1
|
Kim J, Nam Y, Jeon D, Choi Y, Choi S, Hong CP, Kim S, Jung H, Park N, Sohn Y, Rim YA, Ju JH. Generation of hypoimmunogenic universal iPS cells through HLA-type gene knockout. Exp Mol Med 2025; 57:686-699. [PMID: 40087529 PMCID: PMC11958689 DOI: 10.1038/s12276-025-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/20/2024] [Accepted: 12/16/2024] [Indexed: 03/17/2025] Open
Abstract
Hypoimmunogenic universal induced pluripotent stemn (iPS) cells were generated through the targeted disruption of key genes, including human leukocyte antigen (HLA)-A, HLA-B and HLA-DR alpha (DRA), using the CRISPR-Cas9 system. This approach aimed to minimize immune recognition and enhance the potential of iPS cells for allogeneic therapy. Heterozygous iPS cells were used for guide RNA design and validation to facilitate the knockout (KO) of the HLA-A, HLA-B and HLA-DRA genes. The electroporation of iPS cells using the selected guide RNAs enabled the generation of triple-KO iPS cells, followed by single-cell cloning for clone selection. Clone A7, an iPS cell with targeted KOs of the HLA-A, HLA-B and HLA-DRA genes, was identified as the final candidate. Messenger RNA analysis revealed robust expression of pluripotency markers, such as octamer-binding transcription factor 4, sex-determining region Y box 2, Krüppel-like factor 4, Lin-28 homolog A and Nanog homeobox, while protein expression assays confirmed the presence of octamer-binding transcription factor 4, stage-specific embryonic antigen 4, Nanog homeobox and tumor rejection antigen 1-60. A karyotype examination revealed no anomalies, and three-germ layer differentiation assays confirmed the differentiation potential. After interferon gamma stimulation, the gene-corrected clone A7 lacked HLA-A, HLA-B and HLA-DR protein expression. Immunogenicity testing further confirmed the hypoimmunogenicity of clone A7, which was evidenced by the absence of proliferation in central memory T cells and effector memory T cells. In conclusion, clone A7, a triple-KO iPS cell clone that demonstrates immune evasion properties, retained its intrinsic iPS cell characteristics and exhibited no immunogenicity.
Collapse
Affiliation(s)
| | - Yoojun Nam
- YiPSCELL Inc., Seoul, Republic of Korea
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | - Yeowon Sohn
- Department of Biohealth Regulatory Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yeri Alice Rim
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Ji Hyeon Ju
- YiPSCELL Inc., Seoul, Republic of Korea.
- CiSTEM Laboratory, Convergent Research Consortium for Immunologic Disease, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
- Department of Biomedicine and Health Sciences, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Jallouk AP, Sengsayadeth S, Savani BN, Dholaria B, Oluwole O. Allogeneic and other innovative chimeric antigen receptor platforms. Clin Hematol Int 2024; 6:61-72. [PMID: 39351308 PMCID: PMC11441714 DOI: 10.46989/001c.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 10/04/2024] Open
Affiliation(s)
- Andrew P Jallouk
- Medicine, Hematology OncologyVanderbilt University Medical Center
| | | | - Bipin N Savani
- Medicine, Hematology OncologyVanderbilt University Medical Center
| | | | - Olalekan Oluwole
- Medicine, Hematology OncologyVanderbilt University Medical Center
| |
Collapse
|
3
|
Skadborg SK, Maarup S, Draghi A, Borch A, Hendriksen S, Mundt F, Pedersen V, Mann M, Christensen IJ, Skjøth-Ramussen J, Yde CW, Kristensen BW, Poulsen HS, Hasselbalch B, Svane IM, Lassen U, Hadrup SR. Nivolumab Reaches Brain Lesions in Patients with Recurrent Glioblastoma and Induces T-cell Activity and Upregulation of Checkpoint Pathways. Cancer Immunol Res 2024; 12:1202-1220. [PMID: 38885356 PMCID: PMC11369628 DOI: 10.1158/2326-6066.cir-23-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/10/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with poor prognosis. Although immunotherapy is being explored as a potential treatment option for patients with GBM, it is unclear whether systemic immunotherapy can reach and modify the tumor microenvironment in the brain. We evaluated immune characteristics in patients receiving the anti-PD-1 immune checkpoint inhibitor nivolumab 1 week prior to surgery, compared with control patients receiving salvage resection without prior nivolumab treatment. We observed saturating levels of nivolumab bound to intratumorally and tissue-resident T cells in the brain, implicating saturating levels of nivolumab reaching brain tumors. Following nivolumab treatment, significant changes in T-cell activation and proliferation were observed in the tumor-resident T-cell population, and peripheral T cells upregulated chemokine receptors related to brain homing. A strong nivolumab-driven upregulation in compensatory checkpoint inhibition molecules, i.e., TIGIT, LAG-3, TIM-3, and CTLA-4, was observed, potentially counteracting the treatment effect. Finally, tumor-reactive tumor-infiltrating lymphocytes (TIL) were found in a subset of nivolumab-treated patients with prolonged survival, and neoantigen-reactive T cells were identified in both TILs and blood. This indicates a systemic response toward GBM in a subset of patients, which was further boosted by nivolumab, with T-cell responses toward tumor-derived neoantigens. Our study demonstrates that nivolumab does reach the GBM tumor lesion and enhances antitumor T-cell responses both intratumorally and systemically. However, various anti-inflammatory mechanisms mitigate the clinical efficacy of the anti-PD-1 treatment.
Collapse
Affiliation(s)
- Signe K. Skadborg
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Simone Maarup
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Arianna Draghi
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Annie Borch
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Sille Hendriksen
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Filip Mundt
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
| | - Vilde Pedersen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, CPR, University of Copenhagen, Copenhagen, Denmark.
- Research Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Ib J. Christensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Jane Skjøth-Ramussen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Christina W. Yde
- Center for Genomic Medicine, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Bjarne W. Kristensen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Pathology, The Bartholin Institute, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
- Department of Clinical Medicine and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Hans S. Poulsen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Benedikte Hasselbalch
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Inge M. Svane
- National Center for Cancer Immune Therapy, CCIT-DK, Copenhagen University Hospital, Herlev, Denmark.
| | - Ulrik Lassen
- Department of Oncology, DCCC Brain Tumor Center, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Sine R. Hadrup
- Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Martin KE, Hammer Q, Perica K, Sadelain M, Malmberg KJ. Engineering immune-evasive allogeneic cellular immunotherapies. Nat Rev Immunol 2024; 24:680-693. [PMID: 38658708 DOI: 10.1038/s41577-024-01022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2024] [Indexed: 04/26/2024]
Abstract
Allogeneic cellular immunotherapies hold a great promise for cancer treatment owing to their potential cost-effectiveness, scalability and on-demand availability. However, immune rejection of adoptively transferred allogeneic T and natural killer (NK) cells is a substantial obstacle to achieving clinical responses that are comparable to responses obtained with current autologous chimeric antigen receptor T cell therapies. In this Perspective, we discuss strategies to confer cell-intrinsic, immune-evasive properties to allogeneic T cells and NK cells in order to prevent or delay their immune rejection, thereby widening the therapeutic window. We discuss how common viral and cancer immune escape mechanisms can serve as a blueprint for improving the persistence of off-the-shelf allogeneic cell therapies. The prospects of harnessing genome editing and synthetic biology to design cell-based precision immunotherapies extend beyond programming target specificities and require careful consideration of innate and adaptive responses in the recipient that may curtail the biodistribution, in vivo expansion and persistence of cellular therapeutics.
Collapse
Affiliation(s)
- Karen E Martin
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway
| | - Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Karlo Perica
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Precision Immunotherapy Alliance, The University of Oslo, Oslo, Norway.
- Department of Cancer Immunology, Institute for Cancer Research Oslo, Oslo University Hospital, Oslo, Norway.
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Fang M, Allen A, Luo C, Finn JD. Unlocking the potential of iPSC-derived immune cells: engineering iNK and iT cells for cutting-edge immunotherapy. Front Immunol 2024; 15:1457629. [PMID: 39281684 PMCID: PMC11392856 DOI: 10.3389/fimmu.2024.1457629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/14/2024] [Indexed: 09/18/2024] Open
Abstract
Induced pluripotent stem cells (iPSCs) have emerged as a revolutionary tool in cell therapies due to their ability to differentiate into various cell types, unlimited supply, and potential as off-the-shelf cell products. New advances in iPSC-derived immune cells have generated potent iNK and iT cells which showed robust killing of cancer cells in animal models and clinical trials. With the advent of advanced genome editing technologies that enable the development of highly engineered cells, here we outline 12 strategies to engineer iPSCs to overcome limitations and challenges of current cell-based immunotherapies, including safety switches, stealth edits, avoiding graft-versus-host disease (GvHD), targeting, reduced lymphodepletion, efficient differentiation, increased in vivo persistence, stemness, metabolic fitness, homing/trafficking, and overcoming suppressive tumor microenvironment and stromal cell barrier. With the development of advanced genome editing techniques, it is now possible to insert large DNA sequences into precise genomic locations without the need for DNA double strand breaks, enabling the potential for multiplexed knock out and insertion. These technological breakthroughs have made it possible to engineer complex cell therapy products at unprecedented speed and efficiency. The combination of iPSC derived iNK, iT and advanced gene editing techniques provides new opportunities and could lead to a new era for next generation of cell immunotherapies.
Collapse
Affiliation(s)
- Minggang Fang
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Alexander Allen
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Chong Luo
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| | - Jonathan D Finn
- Cell Therapy, Tome Biosciences, Watertown, MA, United States
| |
Collapse
|
6
|
Lazovic B, Nguyen HT, Ansarizadeh M, Wigge L, Kohl F, Li S, Carracedo M, Kettunen J, Krimpenfort L, Elgendy R, Richter K, De Silva L, Bilican B, Singh P, Saxena P, Jakobsson L, Hong X, Eklund L, Hicks R. Human iPSC and CRISPR targeted gene knock-in strategy for studying the somatic TIE2 L914F mutation in endothelial cells. Angiogenesis 2024; 27:523-542. [PMID: 38771392 PMCID: PMC11303492 DOI: 10.1007/s10456-024-09925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/22/2024] [Indexed: 05/22/2024]
Abstract
Induced pluripotent stem cell (iPSC) derived endothelial cells (iECs) have emerged as a promising tool for studying vascular biology and providing a platform for modelling various vascular diseases, including those with genetic origins. Currently, primary ECs are the main source for disease modelling in this field. However, they are difficult to edit and have a limited lifespan. To study the effects of targeted mutations on an endogenous level, we generated and characterized an iPSC derived model for venous malformations (VMs). CRISPR-Cas9 technology was used to generate a novel human iPSC line with an amino acid substitution L914F in the TIE2 receptor, known to cause VMs. This enabled us to study the differential effects of VM causative mutations in iECs in multiple in vitro models and assess their ability to form vessels in vivo. The analysis of TIE2 expression levels in TIE2L914F iECs showed a significantly lower expression of TIE2 on mRNA and protein level, which has not been observed before due to a lack of models with endogenous edited TIE2L914F and sparse patient data. Interestingly, the TIE2 pathway was still significantly upregulated and TIE2 showed high levels of phosphorylation. TIE2L914F iECs exhibited dysregulated angiogenesis markers and upregulated migration capability, while proliferation was not affected. Under shear stress TIE2L914F iECs showed reduced alignment in the flow direction and a larger cell area than TIE2WT iECs. In summary, we developed a novel TIE2L914F iPSC-derived iEC model and characterized it in multiple in vitro models. The model can be used in future work for drug screening for novel treatments for VMs.
Collapse
Affiliation(s)
- Bojana Lazovic
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hoang-Tuan Nguyen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Finnadvance Ltd., Oulu, Finland
| | - Mohammadhassan Ansarizadeh
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Leif Wigge
- Data Sciences and Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Franziska Kohl
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Songyuan Li
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Miguel Carracedo
- Bioscience Renal, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Luc Krimpenfort
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ramy Elgendy
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kati Richter
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Laknee De Silva
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Bilada Bilican
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Pratik Saxena
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lars Jakobsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuechong Hong
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ryan Hicks
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, UK.
| |
Collapse
|
7
|
O’Hare N, Millican K, Ebong EE. Unraveling neurovascular mysteries: the role of endothelial glycocalyx dysfunction in Alzheimer's disease pathogenesis. Front Physiol 2024; 15:1394725. [PMID: 39027900 PMCID: PMC11254711 DOI: 10.3389/fphys.2024.1394725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
While cardiovascular disease, cancer, and human immunodeficiency virus (HIV) mortality rates have decreased over the past 20 years, Alzheimer's Disease (AD) deaths have risen by 145% since 2010. Despite significant research efforts, effective AD treatments remain elusive due to a poorly defined etiology and difficulty in targeting events that occur too downstream of disease onset. In hopes of elucidating alternative treatment pathways, now, AD is commonly being more broadly defined not only as a neurological disorder but also as a progression of a variety of cerebrovascular pathologies highlighted by the breakdown of the blood-brain barrier. The endothelial glycocalyx (GCX), which is an essential regulator of vascular physiology, plays a crucial role in the function of the neurovascular system, acting as an essential vascular mechanotransducer to facilitate ultimate blood-brain homeostasis. Shedding of the cerebrovascular GCX could be an early indication of neurovascular dysfunction and may subsequently progress neurodegenerative diseases like AD. Recent advances in in vitro modeling, gene/protein silencing, and imaging techniques offer new avenues of scrutinizing the GCX's effects on AD-related neurovascular pathology. Initial studies indicate GCX degradation in AD and other neurodegenerative diseases and have begun to demonstrate a possible link to GCX loss and cerebrovascular dysfunction. This review will scrutinize the GCX's contribution to known vascular etiologies of AD and propose future work aimed at continuing to uncover the relationship between GCX dysfunction and eventual AD-associated neurological deterioration.
Collapse
Affiliation(s)
- Nicholas O’Hare
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, United States
| | - Eno E. Ebong
- Department of Chemical Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, Northeastern University, Boston, MA, United States
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
8
|
Li YR, Zhou Y, Yu J, Zhu Y, Lee D, Zhu E, Li Z, Kim YJ, Zhou K, Fang Y, Lyu Z, Chen Y, Tian Y, Huang J, Cen X, Husman T, Cho JM, Hsiai T, Zhou JJ, Wang P, Puliafito BR, Larson SM, Yang L. Engineering allorejection-resistant CAR-NKT cells from hematopoietic stem cells for off-the-shelf cancer immunotherapy. Mol Ther 2024; 32:1849-1874. [PMID: 38584391 PMCID: PMC11184334 DOI: 10.1016/j.ymthe.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/21/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
The clinical potential of current FDA-approved chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy is encumbered by its autologous nature, which presents notable challenges related to manufacturing complexities, heightened costs, and limitations in patient selection. Therefore, there is a growing demand for off-the-shelf universal cell therapies. In this study, we have generated universal CAR-engineered NKT (UCAR-NKT) cells by integrating iNKT TCR engineering and HLA gene editing on hematopoietic stem cells (HSCs), along with an ex vivo, feeder-free HSC differentiation culture. The UCAR-NKT cells are produced with high yield, purity, and robustness, and they display a stable HLA-ablated phenotype that enables resistance to host cell-mediated allorejection. These UCAR-NKT cells exhibit potent antitumor efficacy to blood cancers and solid tumors, both in vitro and in vivo, employing a multifaceted array of tumor-targeting mechanisms. These cells are further capable of altering the tumor microenvironment by selectively depleting immunosuppressive tumor-associated macrophages and myeloid-derived suppressor cells. In addition, UCAR-NKT cells demonstrate a favorable safety profile with low risks of graft-versus-host disease and cytokine release syndrome. Collectively, these preclinical studies underscore the feasibility and significant therapeutic potential of UCAR-NKT cell products and lay a foundation for their translational and clinical development.
Collapse
MESH Headings
- Humans
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Immunotherapy, Adoptive/methods
- Mice
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Gene Editing
- Xenograft Model Antitumor Assays
- Neoplasms/therapy
- Neoplasms/immunology
- Cell Line, Tumor
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Enbo Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhe Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kuangyi Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zibai Lyu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanxin Tian
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinjian Cen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tiffany Husman
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jae Min Cho
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tzung Hsiai
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jin J Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Benjamin R Puliafito
- Department of Hematology and Oncology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M Larson
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Centre of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
9
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Çakmak A, Fuerkaiti S, Karagüzel D, Karaaslan Ç, Gümüşderelioğlu M. Enhanced Osteogenic Potential of Noggin Knockout C2C12 Cells on BMP-2 Releasing Silk Scaffolds. ACS Biomater Sci Eng 2023; 9:6175-6185. [PMID: 37796024 PMCID: PMC10646847 DOI: 10.1021/acsbiomaterials.3c00506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
The CRISPR/Cas9 mechanism offers promising therapeutic approaches for bone regeneration by stimulating or suppressing critical signaling pathways. In this study, we aimed to increase the activity of BMP-2 signaling through knockout of Noggin, thereby establishing a synergistic effect on the osteogenic activity of cells in the presence of BMP-2. Since Noggin is an antagonist expressed in skeletal tissues and binds to subunits of bone morphogenetic proteins (BMPs) to inhibit osteogenic differentiation, here Noggin expression was knocked out using the CRISPR/Cas9 system. In accordance with this purpose, C2C12 (mouse myoblast) cells were transfected with CRISPR/Cas9 plasmids. Transfection was achieved with Lipofectamine and confirmed with intense fluorescent signals in microscopic images and deletion in target sequence in Sanger sequencing analysis. Thus, Noggin knockout cells were identified as a new cell source for tissue engineering studies. Then, the transfected cells were seeded on highly porous silk scaffolds bearing BMP-2-loaded silk nanoparticles (30 ng BMP-2/mg silk nanoparticle) in the size of 288 ± 62 nm. BMP-2 is released from the scaffolds in a controlled manner for up to 60 days. The knockout of Noggin by CRISPR/Cas9 was found to synergistically promote osteogenic differentiation in the presence of BMP-2 through increased Coll1A1 and Ocn expression and mineralization. Gene editing of Noggin and BMP-2 increased almost 2-fold Col1A1 expression and almost 3-fold Ocn expression compared to the control group. Moreover, transfected cells produced extracellular matrix (ECM) containing collagen fibers on the scaffolds and mineral-like structures were formed on the fibers. In addition, mineralization characterized by intense Alizarin red staining was detected in transfected cells cultured in the presence of BMP-2, while the other groups did not exhibit any mineralized areas. As has been demonstrated in this study, the CRISPR/Cas9 mechanism has great potential for obtaining new cell sources to be used in tissue engineering studies.
Collapse
Affiliation(s)
- Anıl
Sera Çakmak
- Department
of Chemical Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Sümeyra Fuerkaiti
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| | - Dilara Karagüzel
- Department
of Biology, Molecular Biology Section, Hacettepe
University, 06800 Ankara, Turkey
| | - Çağatay Karaaslan
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
- Department
of Biology, Molecular Biology Section, Hacettepe
University, 06800 Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Department
of Chemical Engineering, Hacettepe University, 06800 Ankara, Turkey
- Division
of Bioengineering, Graduate School of Science and Engineering, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
11
|
Hammer Q, Perica K, van Ooijen H, Mbofung R, Momayyezi P, Varady E, Martin KE, Pan Y, Jelcic M, Groff B, Abujarour R, Krokeide S, Lee T, Williams A, Goodridge JP, Valamehr B, Önfelt B, Sadelain M, Malmberg KJ. Genetic ablation of adhesion ligands averts rejection of allogeneic immune cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.557143. [PMID: 37873468 PMCID: PMC10592662 DOI: 10.1101/2023.10.09.557143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.
Collapse
|
12
|
Draghi A, Presti M, Jensen AWP, Chamberlain CA, Albieri B, Rasmussen ACK, Andersen MH, Crowther MD, Svane IM, Donia M. Uncoupling CD4+ TIL-Mediated Tumor Killing from JAK-Signaling in Melanoma. Clin Cancer Res 2023; 29:3937-3947. [PMID: 37126006 DOI: 10.1158/1078-0432.ccr-22-3853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Impaired MHCI-presentation and insensitivity to immune effector molecules are common features of immune checkpoint blockade (ICB)-resistant tumors and can be, respectively, associated with loss of β2 microglobulin (B2M) or impaired IFNγ signaling. Patients with ICB-resistant tumors can respond to alternative immunotherapies, such as infusion of autologous tumor-infiltrating lymphocytes (TIL). CD4+ T cells can exert cytotoxic functions against tumor cells; however, it is unclear whether CD4+ T-cell responses can be exploited to improve the clinical outcomes of patients affected by ICB-resistant tumors. EXPERIMENTAL DESIGN Here, we exploited CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 gene editing to reproduce immune-resistant tumor phenotypes via gene knockout (KO). To determine the role of cytotoxic CD4+ TILs in ICB-resistant tumors, we investigated CD4+ TIL-mediated cytotoxicity in matched pairs of TILs and autologous melanoma cell lines, used as a model of patient-specific immune-tumor interaction. Around 40% of melanomas constitutively express MHC Class II molecules; hence, melanomas with or without natural constitutive MHC Class II expression (MHCIIconst+ or MHCIIconst-) were used. RESULTS CD4+ TIL-mediated cytotoxicity was not affected by B2M loss but was dependent on the expression of CIITA. MHCIIconst+ melanomas were killed by tumor-specific CD4+ TILs even in the absence of IFNγ-mediated MHCII upregulation, whereas IFNγ was necessary for CD4+ TIL-mediated cytotoxicity against MHCIIconst- melanomas. Notably, although tumor-specific CD4+ TILs did not kill JAK1KO MHCIIconst- melanomas even after IFNγ stimulation, sensitivity to CD4+ TIL-mediated cytotoxicity was maintained by JAK1KO MHCIIconst+ melanomas. CONCLUSIONS In conclusion, our data indicate that exploiting tumor-specific cytotoxic CD4+ TILs could help overcome resistance to ICB mediated by IFNγ-signaling loss in MHCIIconst+ melanomas. See related commentary by Betof Warner and Luke, p. 3829.
Collapse
Affiliation(s)
- Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Agnete W P Jensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Christopher A Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Benedetta Albieri
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anne-Christine K Rasmussen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mads H Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Michael D Crowther
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
13
|
Sowbhagya R, Muktha H, Ramakrishnaiah TN, Surendra AS, Tanvi Y, Nivitha K, Rajashekara S. CRISPR/Cas-mediated genome editing in mice for the development of drug delivery mechanism. Mol Biol Rep 2023; 50:7729-7743. [PMID: 37438488 DOI: 10.1007/s11033-023-08659-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/30/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND To manipulate particular locations in the bacterial genome, researchers have recently resorted to a group of unique sequences in bacterial genomes that are responsible for safeguarding bacteria against bacteriophages. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) are two such systems, each of which consists of an RNA component and an enzyme component. METHODS AND RESULTS This review focuses primarily on how CRISPR/Cas9 technology can be used to make models to study human diseases in mice. Creating RNA molecules that direct endonucleases to a specific position in the genome are crucial for achieving a specific genetic modification. CRISPR/Cas9 technology has allowed scientists to edit the genome with greater precision than ever before. Researchers can use knock-in and knock-out methods to model human diseases such as Neurological, cardiovascular disease, and cancer. CONCLUSIONS In terms of developing innovative methods to discover ailments for diseases/disorders, improved CRISPR/Cas9 technology will provide easier access to valuable novel animal models.
Collapse
Affiliation(s)
- Ramachandregowda Sowbhagya
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Harsha Muktha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Thippenahalli Narasimhaiah Ramakrishnaiah
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Adagur Sudarshan Surendra
- Department of Biochemistry, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Yesudas Tanvi
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Karayi Nivitha
- Department of Biotechnology and Genetics, M.S. Ramaiah College of Arts, Science and Commerce, 7th Main Rd, MSRIT, M S R Nagar, Mathikere, Bengaluru, Karnataka, 560 054, India
| | - Somashekara Rajashekara
- Centre for Applied Genetics, Department of Studies in Zoology, Bangalore University, Jnana Bharathi Campus, Off Mysuru Road, Bengaluru, Karnataka, 560 056, India.
| |
Collapse
|
14
|
Glaser V, Flugel C, Kath J, Du W, Drosdek V, Franke C, Stein M, Pruß A, Schmueck-Henneresse M, Volk HD, Reinke P, Wagner DL. Combining different CRISPR nucleases for simultaneous knock-in and base editing prevents translocations in multiplex-edited CAR T cells. Genome Biol 2023; 24:89. [PMID: 37095570 PMCID: PMC10123993 DOI: 10.1186/s13059-023-02928-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/06/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND Multiple genetic modifications may be required to develop potent off-the-shelf chimeric antigen receptor (CAR) T cell therapies. Conventional CRISPR-Cas nucleases install sequence-specific DNA double-strand breaks (DSBs), enabling gene knock-out or targeted transgene knock-in. However, simultaneous DSBs provoke a high rate of genomic rearrangements which may impede the safety of the edited cells. RESULTS Here, we combine a non-viral CRISPR-Cas9 nuclease-assisted knock-in and Cas9-derived base editing technology for DSB free knock-outs within a single intervention. We demonstrate efficient insertion of a CAR into the T cell receptor alpha constant (TRAC) gene, along with two knock-outs that silence major histocompatibility complexes (MHC) class I and II expression. This approach reduces translocations to 1.4% of edited cells. Small insertions and deletions at the base editing target sites indicate guide RNA exchange between the editors. This is overcome by using CRISPR enzymes of distinct evolutionary origins. Combining Cas12a Ultra for CAR knock-in and a Cas9-derived base editor enables the efficient generation of triple-edited CAR T cells with a translocation frequency comparable to unedited T cells. Resulting TCR- and MHC-negative CAR T cells resist allogeneic T cell targeting in vitro. CONCLUSIONS We outline a solution for non-viral CAR gene transfer and efficient gene silencing using different CRISPR enzymes for knock-in and base editing to prevent translocations. This single-step procedure may enable safer multiplex-edited cell products and demonstrates a path towards off-the-shelf CAR therapeutics.
Collapse
Affiliation(s)
- Viktor Glaser
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Christian Flugel
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Jonas Kath
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Weijie Du
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Vanessa Drosdek
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Clemens Franke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maik Stein
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Axel Pruß
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- CheckImmune GmbH, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dimitrios L Wagner
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Charité Mitte, Charitéplatz 1, 10117, Berlin, Germany.
- Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Campus Virchow Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
15
|
Kesavan G. Innovations in CRISPR-Based Therapies. Mol Biotechnol 2023; 65:138-145. [PMID: 34586618 DOI: 10.1007/s12033-021-00411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/21/2021] [Indexed: 01/18/2023]
Abstract
Gene and cell therapies have shown tremendous advancement in the last 5 years. Prominent examples include the successful use of CRISPR-edited stem cells for treating blood disorders like sickle cell anemia and beta-thalassemia, and ongoing clinical trials for treating blindness. This mini-review assesses the status of CRISPR-based therapies, both in vivo and ex vivo, and the challenges associated with clinical translation. In vivo CRISPR therapies have been used to treat eye and liver diseases due to the practicality of delivering editing components to the target tissue. In contrast, even though ex vivo CRISPR therapy involves cell isolation, expansion, and infusion, its advantages include characterizing the gene edits before infusion and restricting off-target effects in other tissues. Further, the safety, affordability, and feasibility of CRISPR therapies, especially for treating large number of patients, are discussed.
Collapse
Affiliation(s)
- Gokul Kesavan
- Vowels Lifesciences Private Limited, 271, 5th Main Rd, 4th Block, Jayanagar, Bengaluru, Karnataka, 560011, India. .,Vowels Advanced School of Learning and Research, 271, 5th Main Rd, 4th Block, Jayanagar, Bengaluru, Karnataka, 560011, India.
| |
Collapse
|
16
|
Baltazar T, Jiang B, Moncayo A, Merola J, Albanna MZ, Saltzman WM, Pober JS. 3D bioprinting of an implantable xeno-free vascularized human skin graft. Bioeng Transl Med 2023; 8:e10324. [PMID: 36684084 PMCID: PMC9842062 DOI: 10.1002/btm2.10324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 01/25/2023] Open
Abstract
Bioengineered tissues or organs produced using matrix proteins or components derived from xenogeneic sources pose risks of allergic responses, immune rejection, or even autoimmunity. Here, we report successful xeno-free isolation, expansion, and cryopreservation of human endothelial cells (EC), fibroblasts (FBs), pericytes (PCs), and keratinocytes (KCs). We further demonstrate the bioprinting of a human skin substitute with a dermal layer containing xeno-free cultured human EC, FBs, and PCs in a xeno-free bioink containing human collagen type I and fibronectin layered in a biocompatible polyglycolic acid mesh and subsequently seeded with xeno-free human KCs to form an epidermal layer. Following implantation of such bilayered skin grafts on the dorsum of immunodeficient mice, KCs form a mature stratified epidermis with rete ridge-like structures. The ECs and PCs form human EC-lined perfused microvessels within 2 weeks after implantation, preventing graft necrosis, and eliciting further perfusion of the graft by angiogenic host microvessels. As proof-of-concept, we generated 12 individual grafts using a single donor of all four cell types. In summary, we describe the fabrication of a bioprinted vascularized bilayered skin substitute under completely xeno-free culture conditions demonstrating feasibility of a xeno-free approach to complex tissue engineering.
Collapse
Affiliation(s)
- Tania Baltazar
- Department of Immunobiology, Yale School of Medicine New Haven Connecticut USA
| | - Bo Jiang
- Department of Surgery Yale University School of Medicine New Haven Connecticut USA
- Department of Vascular Surgery The First Hospital of China Medical University Shenyang China
| | - Alejandra Moncayo
- Department of Chronic Disease Epidemiology Yale University School of Public Health New Haven Connecticut USA
- College of Medicine SUNY Downstate Health Sciences University Brooklyn New York USA
| | - Jonathan Merola
- Department of Surgery Yale University School of Medicine New Haven Connecticut USA
- Department of Surgery Columbia University Medical Center New York New York USA
| | - Mohammad Z Albanna
- Humabiologics Inc Phoenix Arizona USA
- Department of General Surgery Atrium Health Wake Forest Baptist Winston-Salem North Carolina USA
| | - W Mark Saltzman
- Department of Biomedical Engineering Yale University New Haven Connecticut USA
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine New Haven Connecticut USA
| |
Collapse
|
17
|
HIF1A Knockout by Biallelic and Selection-Free CRISPR Gene Editing in Human Primary Endothelial Cells with Ribonucleoprotein Complexes. Biomolecules 2022; 13:biom13010023. [PMID: 36671408 PMCID: PMC9856017 DOI: 10.3390/biom13010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Primary endothelial cells (ECs), especially human umbilical vein endothelial cells (HUVECs), are broadly used in vascular biology. Gene editing of primary endothelial cells is known to be challenging, due to the low DNA transfection efficiency and the limited proliferation capacity of ECs. We report the establishment of a highly efficient and selection-free CRISPR gene editing approach for primary endothelial cells (HUVECs) with ribonucleoprotein (RNP) complex. We first optimized an efficient and cost-effective protocol for messenger RNA (mRNA) delivery into primary HUVECs by nucleofection. Nearly 100% transfection efficiency of HUVECs was achieved with EGFP mRNA. Using this optimized DNA-free approach, we tested RNP-mediated CRISPR gene editing of primary HUVECs with three different gRNAs targeting the HIF1A gene. We achieved highly efficient (98%) and biallelic HIF1A knockout in HUVECs without selection. The effects of HIF1A knockout on ECs' angiogenic characteristics and response to hypoxia were validated by functional assays. Our work provides a simple method for highly efficient gene editing of primary endothelial cells (HUVECs) in studies and manipulations of ECs functions.
Collapse
|
18
|
Abstract
This Review examines the state-of-the-art in the delivery of nucleic acid therapies that are directed to the vascular endothelium. First, we review the most important homeostatic functions and properties of the vascular endothelium and summarize the nucleic acid tools that are currently available for gene therapy and nucleic acid delivery. Second, we consider the opportunities available with the endothelium as a therapeutic target and the experimental models that exist to evaluate the potential of those opportunities. Finally, we review the progress to date from investigations that are directly targeting the vascular endothelium: for vascular disease, for peri-transplant therapy, for angiogenic therapies, for pulmonary endothelial disease, and for the blood-brain barrier, ending with a summary of the future outlook in this field.
Collapse
Affiliation(s)
| | | | | | - W. Mark Saltzman
- Department of Biomedical Engineering
- Department of Chemical & Environmental Engineering
- Department of Cellular & Molecular Physiology
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
19
|
Li W, Zhu X, Xu Y, Chen J, Zhang H, Yang Z, Qi Y, Hong J, Li Y, Wang G, Shen J, Qian C. Simultaneous editing of TCR, HLA-I/II and HLA-E resulted in enhanced universal CAR-T resistance to allo-rejection. Front Immunol 2022; 13:1052717. [PMID: 36532006 PMCID: PMC9757162 DOI: 10.3389/fimmu.2022.1052717] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Introduction The major challenge for universal chimeric antigen receptor T cell (UCAR-T) therapy is the inability to persist for a long time in patients leading to inferior efficacy clinically. The objective of this study was to design a novel UCAR-T cell that could avoid the occurrence of allo-rejection and provide effective resistance to allogeneic Natural Killer (NK) cell rejection, together with the validation of its safety and efficacy ex vivo and in vivo. Methods We prepared T-cell receptor (TCR), Human leukocyte antigen (HLA)-I/II triple-edited (TUCAR-T) cells and evaluated the anti-tumor efficacy ex vivo and in vivo. We measured the resistance of exogenous HLA-E expressing TUCAR-T (ETUCAR-T) to NK rejection by using an enhanced NK. Furthermore, we established the safety and efficacy of this regimen by treating Nalm6 tumor-bearing mice with a repeated high-dose infusion of ETUCAR-T. Moreover, we analyzed the effects of individual gene deficiency CAR-T on treated mice and the changes in the transcriptional profiles of different gene-edited T cells via RNA-Seq. Results Data showed that HLA-II editing didn't impair the anti-tumor efficacy of TUCAR-T ex vivo and in vivo and we found for the first time that HLA-II deficiency could facilitate the persistence of CAR-T. Contrastively, as the most commonly eliminated target in UCAR-T, TCR deficiency was found to be a key disadvantageous factor for the shorter-term anti-tumor efficacy in vivo. Our study demonstrated ETUCAR-T could effectively resist allogeneic NK rejection ex vivo and in vivo. Discussion Our research provided a potential and effective strategy for promoting the persistence of UCAR-T cells in clinical application. And it reveals the potential key factors of the poor persistence of UCAR-T along with new insights for future development.
Collapse
Affiliation(s)
- Wuling Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiuxiu Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| | - Yanmin Xu
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Jun Chen
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Hongtao Zhang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Zhi Yang
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yanan Qi
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Juan Hong
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Yunyan Li
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Junjie Shen
- Chongqing Key Laboratory of Gene and Cell Therapy, Institute of Precision Medicine and Biotechnology, Chongqing Precision Biotech Co., Ltd., Chongqing, China
| | - Cheng Qian
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Center for Precision Medicine of Cancer, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
20
|
Abstract
Endothelial colony-forming cells (ECFCs) are progenitor cells that can give rise to colonies of highly proliferative vascular endothelial cells (ECs) with clonal expansion and in vivo blood vessel-forming potential. More than two decades ago, the identification of ECFCs in human peripheral blood created tremendous opportunities as having a clinically accessible source of autologous ECs could facilitate meaningful therapies with the potential to impact multiple vascular diseases. Nevertheless, until recently, the field of endothelial progenitor cells has been plagued with ambiguities and controversies, and reaching a consensus on the definition of ECFCs has not been straightforward. Moreover, although the basic phenotypical and functional characteristics of cultured ECFCs are now well established, some fundamental questions such as the origin of ECFCs and their physiological roles in health and disease remain incompletely understood. Here, I highlight some critical studies that have shaped our current understanding of ECFCs in humans. Insights into the biological attributes of ECFCs are essential for facilitating the clinical translation of their therapeutic potential.
Collapse
Affiliation(s)
- Juan M Melero-Martin
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements. Cells 2022; 11:cells11223615. [PMID: 36429042 PMCID: PMC9688409 DOI: 10.3390/cells11223615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022] Open
Abstract
This is a spectacular moment for genetics to evolve in genome editing, which encompasses the precise alteration of the cellular DNA sequences within various species. One of the most fascinating genome-editing technologies currently available is Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its associated protein 9 (CRISPR-Cas9), which have integrated deeply into the research field within a short period due to its effectiveness. It became a standard tool utilized in a broad spectrum of biological and therapeutic applications. Furthermore, reliable disease models are required to improve the quality of healthcare. CRISPR-Cas9 has the potential to diversify our knowledge in genetics by generating cellular models, which can mimic various human diseases to better understand the disease consequences and develop new treatments. Precision in genome editing offered by CRISPR-Cas9 is now paving the way for gene therapy to expand in clinical trials to treat several genetic diseases in a wide range of species. This review article will discuss genome-editing tools: CRISPR-Cas9, Zinc Finger Nucleases (ZFNs), and Transcription Activator-Like Effector Nucleases (TALENs). It will also encompass the importance of CRISPR-Cas9 technology in generating cellular disease models for novel therapeutics, its applications in gene therapy, and challenges with novel strategies to enhance its specificity.
Collapse
|
22
|
Li YR, Zhou Y, Kim YJ, Zhu Y, Ma F, Yu J, Wang YC, Chen X, Li Z, Zeng S, Wang X, Lee D, Ku J, Tsao T, Hardoy C, Huang J, Cheng D, Montel-Hagen A, Seet CS, Crooks GM, Larson SM, Sasine JP, Wang X, Pellegrini M, Ribas A, Kohn DB, Witte O, Wang P, Yang L. Development of allogeneic HSC-engineered iNKT cells for off-the-shelf cancer immunotherapy. Cell Rep Med 2021; 2:100449. [PMID: 34841295 PMCID: PMC8607011 DOI: 10.1016/j.xcrm.2021.100449] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/12/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023]
Abstract
Cell-based immunotherapy has become the new-generation cancer medicine, and "off-the-shelf" cell products that can be manufactured at large scale and distributed readily to treat patients are necessary. Invariant natural killer T (iNKT) cells are ideal cell carriers for developing allogeneic cell therapy because they are powerful immune cells targeting cancers without graft-versus-host disease (GvHD) risk. However, healthy donor blood contains extremely low numbers of endogenous iNKT cells. Here, by combining hematopoietic stem cell (HSC) gene engineering and in vitro differentiation, we generate human allogeneic HSC-engineered iNKT (AlloHSC-iNKT) cells at high yield and purity; these cells closely resemble endogenous iNKT cells, effectively target tumor cells using multiple mechanisms, and exhibit high safety and low immunogenicity. These cells can be further engineered with chimeric antigen receptor (CAR) to enhance tumor targeting or/and gene edited to ablate surface human leukocyte antigen (HLA) molecules and further reduce immunogenicity. Collectively, these preclinical studies demonstrate the feasibility and cancer therapy potential of AlloHSC-iNKT cell products and lay a foundation for their translational and clinical development.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yang Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yanni Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xianhui Chen
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhe Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel Zeng
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xi Wang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Derek Lee
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Josh Ku
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tasha Tsao
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christian Hardoy
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jie Huang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amélie Montel-Hagen
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher S. Seet
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gay M. Crooks
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah M. Larson
- Department of Internal Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua P. Sasine
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xiaoyan Wang
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Antoni Ribas
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donald B. Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Division of Hematology/Oncology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen Witte
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Draghi A, Chamberlain CA, Khan S, Papp K, Lauss M, Soraggi S, Radic HD, Presti M, Harbst K, Gokuldass A, Kverneland A, Nielsen M, Westergaard MCW, Andersen MH, Csabai I, Jönsson G, Szallasi Z, Svane IM, Donia M. Rapid Identification of the Tumor-Specific Reactive TIL Repertoire via Combined Detection of CD137, TNF, and IFNγ, Following Recognition of Autologous Tumor-Antigens. Front Immunol 2021; 12:705422. [PMID: 34707600 PMCID: PMC8543011 DOI: 10.3389/fimmu.2021.705422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Detecting the entire repertoire of tumor-specific reactive tumor-infiltrating lymphocytes (TILs) is essential for investigating their immunological functions in the tumor microenvironment. Current in vitro assays identifying tumor-specific functional activation measure the upregulation of surface molecules, de novo production of antitumor cytokines, or mobilization of cytotoxic granules following recognition of tumor-antigens, yet there is no widely adopted standard method. Here we established an enhanced, yet simple, method for identifying simultaneously CD8+ and CD4+ tumor-specific reactive TILs in vitro, using a combination of widely known and available flow cytometry assays. By combining the detection of intracellular CD137 and de novo production of TNF and IFNγ after recognition of naturally-presented tumor antigens, we demonstrate that a larger fraction of tumor-specific and reactive CD8+ TILs can be detected in vitro compared to commonly used assays. This assay revealed multiple polyfunctionality-based clusters of both CD4+ and CD8+ tumor-specific reactive TILs. In situ, the combined detection of TNFRSF9, TNF, and IFNG identified most of the tumor-specific reactive TIL repertoire. In conclusion, we describe a straightforward method for efficient identification of the tumor-specific reactive TIL repertoire in vitro, which can be rapidly adopted in most cancer immunology laboratories.
Collapse
Affiliation(s)
- Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Krisztian Papp
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Martin Lauss
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Samuele Soraggi
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Haja Dominike Radic
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Katja Harbst
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Aishwarya Gokuldass
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anders Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
24
|
Povsic TJ, Gersh BJ. Stem Cells in Cardiovascular Diseases: 30,000-Foot View. Cells 2021; 10:cells10030600. [PMID: 33803227 PMCID: PMC8001267 DOI: 10.3390/cells10030600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Stem cell and regenerative approaches that might rejuvenate the heart have immense intuitive appeal for the public and scientific communities. Hopes were fueled by initial findings from preclinical models that suggested that easily obtained bone marrow cells might have significant reparative capabilities; however, after initial encouraging pre-clinical and early clinical findings, the realities of clinical development have placed a damper on the field. Clinical trials were often designed to detect exceptionally large treatment effects with modest patient numbers with subsequent disappointing results. First generation approaches were likely overly simplistic and relied on a relatively primitive understanding of regenerative mechanisms and capabilities. Nonetheless, the field continues to move forward and novel cell derivatives, platforms, and cell/device combinations, coupled with a better understanding of the mechanisms that lead to regenerative capabilities in more primitive models and modifications in clinical trial design suggest a brighter future.
Collapse
Affiliation(s)
- Thomas J. Povsic
- Department of Medicine, and Duke Clinical Research Institute, Duke University, Durham, NC 27705, USA
- Correspondence:
| | - Bernard J. Gersh
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA;
| |
Collapse
|
25
|
Barua R, Mizuno K, Tashima Y, Ogawa M, Takeuchi H, Taguchi A, Okajima T. Bioinformatics and Functional Analyses Implicate Potential Roles for EOGT and L-fringe in Pancreatic Cancers. Molecules 2021; 26:molecules26040882. [PMID: 33562410 PMCID: PMC7915272 DOI: 10.3390/molecules26040882] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Notch signaling receptors, ligands, and their downstream target genes are dysregulated in pancreatic ductal adenocarcinoma (PDAC), suggesting a role of Notch signaling in pancreatic tumor development and progression. However, dysregulation of Notch signaling by post-translational modification of Notch receptors remains poorly understood. Here, we analyzed the Notch-modifying glycosyltransferase involved in the regulation of the ligand-dependent Notch signaling pathway. Bioinformatic analysis revealed that the expression of epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) and Lunatic fringe (LFNG) positively correlates with a subset of Notch signaling genes in PDAC. The lack of EOGT or LFNG expression inhibited the proliferation and migration of Panc-1 cells, as observed by the inhibition of Notch activation. EOGT expression is significantly increased in the basal subtype, and low expression of both EOGT and LFNG predicts better overall survival in PDAC patients. These results imply potential roles for EOGT- and LFNG-dependent Notch signaling in PDAC.
Collapse
Affiliation(s)
- Rashu Barua
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
| | - Kazuyuki Mizuno
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
| | - Yuko Tashima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center, 1-1 Kanokoden, Chikusa-ku, Nagoya, Aichi 464-8681, Japan; (K.M.); (A.T.)
- Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (R.B.); (Y.T.); (M.O.); (H.T.)
- Institute for Glyco-core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 Nagoya, Japan
- Correspondence: ; Tel.: +81-52-744-2068; Fax: +81-52-744-2069
| |
Collapse
|
26
|
Halm D, Leibig N, Martens J, Stark GB, Groß T, Zimmermann S, Finkenzeller G, Lampert F. Direct comparison of the immunogenicity of major histocompatibility complex-I and -II deficient mesenchymal stem cells in vivo. Biol Chem 2021; 402:693-702. [PMID: 33544464 DOI: 10.1515/hsz-2020-0306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/19/2021] [Indexed: 11/15/2022]
Abstract
Mesenchymal stem cells (MSCs) play an important role in tissue engineering applications aiming at the regeneration or substitution of damaged tissues. In this context, off-the-shelf allogeneic MSCs would represent an attractive universal cell source. However, immune rejection is a major limitation for the clinical use of allogeneic MSCs. Immune rejection is mediated by the expression of major histocompatibility complexes (MHC)-I and -II on the donor cells. In this study, we eliminated MHC-I and/or MHC-II expression in human MSCs by using the CRISPR/Cas9 technology and investigated the effect of the individual or combined knockout of MHC-I and MHC-II on MSC survival after transplantation into immunocompetent mice. Elimination of MHC-I and/or MHC-II expression did not affect mesenchymal marker gene expression, viability, proliferation and the differentiation potential of MSCs in vitro. However, cell survival of transplanted MSCs was significantly elevated in MHC-I and MHC-II deficient MSCs. A direct side-by-side comparison does not reveal any significant difference in the immunogenicity of MHC-I and MHC-II knockout MSCs. Moreover, double knockout of MHC-I and MHC-II did not further increase in vivo cell survival of transplanted MSCs. Our results demonstrate that knockout of MHC-I and/or MHC-II represents an effective strategy to prevent immune rejection of allogeneic MSCs.
Collapse
Affiliation(s)
- Darius Halm
- Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106Freiburg, Germany
| | - Nico Leibig
- Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106Freiburg, Germany
| | - Jens Martens
- Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106Freiburg, Germany
| | - G Björn Stark
- Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106Freiburg, Germany
| | - Tobias Groß
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110Freiburg, Germany
| | - Stefan Zimmermann
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110Freiburg, Germany
| | - Günter Finkenzeller
- Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106Freiburg, Germany
| | - Florian Lampert
- Department of Plastic and Hand Surgery, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, D-79106Freiburg, Germany
| |
Collapse
|
27
|
Hoerster K, Uhrberg M, Wiek C, Horn PA, Hanenberg H, Heinrichs S. HLA Class I Knockout Converts Allogeneic Primary NK Cells Into Suitable Effectors for "Off-the-Shelf" Immunotherapy. Front Immunol 2021; 11:586168. [PMID: 33584651 PMCID: PMC7878547 DOI: 10.3389/fimmu.2020.586168] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/04/2020] [Indexed: 11/13/2022] Open
Abstract
Cellular immunotherapy using chimeric antigen receptors (CARs) so far has almost exclusively used autologous peripheral blood-derived T cells as immune effector cells. However, harvesting sufficient numbers of T cells is often challenging in heavily pre-treated patients with malignancies and perturbed hematopoiesis and perturbed hematopoiesis. Also, such a CAR product will always be specific for the individual patient. In contrast, NK cell infusions can be performed in non-HLA-matched settings due to the absence of alloreactivity of these innate immune cells. Still, the infused NK cells are subject to recognition and rejection by the patient's immune system, thereby limiting their life-span in vivo and undermining the possibility for multiple infusions. Here, we designed genome editing and advanced lentiviral transduction protocols to render primary human NK cells unsusceptible/resistant to an allogeneic response by the recipient's CD8+ T cells. After knocking-out surface expression of HLA class I molecules by targeting the B2M gene via CRISPR/Cas9, we also co-expressed a single-chain HLA-E molecule, thereby preventing NK cell fratricide of B2M-knockout (KO) cells via "missing self"-induced lysis. Importantly, these genetically engineered NK cells were functionally indistinguishable from their unmodified counterparts with regard to their phenotype and their natural cytotoxicity towards different AML cell lines. In co-culture assays, B2M-KO NK cells neither induced immune responses of allogeneic T cells nor re-activated allogeneic T cells which had been expanded/primed using irradiated PBMNCs of the respective NK cell donor. Our study demonstrates the feasibility of genome editing in primary allogeneic NK cells to diminish their recognition and killing by mismatched T cells and is an important prerequisite for using non-HLA-matched primary human NK cells as readily available, "off-the-shelf" immune effectors for a variety of immunotherapy indications in human cancer.
Collapse
Affiliation(s)
- Keven Hoerster
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, Düsseldorf, Germany
| | - Constanze Wiek
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| | - Helmut Hanenberg
- Department of Otorhinolaryngology & Head/Neck Surgery, University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Department of Pediatrics III, University Children’s Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, Essen, Germany
| |
Collapse
|
28
|
Lee J, Sheen JH, Lim O, Lee Y, Ryu J, Shin D, Kim YY, Kim M. Abrogation of HLA surface expression using CRISPR/Cas9 genome editing: a step toward universal T cell therapy. Sci Rep 2020; 10:17753. [PMID: 33082438 PMCID: PMC7576162 DOI: 10.1038/s41598-020-74772-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
As recent advancements in the chimeric antigen receptor-T cells have revolutionized the way blood cancers are handled, potential benefits from producing off-the-shelf, standardized immune cells entail the need for development of allogeneic immune cell therapy. However, host rejection driven by HLA disparity in adoptively transferred allogeneic T cells remains a key obstacle to the universal donor T cell therapy. To evade donor HLA-mediated immune rejection, we attempted to eliminate T cell’s HLA through the CRISPR/Cas9 gene editing system. First, we screened 60 gRNAs targeting B2M and multiple sets of gRNA each targeting α chains of HLA-II (DPA, DQA and DRA, respectively) using web-based design tools, and identified specific gRNA sequences highly efficient for target deletion without carrying off-target effects. Multiplex genome editing of primary human T cells achieved by the newly discovered gRNAs yielded HLA-I- or HLA-I/II-deficient T cells that were phenotypically unaltered and functionally intact. The overnight mixed lymphocyte reactions demonstrated the HLA-I-negative cells induced decreased production of IFN-γ and TNF-α in alloreactive T cells, and deficiency of HLA-I/II in T cells further dampened the inflammatory responses. Taken together, our approach will provide an efficacious pathway toward the universal donor cell generation by manipulating HLA expression in therapeutic T cells.
Collapse
Affiliation(s)
- Jeewon Lee
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Joong Hyuk Sheen
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Okjae Lim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yunjung Lee
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Jihye Ryu
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Duckhyang Shin
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Yu Young Kim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea
| | - Munkyung Kim
- MOGAM Institute for Biomedical Research, 93, 30beon-gil, Ihyeon-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16924, South Korea.
| |
Collapse
|
29
|
Mehravar M, Roshandel E, Salimi M, Chegeni R, Gholizadeh M, Mohammadi MH, Hajifathali A. Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunol Lett 2020; 226:71-82. [DOI: 10.1016/j.imlet.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
|
30
|
Liao G, Zheng K, Shorr R, Allan DS. Human endothelial colony-forming cells in regenerative therapy: A systematic review of controlled preclinical animal studies. Stem Cells Transl Med 2020; 9:1344-1352. [PMID: 32681814 PMCID: PMC7581447 DOI: 10.1002/sctm.20-0141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
Endothelial colony‐forming cells (ECFCs) hold significant promise as candidates for regenerative therapy of vascular injury. Existing studies remain largely preclinical and exhibit marked design heterogeneity. A systematic review of controlled preclinical trials of human ECFCs is needed to guide future study design and to accelerate clinical translation. A systematic search of Medline and EMBASE on 1 April 2019 returned 3131 unique entries of which 66 fulfilled the inclusion criteria. Most studies used ECFCs derived from umbilical cord or adult peripheral blood. Studies used genetically modified immunodeficient mice (n = 52) and/or rats (n = 16). ECFC phenotypes were inconsistently characterized. While >90% of studies used CD31+ and CD45−, CD14− was demonstrated in 73% of studies, CD146+ in 42%, and CD10+ in 35%. Most disease models invoked ischemia. Peripheral vascular ischemia (n = 29), central nervous system ischemia (n = 14), connective tissue injury (n = 10), and cardiovascular ischemia and reperfusion injury (n = 7) were studied most commonly. Studies showed predominantly positive results; only 13 studies reported ≥1 outcome with null results, three reported only null results, and one reported harm. Quality assessment with SYRCLE revealed potential sources of bias in most studies. Preclinical ECFC studies are associated with benefit across several ischemic conditions in animal models, although combining results is limited by marked heterogeneity in study design. In particular, characterization of ECFCs varied and aspects of reporting introduced risk of bias in most studies. More studies with greater focus on standardized cell characterization and consistency of the disease model are needed.
Collapse
Affiliation(s)
- Gary Liao
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Katina Zheng
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Risa Shorr
- Information Services, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - David S Allan
- Clinical Epidemiology and Regenerative Medicine Programs, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Guo J, Xiang Q, Xin Y, Huang Y, Zou G, Liu T. miR-544 promotes maturity and antioxidation of stem cell-derived endothelial like cells by regulating the YY1/TET2 signalling axis. Cell Commun Signal 2020; 18:35. [PMID: 32127022 PMCID: PMC7055126 DOI: 10.1186/s12964-019-0504-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/26/2019] [Indexed: 12/20/2022] Open
Abstract
Background Inflammation and oxidative stress induced by oxidized low density lipoprotein are the main causes of vascular endothelial injury and atherosclerosis. Endothelial cells are important for the formation and repair of blood vessels. However, the detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived endothelial like cells remains unclear. Besides, YY1 and TET2 play a key role on epigenetic modifications of proliferation and differentiation of stem cells. However, the regulatory mechanism of epigenetic modification induced by YY1 and TET2 on stem cells to iECICs is also not clear. Aim Here, we want to investigate detailed mechanism underlying the regulation of maturity and antioxidation of stem cell-derived iECICs by by YY1 and TET2. Methods The qPCR, Western blot, immunohistochemical staining and flow cytometric analysis were used to analyze the expression level of each gene. Luciferase reporter assay was used to detect the binding sites between microRNA and target genes. The hMeDIP-sequence, ChIP-PCR and dot blot were used to detect the 5-hydroxymethylcytosine modification of genomic DNA. ATP, ROS, SOD assay were used to evaluate of oxidative stress in cells. The iECICs transplantation group The ApoE−/− mice were intravenous injected of iECICs to evaluation of therapeutic effect in vivo. Results Our studies have found that as the differentiation of human amniotic epithelial cells (HuAECs) is directed towards iECICs in vitro, the expression levels of vascular endothelial cell markers and miR-544 increase significantly and the expression level of YinYang 1 (YY1) decreases significantly. The luciferase reporter assay suggests that Yy1 is one of the targets of miR-544. Hydroxymethylated DNA immunoprecipitation sequencing showed that compared with HuAECs, iECICs had 174 protein-coding DNA sequences with extensive hydroxymethylation modifications. Overexpression of miR-544 inhibits the activity of the YY1/PRC2 complex and promotes the transcription and expression of the ten-eleven translocation 2 (TET2) gene, thereby activating the key factors of the serotonergic synapse pathway, CACNA1F, and CYP2D6. In addition, it promotes ability of maturity, antioxidation and vascular formation in vitro. Meanwhile, transplantation for miR-544-iECICs can significantly relieve oxidative stress injury on ApoE−/− atherosclerotic mice in vivo. Conclusions miR-544 regulates the maturity and antioxidation of iECICs derived from HuAECs by regulating the YY1/TET2/serotonergic synapse signalling axis. Video abstract
Collapse
Affiliation(s)
- Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.,Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Qiuling Xiang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA.,Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yaojie Xin
- Department of Otolaryngology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongyi Huang
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA
| | - Gang Zou
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Te Liu
- Department of Pathology, Yale University School of Medicine, New Haven, 06520, USA. .,Shanghai Geriatric Institute of Chinese Medicine, University of Traditional Chinese Medicine, 365 South Xiangyang Road, Shanghai, 200031, China.
| |
Collapse
|
32
|
Kosyakova N, Kao DD, Figetakis M, López-Giráldez F, Spindler S, Graham M, James KJ, Won Shin J, Liu X, Tietjen GT, Pober JS, Chang WG. Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. NPJ Regen Med 2020; 5:1. [PMID: 31934351 PMCID: PMC6944695 DOI: 10.1038/s41536-019-0086-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Formation of a perfusable microvascular network (μVN) is critical for tissue engineering of solid organs. Stromal cells can support endothelial cell (EC) self-assembly into a μVN, but distinct stromal cell populations may play different roles in this process. Here we describe the differential effects that two widely used stromal cell populations, fibroblasts (FBs) and pericytes (PCs), have on μVN formation. We examined the effects of adding defined stromal cell populations on the self-assembly of ECs derived from human endothelial colony forming cells (ECFCs) into perfusable μVNs in fibrin gels cast within a microfluidic chamber. ECs alone failed to fully assemble a perfusable μVN. Human lung FBs stimulated the formation of EC-lined μVNs within microfluidic devices. RNA-seq analysis suggested that FBs produce high levels of hepatocyte growth factor (HGF). Addition of recombinant HGF improved while the c-MET inhibitor, Capmatinib (INCB28060), reduced μVN formation within devices. Human placental PCs could not substitute for FBs, but in the presence of FBs, PCs closely associated with ECs, formed a common basement membrane, extended microfilaments intercellularly, and reduced microvessel diameters. Different stromal cell types provide different functions in microvessel assembly by ECs. FBs support μVN formation by providing paracrine growth factors whereas PCs directly interact with ECs to modify microvascular morphology.
Collapse
Affiliation(s)
- Natalia Kosyakova
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Derek D. Kao
- Yale College of Undergraduate Studies, Yale University, New Haven, CT 06520 USA
| | - Maria Figetakis
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| | | | - Susann Spindler
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Morven Graham
- Yale Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Kevin J. James
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Jee Won Shin
- Yale College of Undergraduate Studies, Yale University, New Haven, CT 06520 USA
| | - Xinran Liu
- Yale Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Gregory T. Tietjen
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519 USA
| | - William G. Chang
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
33
|
Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 2020; 5:1. [PMID: 32296011 PMCID: PMC6946647 DOI: 10.1038/s41392-019-0089-y] [Citation(s) in RCA: 1063] [Impact Index Per Article: 212.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 09/21/2019] [Accepted: 09/21/2019] [Indexed: 02/06/2023] Open
Abstract
Based on engineered or bacterial nucleases, the development of genome editing technologies has opened up the possibility of directly targeting and modifying genomic sequences in almost all eukaryotic cells. Genome editing has extended our ability to elucidate the contribution of genetics to disease by promoting the creation of more accurate cellular and animal models of pathological processes and has begun to show extraordinary potential in a variety of fields, ranging from basic research to applied biotechnology and biomedical research. Recent progress in developing programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases, has greatly expedited the progress of gene editing from concept to clinical practice. Here, we review recent advances of the three major genome editing technologies (ZFNs, TALENs, and CRISPR/Cas9) and discuss the applications of their derivative reagents as gene editing tools in various human diseases and potential future therapies, focusing on eukaryotic cells and animal models. Finally, we provide an overview of the clinical trials applying genome editing platforms for disease treatment and some of the challenges in the implementation of this technology.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Yang Yang
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Mengyuan Huang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, 610041, P. R. China.
| |
Collapse
|
34
|
CRISPR/Cas9-mediated Generation of Human Endothelial Cell Knockout Models of CCM Disease. Methods Mol Biol 2020; 2152:169-177. [PMID: 32524552 DOI: 10.1007/978-1-0716-0640-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The CRISPR/Cas9 system is a versatile tool that enables targeted genome editing in various cell types, including hard-to-transfect endothelial cells. The required crRNA, tracrRNA, and Cas9 protein have mostly been introduced into endothelial cells by viral transduction or plasmid transfection so far. We here describe an effective lipofection-based delivery of pre-complexed crRNA:tracrRNA:Cas9 ribonucleoproteins into human umbilical vein endothelial cells (HUVEC) and immortalized HUVEC (CI-huVEC). Complete inactivation of either CCM1, CCM2, or CCM3 in endothelial cells mimics the situation in cavernous lesions of CCM patients and thus represents a suitable model for future studies.
Collapse
|
35
|
Baltazar T, Merola J, Catarino C, Xie CB, Kirkiles-Smith NC, Lee V, Hotta S, Dai G, Xu X, Ferreira FC, Saltzman WM, Pober JS, Karande P. Three Dimensional Bioprinting of a Vascularized and Perfusable Skin Graft Using Human Keratinocytes, Fibroblasts, Pericytes, and Endothelial Cells. Tissue Eng Part A 2019; 26:227-238. [PMID: 31672103 DOI: 10.1089/ten.tea.2019.0201] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Multilayered skin substitutes comprising allogeneic cells have been tested for the treatment of nonhealing cutaneous ulcers. However, such nonnative skin grafts fail to permanently engraft because they lack dermal vascular networks important for integration with the host tissue. In this study, we describe the fabrication of an implantable multilayered vascularized bioengineered skin graft using 3D bioprinting. The graft is formed using one bioink containing human foreskin dermal fibroblasts (FBs), human endothelial cells (ECs) derived from cord blood human endothelial colony-forming cells (HECFCs), and human placental pericytes (PCs) suspended in rat tail type I collagen to form a dermis followed by printing with a second bioink containing human foreskin keratinocytes (KCs) to form an epidermis. In vitro, KCs replicate and mature to form a multilayered barrier, while the ECs and PCs self-assemble into interconnected microvascular networks. The PCs in the dermal bioink associate with EC-lined vascular structures and appear to improve KC maturation. When these 3D printed grafts are implanted on the dorsum of immunodeficient mice, the human EC-lined structures inosculate with mouse microvessels arising from the wound bed and become perfused within 4 weeks after implantation. The presence of PCs in the printed dermis enhances the invasion of the graft by host microvessels and the formation of an epidermal rete. Impact Statement Three Dimensional printing can be used to generate multilayered vascularized human skin grafts that can potentially overcome the limitations of graft survival observed in current avascular skin substitutes. Inclusion of human pericytes in the dermal bioink appears to improve both dermal and epidermal maturation.
Collapse
Affiliation(s)
- Tânia Baltazar
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Carolina Catarino
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - Catherine B Xie
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | | | - Vivian Lee
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Stephanie Hotta
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Guohao Dai
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Frederico C Ferreira
- Department of Bioengineering and Institute of Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Jordan S Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut
| | - Pankaj Karande
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York.,Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
36
|
Mattapally S, Pawlik KM, Fast VG, Zumaquero E, Lund FE, Randall TD, Townes TM, Zhang J. Human Leukocyte Antigen Class I and II Knockout Human Induced Pluripotent Stem Cell-Derived Cells: Universal Donor for Cell Therapy. J Am Heart Assoc 2019; 7:e010239. [PMID: 30488760 PMCID: PMC6405542 DOI: 10.1161/jaha.118.010239] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background We aim to generate a line of “universal donor” human induced pluripotent stem cells (hiPSCs) that are nonimmunogenic and, therefore, can be used to derive cell products suitable for allogeneic transplantation. Methods and Results hiPSCs carrying knockout mutations for 2 key components (β2 microglobulin and class II major histocompatibility class transactivator) of major histocompatibility complexes I and II (ie, human leukocyte antigen [HLA] I/II knockout hiPSCs) were generated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR associated protein 9 (Cas9) gene‐editing system and differentiated into cardiomyocytes. Pluripotency‐gene expression and telomerase activity in wild‐type (WT) and HLAI/II knockout hiPSCs, cardiomyocyte marker expression in WT and HLAI/II knockout hiPSC‐derived cardiomyocytes, and assessments of electrophysiological properties (eg, conduction velocity, action‐potential and calcium transient half‐decay times, and calcium transient increase times) in spheroid‐fusions composed of WT and HLAI/II knockout cardiomyocytes, were similar. However, the rates of T‐cell activation before (≈21%) and after (≈24%) exposure to HLAI/II knockout hiPSC‐derived cardiomyocytes were nearly indistinguishable and dramatically lower than after exposure to WT hiPSC‐derived cardiomyocytes (≈75%), and when WT and HLAI/II knockout hiPSC‐derived cardiomyocyte spheroids were cultured with human peripheral blood mononuclear cells, the WT hiPSC‐derived cardiomyocyte spheroids were smaller and displayed contractile irregularities. Finally, expression of HLA‐E and HLA‐F was inhibited in HLAI/II knockout cardiomyocyte spheroids after coculture with human peripheral blood mononuclear cells, although HLA‐G was not inhibited; these results are consistent with the essential role of class II major histocompatibility class transactivator in transcriptional activation of the HLA‐E and HLA‐F genes, but not the HLA‐G gene. Expression of HLA‐G is known to inhibit natural killer cell recognition and killing of cells that lack other HLAs. Conclusions HLAI/II knockout hiPSCs can be differentiated into cardiomyocytes that induce little or no activity in human immune cells and, consequently, are suitable for allogeneic transplantation.
Collapse
Affiliation(s)
- Saidulu Mattapally
- 1 Department of Biomedical Engineering School of Medicine School of Engineering The University of Alabama at Birmingham AL
| | - Kevin M Pawlik
- 2 Department of Biochemistry and Molecular Genetics School of Medicine The University of Alabama at Birmingham AL
| | - Vladimir G Fast
- 1 Department of Biomedical Engineering School of Medicine School of Engineering The University of Alabama at Birmingham AL
| | - Esther Zumaquero
- 3 Department of Microbiology School of Medicine The University of Alabama at Birmingham AL
| | - Frances E Lund
- 3 Department of Microbiology School of Medicine The University of Alabama at Birmingham AL
| | - Troy D Randall
- 4 Department of Medicine/Rheumatology School of Medicine The University of Alabama at Birmingham AL
| | - Tim M Townes
- 2 Department of Biochemistry and Molecular Genetics School of Medicine The University of Alabama at Birmingham AL
| | - Jianyi Zhang
- 1 Department of Biomedical Engineering School of Medicine School of Engineering The University of Alabama at Birmingham AL
| |
Collapse
|
37
|
Merola J, Reschke M, Pierce RW, Qin L, Spindler S, Baltazar T, Manes TD, Lopez-Giraldez F, Li G, Bracaglia LG, Xie C, Kirkiles-Smith N, Saltzman WM, Tietjen GT, Tellides G, Pober JS. Progenitor-derived human endothelial cells evade alloimmunity by CRISPR/Cas9-mediated complete ablation of MHC expression. JCI Insight 2019; 4:129739. [PMID: 31527312 PMCID: PMC6824302 DOI: 10.1172/jci.insight.129739] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering may address organ shortages currently limiting clinical transplantation. Off-the-shelf engineered vascularized organs will likely use allogeneic endothelial cells (ECs) to construct microvessels required for graft perfusion. Vasculogenic ECs can be differentiated from committed progenitors (human endothelial colony-forming cells or HECFCs) without risk of mutation or teratoma formation associated with reprogrammed stem cells. Like other ECs, these cells can express both class I and class II major histocompatibility complex (MHC) molecules, bind donor-specific antibody (DSA), activate alloreactive T effector memory cells, and initiate rejection in the absence of donor leukocytes. CRISPR/Cas9-mediated dual ablation of β2-microglobulin and class II transactivator (CIITA) in HECFC-derived ECs eliminates both class I and II MHC expression while retaining EC functions and vasculogenic potential. Importantly, dually ablated ECs no longer bind human DSA or activate allogeneic CD4+ effector memory T cells and are resistant to killing by CD8+ alloreactive cytotoxic T lymphocytes in vitro and in vivo. Despite absent class I MHC molecules, these ECs do not activate or elicit cytotoxic activity from allogeneic natural killer cells. These data suggest that HECFC-derived ECs lacking MHC molecule expression can be utilized for engineering vascularized grafts that evade allorejection.
Collapse
Affiliation(s)
- Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Melanie Reschke
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | | | - Lingfeng Qin
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Susann Spindler
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Tania Baltazar
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Thomas D. Manes
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francesc Lopez-Giraldez
- Yale Center for Genome Analysis and Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Guangxin Li
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Laura G. Bracaglia
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | - Catherine Xie
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nancy Kirkiles-Smith
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - W. Mark Saltzman
- Department of Biomedical Engineering, Yale School of Engineering and Applied Science, New Haven, Connecticut, USA
| | - Gregory T. Tietjen
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Zhang H, Wang J, Hu M, Li BC, Li H, Chen TT, Ren KF, Ji J, Jing QM, Fu GS. Photothermal-assisted surface-mediated gene delivery for enhancing transfection efficiency. Biomater Sci 2019; 7:5177-5186. [PMID: 31588463 DOI: 10.1039/c9bm01284b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The development of gene therapy puts forward the requirements for efficient delivery of genetic information into diverse cells. However, in some cases of transfection, especially those for transfecting some primary cells and for delivering large size plasmid DNA (pDNA), the existing conventional transfection methods show poor efficiency. How to further improve transfection efficiency in these hard-to-achieve issues remains a crucial challenge. Here, we report a photothermal-assisted surface-mediated gene delivery based on a polydopamine-polyethylenimine (PDA-PEI) surface. The PDA-PEI surface was prepared through PEI-accelerated dopamine polymerization, which showed efficiency in the immobilization of PEI/pDNA polyplexes and remarkable photothermal properties. Upon IR irradiation, we observed improved transfection efficiencies of two important hard-to-achieve transfection issues, namely the transfection of primary endothelial cells, which are kinds of typical hard-to-transfect cells, and the transfection of cells with large-size pDNA. We demonstrate that the increases of transfection efficiency were due to the hyperthermia-induced pDNA release, the local cell membrane disturbance, and the polyplex internalization. This work highlights the importance of local immobilization and release of pDNA to gene deliveries, showing great potential applications in medical devices in the field of gene therapy.
Collapse
Affiliation(s)
- He Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jing Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Mi Hu
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Bo-Chao Li
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huan Li
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ting-Ting Chen
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Ke-Feng Ren
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Jian Ji
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Quan-Min Jing
- General Hospital of Northern Theater Command, Shenyang 110004, China.
| | - Guo-Sheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
39
|
Schillemans M, Kat M, Westeneng J, Gangaev A, Hofman M, Nota B, van Alphen FPJ, de Boer M, van den Biggelaar M, Margadant C, Voorberg J, Bierings R. Alternative trafficking of Weibel-Palade body proteins in CRISPR/Cas9-engineered von Willebrand factor-deficient blood outgrowth endothelial cells. Res Pract Thromb Haemost 2019; 3:718-732. [PMID: 31624792 PMCID: PMC6782018 DOI: 10.1002/rth2.12242] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Synthesis of the hemostatic protein von Willebrand factor (VWF) drives formation of endothelial storage organelles called Weibel-Palade bodies (WPBs). In the absence of VWF, angiogenic and inflammatory mediators that are costored in WPBs are subject to alternative trafficking routes. In patients with von Willebrand disease (VWD), partial or complete absence of VWF/WPBs may lead to additional bleeding complications, such as angiodysplasia. Studies addressing the role of VWF using VWD patient-derived blood outgrowth endothelial cells (BOECs) have reported conflicting results due to the intrinsic heterogeneity of patient-derived BOECs. OBJECTIVE To generate a VWF-deficient endothelial cell model using clustered regularly interspaced short palindromic repeats (CRISPR) genome engineering of blood outgrowth endothelial cells. METHODS We used CRISPR/CRISPR-associated protein 9 editing in single-donor cord blood-derived BOECs (cbBOECs) to generate clonal VWF -/- cbBOECs. Clones were selected using high-throughput screening, VWF mutations were validated by sequencing, and cells were phenotypically characterized. RESULTS Two VWF -/- BOEC clones were obtained and were entirely devoid of WPBs, while their overall cell morphology was unaltered. Several WPB proteins, including CD63, syntaxin-3 and the cargo proteins angiopoietin (Ang)-2, interleukin (IL)-6, and IL-8 showed alternative trafficking and secretion in the absence of VWF. Interestingly, Ang-2 was relocated to the cell periphery and colocalized with Tie-2. CONCLUSIONS CRISPR editing of VWF provides a robust method to create VWF- deficient BOECs that can be directly compared to their wild-type counterparts. Results obtained with our model system confirmed alternative trafficking of several WPB proteins in the absence of VWF and support the theory that increased Ang-2/Tie-2 interaction contributes to angiogenic abnormalities in VWD patients.
Collapse
Affiliation(s)
- Maaike Schillemans
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Marije Kat
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jurjen Westeneng
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Anastasia Gangaev
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Menno Hofman
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Benjamin Nota
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Floris P. J. van Alphen
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martin de Boer
- Blood Cell ResearchSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Maartje van den Biggelaar
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Coert Margadant
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jan Voorberg
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Experimental Vascular MedicineAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Ruben Bierings
- Molecular and Cellular HemostasisSanquin Research and Landsteiner LaboratoryAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- HematologyErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
40
|
Li Y, Kang XJ, Pang JKS, Soh BS, Yu Y, Fan Y. Human germline editing: Insights to future clinical treatment of diseases. Protein Cell 2019; 10:470-475. [PMID: 30430420 PMCID: PMC6588666 DOI: 10.1007/s13238-018-0594-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Yanni Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Xiang Jin Kang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jeremy Kah Sheng Pang
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Boon Seng Soh
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Yang Yu
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Center of Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
41
|
Spiegler S, Rath M, Much CD, Sendtner BS, Felbor U. Precise CCM1 gene correction and inactivation in patient-derived endothelial cells: Modeling Knudson's two-hit hypothesis in vitro. Mol Genet Genomic Med 2019; 7:e00755. [PMID: 31124307 PMCID: PMC6625102 DOI: 10.1002/mgg3.755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/26/2019] [Accepted: 04/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background The CRISPR/Cas9 system has opened new perspectives to study the molecular basis of cerebral cavernous malformations (CCMs) in personalized disease models. However, precise genome editing in endothelial and other hard‐to‐transfect cells remains challenging. Methods In a proof‐of‐principle study, we first isolated blood outgrowth endothelial cells (BOECs) from a CCM1 mutation carrier with multiple CCMs. In a CRISPR/Cas9 gene correction approach, a high‐fidelity Cas9 variant was then transfected into patient‐derived BOECs using a ribonucleoprotein complex and a single‐strand DNA oligonucleotide. In addition, patient‐specific CCM1 knockout clones were expanded after CRISPR/Cas9 gene inactivation. Results Deep sequencing demonstrated correction of the mutant allele in nearly 33% of all cells whereas no CRISPR/Cas9‐induced mutations in predicted off‐target loci were identified. Corrected BOECs could be cultured in cell mixtures but demonstrated impaired clonal survival. In contrast, CCM1‐deficient BOECs displayed increased resistance to stress‐induced apoptotic cell death and could be clonally expanded to high passages. When cultured together, CCM1‐deficient BOECs largely replaced corrected as well as heterozygous BOECs. Conclusion We here demonstrate that a non‐viral CRISPR/Cas9 approach can not only be used for gene knockout but also for precise gene correction in hard‐to‐transfect endothelial cells (ECs). Comparing patient‐derived isogenic CCM1+/+, CCM1+/−, and CCM1−/− ECs, we show that the inactivation of the second allele results in clonal evolution of ECs lacking CCM1 which likely reflects the initiation phase of CCM genesis.
Collapse
Affiliation(s)
- Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Barbara S Sendtner
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
42
|
Engineering blood vessels and vascularized tissues: technology trends and potential clinical applications. Clin Sci (Lond) 2019; 133:1115-1135. [DOI: 10.1042/cs20180155] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
Abstract
Vascular tissue engineering has the potential to make a significant impact on the treatment of a wide variety of medical conditions, including providing in vitro generated vascularized tissue and organ constructs for transplantation. Since the first report on the construction of a biological blood vessel, significant research and technological advances have led to the generation of clinically relevant large and small diameter tissue engineered vascular grafts (TEVGs). However, developing a biocompatible blood-contacting surface is still a major challenge. Researchers are using biomimicry to generate functional vascular grafts and vascular networks. A multi-disciplinary approach is being used that includes biomaterials, cells, pro-angiogenic factors and microfabrication technologies. Techniques to achieve spatiotemporal control of vascularization include use of topographical engineering and controlled-release of growth/pro-angiogenic factors. Use of decellularized natural scaffolds has gained popularity for engineering complex vascularized organs for potential clinical use. Pre-vascularization of constructs prior to implantation has also been shown to enhance its anastomosis after implantation. Host-implant anastomosis is a phenomenon that is still not fully understood. However, it will be a critical factor in determining the in vivo success of a TEVGs or bioengineered organ. Many clinical studies have been conducted using TEVGs, but vascularized tissue/organ constructs are still in the research & development stage. In addition to technical challenges, there are commercialization and regulatory challenges that need to be addressed. In this review we examine recent advances in the field of vascular tissue engineering, with a focus on technology trends, challenges and potential clinical applications.
Collapse
|
43
|
Crivello P, Ahci M, Maaßen F, Wossidlo N, Arrieta-Bolaños E, Heinold A, Lange V, Falkenburg JHF, Horn PA, Fleischhauer K, Heinrichs S. Multiple Knockout of Classical HLA Class II β-Chains by CRISPR/Cas9 Genome Editing Driven by a Single Guide RNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1895-1903. [PMID: 30700588 DOI: 10.4049/jimmunol.1800257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
Comprehensive knockout of HLA class II (HLA-II) β-chain genes is complicated by their high polymorphism. In this study, we developed CRISPR/Cas9 genome editing to simultaneously target HLA-DRB, -DQB1, and -DPB1 through a single guide RNA recognizing a conserved region in exon 2. Abrogation of HLA-II surface expression was achieved in five different HLA-typed, human EBV-transformed B lymphoblastoid cell lines (BLCLs). Next-generation sequencing-based detection confirmed specific genomic insertion/deletion mutations with 99.5% penetrance in sorted cells for all three loci. No alterations were observed in HLA-I genes, the HLA-II peptide editor HLA-DMB, or its antagonist HLA-DOB, showing high on-target specificity. Transfection of full-length HLA-DPB1 mRNA into knockout BLCLs fully restored HLA-DP surface expression and recognition by alloreactive human CD4 T cells. The possibility to generate single HLA-II-expressing BLCLs by one-shot genome editing opens unprecedented opportunities for mechanistically dissecting the interaction of individual HLA variants with the immune system.
Collapse
Affiliation(s)
- Pietro Crivello
- Institute of Experimental Cellular Therapy, University Hospital Essen, 45147 Essen, Germany
| | - Müberra Ahci
- Institute of Experimental Cellular Therapy, University Hospital Essen, 45147 Essen, Germany
| | - Fabienne Maaßen
- Institute of Experimental Cellular Therapy, University Hospital Essen, 45147 Essen, Germany
| | - Natalie Wossidlo
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany
| | | | - Andreas Heinold
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany
| | | | | | - Peter A Horn
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany
| | - Katharina Fleischhauer
- Institute of Experimental Cellular Therapy, University Hospital Essen, 45147 Essen, Germany;
| | - Stefan Heinrichs
- Institute for Transfusion Medicine, University Hospital Essen, 45147 Essen, Germany;
| |
Collapse
|
44
|
Schwefel K, Spiegler S, Ameling S, Much CD, Pilz RA, Otto O, Völker U, Felbor U, Rath M. Biallelic CCM3 mutations cause a clonogenic survival advantage and endothelial cell stiffening. J Cell Mol Med 2018; 23:1771-1783. [PMID: 30549232 PMCID: PMC6378188 DOI: 10.1111/jcmm.14075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 12/23/2022] Open
Abstract
CCM3, originally described as PDCD10, regulates blood‐brain barrier integrity and vascular maturation in vivo. CCM3 loss‐of‐function variants predispose to cerebral cavernous malformations (CCM). Using CRISPR/Cas9 genome editing, we here present a model which mimics complete CCM3 inactivation in cavernous endothelial cells (ECs) of heterozygous mutation carriers. Notably, we established a viral‐ and plasmid‐free crRNA:tracrRNA:Cas9 ribonucleoprotein approach to introduce homozygous or compound heterozygous loss‐of‐function CCM3 variants into human ECs and studied the molecular and functional effects of long‐term CCM3 inactivation. Induction of apoptosis, sprouting, migration, network and spheroid formation were significantly impaired upon prolonged CCM3 deficiency. Real‐time deformability cytometry demonstrated that loss of CCM3 induces profound changes in cell morphology and mechanics: CCM3‐deficient ECs have an increased cell area and elastic modulus. Small RNA profiling disclosed that CCM3 modulates the expression of miRNAs that are associated with endothelial ageing. In conclusion, the use of CRISPR/Cas9 genome editing provides new insight into the consequences of long‐term CCM3 inactivation in human ECs and supports the hypothesis that clonal expansion of CCM3‐deficient dysfunctional ECs contributes to CCM formation.
Collapse
Affiliation(s)
- Konrad Schwefel
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Stefanie Spiegler
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Sabine Ameling
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Christiane D Much
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Robin A Pilz
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Germany
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Ute Felbor
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Matthias Rath
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| |
Collapse
|
45
|
Cai M, Li S, Shuai Y, Li J, Tan J, Zeng Q. Genome-wide CRISPR-Cas9 viability screen reveals genes involved in TNF-α-induced apoptosis of human umbilical vein endothelial cells. J Cell Physiol 2018; 234:9184-9193. [PMID: 30317623 DOI: 10.1002/jcp.27595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/19/2018] [Indexed: 01/09/2023]
Abstract
Tumor necrosis factor α (TNF-α), a pivotal cytokine in sepsis, protects the host against pathogens by promoting an inflammatory response while simultaneously inducing apoptosis of the vascular endothelium. Unfortunately, inhibitors targeting certain components of the TNF-α signaling pathway to reduce cellular apoptosis have failed to translate into clinical applications, partly due to the adverse effects of excessive immunosuppression. In an attempt to discover potential targets in the TNF-α signaling pathway to modulate moderate inflammation and apoptosis during the development of sepsis, we performed a pooled genome-wide CRISPR/Cas9 knockout screen in human umbilical vein endothelial cells (HUVECs). Tumor necrosis factor receptor superfamily member 1A (TNFRSF1A), B-cell lymphoma 2 (BCL2), Bcl2-associated death promoter (BAD), and NLR family member X1 (NLRX1) deficiencies were identified as the effective genetic suppressors of TNF-α cytotoxicity on a list of candidate regulators. CRISPR-mediated NLRX1 knockout conferred cellular resistance to challenge with TNF-α, and NLRX1 could be induced to colocalize with mitochondria following TNF-α stimulation. Thus, our work demonstrates the advantage of genome-scale screening with Cas9 and validates NLRX1 as a potential modulator of TNF-α-induced vascular endothelial apoptosis during sepsis.
Collapse
Affiliation(s)
- Meng Cai
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yunfei Shuai
- Department of Pediatrics, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jie Li
- Center for Medical Genetics and School of Life Science, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics and School of Life Science, Central South University, Changsha, China
| | - Qiyi Zeng
- Department of Pediatrics, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
46
|
Zampetaki A, Albrecht A, Steinhofel K. Long Non-coding RNA Structure and Function: Is There a Link? Front Physiol 2018; 9:1201. [PMID: 30197605 PMCID: PMC6117379 DOI: 10.3389/fphys.2018.01201] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/10/2018] [Indexed: 01/12/2023] Open
Abstract
RNA has emerged as the prime target for diagnostics, therapeutics and the development of personalized medicine. In particular, the non-coding RNAs (ncRNAs) that do not encode proteins, display remarkable biochemical versatility. They can fold into complex structures and interact with proteins, DNA and other RNAs, modulating the activity, DNA targets or partners of multiprotein complexes. Thus, ncRNAs confer regulatory plasticity and represent a new layer of epigenetic control that is dysregulated in disease. Intriguingly, for long non-coding RNAs (lncRNAs, >200 nucleotides length) structural conservation rather than nucleotide sequence conservation seems to be crucial for maintaining their function. LncRNAs tend to acquire complex secondary and tertiary structures and their functions only impose very subtle sequence constraints. In the present review we will discuss the biochemical assays that can be employed to determine the lncRNA structural configurations. The implications and challenges of linking function and lncRNA structure to design novel RNA therapeutic approaches will also be analyzed.
Collapse
Affiliation(s)
- Anna Zampetaki
- King's British Heart Foundation Centre, King's College London, London, United Kingdom
| | - Andreas Albrecht
- Faculty of Science and Technology, Middlesex University, London, United Kingdom
| | | |
Collapse
|
47
|
SUMOylation of VEGFR2 regulates its intracellular trafficking and pathological angiogenesis. Nat Commun 2018; 9:3303. [PMID: 30120232 PMCID: PMC6098000 DOI: 10.1038/s41467-018-05812-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
Regulation of VEGFR2 represents an important mechanism for the control of angiogenesis. VEGFR2 activity can be regulated by post-translational modifications such as ubiquitination and acetylation. However, whether VEGFR2 can be regulated by SUMOylation has not been investigated. Here we show that endothelial-specific deletion of the SUMO endopeptidase SENP1 reduces pathological angiogenesis and tissue repair during hindlimb ischemia, and VEGF-induced angiogenesis in the cornea, retina, and ear. SENP1-deficient endothelial cells show increased SUMOylation of VEGFR2 and impaired VEGFR2 signalling. SUMOylation at lysine 1270 retains VEGFR2 in the Golgi and reduces its surface expression, attenuating VEGFR2-dependent signalling. Moreover, we find that SENP1 is downregulated and VEGFR2 hyper-SUMOylated in diabetic settings and that expression of a non-SUMOylated form of VEGFR2 rescues angiogenic defects in diabetic mice. These results show that VEGFR2 is regulated by deSUMOylation during pathological angiogenesis, and propose SENP1 as a potential therapeutic target for the treatment of diabetes-associated angiogenesis.
Collapse
|
48
|
Liu R, Merola J, Manes TD, Qin L, Tietjen GT, López-Giráldez F, Broecker V, Fang C, Xie C, Chen PM, Kirkiles-Smith NC, Jane-Wit D, Pober JS. Interferon-γ converts human microvascular pericytes into negative regulators of alloimmunity through induction of indoleamine 2,3-dioxygenase 1. JCI Insight 2018. [PMID: 29515027 DOI: 10.1172/jci.insight.97881] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Early acute rejection of human allografts is mediated by circulating alloreactive host effector memory T cells (TEM). TEM infiltration typically occurs across graft postcapillary venules and involves sequential interactions with graft-derived endothelial cells (ECs) and pericytes (PCs). While the role of ECs in allograft rejection has been extensively studied, contributions of PCs to this process are largely unknown. This study aimed to characterize the effects and mechanisms of interactions between human PCs and allogeneic TEM. We report that unstimulated PCs, like ECs, can directly present alloantigen to TEM, but while IFN-γ-activated ECs (γ-ECs) show increased ability to stimulate alloreactive T cells, IFN-γ-activated PCs (γ-PCs) instead suppress TEM proliferation but not cytokine production or signaling. RNA sequencing analysis of PCs, γ-PCs, ECs, and γ-ECs reveal induction of indoleamine 2,3-dioxygenase 1 (IDO1) in γ-PCs to significantly higher levels than in γ-ECs that correlates with tryptophan depletion in vitro. Consistently, shRNA knockdown of IDO1 markedly reduces γ-PC-mediated immunoregulatory effects. Furthermore, human PCs express IDO1 in a skin allograft rejection humanized mouse model and in human renal allografts with acute T cell-mediated rejection. We conclude that immunosuppressive properties of human PCs are not intrinsic but instead result from IFN-γ-induced IDO1-mediated tryptophan depletion.
Collapse
Affiliation(s)
| | - Jonathan Merola
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Lingfeng Qin
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gregory T Tietjen
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Verena Broecker
- Department of Histopathology, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom
| | - Caodi Fang
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Dan Jane-Wit
- Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
49
|
Hu Z, Shi Z, Guo X, Jiang B, Wang G, Luo D, Chen Y, Zhu YS. Ligase IV inhibitor SCR7 enhances gene editing directed by CRISPR-Cas9 and ssODN in human cancer cells. Cell Biosci 2018; 8:12. [PMID: 29468011 PMCID: PMC5819182 DOI: 10.1186/s13578-018-0200-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Precise genome editing is essential for both basic and translational research. The recently developed CRISPR/Cas9 system can specifically cleave a designated site of target gene to create a DNA double-strand break, which triggers cellular DNA repair mechanism of either inaccurate non-homologous end joining, or site-specific homologous recombination. Unfortunately, homology-directed repair (HDR) is challenging due to its very low efficiency. Herein, we focused on improving the efficiency of HDR using a combination of CRISPR/Cas9, eGFP, DNA ligase IV inhibitor SCR7, and single-stranded oligodeoxynucleotides (ssODN) in human cancer cells. RESULTS When Cas9, gRNA and eGFP were assembled into a co-expression vector, the disruption rate more than doubled following GFP-positive cell sorting in transfected cells compared to those unsorted cells. Using ssODNs as templates, SCR7 treatment increased targeted insertion efficiency threefold in transfected cells compared to those without SCR7 treatment. Moreover, this combinatorial approach greatly improved the efficiency of HDR and targeted gene mutation correction at both the GFP-silent mutation and the β-catenin Ser45 deletion mutation cells. CONCLUSION The data of this study suggests that a combination of co-expression vector, ssODN, and ligase IV inhibitor can markedly improve the CRISPR/Cas9-directed gene editing, which should have significant application in targeted gene editing and genetic disease therapy.
Collapse
Affiliation(s)
- Zheng Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People’s Hospital of Chenzhou, Chenzhou, 432000 Hunan China
| | - Zhaoying Shi
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Xiaogang Guo
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 Guangdong China
| | - Baishan Jiang
- Institute of Chemical Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 Guangdong China
| | - Guo Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
| | - Dixian Luo
- Translational Medicine Institute, National and Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, The First People’s Hospital of Chenzhou, Chenzhou, 432000 Hunan China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Yuan-Shan Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078 Hunan China
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065 USA
| |
Collapse
|
50
|
Fung RKF, Kerridge IH. Gene editing advance re-ignites debate on the merits and risks of animal to human transplantation. Intern Med J 2017; 46:1017-22. [PMID: 27633468 DOI: 10.1111/imj.13183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
In Australia, and internationally, the shortage of organ and tissue donors significantly limits the number of patients with critical organ or tissue failure who are able to receive a transplant each year. The rationale for xenotransplantation - the transplantation of living cells, tissues or organs from one species to another - is to meet this shortfall in human donor material. While early clinical trials showed promise, particularly in patients with type I diabetes whose insulin dependence could be temporarily reversed by the transplantation of porcine islet cells, these benefits have been balanced with scientific, clinical and ethical concerns revolving around the risks of immune rejection and the potential transmission of porcine endogenous retroviruses or other infectious agents from porcine grafts to human recipients. However, the advent of CRISPR/Cas9, a revolutionary gene editing technology, has reignited interest in the field with the possibility of genetically engineering porcine organs and tissues that are less immunogenic and have virtually no risk of transmission of porcine endogenous retroviruses. At the same time, CRISPR/Cas9 may also open up a myriad of possibilities for tissue engineering and stem cell research, which may complement xenotransplantation research by providing an additional source of donor cells, tissues and organs for transplantation into patients. The recent international symposium on gene editing, organised by the US National Academy of Sciences, highlights both the enormous therapeutic potential of CRISPR/Cas9 and the raft of ethical and regulatory challenges that may follow its utilisation in transplantation and in medicine more generally.
Collapse
Affiliation(s)
- R K F Fung
- Centre for Values, Ethics and the Law in Medicine, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia. .,Royal Prince Alfred Hospital, Sydney, New South Wales, Australia.
| | - I H Kerridge
- Centre for Values, Ethics and the Law in Medicine, School of Public Health, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Haematology, Royal North Shore Hospital, Sydney, New South Wales, Australia
| |
Collapse
|