1
|
Yu M, Xu M, Wang G, Feng J, Zhang M. Parasympathetic pathway in melatonin regulation exogenous melatonin alleviates abnormal glucose metabolism in the breast muscle under long-term light exposure through the parasympathetic pathway. J Adv Res 2025:S2090-1232(25)00367-4. [PMID: 40449661 DOI: 10.1016/j.jare.2025.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/17/2025] [Accepted: 05/23/2025] [Indexed: 06/03/2025] Open
Abstract
INTRODUCTION Human beings and animals have been exposed to long-term artificial lighting environments to induce glucose metabolism disorder. Melatonin (MT) is involved in the regulation of glucolipid metabolism, and can prevent skeletal muscle wasting as well as sarcopenia-associated diseases. However, the effect of exogenous MT on skeletal muscle glucose metabolism and the involvement of the parasympathetic pathway have not been clarified. OBJECTIVES To investigate the role of parasympathetic regulatory pathway in the mediating the effects of exogenous MT on skeletal muscle glucose metabolism following long-term light exposure. METHODS This study established rapid growth period broiler models, while characterized muscle histological analysis, glucose metabolism indexes and related genes expression through parasympathetic activation, exogenous MT administration and exogenous MT with parasympathetic inhibition experiments. RESULTS Long-term light exposure inhibited muscle glycogen synthesis, promoted muscle glycogen decomposition, increased anaerobic glycolysis, decreased aerobic respiration and induced the injury in breast muscle. Parasympathetic activation and exogenous MT caused a marked improvement in muscle glycogen accumulation, aerobic glycolysis and the injury in breast muscle. The exogenous MT beneficial functions were alleviated by parasympathetic inhibition. Furthermore, parasympathetic activation and exogenous MT administration protected cecal microbiota homeostasis, by improving stability of the gut microbiota community and increasing the relative abundance of Lactobacillus. Lactobacillus abundance was positively associated with muscle glycogen accumulation. CONCLUSION Taken together, this study highlighted the role of the novel parasympathetic regulatory pathway in the effects of exogenous MT in maintaining glucose metabolism homeostasis and restoring the damage in skeletal muscle with long-term light exposure. The results indicate that gut microbiota are involved in the MT-parasympathetic regulatory network. This study filles the gap in autonomic nervous-endocrine regulation under long light exposure, and provides a new insight to alleviate long light exposure-induced glucose metabolism disorders to improve the growth and health of humans and animals.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China
| | - Mengjie Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China
| | - Guangju Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; Adaptation Physiology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China.
| |
Collapse
|
2
|
Lim S, Mangala MM, Holliday M, Cserne Szappanos H, Barratt-Ross S, Li S, Thorpe J, Liang W, Ranpura GN, Vandenberg JI, Semsarian C, Hill AP, Hool LC. Reduced connexin-43 expression, slow conduction and repolarisation dispersion in a model of hypertrophic cardiomyopathy. Dis Model Mech 2024; 17:dmm050407. [PMID: 39189070 PMCID: PMC11381919 DOI: 10.1242/dmm.050407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/16/2024] [Indexed: 08/28/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited heart muscle disease that is characterised by left ventricular wall thickening, cardiomyocyte disarray and fibrosis, and is associated with arrhythmias, heart failure and sudden death. However, it is unclear to what extent the electrophysiological disturbances that lead to sudden death occur secondary to structural changes in the myocardium or as a result of HCM cardiomyocyte electrophysiology. In this study, we used an induced pluripotent stem cell model of the R403Q variant in myosin heavy chain 7 (MYH7) to study the electrophysiology of HCM cardiomyocytes in electrically coupled syncytia, revealing significant conduction slowing and increased spatial dispersion of repolarisation - both well-established substrates for arrhythmia. Analysis of rhythmonome protein expression in MYH7 R403Q cardiomyocytes showed reduced expression of connexin-43 (also known as GJA1), sodium channels and inward rectifier potassium channels - a three-way hit that reduces electrotonic coupling and slows cardiac conduction. Our data represent a previously unreported, biophysical basis for arrhythmia in HCM that is intrinsic to cardiomyocyte electrophysiology. Later in the progression of the disease, these proarrhythmic phenotypes may be accentuated by myocyte disarray and fibrosis to contribute to sudden death.
Collapse
Affiliation(s)
- Seakcheng Lim
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Melissa M. Mangala
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Mira Holliday
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | | | - Samantha Barratt-Ross
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Serena Li
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Jordan Thorpe
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Whitney Liang
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Ginell N. Ranpura
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney 2052, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney 2050, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney 2050, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | | | - Livia C. Hool
- Victor Chang Cardiac Research Institute, Sydney, 2010, Australia
- School of Human Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
3
|
Zheng M, Erhardt S, Cao Y, Wang J. Emerging Signaling Regulation of Sinoatrial Node Dysfunction. Curr Cardiol Rep 2023; 25:621-630. [PMID: 37227579 PMCID: PMC11418806 DOI: 10.1007/s11886-023-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE OF REVIEW The sinoatrial node (SAN), the natural pacemaker of the heart, is responsible for generating electrical impulses and initiating each heartbeat. Sinoatrial node dysfunction (SND) causes various arrhythmias such as sinus arrest, SAN block, and tachycardia/bradycardia syndrome. Unraveling the underlying mechanisms of SND is of paramount importance in the pursuit of developing effective therapeutic strategies for patients with SND. This review provides a concise summary of the most recent progress in the signaling regulation of SND. RECENT FINDINGS Recent studies indicate that SND can be caused by abnormal intercellular and intracellular signaling, various forms of heart failure (HF), and diabetes. These discoveries provide novel insights into the underlying mechanisms SND, advancing our understanding of its pathogenesis. SND can cause severe cardiac arrhythmias associated with syncope and an increased risk of sudden death. In addition to ion channels, the SAN is susceptible to the influence of various signalings including Hippo, AMP-activated protein kinase (AMPK), mechanical force, and natriuretic peptide receptors. New cellular and molecular mechanisms related to SND are also deciphered in systemic diseases such as HF and diabetes. Progress in these studies contributes to the development of potential therapeutics for SND.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Pan Z, Liang P. Human-Induced Pluripotent Stem Cell-Based Differentiation of Cardiomyocyte Subtypes for Drug Discovery and Cell Therapy. Handb Exp Pharmacol 2023; 281:209-233. [PMID: 37421443 DOI: 10.1007/164_2023_663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
Drug attrition rates have increased over the past few years, accompanied with growing costs for the pharmaceutical industry and consumers. Lack of in vitro models connecting the results of toxicity screening assays with clinical outcomes accounts for this high attrition rate. The emergence of cardiomyocytes derived from human pluripotent stem cells provides an amenable source of cells for disease modeling, drug discovery, and cardiotoxicity screening. Functionally similar to to embryonic stem cells, but with fewer ethical concerns, induced pluripotent stem cells (iPSCs) can recapitulate patient-specific genetic backgrounds, which would be a huge revolution for personalized medicine. The generated iPSC-derived cardiomyocytes (iPSC-CMs) represent different subtypes including ventricular-, atrial-, and nodal-like cardiomyocytes. Purifying these subtypes for chamber-specific drug screening presents opportunities and challenges. In this chapter, we discuss the strategies for the purification of iPSC-CMs, the use of iPSC-CMs for drug discovery and cardiotoxicity test, and the current limitations of iPSC-CMs that should be overcome for wider and more precise cardiovascular applications.
Collapse
Affiliation(s)
- Ziwei Pan
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Ping Liang
- Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Abstract
Cardiac arrhythmias are a significant cause of morbidity and mortality worldwide, accounting for 10% to 15% of all deaths. Although most arrhythmias are due to acquired heart disease, inherited channelopathies and cardiomyopathies disproportionately affect children and young adults. Arrhythmogenesis is complex, involving anatomic structure, ion channels and regulatory proteins, and the interplay between cells in the conduction system, cardiomyocytes, fibroblasts, and the immune system. Animal models of arrhythmia are powerful tools for studying not only molecular and cellular mechanism of arrhythmogenesis but also more complex mechanisms at the whole heart level, and for testing therapeutic interventions. This review summarizes basic and clinical arrhythmia mechanisms followed by an in-depth review of published animal models of genetic and acquired arrhythmia disorders.
Collapse
Affiliation(s)
- Daniel J Blackwell
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey Schmeckpeper
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
6
|
Shafaattalab S, Li AY, Gunawan MG, Kim B, Jayousi F, Maaref Y, Song Z, Weiss JN, Solaro RJ, Qu Z, Tibbits GF. Mechanisms of Arrhythmogenicity of Hypertrophic Cardiomyopathy-Associated Troponin T ( TNNT2) Variant I79N. Front Cell Dev Biol 2022; 9:787581. [PMID: 34977031 PMCID: PMC8718794 DOI: 10.3389/fcell.2021.787581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common heritable cardiovascular disease and often results in cardiac remodeling and an increased incidence of sudden cardiac arrest (SCA) and death, especially in youth and young adults. Among thousands of different variants found in HCM patients, variants of TNNT2 (cardiac troponin T—TNNT2) are linked to increased risk of ventricular arrhythmogenesis and sudden death despite causing little to no cardiac hypertrophy. Therefore, studying the effect of TNNT2 variants on cardiac propensity for arrhythmogenesis can pave the way for characterizing HCM in susceptible patients before sudden cardiac arrest occurs. In this study, a TNNT2 variant, I79N, was generated in human cardiac recombinant/reconstituted thin filaments (hcRTF) to investigate the effect of the mutation on myofilament Ca2+ sensitivity and Ca2+ dissociation rate using steady-state and stopped-flow fluorescence techniques. The results revealed that the I79N variant significantly increases myofilament Ca2+ sensitivity and decreases the Ca2+ off-rate constant (koff). To investigate further, a heterozygous I79N+/−TNNT2 variant was introduced into human-induced pluripotent stem cells using CRISPR/Cas9 and subsequently differentiated into ventricular cardiomyocytes (hiPSC-CMs). To study the arrhythmogenic properties, monolayers of I79N+/− hiPSC-CMs were studied in comparison to their isogenic controls. Arrhythmogenesis was investigated by measuring voltage (Vm) and cytosolic Ca2+ transients over a range of stimulation frequencies. An increasing stimulation frequency was applied to the cells, from 55 to 75 bpm. The results of this protocol showed that the TnT-I79N cells had reduced intracellular Ca2+ transients due to the enhanced cytosolic Ca2+ buffering. These changes in Ca2+ handling resulted in beat-to-beat instability and triangulation of the cardiac action potential, which are predictors of arrhythmia risk. While wild-type (WT) hiPSC-CMs were accurately entrained to frequencies of at least 150 bpm, the I79N hiPSC-CMs demonstrated clear patterns of alternans for both Vm and Ca2+ transients at frequencies >75 bpm. Lastly, a transcriptomic analysis was conducted on WT vs. I79N+/−TNNT2 hiPSC-CMs using a custom NanoString codeset. The results showed a significant upregulation of NPPA (atrial natriuretic peptide), NPPB (brain natriuretic peptide), Notch signaling pathway components, and other extracellular matrix (ECM) remodeling components in I79N+/− vs. the isogenic control. This significant shift demonstrates that this missense in the TNNT2 transcript likely causes a biophysical trigger, which initiates this significant alteration in the transcriptome. This TnT-I79N hiPSC-CM model not only reproduces key cellular features of HCM-linked mutations but also suggests that this variant causes uncharted pro-arrhythmic changes to the human action potential and gene expression.
Collapse
Affiliation(s)
- Sanam Shafaattalab
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Alison Y Li
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| | - Marvin G Gunawan
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - BaRun Kim
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Farah Jayousi
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Yasaman Maaref
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Zhen Song
- UCLA Cardiac Computation Lab, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James N Weiss
- UCLA Cardiac Computation Lab, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - R John Solaro
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhilin Qu
- UCLA Cardiac Computation Lab, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Glen F Tibbits
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Department of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
8
|
Zhang DM, Navara R, Yin T, Szymanski J, Goldsztejn U, Kenkel C, Lang A, Mpoy C, Lipovsky CE, Qiao Y, Hicks S, Li G, Moore KMS, Bergom C, Rogers BE, Robinson CG, Cuculich PS, Schwarz JK, Rentschler SL. Cardiac radiotherapy induces electrical conduction reprogramming in the absence of transmural fibrosis. Nat Commun 2021; 12:5558. [PMID: 34561429 PMCID: PMC8463558 DOI: 10.1038/s41467-021-25730-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiac radiotherapy (RT) may be effective in treating heart failure (HF) patients with refractory ventricular tachycardia (VT). The previously proposed mechanism of radiation-induced fibrosis does not explain the rapidity and magnitude with which VT reduction occurs clinically. Here, we demonstrate in hearts from RT patients that radiation does not achieve transmural fibrosis within the timeframe of VT reduction. Electrophysiologic assessment of irradiated murine hearts reveals a persistent supraphysiologic electrical phenotype, mediated by increases in NaV1.5 and Cx43. By sequencing and transgenic approaches, we identify Notch signaling as a mechanistic contributor to NaV1.5 upregulation after RT. Clinically, RT was associated with increased NaV1.5 expression in 1 of 1 explanted heart. On electrocardiogram (ECG), post-RT QRS durations were shortened in 13 of 19 patients and lengthened in 5 patients. Collectively, this study provides evidence for radiation-induced reprogramming of cardiac conduction as a potential treatment strategy for arrhythmia management in VT patients.
Collapse
Affiliation(s)
- David M Zhang
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Rachita Navara
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Jeffrey Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Camryn Kenkel
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Adam Lang
- Department of Pathology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Yun Qiao
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Stephanie Hicks
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Gang Li
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Kaitlin M S Moore
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Carmen Bergom
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Clifford G Robinson
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Phillip S Cuculich
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Julie K Schwarz
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA
| | - Stacey L Rentschler
- Center for Noninvasive Cardiac Radioablation, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
- Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Marracino L, Fortini F, Bouhamida E, Camponogara F, Severi P, Mazzoni E, Patergnani S, D’Aniello E, Campana R, Pinton P, Martini F, Tognon M, Campo G, Ferrari R, Vieceli Dalla Sega F, Rizzo P. Adding a "Notch" to Cardiovascular Disease Therapeutics: A MicroRNA-Based Approach. Front Cell Dev Biol 2021; 9:695114. [PMID: 34527667 PMCID: PMC8435685 DOI: 10.3389/fcell.2021.695114] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the Notch pathway is implicated in the pathophysiology of cardiovascular diseases (CVDs), but, as of today, therapies based on the re-establishing the physiological levels of Notch in the heart and vessels are not available. A possible reason is the context-dependent role of Notch in the cardiovascular system, which would require a finely tuned, cell-specific approach. MicroRNAs (miRNAs) are short functional endogenous, non-coding RNA sequences able to regulate gene expression at post-transcriptional levels influencing most, if not all, biological processes. Dysregulation of miRNAs expression is implicated in the molecular mechanisms underlying many CVDs. Notch is regulated and regulates a large number of miRNAs expressed in the cardiovascular system and, thus, targeting these miRNAs could represent an avenue to be explored to target Notch for CVDs. In this Review, we provide an overview of both established and potential, based on evidence in other pathologies, crosstalks between miRNAs and Notch in cellular processes underlying atherosclerosis, myocardial ischemia, heart failure, calcification of aortic valve, and arrhythmias. We also discuss the potential advantages, as well as the challenges, of using miRNAs for a Notch-based approach for the diagnosis and treatment of the most common CVDs.
Collapse
Affiliation(s)
- Luisa Marracino
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | | | - Esmaa Bouhamida
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Francesca Camponogara
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Paolo Severi
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Emanuele D’Aniello
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberta Campana
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Gianluca Campo
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Ferrara, Italy
| | - Roberto Ferrari
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| | | | - Paola Rizzo
- Laboratory for Technologies of Advanced Therapies (LTTA), Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Ravenna, Italy
| |
Collapse
|
10
|
Xing J, Jie W. Methyltransferase SET domain family and its relationship with cardiovascular development and diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 51:251-260. [PMID: 35462466 DOI: 10.3724/zdxbyxb-2021-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abnormal epigenetic modification is closely related to the occurrence and development of cardiovascular diseases. The SET domain (SETD) family is an important epigenetic modifying enzyme containing SETD. They mainly affect gene expression by methylating H3K4, H3K9, H3K36 and H4K20. Additionally, the SETD family catalyzes the methylation of non-histone proteins, thereby affects the signal transduction of signal transduction and activator of transcription (STAT) 1, Wnt/β-catenin, hypoxia-inducible factor (HIF)-1α and Hippo/YAP pathways. The SETD family has the following regulatory effects on cardiovascular development and diseases: regulating coronary artery formation and cardiac development; protecting cardiac tissue from ischemia reperfusion injury; regulating inflammation, oxidative stress and apoptosis in cardiovascular complications of diabetes; participating in the formation of pulmonary hypertension; regulating thrombosis, cardiac hypertrophy and arrhythmia. This article summarizes the basic structures, expression regulation mechanisms and the role of existing SETD family members in cardiovascular development and diseases, in order to provide a basis for understanding the molecular mechanism of cardiovascular disease and exploring the therapeutic targets.
Collapse
Affiliation(s)
- Jingci Xing
- 1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China
| | - Wei Jie
- 1. Department of Pathology, School of Basic Medicine Sciences, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China.,Medical University, Key Laboratory of Emergency and Trauma, Ministry of Education, Hainan Provincial Key Laboratory of Tropical Cardiovascular Diseases Research, Haikou 571199, China
| |
Collapse
|
11
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
12
|
Abstract
The sinus node (SAN) is the primary pacemaker of the human heart, and abnormalities in its structure or function cause sick sinus syndrome, the most common reason for electronic pacemaker implantation. Here we report that transcription factor GATA6, whose mutations in humans are linked to arrhythmia, is highly expressed in the SAN and its haploinsufficiency in mice results in hypoplastic SANs and rhythm abnormalities. Cell-specific deletion reveals a requirement for GATA6 in various SAN lineages. Mechanistically, GATA6 directly activates key regulators of the SAN genetic program in conduction and nonconduction cells, such as TBX3 and EDN1, respectively. The data identify GATA6 as an important regulator of the SAN and provide a molecular basis for understanding the conduction abnormalities associated with GATA6 mutations in humans. They also suggest that GATA6 may be a potential modifier of the cardiac pacemaker.
Collapse
|
13
|
Lipovsky CE, Jimenez J, Guo Q, Li G, Yin T, Hicks SC, Bhatnagar S, Takahashi K, Zhang DM, Brumback BD, Goldsztejn U, Nadadur RD, Perez-Cervantez C, Moskowitz IP, Liu S, Zhang B, Rentschler SL. Chamber-specific transcriptional responses in atrial fibrillation. JCI Insight 2020; 5:135319. [PMID: 32841220 PMCID: PMC7526559 DOI: 10.1172/jci.insight.135319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia, yet the molecular signature of the vulnerable atrial substrate is not well understood. Here, we delineated a distinct transcriptional signature in right versus left atrial cardiomyocytes (CMs) at baseline and identified chamber-specific gene expression changes in patients with a history of AF in the setting of end-stage heart failure (AF+HF) that are not present in heart failure alone (HF). We observed that human left atrial (LA) CMs exhibited Notch pathway activation and increased ploidy in AF+HF but not in HF alone. Transient activation of Notch signaling within adult CMs in a murine genetic model is sufficient to increase ploidy in both atrial chambers. Notch activation within LA CMs generated a transcriptomic fingerprint resembling AF, with dysregulation of transcription factor and ion channel genes, including Pitx2, Tbx5, Kcnh2, Kcnq1, and Kcnip2. Notch activation also produced distinct cellular electrophysiologic responses in LA versus right atrial CMs, prolonging the action potential duration (APD) without altering the upstroke velocity in the left atrium and reducing the maximal upstroke velocity without altering the APD in the right atrium. Our results support a shared human/murine model of increased Notch pathway activity predisposing to AF. Distinct transcriptional changes occur in human left versus right atrial cardiomyocytes in atrial fibrillation, including Notch pathway activation, which alters electric properties and ploidy in murine models.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | - Qiusha Guo
- Department of Medicine, Cardiovascular Division
| | - Gang Li
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Tiankai Yin
- Department of Medicine, Cardiovascular Division
| | | | - Somya Bhatnagar
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and
| | | | | | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Uri Goldsztejn
- Department of Medicine, Cardiovascular Division.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Carlos Perez-Cervantez
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, Biological Sciences Division, University of Chicago, Chicago, Illinois, USA
| | | | - Bo Zhang
- Department of Developmental Biology, and
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division.,Department of Developmental Biology, and.,Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Zhao MT, Shao NY, Garg V. Subtype-specific cardiomyocytes for precision medicine: Where are we now? Stem Cells 2020; 38:822-833. [PMID: 32232889 DOI: 10.1002/stem.3178] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 11/12/2022]
Abstract
Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.
Collapse
Affiliation(s)
- Ming-Tao Zhao
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Vidu Garg
- Center for Cardiovascular Research, The Abigail Wexner Research Institute and The Heart Center, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA.,Department of Molecular Genetics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
15
|
Gradual differentiation and confinement of the cardiac conduction system as indicated by marker gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118509. [DOI: 10.1016/j.bbamcr.2019.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 11/23/2022]
|
16
|
Yang B, Huang Y, Zhang H, Huang Y, Zhou HJ, Young L, Xiao H, Min W. Mitochondrial thioredoxin-2 maintains HCN4 expression and prevents oxidative stress-mediated sick sinus syndrome. J Mol Cell Cardiol 2020; 138:291-303. [DOI: 10.1016/j.yjmcc.2019.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
|
17
|
Basuroy T, de la Serna IL. SETD7 in cardiomyocyte differentiation and cardiac function. Stem Cell Investig 2019; 6:29. [PMID: 31620476 DOI: 10.21037/sci.2019.08.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 07/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Tupa Basuroy
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Ivana L de la Serna
- University of Toledo College of Medicine and Life Sciences, Department of Cancer Biology, Toledo, OH, USA
| |
Collapse
|
18
|
van Eif VWW, Stefanovic S, van Duijvenboden K, Bakker M, Wakker V, de Gier-de Vries C, Zaffran S, Verkerk AO, Boukens BJ, Christoffels VM. Transcriptome analysis of mouse and human sinoatrial node cells reveals a conserved genetic program. Development 2019; 146:dev.173161. [PMID: 30936179 DOI: 10.1242/dev.173161] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/20/2019] [Indexed: 02/03/2023]
Abstract
The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3 +/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3 +/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.
Collapse
Affiliation(s)
- Vincent W W van Eif
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Sonia Stefanovic
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Karel van Duijvenboden
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Martijn Bakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Stéphane Zaffran
- Aix-Marseille University - INSERM U1251, Marseille Medical Genetics, Marseille 13005, France
| | - Arie O Verkerk
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Bas J Boukens
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Centers, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
19
|
Abstract
Spatiotemporal gene expression during cardiac development is a highly regulated process. Activation of key signaling pathways involved in electrophysiological programming, such as Notch and Wnt signaling, occurs in early cardiovascular development and these pathways are reactivated during pathologic remodeling. Direct targets of these signaling pathways have also been associated with inherited arrhythmias such as Brugada syndrome and arrhythmogenic cardiomyopathy. In addition, evidence is emerging from animal models that reactivation of Notch and Wnt signaling during cardiac pathology may predispose to acquired arrhythmias, underscoring the importance of elucidating the transcriptional and epigenetic effects on cardiac gene regulation. Here, we highlight specific examples where gene expression dictates electrophysiological properties in both normal and diseased hearts.
Collapse
|
20
|
Li W, Yin L, Shen C, Hu K, Ge J, Sun A. SCN5A Variants: Association With Cardiac Disorders. Front Physiol 2018; 9:1372. [PMID: 30364184 PMCID: PMC6191725 DOI: 10.3389/fphys.2018.01372] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
The SCN5A gene encodes the alpha subunit of the main cardiac sodium channel Nav1.5. This channel predominates inward sodium current (INa) and plays a critical role in regulation of cardiac electrophysiological function. Since 1995, SCN5A variants have been found to be causatively associated with Brugada syndrome, long QT syndrome, cardiac conduction system dysfunction, dilated cardiomyopathy, etc. Previous genetic, electrophysiological, and molecular studies have identified the arrhythmic and cardiac structural characteristics induced by SCN5A variants. However, due to the variation of disease manifestations and genetic background, impact of environmental factors, as well as the presence of mixed phenotypes, the detailed and individualized physiological mechanisms in various SCN5A-related syndromes are not fully elucidated. This review summarizes the current knowledge of SCN5A genetic variations in different SCN5A-related cardiac disorders and the newly developed therapy strategies potentially useful to prevent and treat these disorders in clinical setting.
Collapse
Affiliation(s)
- Wenjia Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Cheng Shen
- Department of Cardiology, The Affiliated Hospital of Jining Medical University, Jining, China
| | - Kai Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cardiology, Institute of Biomedical Science, Fudan University, Shanghai, China
| |
Collapse
|
21
|
|
22
|
Lipovsky CE, Brumback BD, Khandekar A, Rentschler SL. Multi-Scale Assessments of Cardiac Electrophysiology Reveal Regional Heterogeneity in Health and Disease. J Cardiovasc Dev Dis 2018; 5:E16. [PMID: 29517992 PMCID: PMC5872364 DOI: 10.3390/jcdd5010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
The left and right ventricles of the four-chambered heart have distinct developmental origins and functions. Chamber-specific developmental programming underlies the differential gene expression of ion channel subunits regulating cardiac electrophysiology that persists into adulthood. Here, we discuss regional specific electrical responses to genetic mutations and cardiac stressors, their clinical correlations, and describe many of the multi-scale techniques commonly used to analyze electrophysiological regional heterogeneity.
Collapse
Affiliation(s)
- Catherine E Lipovsky
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Brittany D Brumback
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | - Aditi Khandekar
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Stacey L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, Campus Box 8103, 660 S Euclid Ave, St. Louis, MO 63110, USA.
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
23
|
Borghetti G, Eisenberg CA, Signore S, Sorrentino A, Kaur K, Andrade-Vicenty A, Edwards JG, Nerkar M, Qanud K, Sun D, Goichberg P, Leri A, Anversa P, Eisenberg LM, Jacobson JT, Hintze TH, Rota M. Notch signaling modulates the electrical behavior of cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 314:H68-H81. [PMID: 28939651 DOI: 10.1152/ajpheart.00587.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Notch receptor signaling is active during cardiac development and silenced in myocytes after birth. Conversely, outward K+ Kv currents progressively appear in postnatal myocytes leading to shortening of the action potential (AP) and acquisition of the mature electrical phenotype. In the present study, we tested the possibility that Notch signaling modulates the electrical behavior of cardiomyocytes by interfering with Kv currents. For this purpose, the effects of Notch receptor activity on electrophysiological properties of myocytes were evaluated using transgenic mice with inducible expression of the Notch1 intracellular domain (NICD), the functional fragment of the activated Notch receptor, and in neonatal myocytes after inhibition of the Notch transduction pathway. By patch clamp, NICD-overexpressing cells presented prolonged AP duration and reduced upstroke amplitude, properties that were coupled with reduced rapidly activating Kv and fast Na+ currents, compared with cells obtained from wild-type mice. In cultured neonatal myocytes, inhibition of the proteolitic release of NICD with a γ-secretase antagonist increased transcript levels of the Kv channel-interacting proteins 2 (KChIP2) and enhanced the density of Kv currents. Collectively, these results indicate that Notch signaling represents an important regulator of the electrophysiological behavior of developing and adult myocytes by repressing, at least in part, repolarizing Kv currents. NEW & NOTEWORTHY We investigated the effects of Notch receptor signaling on the electrical properties of cardiomyocytes. Our results indicate that the Notch transduction pathway interferes with outward K+ Kv currents, critical determinants of the electrical repolarization of myocytes.
Collapse
Affiliation(s)
- Giulia Borghetti
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Carol A Eisenberg
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Sergio Signore
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Andrea Sorrentino
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Keerat Kaur
- Department of Physiology, New York Medical College, Valhalla, New York
| | | | - John G Edwards
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Mriganka Nerkar
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Khaled Qanud
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Polina Goichberg
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Annarosa Leri
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Piero Anversa
- Departments of Anesthesia and Medicine, and Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York.,Department of Cardiology, Westchester Medical Center, Valhalla, New York
| | - Thomas H Hintze
- Department of Physiology, New York Medical College, Valhalla, New York
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|