels during HCM pathogenesis in the elderly. While pinpointing targets for novel medical interventions to conserve cardiac function remains challenging, the emergence of personalized omics offers promising avenues for future HCM treatments, particularly for late-onset cases.
Collapse
Affiliation(s)
- Kalyani Ananthamohan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 45267, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH 45267, USA
| |
Collapse
|
18
|
Kochurova AM, Beldiia EA, Nefedova VV, Ryabkova NS, Yampolskaya DS, Matyushenko AM, Bershitsky SY, Kopylova GV, Shchepkin DV. N-Terminal Fragment of Cardiac Myosin Binding Protein C Modulates Cooperative Mechanisms of Thin Filament Activation in Atria and Ventricles. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:116-129. [PMID: 38467549 DOI: 10.1134/s0006297924010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 03/13/2024]
Abstract
Cardiac myosin binding protein C (cMyBP-C) is one of the essential control components of the myosin cross-bridge cycle. The C-terminal part of cMyBP-C is located on the surface of the thick filament, and its N-terminal part interacts with actin, myosin, and tropomyosin, affecting both kinetics of the ATP hydrolysis cycle and lifetime of the cross-bridge, as well as calcium regulation of the actin-myosin interaction, thereby modulating contractile function of myocardium. The role of cMyBP-C in atrial contraction has not been practically studied. We examined effect of the N-terminal C0-C1-m-C2 (C0-C2) fragment of cMyBP-C on actin-myosin interaction using ventricular and atrial myosin in an in vitro motility assay. The C0-C2 fragment of cMyBP-C significantly reduced the maximum sliding velocity of thin filaments on both myosin isoforms and increased the calcium sensitivity of the actin-myosin interaction. The C0-C2 fragment had different effects on the kinetics of ATP and ADP exchange, increasing the affinity of ventricular myosin for ADP and decreasing the affinity of atrial myosin. The effect of the C0-C2 fragment on the activation of the thin filament depended on the myosin isoforms. Atrial myosin activates the thin filament less than ventricular myosin, and the C0-C2 fragment makes these differences in the myosin isoforms more pronounced.
Collapse
Affiliation(s)
- Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Evgenia A Beldiia
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
- Ural Federal University, Ekaterinburg, 620002, Russia
| | - Victoria V Nefedova
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia S Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- HyTest Ltd., Turku, 20520, Finland
| | - Daria S Yampolskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Alexander M Matyushenko
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia.
| |
Collapse
|
19
|
Barefield DY, Tonino P, Woulfe KC, Rahmanseresht S, O’Leary TS, Burnham HV, Wasserstrom JA, Kirk JA, Previs MJ, Granzier HL, McNally EM. Myosin-binding protein H-like regulates myosin-binding protein distribution and function in atrial cardiomyocytes. Proc Natl Acad Sci U S A 2023; 120:e2314920120. [PMID: 38091294 PMCID: PMC10741380 DOI: 10.1073/pnas.2314920120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/25/2023] [Indexed: 12/18/2023] Open
Abstract
Mutations in atrial-enriched genes can cause a primary atrial myopathy that can contribute to overall cardiovascular dysfunction. MYBPHL encodes myosin-binding protein H-like (MyBP-HL), an atrial sarcomere protein that shares domain homology with the carboxy-terminus of cardiac myosin-binding protein-C (cMyBP-C). The function of MyBP-HL and the relationship between MyBP-HL and cMyBP-C is unknown. To decipher the roles of MyBP-HL, we used structured illumination microscopy, immuno-electron microscopy, and mass spectrometry to establish the localization and stoichiometry of MyBP-HL. We found levels of cMyBP-C, a major regulator of myosin function, were half as abundant compared to levels in the ventricle. In genetic mouse models, loss of MyBP-HL doubled cMyBP-C abundance in the atria, and loss of cMyBP-C doubled MyBP-HL abundance in the atria. Structured illumination microscopy showed that both proteins colocalize in the C-zone of the A-band, with MyBP-HL enriched closer to the M-line. Immuno-electron microscopy of mouse atria showed MyBP-HL strongly localized 161 nm from the M-line, consistent with localization to the third 43 nm repeat of myosin heads. Both cMyBP-C and MyBP-HL had less-defined sarcomere localization in the atria compared to ventricle, yet areas with the expected 43 nm repeat distance were observed for both proteins. Isometric force measurements taken from control and Mybphl null single atrial myofibrils revealed that loss of Mybphl accelerated the linear phase of relaxation. These findings support a mechanism where MyBP-HL regulates cMyBP-C abundance to alter the kinetics of sarcomere relaxation in atrial sarcomeres.
Collapse
Affiliation(s)
- David Y. Barefield
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL60153
| | - Paola Tonino
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, AZ85724
| | - Kathleen C. Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO80045
| | - Sheema Rahmanseresht
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT01655
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT01655
| | - Hope V. Burnham
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL60153
| | - J. Andrew Wasserstrom
- Department of Medicine and The Feinberg Cardiovascular and Renal Institute, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Jonathan A. Kirk
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL60153
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT01655
| | - Henk L. Granzier
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, AZ85724
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
20
|
Saad NS, Mashali MA, Repas SJ, Janssen PML. Altering Calcium Sensitivity in Heart Failure: A Crossroads of Disease Etiology and Therapeutic Innovation. Int J Mol Sci 2023; 24:17577. [PMID: 38139404 PMCID: PMC10744146 DOI: 10.3390/ijms242417577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Heart failure (HF) presents a significant clinical challenge, with current treatments mainly easing symptoms without stopping disease progression. The targeting of calcium (Ca2+) regulation is emerging as a key area for innovative HF treatments that could significantly alter disease outcomes and enhance cardiac function. In this review, we aim to explore the implications of altered Ca2+ sensitivity, a key determinant of cardiac muscle force, in HF, including its roles during systole and diastole and its association with different HF types-HF with preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). We further highlight the role of the two rate constants kon (Ca2+ binding to Troponin C) and koff (its dissociation) to fully comprehend how changes in Ca2+ sensitivity impact heart function. Additionally, we examine how increased Ca2+ sensitivity, while boosting systolic function, also presents diastolic risks, potentially leading to arrhythmias and sudden cardiac death. This suggests that strategies aimed at moderating myofilament Ca2+ sensitivity could revolutionize anti-arrhythmic approaches, reshaping the HF treatment landscape. In conclusion, we emphasize the need for precision in therapeutic approaches targeting Ca2+ sensitivity and call for comprehensive research into the complex interactions between Ca2+ regulation, myofilament sensitivity, and their clinical manifestations in HF.
Collapse
Affiliation(s)
- Nancy S. Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt
| | - Mohammed A. Mashali
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22514, Egypt
| | - Steven J. Repas
- Department of Emergency Medicine, Wright State University Boonshoft School of Medicine, Dayton, OH 45324, USA;
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Riguene E, Theodoridou M, Barrak L, Elrayess MA, Nomikos M. The Relationship between Changes in MYBPC3 Single-Nucleotide Polymorphism-Associated Metabolites and Elite Athletes' Adaptive Cardiac Function. J Cardiovasc Dev Dis 2023; 10:400. [PMID: 37754829 PMCID: PMC10531821 DOI: 10.3390/jcdd10090400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Athletic performance is a multifactorial trait influenced by a complex interaction of environmental and genetic factors. Over the last decades, understanding and improving elite athletes' endurance and performance has become a real challenge for scientists. Significant tools include but are not limited to the development of molecular methods for talent identification, personalized exercise training, dietary requirements, prevention of exercise-related diseases, as well as the recognition of the structure and function of the genome in elite athletes. Investigating the genetic markers and phenotypes has become critical for elite endurance surveillance. The identification of genetic variants contributing to a predisposition for excellence in certain types of athletic activities has been difficult despite the relatively high genetic inheritance of athlete status. Metabolomics can potentially represent a useful approach for gaining a thorough understanding of various physiological states and for clarifying disorders caused by strength-endurance physical exercise. Based on a previous GWAS study, this manuscript aims to discuss the association of specific single-nucleotide polymorphisms (SNPs) located in the MYBPC3 gene encoding for cardiac MyBP-C protein with endurance athlete status. MYBPC3 is linked to elite athlete heart remodeling during or after exercise, but it could also be linked to the phenotype of cardiac hypertrophy (HCM). To make the distinction between both phenotypes, specific metabolites that are influenced by variants in the MYBPC3 gene are analyzed in relation to elite athletic performance and HCM. These include theophylline, ursodeoxycholate, quinate, and decanoyl-carnitine. According to the analysis of effect size, theophylline, quinate, and decanoyl carnitine increase with endurance while decreasing with cardiovascular disease, whereas ursodeoxycholate increases with cardiovascular disease. In conclusion, and based on our metabolomics data, the specific effects on athletic performance for each MYBPC3 SNP-associated metabolite are discussed.
Collapse
Affiliation(s)
- Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (E.R.); (L.B.); (M.A.E.)
| | - Maria Theodoridou
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (E.R.); (L.B.); (M.A.E.)
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (E.R.); (L.B.); (M.A.E.)
- Biomedical Research Center (BRC), Qatar University, Doha P.O. Box 2713, Qatar;
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (E.R.); (L.B.); (M.A.E.)
| |
Collapse
|
23
|
Lymperopoulos A. Clinical pharmacology of cardiac cyclic AMP in human heart failure: too much or too little? Expert Rev Clin Pharmacol 2023; 16:623-630. [PMID: 37403791 PMCID: PMC10529896 DOI: 10.1080/17512433.2023.2233891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/04/2023] [Indexed: 07/06/2023]
Abstract
INTRODUCTION Cyclic 3', 5'-adenosine monophosphate (cAMP) is a major signaling hub in cardiac physiology. Although cAMP signaling has been extensively studied in cardiac cells and animal models of heart failure (HF), not much is known about its actual amount present inside human failing or non-failing cardiomyocytes. Since many drugs used in HF work via cAMP, it is crucial to determine the status of its intracellular levels in failing vs. normal human hearts. AREAS COVERED Only studies performed on explanted/excised cardiac tissues from patients were examined. Studies that contained no data from human hearts or no data on cAMP levels per se were excluded from this perspective's analysis. EXPERT OPINION Currently, there is no consensus on the status of cAMP levels in human failing vs. non-failing hearts. Several studies on animal models may suggest maladaptive (e.g. pro-apoptotic) effects of cAMP on HF, advocating for cAMP lowering for therapy, but human studies almost universally indicate that myocardial cAMP levels are deficient in human failing hearts. It is the expert opinion of this perspective that intracellular cAMP levels are too low in human failing hearts, contributing to the disease. Strategies to increase (restore), not decrease, these levels should be pursued in human HF.
Collapse
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Nova Southeastern University Barry and Judy Silverman College of Pharmacy, Fort Lauderdale, FL, USA
| |
Collapse
|
24
|
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023:10.1007/s00360-023-01499-0. [PMID: 37277594 DOI: 10.1007/s00360-023-01499-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/07/2023]
Abstract
The kinetics of myosin controls the speed and power of muscle contraction. Mammalian skeletal muscles express twelve kinetically different myosin heavy chain (MyHC) genes which provides a wide range of muscle speeds to meet different functional demands. Myogenic progenitors from diverse craniofacial and somitic mesoderm specify muscle allotypes with different repertoires for MyHC expression. This review provides a brief synopsis on the historical and current views on how cell lineage, neural impulse patterns, and thyroid hormone influence MyHC gene expression in muscles of the limb allotype during development and in adult life and the molecular mechanisms thereof. During somitic myogenesis, embryonic and foetal myoblast lineages form slow and fast primary and secondary myotube ontotypes which respond differently to postnatal neural and thyroidal influences to generate fully differentiated fibre phenotypes. Fibres of a given phenotype may arise from myotubes of different ontotypes which retain their capacity to respond differently to neural and thyroidal influences during postnatal life. This gives muscles physiological plasticity to adapt to fluctuations in thyroid hormone levels and patterns of use. The kinetics of MyHC isoforms vary inversely with animal body mass. Fast 2b fibres are specifically absent in muscles involved in elastic energy saving in hopping marsupials and generally absent in large eutherian mammals. Changes in MyHC expression are viewed in the context of the physiology of the whole animal. The roles of myoblast lineage and thyroid hormone in regulating MyHC gene expression are phylogenetically the most ancient while that of neural impulse patterns the most recent.
Collapse
Affiliation(s)
- Joseph Foon Yoong Hoh
- Discipline of Physiology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia.
- , PO Box 152, Killara, NSW, 2071, Australia.
| |
Collapse
|
25
|
Dominic KL, Choi J, Holmes JB, Singh M, Majcher MJ, Stelzer JE. The contribution of N-terminal truncated cMyBPC to in vivo cardiac function. J Gen Physiol 2023; 155:e202213318. [PMID: 37067542 PMCID: PMC10114924 DOI: 10.1085/jgp.202213318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/13/2023] [Accepted: 03/24/2023] [Indexed: 04/18/2023] Open
Abstract
Cardiac myosin binding protein C (cMyBPC) is an 11-domain sarcomeric protein (C0-C10) integral to cardiac muscle regulation. In vitro studies have demonstrated potential functional roles for regions beyond the N-terminus. However, the in vivo contributions of these domains are mostly unknown. Therefore, we examined the in vivo consequences of expression of N-terminal truncated cMyBPC (C3C10). Neonatal cMyBPC-/- mice were injected with AAV9-full length (FL), C3C10 cMyBPC, or saline, and echocardiography was performed 6 wk after injection. We then isolated skinned myocardium from virus-treated hearts and performed mechanical experiments. Our results show that expression of C3C10 cMyBPC in cMyBPC-/- mice resulted in a 28% increase in systolic ejection fraction compared to saline-injected cMyBPC-/- mice and a 25% decrease in left ventricle mass-to-body weight ratio. However, unlike expression of FL cMyBPC, there was no prolongation of ejection time compared to saline-injected mice. In vitro mechanical experiments demonstrated that functional improvements in cMyBPC-/- mice expressing C3C10 were primarily due to a 35% reduction in the rate of cross-bridge recruitment at submaximal Ca2+ concentrations when compared to hearts from saline-injected cMyBPC-/- mice. However, unlike the expression of FL cMyBPC, there was no change in the rate of cross-bridge detachment when compared to saline-injected mice. Our data demonstrate that regions of cMyBPC beyond the N-terminus are important for in vivo cardiac function, and have divergent effects on cross-bridge behavior. Elucidating the molecular mechanisms of cMyBPC region-specific function could allow for development of targeted approaches to manipulate specific aspects of cardiac contractile function.
Collapse
Affiliation(s)
- Katherine L. Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joohee Choi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua B. Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mandeep Singh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Michael J. Majcher
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
26
|
Borges JI, Suster MS, Lymperopoulos A. Cardiac RGS Proteins in Human Heart Failure and Atrial Fibrillation: Focus on RGS4. Int J Mol Sci 2023; 24:6136. [PMID: 37047106 PMCID: PMC10147095 DOI: 10.3390/ijms24076136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The regulator of G protein signaling (RGS) proteins are crucial for the termination of G protein signals elicited by G protein-coupled receptors (GPCRs). This superfamily of cell membrane receptors, by far the largest and most versatile in mammals, including humans, play pivotal roles in the regulation of cardiac function and homeostasis. Perturbations in both the activation and termination of their G protein-mediated signaling underlie numerous heart pathologies, including heart failure (HF) and atrial fibrillation (AFib). Therefore, RGS proteins play important roles in the pathophysiology of these two devasting cardiac diseases, and several of them could be targeted therapeutically. Although close to 40 human RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type. Numerous in vitro and in vivo studies in animal models, and also in diseased human heart tissue obtained from transplantations or tissue banks, have provided substantial evidence of the roles various cardiomyocyte RGS proteins play in cardiac normal homeostasis as well as pathophysiology. One RGS protein in particular, RGS4, has been reported in what are now decades-old studies to be selectively upregulated in human HF. It has also been implicated in protection against AFib via knockout mice studies. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of HF and AFib, with a specific focus on RGS4 for the aforementioned reasons but also because it can be targeted successfully with small organic molecule inhibitors.
Collapse
Affiliation(s)
| | | | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverrman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
27
|
Song T, Landim-Vieira M, Ozdemir M, Gott C, Kanisicak O, Pinto JR, Sadayappan S. Etiology of genetic muscle disorders induced by mutations in fast and slow skeletal MyBP-C paralogs. Exp Mol Med 2023; 55:502-509. [PMID: 36854776 PMCID: PMC10073172 DOI: 10.1038/s12276-023-00953-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 03/02/2023] Open
Abstract
Skeletal muscle, a highly complex muscle type in the eukaryotic system, is characterized by different muscle subtypes and functions associated with specific myosin isoforms. As a result, skeletal muscle is the target of numerous diseases, including distal arthrogryposes (DAs). Clinically, DAs are a distinct disorder characterized by variation in the presence of contractures in two or more distal limb joints without neurological issues. DAs are inherited, and up to 40% of patients with this condition have mutations in genes that encode sarcomeric protein, including myosin heavy chains, troponins, and tropomyosin, as well as myosin binding protein-C (MYBPC). Our research group and others are actively studying the specific role of MYBPC in skeletal muscles. The MYBPC family of proteins plays a critical role in the contraction of striated muscles. More specifically, three paralogs of the MYBPC gene exist, and these are named after their predominant expression in slow-skeletal, fast-skeletal, and cardiac muscle as sMyBP-C, fMyBP-C, and cMyBP-C, respectively, and encoded by the MYBPC1, MYBPC2, and MYBPC3 genes, respectively. Although the physiology of various types of skeletal muscle diseases is well defined, the molecular mechanism underlying the pathological regulation of DAs remains to be elucidated. In this review article, we aim to highlight recent discoveries involving the role of skeletal muscle-specific sMyBP-C and fMyBP-C as well as their expression profile, localization in the sarcomere, and potential role(s) in regulating muscle contractility. Thus, this review provides an overall summary of MYBPC skeletal paralogs, their potential roles in skeletal muscle function, and future research directions.
Collapse
Affiliation(s)
- Taejeong Song
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Mustafa Ozdemir
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Caroline Gott
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Onur Kanisicak
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Sakthivel Sadayappan
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA.
| |
Collapse
|
28
|
Del Calvo G, Baggio Lopez T, Lymperopoulos A. The therapeutic potential of targeting cardiac RGS4. Ther Adv Cardiovasc Dis 2023; 17:17539447231199350. [PMID: 37724539 PMCID: PMC10510358 DOI: 10.1177/17539447231199350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023] Open
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulation of cardiac function and homeostasis. To function properly, every cell needs these receptors to be stimulated only when a specific extracellular stimulus is present, and to be silenced the moment that stimulus is removed. The regulator of G protein signaling (RGS) proteins are crucial for the latter to occur at the cell membrane, where the GPCR normally resides. Perturbations in both activation and termination of G protein signaling underlie numerous heart pathologies. Although more than 30 mammalian RGS proteins have been identified, each RGS protein seems to interact only with a specific set of G protein subunits and GPCR types/subtypes in any given tissue or cell type, and this applies to the myocardium as well. A large number of studies have provided substantial evidence for the roles various RGS proteins expressed in cardiomyocytes play in cardiac physiology and heart disease pathophysiology. This review summarizes the current understanding of the functional roles of cardiac RGS proteins and their implications for the treatment of specific heart diseases, such as heart failure and atrial fibrillation. We focus on cardiac RGS4 in particular, since this isoform appears to be selectively (among the RGS protein family) upregulated in human heart failure and is also the target of ongoing drug discovery efforts for the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Giselle Del Calvo
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Teresa Baggio Lopez
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation, Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, HPD (Terry) Building/Room 1350, Fort Lauderdale, FL 33328-2018, USA
| |
Collapse
|
29
|
Liu J, Song J, Li C. MYBPC1 is a key regulator for laryngeal carcinoma formation. Anticancer Drugs 2023; 34:1-8. [PMID: 36539363 PMCID: PMC9760473 DOI: 10.1097/cad.0000000000001313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/23/2022] [Indexed: 12/24/2022]
Abstract
Laryngeal carcinoma represents one of the most common types of tumor of the respiratory tract. The aim of the present study was to evaluate the functions of myosin-binding protein C1 (MYBPC1) in the progression of laryngeal carcinoma and to unravel the potential underlying molecular mechanism(s). Significantly differentially expressed mRNAs and miRNAs were analyzed, and potential genes were verified using clinically recruited patients with laryngeal carcinoma. The human laryngeal carcinoma cell lines TU686, TU212 and AMC-HN-8, as well as the control nasopharyngeal epithelial cell line NP69, were selected for the functional analysis of MYBPC1. The interaction between MYBPC1 and miR-451a was also explored in depth. The functions of MYBPC1 in the laryngeal carcinoma cell lines were examined using colony formation assay, cell proliferation and invasion assays, and via measuring the extent of apoptosis. The intracellular function of MYBPC1 was subsequently confirmed by constructing an in vivo xenograft model through the subcutaneous injection of laryngeal carcinoma cells into 4-week-old male nude mice. Compared with normal tissue, MYBPC1 was found to be the most significantly downregulated gene, whereas activating transcription factor-2 (ATF-2) was the most significantly upregulated one. At the same time, miR-451a was found to be the most significantly downregulated miRNA in laryngeal squamous cell carcinoma tissues. According to the WHO classification system, we found that the level of MYBPC1 was significantly decreased in grade IV tissues compared with grade II and grade III tissues, a finding that was consistent with the observed activity of miR-451a. MiR-451a was found to cause a marked enhancement of the activity of MYBPC1 in TU212 cells, which in turn was attenuated by ATF overexpression, suggesting that miR-451a could indirectly modulate the function of MYBPC1 through the ATF2-dependent signaling axis. MYBPC1 suppressed the invasion of cells induced by ATF2 in laryngeal carcinoma cells. Moreover, subcutaneous injection of MYBPC1 to construct an in vivo xenograft mouse model enabled rescue of the mice from laryngeal carcinoma formation. Taken together, the results of the present study have shown that MYBPC1 fulfills a pivotal role in laryngeal carcinoma formation, and these findings may provide both a new avenue for research planning and a potential therapeutic target for laryngeal carcinoma.
Collapse
Affiliation(s)
- Jing Liu
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University
| | - Jinlan Song
- Department of Otolaryngology, Tianjin Nankai Hospital, Tianjin, China
| | - Chao Li
- Department of Otolaryngology, The Second Hospital of Tianjin Medical University
| |
Collapse
|
30
|
Touma AM, Tang W, Rasicci DV, Vang D, Rai A, Previs SB, Warshaw DM, Yengo CM, Sivaramakrishnan S. Nanosurfer assay dissects β-cardiac myosin and cardiac myosin-binding protein C interactions. Biophys J 2022; 121:2449-2460. [PMID: 35591788 PMCID: PMC9279167 DOI: 10.1016/j.bpj.2022.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) modulates cardiac contractility through putative interactions with the myosin S2 tail and/or the thin filament. The relative contribution of these binding-partner interactions to cMyBP-C modulatory function remains unclear. Hence, we developed a "nanosurfer" assay as a model system to interrogate these cMyBP-C binding-partner interactions. Synthetic thick filaments were generated using recombinant human β-cardiac myosin subfragments (HMM or S1) attached to DNA nanotubes, with 14- or 28-nm spacing, corresponding to the 14.3-nm myosin spacing in native thick filaments. The nanosurfer assay consists of DNA nanotubes added to the in vitro motility assay so that myosins on the motility surface effectively deliver thin filaments to the DNA nanotubes, enhancing thin filament gliding probability on the DNA nanotubes. Thin filament velocities on nanotubes with either 14- or 28-nm myosin spacing were no different. We then characterized the effects of cMyBP-C on thin filament motility by alternating HMM and cMyBP-C N-terminal fragments (C0-C2 or C1-C2) on nanotubes every 14 nm. Both C0-C2 and C1-C2 reduced thin filament velocity four- to sixfold relative to HMM alone. Similar inhibition occurred using the myosin S1 construct, which lacks the myosin S2 region proposed to interact with cMyBP-C, suggesting that the cMyBP-C N terminus must interact with other myosin head domains and/or actin to slow thin filament velocity. Thin filament velocity was unaffected by the C0-C1f fragment, which lacks the majority of the M-domain, supporting the importance of this domain for inhibitory interaction(s). A C0-C2 fragment with phospho-mimetic replacement in the M-domain showed markedly less inhibition of thin filament velocity compared with its phospho-null counterpart, highlighting the modulatory role of M-domain phosphorylation on cMyBP-C function. Therefore, the nanosurfer assay provides a platform to precisely manipulate spatially dependent cMyBP-C binding-partner interactions, shedding light on the molecular regulation of β-cardiac myosin contractility.
Collapse
Affiliation(s)
- Anja M Touma
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Wanjian Tang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - Samantha B Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, Vermont
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
31
|
Zhou X, Jeong E, Liu H, Kaseer B, Liu M, Shrestha S, Imran H, Kavanagh K, Jiang N, Desimone L, Feng F, Shi G, Jeong GE, Zhou A, Stockwell P, Dudley SC. Circulating S-Glutathionylated cMyBP-C as a Biomarker for Cardiac Diastolic Dysfunction. J Am Heart Assoc 2022; 11:e025295. [PMID: 35656993 PMCID: PMC9238749 DOI: 10.1161/jaha.122.025295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background cMyBP-C (Cardiac myosin binding protein-C) regulates cardiac contraction and relaxation. Previously, we demonstrated that elevated myocardial S-glutathionylation of cMyBP-C correlates with diastolic dysfunction (DD) in animal models. In this study, we tested whether circulating S-glutathionylated cMyBP-C would be a biomarker for DD. Methods and Results Humans, African Green monkeys, and mice had DD determined by echocardiography. Blood samples were acquired and analyzed for S-glutathionylated cMyBP-C by immunoprecipitation. Circulating S-glutathionylated cMyBP-C in human participants with DD (n=24) was elevated (1.46±0.13-fold, P=0.014) when compared with the non-DD controls (n=13). Similarly, circulating S-glutathionylated cMyBP-C was upregulated by 2.13±0.47-fold (P=0.047) in DD monkeys (n=6), and by 1.49 (1.22-2.06)-fold (P=0.031) in DD mice (n=5) compared with the respective non-DD controls. Circulating S-glutathionylated cMyBP-C was positively correlated with DD in humans. Conclusions Circulating S-glutathionylated cMyBP-C was elevated in humans, monkeys, and mice with DD. S-glutathionylated cMyBP-C may represent a novel biomarker for the presence of DD.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMN
| | - Euy‐Myoung Jeong
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Hong Liu
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMN
| | - Bahaa Kaseer
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Man Liu
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMN
| | - Suvash Shrestha
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Hafiz Imran
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Kylie Kavanagh
- Department of PathologyWake Forest Baptist Medical CenterWinston‐SalemNC
| | - Ning Jiang
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | | | - Feng Feng
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMN
| | - Guangbin Shi
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Go Eun Jeong
- Department of Biology and MedicineBrown UniversityProvidenceRI
| | - Anyu Zhou
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Philip Stockwell
- Lifespan Cardiovascular Research CenterBrown UniversityProvidenceRI
| | - Samuel C. Dudley
- Division of CardiologyDepartment of MedicineThe Lillehei Heart InstituteUniversity of MinnesotaMinneapolisMN
| |
Collapse
|
32
|
Abstract
Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.
Collapse
Affiliation(s)
- Sarah J Lehman
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
33
|
Doh CY, Bharambe N, Holmes JB, Dominic KL, Swanberg CE, Mamidi R, Chen Y, Bandyopadhyay S, Ramachandran R, Stelzer JE. Molecular characterization of linker and loop-mediated structural modulation and hinge motion in the C4-C5 domains of cMyBPC. J Struct Biol 2022; 214:107856. [PMID: 35427781 PMCID: PMC9942529 DOI: 10.1016/j.jsb.2022.107856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 03/16/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION The central C4 and C5 domains (C4C5) of cardiac myosin binding protein C (cMyBPC) contain a flexible interdomain linker and a cardiac-isoform specific loop. However, their importance in the functional regulation of cMyBPC has not been extensively studied. METHODS AND RESULTS We expressed recombinant C4C5 proteins with deleted linker and loop regions and performed biophysical experiments to determine each of their structural and dynamic roles. We show that the linker and C5 loop regions modulate the secondary structure and thermal stability of C4C5. Furthermore, we provide evidence through extended molecular dynamics simulations and principle component analyses that C4C5 can adopt a completely bent or latched conformation. The simulation trajectory and interaction network analyses reveal that the completely bent conformation of C4C5 exhibits a specific pattern of residue-level interactions. Therefore, we propose a "hinge-and-latch" mechanism where the linker allows a great degree of flexibility and bending, while the loop aids in achieving a completely bent and latched conformation. Although this may be one of many bent positions that C4C5 can adopt, we illustrate for the first time in molecular detail that this type of large scale conformational change can occur in the central domains of cMyBPC. CONCLUSIONS Our hinge-and-latch mechanism demonstrates that the linker and loop regions participate in dynamic modulation of cMyBPC's motion and global conformation. These structural and dynamic features may contribute to muscle isoform-specific regulation of actomyosin activity, and have potential implications regarding its ability to propagate or retract cMyBPC's regulatory N-terminal domains.
Collapse
Affiliation(s)
- Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Nikhil Bharambe
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Joshua B. Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Katherine L. Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Caitlin E. Swanberg
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yinghua Chen
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Smarajit Bandyopadhyay
- Molecular Biotechnology Core, Shared Laboratory Resources, Cleveland Clinic, Cleveland, OH, USA
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA,Corresponding author at: Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd, Robbins E522, Cleveland, OH 44106, USA. (J.E. Stelzer)
| |
Collapse
|
34
|
Greenman AC, Diffee GM, Power AS, Wilkins GT, Gold OMS, Erickson JR, Baldi JC. Treadmill running increases the calcium sensitivity of myofilaments in diabetic rats. J Appl Physiol (1985) 2022; 132:1350-1360. [PMID: 35482324 DOI: 10.1152/japplphysiol.00785.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cardiovascular benefits of regular exercise are unequivocal, yet patients with type 2 diabetes respond poorly to exercise due to a reduced cardiac reserve. The contractile response of diabetic cardiomyocytes to beta-adrenergic stimulation is attenuated, which may result in altered myofilament calcium sensitivity and post-translational modifications of cardiac troponin I (cTnI). Treadmill running increases myofilament calcium sensitivity in non‑diabetic rats, and thus we hypothesized that endurance training would increase calcium sensitivity of diabetic cardiomyocytes and alter site-specific phosphorylation of cTnI. Calcium sensitivity, or pCa50, was measured in Zucker Diabetic Fatty (ZDF) non-diabetic (nDM) and diabetic (DM) rat hearts after 8 weeks of either a sedentary (SED) or progressive treadmill running (TR) intervention. Skinned cardiomyocytes were connected to a capacitance-gauge transducer and a torque motor to measure force as a function of pCa (‑log[Ca2+]). Specific phospho-sites on cTnI and O‑GlcNAcylation were quantified by immunoblot and total protein phosphorylation by fluorescent gel staining (ProQ Diamond). The novel finding in this study was that training increased pCa50 in both DM and nDM cardiomyocytes (p = 0.009). Phosphorylation of cTnI amino acid residues Ser23/24, a crucial protein kinase A site, and Threonine (Thr)144, was lower in DM hearts, but there was no effect of training on site-specific phosphorylation. Additionally, total phosphorylation and O-GlcNAcylation levels were not different between SED and TR groups. These findings suggest that regular exercise may benefit the diabetic heart by specifically targeting myofilament contractile function.
Collapse
Affiliation(s)
- Angela Claire Greenman
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Gary M Diffee
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI
| | - Amelia S Power
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Gerard T Wilkins
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Olivia M S Gold
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - Jeffrey R Erickson
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| | - James C Baldi
- Department of Medicine, Otago Medical School, University of Otago, Dunedin, New Zealand.,HeartOtago, University of Otago, Dunedin, New Zealand
| |
Collapse
|
35
|
Doh C, Dominic KL, Swanberg CE, Bharambe N, Willard BB, Li L, Ramachandran R, Stelzer JE. Identification of Phosphorylation and Other Post-Translational Modifications in the Central C4C5 Domains of Murine Cardiac Myosin Binding Protein C. ACS OMEGA 2022; 7:14189-14202. [PMID: 35573219 PMCID: PMC9089392 DOI: 10.1021/acsomega.2c00799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 05/06/2023]
Abstract
Cardiac myosin binding protein C (cMyBPC) is a critical multidomain protein that modulates myosin cross bridge behavior and cardiac contractility. cMyBPC is principally regulated by phosphorylation of the residues within the M-domain of its N-terminus. However, not much is known about the phosphorylation or other post-translational modification (PTM) landscape of the central C4C5 domains. In this study, the presence of phosphorylation outside the M-domain was confirmed in vivo using mouse models expressing cMyBPC with nonphosphorylatable serine (S) to alanine substitutions. Purified recombinant mouse C4C5 domain constructs were incubated with 13 different kinases, and samples from the 6 strongest kinases were chosen for mass spectrometry analysis. A total of 26 unique phosphorylated peptides were found, representing 13 different phosphorylation sites including 10 novel sites. Parallel reaction monitoring and subsequent mutagenesis experiments revealed that the S690 site (UniProtKB O70468) was the predominant target of PKA and PKG1. We also report 6 acetylation and 7 ubiquitination sites not previously described in the literature. These PTMs demonstrate the possibility of additional layers of regulation and potential importance of the central domains of cMyBPC in cardiac health and disease. Data are available via ProteomeXchange with identifier PXD031262.
Collapse
Affiliation(s)
- Chang
Yoon Doh
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Katherine L. Dominic
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Caitlin E. Swanberg
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Nikhil Bharambe
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Belinda B. Willard
- Proteomics
and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, United States
| | - Ling Li
- Proteomics
and Metabolomics Laboratory, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, United States
| | - Rajesh Ramachandran
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Julian E. Stelzer
- Department
of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
36
|
Nitric oxide and skeletal muscle contractile function. Nitric Oxide 2022; 122-123:54-61. [PMID: 35405336 PMCID: PMC10167965 DOI: 10.1016/j.niox.2022.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is complex modulator of skeletal muscle contractile function, capable of increasing or decreasing force and power output depending on multiple factors. This review explores the effects and potential mechanisms for modulation of skeletal muscle contractile function by NO, from pharmacological agents in isolated muscle preparations to dietary nitrate supplementation in humans and animals. Pharmacological manipulation in vitro suggests that NO signaling diminishes submaximal isometric force, whereas dietary manipulation in vivo suggest that NO enhances submaximal force. The bases for these different responses are unknown but could reflect dose-dependent effects. Maximal isometric force is unaffected by physiologically relevant levels of NO, which do not induce overt protein oxidation. Pharmacological and dietary manipulation of NO signaling enhances the maximal rate of isometric force development, unloaded shortening velocity, and peak power. We hypothesize that these effects are mediated by post-translational modifications of myofibrillar proteins that modulate thick filament regulation of contraction (e.g., mechanosensing and strain-dependence of cross-bridge kinetics). NO effects on contractile function appear to have some level of fiber type and sex-specificity. The mechanisms behind NO-mediated changes in skeletal muscle function need to be explored through proteomics analysis and advanced biophysical assays to advance the development of small molecules and open intriguing therapeutic and ergogenic possibilities for aging, disease, and athletic performance.
Collapse
|
37
|
Erman A, Hawkins LJ, Storey KB. MicroRNA, mRNA and protein responses to dehydration in skeletal muscle of the African-clawed frog, Xenopus laevis. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Khokhlova A, Myachina T, Volzhaninov D, Butova X, Kochurova A, Berg V, Gette I, Moroz G, Klinova S, Minigalieva I, Solovyova O, Danilova I, Sokolova K, Kopylova G, Shchepkin D. Type 1 Diabetes Impairs Cardiomyocyte Contractility in the Left and Right Ventricular Free Walls but Preserves It in the Interventricular Septum. Int J Mol Sci 2022; 23:ijms23031719. [PMID: 35163643 PMCID: PMC8836009 DOI: 10.3390/ijms23031719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) leads to ischemic heart disease and diabetic cardiomyopathy. We tested the hypothesis that T1D differently affects the contractile function of the left and right ventricular free walls (LV, RV) and the interventricular septum (IS) using a rat model of alloxan-induced T1D. Single-myocyte mechanics and cytosolic Ca2+ concentration transients were studied on cardiomyocytes (CM) from LV, RV, and IS in the absence and presence of mechanical load. In addition, we analyzed the phosphorylation level of sarcomeric proteins and the characteristics of the actin-myosin interaction. T1D similarly affected the characteristics of actin-myosin interaction in all studied regions, decreasing the sliding velocity of native thin filaments over myosin in an in vitro motility assay and its Ca2+ sensitivity. A decrease in the thin-filament velocity was associated with increased expression of β-myosin heavy-chain isoform. However, changes in the mechanical function of single ventricular CM induced by T1D were different. T1D depressed the contractility of CM from LV and RV; it decreased the auxotonic tension amplitude and the slope of the active tension–length relationship. Nevertheless, the contractile function of CM from IS was principally preserved.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
- Institute of Physics and Technology, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Correspondence:
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Denis Volzhaninov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Valentina Berg
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Irina Gette
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Gleb Moroz
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia;
| | - Svetlana Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Popova 30, 620014 Yekaterinburg, Russia; (S.K.); (I.M.)
| | - Ilzira Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Popova 30, 620014 Yekaterinburg, Russia; (S.K.); (I.M.)
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
- Institute of Physics and Technology, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia;
| | - Irina Danilova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Ksenia Sokolova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| |
Collapse
|
39
|
Methawasin M, Farman GP, Granzier-Nakajima S, Strom J, Kiss B, Smith JE, Granzier H. Shortening the thick filament by partial deletion of titin's C-zone alters cardiac function by reducing the operating sarcomere length range. J Mol Cell Cardiol 2022; 165:103-114. [PMID: 35031281 PMCID: PMC8940690 DOI: 10.1016/j.yjmcc.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Titin's C-zone is an inextensible segment in titin, comprised of 11 super-repeats and located in the cMyBP-C-containing region of the thick filament. Previously we showed that deletion of titin's super-repeats C1 and C2 (TtnΔC1-2 model) results in shorter thick filaments and contractile dysfunction of the left ventricular (LV) chamber but that unexpectedly LV diastolic stiffness is normal. Here we studied the contraction-relaxation kinetics from the time-varying elastance of the LV and intact cardiomyocyte, cellular work loops of intact cardiomyocytes, Ca2+ transients, cross-bridge kinetics, and myofilament Ca2+ sensitivity. Intact cardiomyocytes of TtnΔC1-2 mice exhibit systolic dysfunction and impaired relaxation. The time-varying elastance at both LV and single-cell levels showed that activation kinetics are normal in TtnΔC1-2 mice, but that relaxation is slower. The slowed relaxation is, in part, attributable to an increased myofilament Ca2+ sensitivity and slower early Ca2+ reuptake. Cross-bridge dynamics showed that cross-bridge kinetics are normal but that the number of force-generating cross-bridges is reduced. In vivo sarcomere length (SL) measurements revealed that in TtnΔC1-2 mice the operating SL range of the LV is shifted towards shorter lengths. This normalizes the apparent cell and LV diastolic stiffness but further reduces systolic force as systole occurs further down on the ascending limb of the force-SL relation. We propose that the reduced working SLs reflect titin's role in regulating diastolic stiffness by altering the number of sarcomeres in series. Overall, our study reveals that thick filament length regulation by titin's C-zone is critical for normal cardiac function.
Collapse
Affiliation(s)
- Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| | - Gerrie P Farman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Shawtaroh Granzier-Nakajima
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Balazs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - John E Smith
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, United States of America.
| |
Collapse
|
40
|
Pepper I, Galkin VE. Actomyosin Complex. Subcell Biochem 2022; 99:421-470. [PMID: 36151385 PMCID: PMC9710302 DOI: 10.1007/978-3-031-00793-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Formation of cross-bridges between actin and myosin occurs ubiquitously in eukaryotic cells and mediates muscle contraction, intracellular cargo transport, and cytoskeletal remodeling. Myosin motors repeatedly bind to and dissociate from actin filaments in a cycle that transduces the chemical energy from ATP hydrolysis into mechanical force generation. While the general layout of surface elements within the actin-binding interface is conserved among myosin classes, sequence divergence within these motifs alters the specific contacts involved in the actomyosin interaction as well as the kinetics of mechanochemical cycle phases. Additionally, diverse lever arm structures influence the motility and force production of myosin molecules during their actin interactions. The structural differences generated by myosin's molecular evolution have fine-tuned the kinetics of its isoforms and adapted them for their individual cellular roles. In this chapter, we will characterize the structural and biochemical basis of the actin-myosin interaction and explain its relationship with myosin's cellular roles, with emphasis on the structural variation among myosin isoforms that enables their functional specialization. We will also discuss the impact of accessory proteins, such as the troponin-tropomyosin complex and myosin-binding protein C, on the formation and regulation of actomyosin cross-bridges.
Collapse
Affiliation(s)
- Ian Pepper
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Vitold E Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA.
| |
Collapse
|
41
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
42
|
Muller GK, Song J, Jani V, Wu Y, Liu T, Jeffreys WPD, O’Rourke B, Anderson ME, Kass DA. PDE1 Inhibition Modulates Ca v1.2 Channel to Stimulate Cardiomyocyte Contraction. Circ Res 2021; 129:872-886. [PMID: 34521216 PMCID: PMC8553000 DOI: 10.1161/circresaha.121.319828] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Grace K Muller
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joy Song
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Vivek Jani
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yuejin Wu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ting Liu
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - William PD Jeffreys
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Brian O’Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mark E Anderson
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - David A Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Departments of Pharmacology and Molecular Sciences and Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
43
|
Lynch TL, Kumar M, McNamara JW, Kuster DWD, Sivaguru M, Singh RR, Previs MJ, Lee KH, Kuffel G, Zilliox MJ, Lin BL, Ma W, Gibson AM, Blaxall BC, Nieman ML, Lorenz JN, Leichter DM, Leary OP, Janssen PML, de Tombe PP, Gilbert RJ, Craig R, Irving T, Warshaw DM, Sadayappan S. Amino terminus of cardiac myosin binding protein-C regulates cardiac contractility. J Mol Cell Cardiol 2021; 156:33-44. [PMID: 33781820 PMCID: PMC8217138 DOI: 10.1016/j.yjmcc.2021.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Phosphorylation of cardiac myosin binding protein-C (cMyBP-C) regulates cardiac contraction through modulation of actomyosin interactions mediated by the protein's amino terminal (N')-region (C0-C2 domains, 358 amino acids). On the other hand, dephosphorylation of cMyBP-C during myocardial injury results in cleavage of the 271 amino acid C0-C1f region and subsequent contractile dysfunction. Yet, our current understanding of amino terminus region of cMyBP-C in the context of regulating thin and thick filament interactions is limited. A novel cardiac-specific transgenic mouse model expressing cMyBP-C, but lacking its C0-C1f region (cMyBP-C∆C0-C1f), displayed dilated cardiomyopathy, underscoring the importance of the N'-region in cMyBP-C. Further exploring the molecular basis for this cardiomyopathy, in vitro studies revealed increased interfilament lattice spacing and rate of tension redevelopment, as well as faster actin-filament sliding velocity within the C-zone of the transgenic sarcomere. Moreover, phosphorylation of the unablated phosphoregulatory sites was increased, likely contributing to normal sarcomere morphology and myoarchitecture. These results led us to hypothesize that restoration of the N'-region of cMyBP-C would return actomyosin interaction to its steady state. Accordingly, we administered recombinant C0-C2 (rC0-C2) to permeabilized cardiomyocytes from transgenic, cMyBP-C null, and human heart failure biopsies, and we found that normal regulation of actomyosin interaction and contractility was restored. Overall, these data provide a unique picture of selective perturbations of the cardiac sarcomere that either lead to injury or adaptation to injury in the myocardium.
Collapse
Affiliation(s)
- Thomas L Lynch
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA; Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Diederik W D Kuster
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA; Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Mayandi Sivaguru
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rohit R Singh
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Michael J Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405, USA
| | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gina Kuffel
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL 60153, USA
| | - Michael J Zilliox
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL 60153, USA
| | - Brian Leei Lin
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Weikang Ma
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Aaron M Gibson
- Department of Pediatrics, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Burns C Blaxall
- Department of Pediatrics, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Michelle L Nieman
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Dana M Leichter
- Research Service, Providence VA Medical Center, Providence, RI 02908, USA
| | - Owen P Leary
- Research Service, Providence VA Medical Center, Providence, RI 02908, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA; Department of Physiology, University of Illinois at Chicago, Chicago 60612, USA; Phymedexp, Université de Montpellier, Inserm, CNRS, Montpellier, France
| | - Richard J Gilbert
- Research Service, Providence VA Medical Center, Providence, RI 02908, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Thomas Irving
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT 05405, USA
| | - Sakthivel Sadayappan
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA; Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
44
|
Suay-Corredera C, Pricolo MR, Velázquez-Carreras D, Pathak D, Nandwani N, Pimenta-Lopes C, Sánchez-Ortiz D, Urrutia-Irazabal I, Vilches S, Dominguez F, Frisso G, Monserrat L, García-Pavía P, de Sancho D, Spudich JA, Ruppel KM, Herrero-Galán E, Alegre-Cebollada J. Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic Cardiomyopathy. ACS NANO 2021; 15:10203-10216. [PMID: 34060810 PMCID: PMC8514129 DOI: 10.1021/acsnano.1c02242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a disease of the myocardium caused by mutations in sarcomeric proteins with mechanical roles, such as the molecular motor myosin. Around half of the HCM-causing genetic variants target contraction modulator cardiac myosin-binding protein C (cMyBP-C), although the underlying pathogenic mechanisms remain unclear since many of these mutations cause no alterations in protein structure and stability. As an alternative pathomechanism, here we have examined whether pathogenic mutations perturb the nanomechanics of cMyBP-C, which would compromise its modulatory mechanical tethers across sliding actomyosin filaments. Using single-molecule atomic force spectroscopy, we have quantified mechanical folding and unfolding transitions in cMyBP-C domains targeted by HCM mutations that do not induce RNA splicing alterations or protein thermodynamic destabilization. Our results show that domains containing mutation R495W are mechanically weaker than wild-type at forces below 40 pN and that R502Q mutant domains fold faster than wild-type. None of these alterations are found in control, nonpathogenic variants, suggesting that nanomechanical phenotypes induced by pathogenic cMyBP-C mutations contribute to HCM development. We propose that mutation-induced nanomechanical alterations may be common in mechanical proteins involved in human pathologies.
Collapse
Affiliation(s)
| | - Maria Rosaria Pricolo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
| | | | - Divya Pathak
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Neha Nandwani
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | | | - David Sánchez-Ortiz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | | - Silvia Vilches
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
| | - Fernando Dominguez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
| | - Giulia Frisso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131, Naples, Italy
- CEINGE Biotecnologie Avanzate, scarl, 80145, Naples, Italy
| | | | - Pablo García-Pavía
- Heart Failure and Inherited Cardiac Diseases Unit, Department of Cardiology, Hospital Universitario Puerta de Hierro, 28222, Madrid, Spain
- European Reference Network for Rare and Low Prevalence Complex Diseases of the Heart (ERN GUARD-HEART, http://guardheart.ern-net.eu/), 28222, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029, Madrid, Spain
- Universidad Francisco de Vitoria (UFV), 28223, Pozuelo de Alarcón, Madrid, Spain
| | - David de Sancho
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018, Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Kathleen M Ruppel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305, United States
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California 94305, United States
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | | |
Collapse
|
45
|
Hegemann N, Primessnig U, Bode D, Wakula P, Beindorff N, Klopfleisch R, Michalick L, Grune J, Hohendanner F, Messroghli D, Pieske B, Kuebler WM, Heinzel FR. Right-ventricular dysfunction in HFpEF is linked to altered cardiomyocyte Ca 2+ homeostasis and myofilament sensitivity. ESC Heart Fail 2021; 8:3130-3144. [PMID: 34002482 PMCID: PMC8318431 DOI: 10.1002/ehf2.13419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Aims Heart failure with preserved ejection fraction (HFpEF) is frequently (30%) associated with right ventricular (RV) dysfunction, which increases morbidity and mortality in these patients. Yet cellular mechanisms of RV remodelling and RV dysfunction in HFpEF are not well understood. Here, we evaluated RV cardiomyocyte function in a rat model of metabolically induced HFpEF. Methods and results Heart failure with preserved ejection fraction‐prone animals (ZSF‐1 obese) and control rats (Wistar Kyoto) were fed a high‐caloric diet for 13 weeks. Haemodynamic characterization by echocardiography and invasive catheterization was performed at 22 and 23 weeks of age, respectively. After sacrifice, organ morphometry, RV histology, isolated RV cardiomyocyte function, and calcium (Ca2+) transients were assessed. ZSF‐1 obese rats showed a HFpEF phenotype with left ventricular (LV) hypertrophy, LV diastolic dysfunction (including increased LV end‐diastolic pressures and E/e′ ratio), and preserved LV ejection fraction. ZSF‐1 obese animals developed RV dilatation (50% increased end‐diastolic area) and mildly impaired RV ejection fraction (42%) with evidence of RV hypertrophy. In isolated RV cardiomyocytes from ZSF‐1 obese rats, cell shortening amplitude was preserved, but cytosolic Ca2+ transient amplitude was reduced. In addition, augmentation of cytosolic Ca2+ release with increased stimulation frequency was lost in ZSF‐1 obese rats. Myofilament sensitivity was increased, while contractile kinetics were largely unaffected in intact isolated RV cardiomyocytes from ZSF‐1 obese rats. Western blot analysis revealed significantly increased phosphorylation of cardiac myosin‐binding protein C (Ser282 cMyBP‐C) but no change in phosphorylation of troponin I (Ser23, 24 TnI) in RV myocardium from ZSF‐1 obese rats. Conclusions Right ventricular dysfunction in obese ZSF‐1 rats with HFpEF is associated with intrinsic RV cardiomyocyte remodelling including reduced cytosolic Ca2+ amplitudes, loss of frequency‐dependent augmentation of Ca2+ release, and increased myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - David Bode
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Messroghli
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | - Wolfgang M Kuebler
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
46
|
Powers JD, Malingen SA, Regnier M, Daniel TL. The Sliding Filament Theory Since Andrew Huxley: Multiscale and Multidisciplinary Muscle Research. Annu Rev Biophys 2021; 50:373-400. [PMID: 33637009 DOI: 10.1146/annurev-biophys-110320-062613] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two groundbreaking papers published in 1954 laid out the theory of the mechanism of muscle contraction based on force-generating interactions between myofilaments in the sarcomere that cause filaments to slide past one another during muscle contraction. The succeeding decades of research in muscle physiology have revealed a unifying interest: to understand the multiscale processes-from atom to organ-that govern muscle function. Such an understanding would have profound consequences for a vast array of applications, from developing new biomimetic technologies to treating heart disease. However, connecting structural and functional properties that are relevant at one spatiotemporal scale to those that are relevant at other scales remains a great challenge. Through a lens of multiscale dynamics, we review in this article current and historical research in muscle physiology sparked by the sliding filament theory.
Collapse
Affiliation(s)
- Joseph D Powers
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, USA
| | - Sage A Malingen
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, Washington 98195, USA;
- Department of Bioengineering, University of Washington, Seattle, Washington 98185, USA
- Center for Translational Muscle Research, University of Washington, Seattle, Washington 98185, USA
| |
Collapse
|
47
|
Mamidi R, Holmes JB, Doh CY, Dominic KL, Madugula N, Stelzer JE. cMyBPC phosphorylation modulates the effect of omecamtiv mecarbil on myocardial force generation. J Gen Physiol 2021; 153:211867. [PMID: 33688929 PMCID: PMC7953254 DOI: 10.1085/jgp.202012816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/27/2021] [Indexed: 01/15/2023] Open
Abstract
Omecamtiv mecarbil (OM), a direct myosin motor activator, is currently being tested as a therapeutic replacement for conventional inotropes in heart failure (HF) patients. It is known that HF patients exhibit dysregulated β-adrenergic signaling and decreased cardiac myosin-binding protein C (cMyBPC) phosphorylation, a critical modulator of myocardial force generation. However, the functional effects of OM in conditions of altered cMyBPC phosphorylation have not been established. Here, we tested the effects of OM on force generation and cross-bridge (XB) kinetics using murine myocardial preparations isolated from wild-type (WT) hearts and from hearts expressing S273A, S282A, and S302A substitutions (SA) in the M domain, between the C1 and C2 domains of cMyBPC, which cannot be phosphorylated. At submaximal Ca2+ activations, OM-mediated force enhancements were less pronounced in SA than in WT myocardial preparations. Additionally, SA myocardial preparations lacked the dose-dependent increases in force that were observed in WT myocardial preparations. Following OM incubation, the basal differences in the rate of XB detachment (krel) between WT and SA myocardial preparations were abolished, suggesting that OM differentially affects the XB behavior when cMyBPC phosphorylation is reduced. Similarly, in myocardial preparations pretreated with protein kinase A to phosphorylate cMyBPC, incubation with OM significantly slowed krel in both the WT and SA myocardial preparations. Collectively, our data suggest there is a strong interplay between the effects of OM and XB behavior, such that it effectively uncouples the sarcomere from cMyBPC phosphorylation levels. Our findings imply that OM may significantly alter the in vivo cardiac response to β-adrenergic stimulation.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Katherine L Dominic
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Nikhil Madugula
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
48
|
Rahmanseresht S, Lee KH, O’Leary TS, McNamara JW, Sadayappan S, Robbins J, Warshaw DM, Craig R, Previs MJ. The N terminus of myosin-binding protein C extends toward actin filaments in intact cardiac muscle. J Gen Physiol 2021; 153:e202012726. [PMID: 33528507 PMCID: PMC7852460 DOI: 10.1085/jgp.202012726] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Myosin and actin filaments are highly organized within muscle sarcomeres. Myosin-binding protein C (MyBP-C) is a flexible, rod-like protein located within the C-zone of the sarcomere. The C-terminal domain of MyBP-C is tethered to the myosin filament backbone, and the N-terminal domains are postulated to interact with actin and/or the myosin head to modulate filament sliding. To define where the N-terminal domains of MyBP-C are localized in the sarcomere of active and relaxed mouse myocardium, the relative positions of the N terminus of MyBP-C and actin were imaged in fixed muscle samples using super-resolution fluorescence microscopy. The resolution of the imaging was enhanced by particle averaging. The images demonstrate that the position of the N terminus of MyBP-C is biased toward the actin filaments in both active and relaxed muscle preparations. Comparison of the experimental images with images generated in silico, accounting for known binding partner interactions, suggests that the N-terminal domains of MyBP-C may bind to actin and possibly the myosin head but only when the myosin head is in the proximity of an actin filament. These physiologically relevant images help define the molecular mechanism by which the N-terminal domains of MyBP-C may search for, and capture, molecular binding partners to tune cardiac contractility.
Collapse
Affiliation(s)
- Sheema Rahmanseresht
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - Kyoung H. Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Thomas S. O’Leary
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - James W. McNamara
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH
| | - Jeffrey Robbins
- Department of Pediatrics and the Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Michael J. Previs
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, University of Vermont, Burlington, VT
| |
Collapse
|
49
|
Harris SP. Making waves: A proposed new role for myosin-binding protein C in regulating oscillatory contractions in vertebrate striated muscle. J Gen Physiol 2021; 153:e202012729. [PMID: 33275758 PMCID: PMC7721898 DOI: 10.1085/jgp.202012729] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myosin-binding protein C (MyBP-C) is a critical regulator of muscle performance that was first identified through its strong binding interactions with myosin, the force-generating protein of muscle. Almost simultaneously with its discovery, MyBP-C was soon found to bind to actin, the physiological catalyst for myosin's activity. However, the two observations posed an apparent paradox, in part because interactions of MyBP-C with myosin were on the thick filament, whereas MyBP-C interactions with actin were on the thin filament. Despite the intervening decades since these initial discoveries, it is only recently that the dual binding modes of MyBP-C are becoming reconciled in models that place MyBP-C at a central position between actin and myosin, where MyBP-C alternately stabilizes a newly discovered super-relaxed state (SRX) of myosin on thick filaments in resting muscle and then prolongs the "on" state of actin on thin filaments in active muscle. Recognition of these dual, alternating functions of MyBP-C reveals how it is central to the regulation of both muscle contraction and relaxation. The purpose of this Viewpoint is to briefly summarize the roles of MyBP-C in binding to myosin and actin and then to highlight a possible new role for MyBP-C in inducing and damping oscillatory waves of contraction and relaxation. Because the contractile waves bear similarity to cycles of contraction and relaxation in insect flight muscles, which evolved for fast, energetically efficient contraction, the ability of MyBP-C to damp so-called spontaneous oscillatory contractions (SPOCs) has broad implications for previously unrecognized regulatory mechanisms in vertebrate striated muscle. While the molecular mechanisms by which MyBP-C can function as a wave maker or a wave breaker are just beginning to be explored, it is likely that MyBP-C dual interactions with both myosin and actin will continue to be important for understanding the new functions of this enigmatic protein.
Collapse
|
50
|
Bunch TA, Lepak VC, Bortz KM, Colson BA. A high-throughput fluorescence lifetime-based assay to detect binding of myosin-binding protein C to F-actin. J Gen Physiol 2021; 153:e202012707. [PMID: 33600558 PMCID: PMC7898471 DOI: 10.1085/jgp.202012707] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Binding properties of actin-binding proteins are typically evaluated by cosedimentation assays. However, this method is time-consuming, involves multiple steps, and has a limited throughput. These shortcomings preclude its use in screening for drugs that modulate actin-binding proteins relevant to human disease. To develop a simple, quantitative, and scalable F-actin-binding assay, we attached fluorescent probes to actin's Cys-374 and assessed changes in fluorescence lifetime upon binding to the N-terminal region (domains C0-C2) of human cardiac myosin-binding protein C (cMyBP-C). The lifetime of all five probes tested decreased upon incubation with cMyBP-C C0-C2, as measured by time-resolved fluorescence (TR-F), with IAEDANS being the most sensitive probe that yielded the smallest errors. The TR-F assay was compared with cosedimentation to evaluate in vitro changes in binding to actin and actin-tropomyosin arising from cMyBP-C mutations associated with hypertrophic cardiomyopathy (HCM) and tropomyosin binding. Lifetime changes of labeled actin with added C0-C2 were consistent with cosedimentation results. The HCM mutation L352P was confirmed to enhance actin binding, whereas PKA phosphorylation reduced binding. The HCM mutation R282W, predicted to disrupt a PKA recognition sequence, led to deficits in C0-C2 phosphorylation and altered binding. Lastly, C0-C2 binding was found to be enhanced by tropomyosin and binding capacity to be altered by mutations in a tropomyosin-binding region. These findings suggest that the TR-F assay is suitable for rapidly and accurately determining quantitative binding and for screening physiological conditions and compounds that affect cMyBP-C binding to F-actin for therapeutic discovery.
Collapse
Affiliation(s)
| | | | | | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|