1
|
van der Pol A, Peters MC, Jorba I, Smits AM, van der Kaaij NP, Goumans MJ, Wever KE, Bouten CVC. Preclinical extracellular matrix-based treatment strategies for myocardial infarction: a systematic review and meta-analysis. COMMUNICATIONS MEDICINE 2025; 5:95. [PMID: 40159511 PMCID: PMC11955565 DOI: 10.1038/s43856-025-00812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Administrating extracellular matrix (ECM) to restore cardiac function post-myocardial infarction (MI) shows promise, however study variability obscures its true impact. We therefore conducted a systematic review and meta-analysis of preclinical studies to assess the effects of ECM treatments on cardiac function and tissue homeostasis post-MI. METHODS We searched PubMed and SCOPUS from inception to June 28, 2024, for animal studies describing ECM treatment post-MI (pre-registered on PROSPERO, CRD42022368400). Random effects meta-analyses compared ECM treatment to controls regarding left ventricular ejection fraction (LVEF), fractional shortening, infarct size, stroke volume, and left ventricular wall thickness. Subgroup analyses examined the influence of sex, species, ECM source, and administration method. Funnel plots and Egger's regression assessed publication bias. RESULTS We identify 88 articles which meet our inclusion criteria. These studies describe the use of rats (51%), mice (38%), and pigs (11%). 44% of studies use males, 34% females, 5% both sexes, and 17% did not report sex. Most studies employ permanent MI models (85%) over ischemia reperfusion models (15%), and deliver ECM via intramyocardial injection (59%), cardiac patch (39%), cardiac sleeve (1%), or osmotic pump (1%). Our meta-analysis demonstrates that ECM treatment significantly improves LVEF (MD: 10.9%, 95% CI: [8.7%;13.0%]; p = 8.057e-24), fractional shortening (MD: 8.2%, 95% CI: [5.6%; 10.9%]; p = 1.751e-09), stroke volume (SMD 0.6, 95% CI: [0.2;1.0], p = 0.004), left ventricular wall thickening (SMD 1.2, 95% CI: [0.9; 1.5], p = 1.321e-17), while reducing infarct size (-11.7%, 95% CI: [-14.7%;-8.6%], p = 3.699e-14). We find no significant differences between the various subgroups and no indication of publication bias. CONCLUSIONS ECM-based treatments significantly enhance cardiac function and tissue homeostasis in preclinical post-MI models, supporting further research toward clinical translation.
Collapse
Affiliation(s)
- Atze van der Pol
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Marijn C Peters
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Cardiothoracic Surgery, Regenerative Medicine Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ignasi Jorba
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Anke M Smits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Niels P van der Kaaij
- Department of Cardiothoracic Surgery, Regenerative Medicine Centre, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marie-Jose Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberley E Wever
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, Gelderland, The Netherlands
| | - Carlijn V C Bouten
- Soft Tissue Engineering and Mechanobiology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Jin JJ, Liu RH, Chen JY, Wang K, Han JY, Nie DS, Gong YQ, Lin B, Weng GX. MiR-21-5p-enriched exosomes from hiPSC-derived cardiomyocytes exhibit superior cardiac repair efficacy compared to hiPSC-derived exosomes in a murine MI model. World J Stem Cells 2025; 17:101454. [PMID: 40160688 PMCID: PMC11947891 DOI: 10.4252/wjsc.v17.i3.101454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/15/2024] [Accepted: 01/15/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Heart disease remains a leading cause of mortality worldwide, with existing treatments often failing to effectively restore damaged myocardium. Human-induced pluripotent stem cells (hiPSCs) and their derivatives offer promising therapeutic options; however, challenges such as low retention, engraftment issues, and tumorigenic risks hinder their clinical utility. Recent focus has shifted to exosomes (exos) - nanoscale vesicles that facilitate intercellular communication - as a safer and more versatile alternative. Understanding the specific mechanisms and comparative efficacy of exos from hiPSCs vs hiPSC-derived cardiomyocytes (hiPSC-CMs) is crucial for advancing cardiac repair therapies. AIM To evaluate and compare the therapeutic efficacy of exos secreted by hiPSCs and hiPSC-CMs in cardiac repair, and to elucidate the role of microRNA 21-5p (miR-21-5p) in the observed effects. METHODS We differentiated hiPSCs into CMs using small molecule methods and characterized the cells and their exos. RESULTS Our findings indicate that hiPSC-CMs and their exos enhanced cardiac function, reduced infarct size, and decreased myocardial fibrosis in a murine myocardial infarction model. Notably, hiPSC-CM exos outperformed hiPSC-CM cell therapy, showing improved ejection fraction and reduced apoptosis. We identified miR-21-5p, a microRNA in hiPSC-CM exos, as crucial for CM survival. Exos with miR-21-5p were absorbed by AC16 cells, suggesting a mechanism for their cytoprotective effects. CONCLUSION Overall, hiPSC-CM exos could serve as a potent therapeutic agent for myocardial repair, laying the groundwork for future research into exos as a treatment for ischemic heart disease.
Collapse
Affiliation(s)
- Jing-Jun Jin
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou 350001, Fujian Province, China.
| | - Rong-Hua Liu
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou 350001, Fujian Province, China
| | - Jin-Yan Chen
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou 350001, Fujian Province, China
| | - Kun Wang
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou 350001, Fujian Province, China
| | - Jun-Yong Han
- Fujian Key Laboratory of Medical Analysis, Fujian Academy of Medical Sciences, Fuzhou 350001, Fujian Province, China
| | - Dao-Shun Nie
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Yu-Qing Gong
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Bin Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| | - Guo-Xing Weng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
3
|
Hu Y, Zhang W, Ali SR, Takeda K, Vahl TP, Zhu D, Hong Y, Cheng K. Extracellular vesicle therapeutics for cardiac repair. J Mol Cell Cardiol 2025; 199:12-32. [PMID: 39603560 PMCID: PMC11788051 DOI: 10.1016/j.yjmcc.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Extracellular vesicles (EVs) are cell-secreted heterogeneous vesicles that play crucial roles in intercellular communication and disease pathogenesis. Due to their non-tumorigenicity, low immunogenicity, and therapeutic potential, EVs are increasingly used in cardiac repair as cell-free therapy. There exist multiple steps for the design of EV therapies, and each step offers many choices to tune EV properties. Factors such as EV source, cargo, loading methods, routes of administration, surface modification, and biomaterials are comprehensively considered to achieve specific goals. PubMed and Google Scholar were searched in this review, 89 articles related to EV-based cardiac therapy over the past five years (2019 Jan - 2023 Dec) were included, and their key steps in designing EV therapies were counted and analyzed. We aim to provide a comprehensive overview that can serve as a reference guide for researchers to design EV-based cardiac therapies.
Collapse
Affiliation(s)
- Yilan Hu
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Weihang Zhang
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Shah Rukh Ali
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Koji Takeda
- Division of Cardiac Surgery, Department of Surgery, Columbia University, New York, NY 10032, USA
| | - Torsten Peter Vahl
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
4
|
Yang J. Partial Cell Fate Transitions to Promote Cardiac Regeneration. Cells 2024; 13:2002. [PMID: 39682750 PMCID: PMC11640292 DOI: 10.3390/cells13232002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Heart disease, including myocardial infarction (MI), remains a leading cause of morbidity and mortality worldwide, necessitating the development of more effective regenerative therapies. Direct reprogramming of cardiomyocyte-like cells from resident fibroblasts offers a promising avenue for myocardial regeneration, but its efficiency and consistency in generating functional cardiomyocytes remain limited. Alternatively, reprogramming induced cardiac progenitor cells (iCPCs) could generate essential cardiac lineages, but existing methods often involve complex procedures. These limitations underscore the need for advanced mechanistic insights and refined reprogramming strategies to improve reparative outcomes in the heart. Partial cellular fate transitions, while still a relatively less well-defined area and primarily explored in longevity and neurobiology, hold remarkable promise for cardiac repair. It enables the reprogramming or rejuvenation of resident cardiac cells into a stem or progenitor-like state with enhanced cardiogenic potential, generating the reparative lineages necessary for comprehensive myocardial recovery while reducing safety risks. As an emerging strategy, partial cellular fate transitions play a pivotal role in reversing myocardial infarction damage and offer substantial potential for therapeutic innovation. This review will summarize current advances in these areas, including recent findings involving two transcription factors that critically regulate stemness and cardiogenesis. It will also explore considerations for further refining these approaches to enhance their therapeutic potential and safety.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
5
|
Lee MC, Jodat YA, Endo Y, Rodríguez-delaRosa A, Zhang T, Karvar M, Tanoury ZA, Quint J, Kamperman T, Kiaee K, Ochoa SL, Shi K, Huang Y, Rosales MP, Lee H, Kim J, Ceron EL, Reyes IG, Panayi AC, Wang X, Kim KT, Moon JI, Park SG, Lee K, Calabrese MA, Lee J, Tamayol A, Lee L, Pourquié O, Kim WJ, Sinha I, Shin SR. Engineering large-scale hiPSC-derived vessel-integrated muscle-like lattices for enhanced volumetric muscle regeneration. Trends Biotechnol 2024; 42:1715-1744. [PMID: 39306493 PMCID: PMC11625013 DOI: 10.1016/j.tibtech.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 12/08/2024]
Abstract
Engineering biomimetic tissue implants with human induced pluripotent stem cells (hiPSCs) holds promise for repairing volumetric tissue loss. However, these implants face challenges in regenerative capability, survival, and geometric scalability at large-scale injury sites. Here, we present scalable vessel-integrated muscle-like lattices (VMLs), containing dense and aligned hiPSC-derived myofibers alongside passively perfusable vessel-like microchannels inside an endomysium-like supporting matrix using an embedded multimaterial bioprinting technology. The contractile and millimeter-long myofibers are created in mechanically tailored and nanofibrous extracellular matrix-based hydrogels. Incorporating vessel-like lattice enhances myofiber maturation in vitro and guides host vessel invasion in vivo, improving implant integration. Consequently, we demonstrate successful de novo muscle formation and muscle function restoration through a combinatorial effect between improved graft-host integration and its increased release of paracrine factors within volumetric muscle loss injury models. The proposed modular bioprinting technology enables scaling up to centimeter-sized prevascularized hiPSC-derived muscle tissues with custom geometries for next-generation muscle regenerative therapies.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Medicinal Materials Research Center, Korea Institute of Science and Technology, Seoul, 02792 Republic of Korea
| | - Yasamin A. Jodat
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yori Endo
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alejandra Rodríguez-delaRosa
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Ting Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mehran Karvar
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ziad Al Tanoury
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Jacob Quint
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Tom Kamperman
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kiavash Kiaee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Sofia Lara Ochoa
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Yike Huang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Montserrat Pineda Rosales
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Hyeseon Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Jiseong Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Eder Luna Ceron
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Isaac Garcia Reyes
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Adriana C. Panayi
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xichi Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Ki-Tae Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-I Moon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Gwa Park
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul, 08826, Republic of Korea
- Epigenetic Regulation of Aged Skeleto-Muscular System Laboratory, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangju Lee
- Department of Healthcare and Medical Engineering, Chonnam National University, Yeosu 59626, South Korea
| | - Michelle A. Calabrese
- Chemical Engineering and Materials Science Department, University of Minnesota, Minneapolis, MN 55455, USA
| | - Junmin Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Lincoln, NE, 68588, USA
| | - Luke Lee
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea
| | - Olivier Pourquié
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Harvard Stem Cell Institute, Harvard University, Boston, MA 02138
| | - Woo-Jin Kim
- Correspondence: (I.S.), (W.J.K.), (S.R.S.), Twitter: Yasamin A. Jodat: @YasaminJodat
| | - Indranil Sinha
- Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Lead contact
| |
Collapse
|
6
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
7
|
Sun S, Wang L, Tang Q, Yi J, Yu X, Cao Y, Jiang L, Liu J. Myocardial infarction in rats was alleviated by MSCs derived from the maternal segment of the human umbilical cord. Front Cell Dev Biol 2024; 12:1469541. [PMID: 39479514 PMCID: PMC11521943 DOI: 10.3389/fcell.2024.1469541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024] Open
Abstract
Background Mesenchymal stem cells (MSCs) are safe and effective in treating myocardial infarction (MI) and have broad application prospects. However, the heterogeneity of MSCs may affect their therapeutic effect on the disease. We recently found that MSCs derived from different segments of the same umbilical cord (UC) showed significant difference in the expression of genes that are related to heart development and injury repair. We therefore hypothesized that those MSCs with high expression of above genes are more effective to treat MI and tested it in this study. Methods MSCs were isolated from 3 cm-long segments of the maternal, middle and fetal segments of the UC (maternal-MSCs, middle-MSCs and fetal-MSCs, respectively). RNA-seq was used to analyze and compare the transcriptomes. We verified the effects of MSCs on oxygen-glucose deprivation (OGD)-induced cardiomyocyte apoptosis in vitro. In vivo, a rat MI model was established by ligating the left anterior descending coronary artery, and MSCs were injected into the myocardium surrounding the MI site. The therapeutic effects of MSCs derived from different segments of the UC were evaluated by examining cardiac function, histopathology, cardiomyocyte apoptosis, and angiogenesis. Results Compared to fetal-MSCs and middle-MSCs, maternal-MSCs exhibited significantly higher expression of genes that are associated with heart development, such as GATA-binding protein 4 (GATA4), and myocardin (MYOCD). Coculture with maternal-MSCs reduced OGD-induced cardiomyocyte apoptosis. In rats with MI, maternal-MSCs significantly restored cardiac contractile function and reduced the infarct size. Mechanistic experiments revealed that maternal-MSCs exerted cardioprotective effects by decreasing cardiomyocyte apoptosis, and promoting angiogenesis. Conclusion Our data demonstrated that maternal segment-derived MSCs were a superior cell source for regenerative repair after MI. Segmental localization of the entire UC when isolating hUCMSCs was necessary to improve the effectiveness of clinical applications.
Collapse
Affiliation(s)
- Shuifen Sun
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Linping Wang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Qisheng Tang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Jialian Yi
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| | - Xin Yu
- Medicine School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yu Cao
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lihong Jiang
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Liu
- Regenerative Medicine Research Center, NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, The First People’s Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Cell Therapy Engineering Research Center for Cardiovascular Diseases in Yunnan Province, Kunming, Yunnan, China
- Key Laboratory of Innovative Application for Traditional Chinese Medicine in Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
8
|
Zhang W, Uyemura R, Zhong K, Guo R, Zhong L. Current Advances and Future Perspectives on Mesenchymal Stem Cell-Derived Extracellular Vesicles in Alzheimer's Disease. Aging Dis 2024; 15:2015-2027. [PMID: 38270122 PMCID: PMC11346404 DOI: 10.14336/ad.2023.1206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/06/2023] [Indexed: 01/26/2024] Open
Abstract
The incidence of Alzheimer's disease (AD) has been increasing in recent years as the world's population ages, which poses a significant challenge to public health. Due to the complexity of pathogenesis of AD, currently there is no effective treatment for it. In recent years, cell and gene therapy has attracted widespread attention in the treatment of neurodegenerative diseases. Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) represent a novel cell-free therapy with numerous advantages over cell-based therapies owing to their low immunogenicity and high safety profile. We summarize recent progress in the application of EVs for treating AD and the specific mechanisms and outline the underlying mechanisms. We also explore various methods for optimizing the function of MSC-EVs, including gene editing, modifying stem cell culture conditions and peptide modification. In addition, we discuss the therapeutic potentials of MSC-EVs, as well as the obstacles that currently impede their clinical utilization.
Collapse
Affiliation(s)
- Wenjing Zhang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Russell Uyemura
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| | - Kun Zhong
- American Center of Stem Cell Research and Regenerative Medicine, Farmington Hills, Michigan 48336, USA
| | - Rui Guo
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Li Zhong
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
9
|
Watanabe T, Hatayama N, Guo M, Yuhara S, Shinoka T. Bridging the Gap: Advances and Challenges in Heart Regeneration from In Vitro to In Vivo Applications. Bioengineering (Basel) 2024; 11:954. [PMID: 39451329 PMCID: PMC11505552 DOI: 10.3390/bioengineering11100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 10/26/2024] Open
Abstract
Cardiovascular diseases, particularly ischemic heart disease, area leading cause of morbidity and mortality worldwide. Myocardial infarction (MI) results in extensive cardiomyocyte loss, inflammation, extracellular matrix (ECM) degradation, fibrosis, and ultimately, adverse ventricular remodeling associated with impaired heart function. While heart transplantation is the only definitive treatment for end-stage heart failure, donor organ scarcity necessitates the development of alternative therapies. In such cases, methods to promote endogenous tissue regeneration by stimulating growth factor secretion and vascular formation alone are insufficient. Techniques for the creation and transplantation of viable tissues are therefore highly sought after. Approaches to cardiac regeneration range from stem cell injections to epicardial patches and interposition grafts. While numerous preclinical trials have demonstrated the positive effects of tissue transplantation on vasculogenesis and functional recovery, long-term graft survival in large animal models is rare. Adequate vascularization is essential for the survival of transplanted tissues, yet pre-formed microvasculature often fails to achieve sufficient engraftment. Recent studies report success in enhancing cell survival rates in vitro via tissue perfusion. However, the transition of these techniques to in vivo models remains challenging, especially in large animals. This review aims to highlight the evolution of cardiac patch and stem cell therapies for the treatment of cardiovascular disease, identify discrepancies between in vitro and in vivo studies, and discuss critical factors for establishing effective myocardial tissue regeneration in vivo.
Collapse
Affiliation(s)
- Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Naoyuki Hatayama
- Department of Anatomy, Aichi Medical University, Nagakute 480-1195, Japan;
| | - Marissa Guo
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Satoshi Yuhara
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH 43205, USA; (T.W.); (M.G.); (S.Y.)
| | - Toshiharu Shinoka
- Department of Surgery, Ohio State University, Columbus, OH 43210, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| |
Collapse
|
10
|
Cui X, Guo J, Yuan P, Dai Y, Du P, Yu F, Sun Z, Zhang J, Cheng K, Tang J. Bioderived Nanoparticles for Cardiac Repair. ACS NANO 2024; 18:24622-24649. [PMID: 39185722 DOI: 10.1021/acsnano.3c07878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Biobased therapy represents a promising strategy for myocardial repair. However, the limitations of using live cells, including the risk of immunogenicity of allogeneic cells and inconsistent therapeutic efficacy of autologous cells together with low stability, result in an unsatisfactory clinical outcomes. Therefore, cell-free strategies for cardiac tissue repair have been proposed as alternative strategies. Cell-free strategies, primarily based on the paracrine effects of cellular therapy, have demonstrated their potential to inhibit apoptosis, reduce inflammation, and promote on-site cell migration and proliferation, as well as angiogenesis, after an infarction and have been explored preclinically and clinically. Among various cell-free modalities, bioderived nanoparticles, including adeno-associated virus (AAV), extracellular vesicles, cell membrane-coated nanoparticles, and exosome-mimetic nanovesicles, have emerged as promising strategies due to their improved biological function and therapeutic effect. The main focus of this review is the development of existing cellular nanoparticles and their fundamental working mechanisms, as well as the challenges and opportunities. The key processes and requirements for cardiac tissue repair are summarized first. Various cellular nanoparticle modalities are further highlighted, together with their advantages and limitations. Finally, we discuss various delivery approaches that offer potential pathways for researchers and clinicians to translate cell-free strategies for cardiac tissue repair into clinical practice.
Collapse
Affiliation(s)
- Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Jiacheng Guo
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Peiyu Yuan
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pengchong Du
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Fengyi Yu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Zhaowei Sun
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Jinying Zhang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, Henan 450052, China
- Henan Province Clinical Research Center for Cardiovascular Diseases, Zhengzhou, Henan 450052, China
| |
Collapse
|
11
|
Cai S, Dai Q. Progress in preclinical research on induced pluripotent stem cell therapy for acute myocardial infarction. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:244-253. [PMID: 38594961 PMCID: PMC11057988 DOI: 10.3724/zdxbyxb-2023-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024]
Abstract
Induced pluripotent stem cells (iPSCs) are obtained by introducing exogenous genes or adding chemicals to the culture medium to induce somatic cell differentiation. Similarly to embryonic stem cells, iPSCs have the ability to differentiate into all three embryonic cell lines. iPSCs can differentiate into cardiac muscle cells through two-dimensional differentiation methods such as monolayer cell culture and co-culture, or through embryoid body and scaffold-based three-dimensional differentiation methods. In addition, the process of iPSCs differentiation into cardiac muscle cells also requires activation or inhibition of specific signaling pathways,such as Wnt, BMP, Notch signaling pathways to mimic the development of the heart in vivo. In recent years, suspension culturing in bioreactors has been shown to produce large number of iPSCs derived cardiac muscle cells (iPSC-CMs). Before transplantation, it is necessary to purify iPSC-CMs through metabolic regulation or cell sorting to eliminate undifferentiated iPSCs, which may lead to teratoma formation. The transplantation methods for iPSC-CMs are mainly injection of cell suspension and transplantation of cell patches into the infarcted myocardium. Animal studies have shown that transplantation of iPSC-CMs into the infarcted myocardium can improve cardiac function. This article reviews the progress in preclinical studies on iPSC-CMs therapy for acute myocardial infarction and discusses the limitations and challenges of its clinical application to provide references for further clinical research and application.
Collapse
Affiliation(s)
- Songyan Cai
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Qingyuan Dai
- Department of Cardiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
12
|
Chen F, Che Z, Liu Y, Luo P, Xiao L, Song Y, Wang C, Dong Z, Li M, Tipoe GL, Yang M, Lv Y, Zhang H, Wang F, Xiao J. Invigorating human MSCs for transplantation therapy via Nrf2/DKK1 co-stimulation in an acute-on-chronic liver failure mouse model. Gastroenterol Rep (Oxf) 2024; 12:goae016. [PMID: 38529014 PMCID: PMC10963075 DOI: 10.1093/gastro/goae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/27/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Background Since boosting stem cell resilience in stressful environments is critical for the therapeutic efficacy of stem cell-based transplantations in liver disease, this study aimed to establish the efficacy of a transient plasmid-based preconditioning strategy for boosting the capability of mesenchymal stromal cells (MSCs) for anti-inflammation/antioxidant defenses and paracrine actions in recipient hepatocytes. Methods Human adipose mesenchymal stem cells (hADMSCs) were subjected to transfer, either with or without the nuclear factor erythroid 2-related factor 2 (Nrf2)/Dickkopf1 (DKK1) genes, followed by exposure to TNF-α/H2O2. Mouse models were subjected to acute chronic liver failure (ACLF) and subsequently injected with either transfected or untransfected MSCs. These hADMSCs and ACLF mouse models were used to investigate the interaction between Nrf2/DKK1 and the hepatocyte receptor cytoskeleton-associated protein 4 (CKAP4). Results Activation of Nrf2 and DKK1 enhanced the anti-stress capacity of MSCs in vitro. In a murine model of ACLF, transient co-overexpression of Nrf2 and DKK1 via plasmid transfection improved MSC resilience against inflammatory and oxidative assaults, boosted MSC transplantation efficacy, and promoted recipient liver regeneration due to a shift from the activation of the anti-regenerative IFN-γ/STAT1 pathway to the pro-regenerative IL-6/STAT3 pathway in the liver. Importantly, the therapeutic benefits of MSC transplantation were nullified when the receptor CKAP4, which interacts with DKK1, was specifically removed from recipient hepatocytes. However, the removal of the another receptor low-density lipoprotein receptor-related protein 6 (LRP6) had no impact on the effectiveness of MSC transplantation. Moreover, in long-term observations, no tumorigenicity was detected in mice following transplantation of transiently preconditioned MSCs. Conclusions Co-stimulation with Nrf2/DKK1 safely improved the efficacy of human MSC-based therapies in murine models of ACLF through CKAP4-dependent paracrine mechanisms.
Collapse
Affiliation(s)
- Feng Chen
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yingxia Liu
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Pingping Luo
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Lu Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Yali Song
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Cunchuan Wang
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Zhiyong Dong
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Mianhuan Li
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - George L Tipoe
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Min Yang
- National Clinical Research Center for Infectious Diseases, Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, P. R. China
| | - Yi Lv
- Laboratory of Neuroendocrinology, Fujian Key Laboratory of Developmental and Neurobiology, School of Life Sciences, Fujian Normal University, Fuzhou, Fujian, P. R. China
| | - Hong Zhang
- Department of Surgery, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, P. R. China
| | - Fei Wang
- Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Metabolic and Bariatric Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, P. R. China
- Department of Surgery, The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, Guangdong, P. R. China
| |
Collapse
|
13
|
Yan W, Xia Y, Zhao H, Xu X, Ma X, Tao L. Stem cell-based therapy in cardiac repair after myocardial infarction: Promise, challenges, and future directions. J Mol Cell Cardiol 2024; 188:1-14. [PMID: 38246086 DOI: 10.1016/j.yjmcc.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/09/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Stem cells represent an attractive resource for cardiac regeneration. However, the survival and function of transplanted stem cells is poor and remains a major challenge for the development of effective therapies. As two main cell types currently under investigation in heart repair, mesenchymal stromal cells (MSCs) indirectly support endogenous regenerative capacities after transplantation, while induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) functionally integrate into the damaged myocardium and directly contribute to the restoration of its pump function. These two cell types are exposed to a common microenvironment with many stressors in ischemic heart tissue. This review summarizes the research progress on the mechanisms and challenges of MSCs and iPSC-CMs in post-MI heart repair, introduces several randomized clinical trials with 3D-mapping-guided cell therapy, and outlines recent findings related to the factors that affect the survival and function of stem cells. We also discuss the future directions for optimization such as biomaterial utilization, cell combinations, and intravenous injection of engineered nucleus-free MSCs.
Collapse
Affiliation(s)
- Wenjun Yan
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Yunlong Xia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Huishou Zhao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Xu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinliang Ma
- Department of Emergency Medicine, Thomas Jefferson University, Philadelphia, PA 19107, United States of America
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
14
|
Luo ZR, Meng WT, Li H, Wang Y, Wang YC, Zhao Y, Lu PP, Yuan Y, Huang W, Guo HD. Transplantation of induced pluripotent stem cells-derived cardiomyocytes combined with modified Taohong Siwu decoction improved heart repair after myocardial infarction. Heliyon 2024; 10:e26700. [PMID: 38434034 PMCID: PMC10906439 DOI: 10.1016/j.heliyon.2024.e26700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Objective This study aimed to study whether modified Taohong Siwu decoction (MTHSWD) combined with human induced pluripotent stem cells-derived cardiomyocytes (iPS-CMs) transplantation can promote cardiac function in myocardial infarction (MI) nude mouse model and explore its possible mechanism. Methods The MI mouse model was established by the ligation of left anterior descending coronary artery. After 4 weeks of gavage of MTHSWD combined with iPS-CMs transplantation, the changes in heart function of mice were examined by echocardiography. The histological changes were observed by Masson's trichrome staining. The survival and differentiation of transplanted cells were detected by double immunofluorescence staining of human nuclear antigen (HNA) and cardiac troponin T (cTnT). The number of c-kit-positive cells in the infarct area were evaluated by immunofluorescent staining. The levels of stromal cell-derived factor 1 (SDF-1), stem cell factor (SCF), vascular endothelial growth factor (VEGF) and basic fibroblast growth factor in infarcted myocardium tissues were detected by ELISA. Results MTHSWD combined with iPS-CMs transplantation can improve the heart function of MI mice, reduce the infarct size and collagen deposition in infarct area. By immunofluorescence double-label detection of HNA and cTnT, it was found that MTHSWD combined with iPS-CMs transplantation can improve the survival and maturation of iPS-CMs. In addition, MTHSWD combined with iPS-CMs transplantation can activate more endogenous c-kit positive cardiac mesenchymal cells, and significantly increase the content of SDF-1, SCF and VEGF in myocardial tissues. Conclusions The combination of MTHSWD with iPS-CMs transplantation promoted cardiac function of nude mice with MI by improving the survival and maturation of iPS-CMs in the infarct area, activating the endogenous c-kit positive cardiac mesenchymal cells, and increasing paracrine.
Collapse
Affiliation(s)
- Zhi-rong Luo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wan-ting Meng
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Han Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ya-chao Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Zhao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ping-ping Lu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yuan Yuan
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Huang
- Department of Chinese Internal Medicine, Dahua Hospital, Xuhui District, Shanghai, China
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
15
|
Schweins M, Gäbel R, Raitza M, Vasudevan P, Lemcke H, Joksch M, Schildt A, Kurth J, Lindner T, Meinel FG, Öner A, Ince H, Vollmar B, Krause BJ, David R, Lang CI. Multi-modal assessment of a cardiac stem cell therapy reveals distinct modulation of regional scar properties. J Transl Med 2024; 22:187. [PMID: 38378655 PMCID: PMC10880233 DOI: 10.1186/s12967-024-04986-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND The initial idea of functional tissue replacement has shifted to the concept that injected cells positively modulate myocardial healing by a non-specific immune response of the transplanted cells within the target tissue. This alleged local modification of the scar requires assessment of regional properties of the left ventricular wall in addition to commonly applied measures of global morphological and functional parameters. Hence, we aimed at investigating the effect of cardiac cell therapy with cardiovascular progenitor cells, so-called cardiac induced cells, on both global and regional properties of the left ventricle by a multimodal imaging approach in a mouse model. METHODS Myocardial infarction was induced in mice by ligation of the left anterior descending artery, the therapy group received an intramyocardial injection of 1 × 106 cardiac induced cells suspended in matrigel, the control group received matrigel only. [18F]FDG positron emission tomography imaging was performed after 17 days, to assess regional glucose metabolism. Three weeks after myocardial infarction, cardiac magnetic resonance imaging was performed for morphological and functional assessment of the left ventricle. Following these measurements, hearts were excised for histological examinations. RESULTS Cell therapy had no significant effect on global morphological parameters. Similarly, there was no difference in scar size and capillary density between therapy and control group. However, there was a significant improvement in contractile function of the left ventricle - left ventricular ejection fraction, stroke volume and cardiac output. Regional analysis of the left ventricle identified changes of wall properties in the scar area as the putative mechanism. Cell therapy reduced the thinning of the scar and significantly improved its radial contractility. Furthermore, the metabolic defect, assessed by [18F]FDG, was significantly reduced by the cell therapy. CONCLUSION Our data support the relevance of extending the assessment of global left ventricular parameters by a structured regional wall analysis for the evaluation of therapies targeting at modulation of healing myocardium. This approach will enable a deeper understanding of mechanisms underlying the effect of experimental regenerative therapies, thus paving the way for a successful translation into clinical application.
Collapse
Affiliation(s)
- Moritz Schweins
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Matti Raitza
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Markus Joksch
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Anna Schildt
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Tobias Lindner
- Core Facility Multimodal Small Animal Imaging, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Rostock University Medical Center, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Bernd Joachim Krause
- Department of Nuclear Medicine, Rostock University Medical Centre, 18057, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Centre, 18057, Rostock, Germany
- Department of Life, Light and Matter, University of Rostock, 18059, Rostock, Germany
| | - Cajetan Immanuel Lang
- Department of Cardiology, Rostock University Medical Centre, 18057, Rostock, Germany.
| |
Collapse
|
16
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
17
|
Selvakumar D, Clayton ZE, Prowse A, Dingwall S, Kim SK, Reyes L, George J, Shah H, Chen S, Leung HHL, Hume RD, Tjahjadi L, Igoor S, Skelton RJP, Hing A, Paterson H, Foster SL, Pearson L, Wilkie E, Marcus AD, Jeyaprakash P, Wu Z, Chiu HS, Ongtengco CFJ, Mulay O, McArthur JR, Barry T, Lu J, Tran V, Bennett R, Kotake Y, Campbell T, Turnbull S, Gupta A, Nguyen Q, Ni G, Grieve SM, Palpant NJ, Pathan F, Kizana E, Kumar S, Gray PP, Chong JJH. Cellular heterogeneity of pluripotent stem cell-derived cardiomyocyte grafts is mechanistically linked to treatable arrhythmias. NATURE CARDIOVASCULAR RESEARCH 2024; 3:145-165. [PMID: 39196193 PMCID: PMC11358004 DOI: 10.1038/s44161-023-00419-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/26/2023] [Indexed: 08/29/2024]
Abstract
Preclinical data have confirmed that human pluripotent stem cell-derived cardiomyocytes (PSC-CMs) can remuscularize the injured or diseased heart, with several clinical trials now in planning or recruitment stages. However, because ventricular arrhythmias represent a complication following engraftment of intramyocardially injected PSC-CMs, it is necessary to provide treatment strategies to control or prevent engraftment arrhythmias (EAs). Here, we show in a porcine model of myocardial infarction and PSC-CM transplantation that EAs are mechanistically linked to cellular heterogeneity in the input PSC-CM and resultant graft. Specifically, we identify atrial and pacemaker-like cardiomyocytes as culprit arrhythmogenic subpopulations. Two unique surface marker signatures, signal regulatory protein α (SIRPA)+CD90-CD200+ and SIRPA+CD90-CD200-, identify arrhythmogenic and non-arrhythmogenic cardiomyocytes, respectively. Our data suggest that modifications to current PSC-CM-production and/or PSC-CM-selection protocols could potentially prevent EAs. We further show that pharmacologic and interventional anti-arrhythmic strategies can control and potentially abolish these arrhythmias.
Collapse
Affiliation(s)
- Dinesh Selvakumar
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Zoe E Clayton
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Andrew Prowse
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Steve Dingwall
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Sul Ki Kim
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Leila Reyes
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Jacob George
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Haisam Shah
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Siqi Chen
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Halina H L Leung
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Robert D Hume
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Laurentius Tjahjadi
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Sindhu Igoor
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Rhys J P Skelton
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Alfred Hing
- Department of Cardiothoracic Surgery, Westmead Hospital, Westmead, New South Wales, Australia
| | - Hugh Paterson
- Sydney Imaging, Core Research Facility, the University of Sydney, Sydney, New South Wales, Australia
| | - Sheryl L Foster
- Department of Radiology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney School of Health Sciences, Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia
| | - Lachlan Pearson
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Emma Wilkie
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Alan D Marcus
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
| | - Prajith Jeyaprakash
- Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
| | - Zhixuan Wu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Han Shen Chiu
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Cherica Felize J Ongtengco
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - Onkar Mulay
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Jeffrey R McArthur
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Tony Barry
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Juntang Lu
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Vu Tran
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Richard Bennett
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Samual Turnbull
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anunay Gupta
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Quan Nguyen
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Guiyan Ni
- Genomics and Machine Learning Lab, Division of Genetics and Genomics, Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Stuart M Grieve
- Imaging and Phenotyping Laboratory, Faculty of Medicine and Health, Charles Perkins Centre, the University of Sydney, Sydney, New South Wales, Australia
| | - Nathan J Palpant
- Institute for Molecular Bioscience, the University of Queensland, St Lucia, Queensland, Australia
| | - Faraz Pathan
- Department of Cardiology, Nepean Hospital, Kingswood, New South Wales, Australia
- Sydney Medical School, Charles Perkins Centre Nepean, Faculty of Medicine and Health, the University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Kizana
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia
| | - Peter P Gray
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, Queensland, Australia
| | - James J H Chong
- Centre for Heart Research, the Westmead Institute for Medical Research, the University of Sydney, Westmead, New South Wales, Australia.
- Department of Cardiology, Westmead Hospital, Westmead, New South Wales, Australia.
| |
Collapse
|
18
|
Vo QD, Saito Y, Nakamura K, Iida T, Yuasa S. Induced Pluripotent Stem Cell-Derived Cardiomyocytes Therapy for Ischemic Heart Disease in Animal Model: A Meta-Analysis. Int J Mol Sci 2024; 25:987. [PMID: 38256060 PMCID: PMC10815661 DOI: 10.3390/ijms25020987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Ischemic heart disease (IHD) poses a significant challenge in cardiovascular health, with current treatments showing limited success. Induced pluripotent derived-cardiomyocyte (iPSC-CM) therapy within regenerative medicine offers potential for IHD patients, although its clinical impacts remain uncertain. This study utilizes meta-analysis to assess iPSC-CM outcomes in terms of efficacy and safety in IHD animal model studies. A meta-analysis encompassing PUBMED, ScienceDirect, Web of Science, and the Cochrane Library databases, from inception until October 2023, investigated iPSC therapy effects on cardiac function and safety outcomes. Among 51 eligible studies involving 1012 animals, despite substantial heterogeneity, the iPSC-CM transplantation improved left ventricular ejection fraction (LVEF) by 8.23% (95% CI, 7.15 to 9.32%; p < 0.001) compared to control groups. Additionally, cell-based treatment reduced the left ventricle fibrosis area and showed a tendency to reduce left ventricular end-systolic volume (LVESV) and end-diastolic volume (LVEDV). No significant differences emerged in mortality and arrhythmia risk between iPSC-CM treatment and control groups. In conclusion, this meta-analysis indicates iPSC-CM therapy's promise as a safe and beneficial intervention for enhancing heart function in IHD. However, due to observed heterogeneity, the efficacy of this treatment must be further explored through large randomized controlled trials based on rigorous research design.
Collapse
Affiliation(s)
- Quan Duy Vo
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Toshihiro Iida
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| | - Shinsuke Yuasa
- Department of Cardiovascular Medicine, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (Q.D.V.); (T.I.); (S.Y.)
| |
Collapse
|
19
|
Wang W, Tayier B, Guan L, Yan F, Mu Y. Optimization of the cotransfection of SERCA2a and Cx43 genes for myocardial infarction complications. Life Sci 2023; 331:122067. [PMID: 37659592 DOI: 10.1016/j.lfs.2023.122067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
As our previous study showed, the therapeutic effect of two genes (SERCA2a and Cx43) on heart failure after myocardial infarction (MI) was greater than that of single gene (SERCA2a or Cx43) therapy for bone marrow stem cell (BMSC) transplantation. Based on previous research, the aim of this study was to investigate the optimal ratio of codelivery of SERCA2a and Cx43 genes for MI therapy after biotinylated microbubble (BMB) transplantation via ultrasonic-targeted microbubble destruction (UTMD). Forty rats underwent left anterior descending (LAD) ligation and BMSC injection into the infarct and border zones. Four weeks later, the genes SERCA2a and Cx43 were codelivered at different ratios (1:1, 1:2 and 2:1) into the infarcted heart via UTMD. Cardiac mechanoelectrical function was determined at 4 wks after gene delivery, and the hearts of the rats were harvested for measurement of MI size and detection of SERCA2a and Cx43 expression. Q-PCR analysis of the expression of Nkx2.5 and GATA4 in the myocardial infarct zone and measurement of neovascularization in infarcted hearts. After comparing the therapeutic effects of different cogene ratios, the SERCA2a/Cx43-1:2 group showed remarkable cardiac electrical stability and strengthened the role of anti-arrhythmia. In conclusion, the optimum ratio of the SERCA2a/Cx43 gene is 1:2, which is advantageous for maintaining cardiac electrophysiological stability.
Collapse
Affiliation(s)
- Wei Wang
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China; Department of Ultrasound, Urumqi Friendship Hospital, Urumqi, China
| | - Baihetiya Tayier
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Lina Guan
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Yuming Mu
- Department of Echocardiography, Xinjiang Medical University Affiliated First Hospital, Urumqi, China; Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, China.
| |
Collapse
|
20
|
Jiang Y, Zhang LL, Zhang F, Bi W, Zhang P, Yu XJ, Rao SL, Wang SH, Li Q, Ding C, Jin Y, Liu ZM, Yang HT. Dual human iPSC-derived cardiac lineage cell-seeding extracellular matrix patches promote regeneration and long-term repair of infarcted hearts. Bioact Mater 2023; 28:206-226. [PMID: 37274446 PMCID: PMC10236375 DOI: 10.1016/j.bioactmat.2023.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023] Open
Abstract
Human pluripotent stem cell-derived cardiovascular progenitor cells (hCVPCs) and cardiomyocytes (hCMs) possess therapeutic potential for infarcted hearts; however, their efficacy needs to be enhanced. Here we tested the hypotheses that the combination of decellularized porcine small intestinal submucosal extracellular matrix (SIS-ECM) with hCVPCs, hCMs, or dual of them (Mix, 1:1) could provide better therapeutic effects than the SIS alone, and dual hCVPCs with hCMs would exert synergic effects in cardiac repair. The data showed that the SIS patch well supported the growth of hCVPCs and hCMs. Epicardially implanted SIS-hCVPC, SIS-hCM, or SIS-Mix patches at 7-day post-myocardial infarction significantly ameliorated functional worsening, ventricular dilation and scar formation at 28- and 90-day post-implantation in C57/B6 mice, whereas the SIS only mildly improved function at 90-day post-implantation. Moreover, the SIS and SIS-cell patches improved vascularization and suppressed MI-induced cardiomyocyte hypertrophy and expression of Col1 and Col3, but only the SIS-hCM and the SIS-Mix patches increased the ratio of collagen III/I fibers in the infarcted hearts. Further, the SIS-cell patches stimulated cardiomyocyte proliferation via paracrine action. Notably, the SIS-Mix had better improvements in cardiac function and structure, engraftments, and cardiomyocyte proliferation. Proteomic analysis showed distinct biological functions of exclusive proteins secreted from hCVPCs and hCMs, and more exclusive proteins secreted from co-cultivated hCVPCs and hCMs than mono-cells involving in various functional processes essential for infarct repair. These findings are the first to demonstrate the efficacy and mechanisms of mono- and dual-hCVPC- and hCM-seeding SIS-ECM for repair of infarcted hearts based on the side-by-side comparison.
Collapse
Affiliation(s)
- Yun Jiang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Ling-Ling Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Fan Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Peng Zhang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Xiu-Jian Yu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Shi-Hui Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Qiang Li
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Institute of Biomedical Sciences, Human Phenome Institute, Zhongshan Hospital, Fudan University, Shanghai, 200433, China
| | - Yin Jin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
| | - Zhong-Min Liu
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Huang-Tian Yang
- Translational Medical Center for Stem Cell Therapy & Institute for Heart Failure and Regenerative Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences (CAS), CAS, Shanghai, 200031, PR China
- Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, PR China
| |
Collapse
|
21
|
Menasché P. Human PSC-derived cardiac cells and their products: therapies for cardiac repair. J Mol Cell Cardiol 2023; 183:14-21. [PMID: 37595498 DOI: 10.1016/j.yjmcc.2023.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
Despite the dramatic improvements in the management of patients with chronic heart failure which have occurred over the last decades, some of them still exhaust conventional drug-based therapies without being eligible for more aggressive options like heart transplantation or implantation of a left ventricular assist device. Cell therapy has thus emerged as a possible means of filling this niche. Multiple cell types have now been tested both in the laboratory but also in the clinics and it is fair to acknowledge that none of the clinical trials have yet conclusively proven the efficacy of cell-based approaches. These clinical studies, however, have entailed the use of cells from various sources but of non-cardiac lineage origins. Although this might not be the main reason for their failures, the discovery of pluripotent stem cells capable of generating cardiomyocytes now raises the hope that such cardiac-committed cells could be therapeutically more effective. In this review, we will first describe where we currently are with regard to the clinical trials using PSC-differentiated cells and discuss the main issues which remain to be addressed. In parallel, because the capacity of cells to stably engraft in the recipient heart has increasingly been questioned, it has been hypothesized that a major mechanism of action could be the cell-triggered release of biomolecules that foster host-associated reparative pathways. Thus, in the second part of this review, we will discuss the rationale, clinically relevant advantages and pitfalls associated with the use of these PSC "products".
Collapse
Affiliation(s)
- Philippe Menasché
- Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université Paris Cité, Inserm, PARCC, F-75015 Paris, France.
| |
Collapse
|
22
|
Zhang B, Shi L, Tan Y, Zhou Y, Cui J, Song Y, Liu Y, Zhang M, Duan W, Jin Z, Liu J, Yi D, Sun Y, Yi W. Forkhead box O6 (FoxO6) promotes cardiac pathological remodeling and dysfunction by activating Kif15-TGF-β1 under aggravated afterload. MedComm (Beijing) 2023; 4:e383. [PMID: 37799807 PMCID: PMC10547936 DOI: 10.1002/mco2.383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Pathological cardiac hypertrophy exhibits complex and abnormal gene expression patterns and progresses to heart failure. Forkhead box protein O6 (FoxO6) is a key transcription factor involved in many biological processes. This study aimed to explore the role of FoxO6 in cardiac hypertrophy. Three groups of mice were established: wild-type, FoxO6 knockout, and FoxO6-overexpressing. The mice received daily administration of angiotensin-II (Ang-II) or saline for 4 weeks, after which they were examined for cardiac hypertrophy, fibrosis, and function. Elevated cardiac expression of FoxO6 was observed in Ang-II-treated mice. FoxO6 deficiency attenuated contractile dysfunction and cardiac remodeling, including cardiomyocyte hypertrophy and fibroblast proliferation and differentiation. Conversely, FoxO6 overexpression aggravated the cardiomyopathy and heart dysfunction. Further studies identified kinesin family member 15 (Kif15) as downstream molecule of FoxO6. Kif15 inhibition attenuated the aggravating effect of FoxO6 overexpression. In vitro, FoxO6 overexpression increased Kif15 expression in cardiomyocytes and elevated the concentration of transforming growth factor-β1 (TGF-β1) in the medium where fibroblasts were grown, exhibiting increased proliferation and differentiation, while FoxO6 knockdown attenuated this effect. Cardiac-derived FoxO6 promoted pathological cardiac remodeling induced by aggravated afterload largely by activating the Kif15/TGF-β1 axis. This result further complements the mechanisms of communication among different cells in the heart, providing novel therapeutic targets for heart failure.
Collapse
Affiliation(s)
- Bing Zhang
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Lei Shi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yanzhen Tan
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yenong Zhou
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jun Cui
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yujie Song
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yingying Liu
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Miao Zhang
- Department of GeriatricsXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Weixun Duan
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Zhenxiao Jin
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Jincheng Liu
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Dinghua Yi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Yang Sun
- Department of GeriatricsXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Wei Yi
- Department of Cardiovascular SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
23
|
Li H, Ye W, Yu B, Yan X, Lin Y, Zhan J, Chen P, Song X, Yang P, Cai Y. Supramolecular Assemblies of Glycopeptides Enhance Gap Junction Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes via Inducing Spheroids Formation to Optimize Cardiac Repair. Adv Healthc Mater 2023; 12:e2300696. [PMID: 37338936 DOI: 10.1002/adhm.202300696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Stem cell-based therapies have demonstrated significant potential for use in heart regeneration. An effective paradigm for heart repair in rodent and large animal models is the transplantation of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Despite this, the functional and phenotypical immaturity of 2D-cultured hiPSC-CMs, particularly their low electrical integration, poses a caveat for clinical translation. In this study, a supramolecular assembly of a glycopeptide containing a cell adhesion motif-RGD, and saccharide-glucose (Bio-Gluc-RGD) is designed to enable the 3D spheroid formation of hiPSC-CMs, promoting cell-cell and cell-matrix interactions that occur during spontaneous morphogenesis. HiPSC-CMs in spheroids are prone to be phenotypically mature and developed robust gap junctions via activation of the integrin/ILK/p-AKT/Gata4 pathway. Monodispersed hiPSC-CMs encapsulated in the Bio-Gluc-RGD hydrogel are more likely to form aggregates and, therefore, survive in the infarcted myocardium of mice, accompanied by more robust gap junction formation in the transplanted cells, and hiPSC-CMs delivered with the hydrogels also displayed angiogenic effect and anti-apoptosis capacity in the peri-infarct area, enhancing their overall therapeutic efficacy in myocardial infarction. Collectively, the findings illustrate a novel concept for modulating hiPSC-CM maturation by spheroid induction, which has the potential for post-MI heart regeneration.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Wenyu Ye
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bin Yu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xin Yan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yuhui Lin
- Department of Cardiovascular Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Peier Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xudong Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
24
|
Esteves F, Brito D, Rajado AT, Silva N, Apolónio J, Roberto VP, Araújo I, Nóbrega C, Castelo-Branco P, Bragança J. Reprogramming iPSCs to study age-related diseases: Models, therapeutics, and clinical trials. Mech Ageing Dev 2023; 214:111854. [PMID: 37579530 DOI: 10.1016/j.mad.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
The unprecedented rise in life expectancy observed in the last decades is leading to a global increase in the ageing population, and age-associated diseases became an increasing societal, economic, and medical burden. This has boosted major efforts in the scientific and medical research communities to develop and improve therapies to delay ageing and age-associated functional decline and diseases, and to expand health span. The establishment of induced pluripotent stem cells (iPSCs) by reprogramming human somatic cells has revolutionised the modelling and understanding of human diseases. iPSCs have a major advantage relative to other human pluripotent stem cells as their obtention does not require the destruction of embryos like embryonic stem cells do, and do not have a limited proliferation or differentiation potential as adult stem cells. Besides, iPSCs can be generated from somatic cells from healthy individuals or patients, which makes iPSC technology a promising approach to model and decipher the mechanisms underlying the ageing process and age-associated diseases, study drug effects, and develop new therapeutic approaches. This review discusses the advances made in the last decade using iPSC technology to study the most common age-associated diseases, including age-related macular degeneration (AMD), neurodegenerative and cardiovascular diseases, brain stroke, cancer, diabetes, and osteoarthritis.
Collapse
Affiliation(s)
- Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735 Loulé, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139 Faro, Portugal; Champalimaud Research Program, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisbon, Portugal.
| |
Collapse
|
25
|
Li K, Zhu Z, Sun X, Zhao L, Liu Z, Xing J. Harnessing the therapeutic potential of mesenchymal stem cell-derived exosomes in cardiac arrest: Current advances and future perspectives. Biomed Pharmacother 2023; 165:115201. [PMID: 37480828 DOI: 10.1016/j.biopha.2023.115201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Cardiac arrest (CA), characterized by sudden onset and high mortality rates, is one of the leading causes of death globally, with a survival rate of approximately 6-24%. Studies suggest that the restoration of spontaneous circulation (ROSC) hardly improved the mortality rate and prognosis of patients diagnosed with CA, largely due to ischemia-reperfusion injury. MAIN BODY Mesenchymal stem cells (MSCs) exhibit self-renewal and strong potential for multilineage differentiation. Their effects are largely mediated by extracellular vesicles (EVs). Exosomes are the most extensively studied subgroup of EVs. EVs mainly mediate intercellular communication by transferring vesicular proteins, lipids, nucleic acids, and other substances to regulate multiple processes, such as cytokine production, cell proliferation, apoptosis, and metabolism. Thus, exosomes exhibit significant potential for therapeutic application in wound repair, tissue reconstruction, inflammatory reaction, and ischemic diseases. CONCLUSION Based on similar pathological mechanisms underlying post-cardiac arrest syndrome involving various tissues and organs in many diseases, the review summarizes the therapeutic effects of MSC-derived exosomes and explores the prospects for their application in the treatment of CA.
Collapse
Affiliation(s)
- Ke Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhu Zhu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Xiumei Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Linhong Zhao
- Northeast Normal University, Changchun 130022, China.
| | - Zuolong Liu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Park S, Gwon Y, Khan SA, Jang KJ, Kim J. Engineering considerations of iPSC-based personalized medicine. Biomater Res 2023; 27:67. [PMID: 37420273 DOI: 10.1186/s40824-023-00382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 07/09/2023] Open
Abstract
Personalized medicine aims to provide tailored medical treatment that considers the clinical, genetic, and environmental characteristics of patients. iPSCs have attracted considerable attention in the field of personalized medicine; however, the inherent limitations of iPSCs prevent their widespread use in clinical applications. That is, it would be important to develop notable engineering strategies to overcome the current limitations of iPSCs. Such engineering approaches could lead to significant advances in iPSC-based personalized therapy by offering innovative solutions to existing challenges, from iPSC preparation to clinical applications. In this review, we summarize how engineering strategies have been used to advance iPSC-based personalized medicine by categorizing the development process into three distinctive steps: 1) the production of therapeutic iPSCs; 2) engineering of therapeutic iPSCs; and 3) clinical applications of engineered iPSCs. Specifically, we focus on engineering strategies and their implications for each step in the development of iPSC-based personalized medicine.
Collapse
Affiliation(s)
- Sangbae Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Shahidul Ahmed Khan
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Kyoung-Je Jang
- Department of Bio-Systems Engineering, Institute of Smart Farm, Gyeongsang National University, Jinju, 52828, Republic of Korea.
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea.
- Institute of Nano-Stem Cells Therapeutics, NANOBIOSYSTEM Co, Ltd, Gwangju, 61011, Republic of Korea.
| |
Collapse
|
27
|
Lin YN, Miguel-Dos-Santos R, Cingolani E. Biological Modification of Arrhythmogenic Substrates by Cell-Free Therapeutics. Heart Lung Circ 2023; 32:844-851. [PMID: 37353457 PMCID: PMC10526725 DOI: 10.1016/j.hlc.2023.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/21/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023]
Abstract
Ventricular arrhythmias (VAs) represent a major cause of sudden cardiac death and afflict patients with heart failure from both ischaemic and non-ischaemic origins, and inherited cardiomyopathies. Current VA management, including anti-arrhythmic medications, autonomic modulation, implantable cardioverter-defibrillator implantation, and catheter ablation, remains suboptimal. Catheter ablation may even cause significant cardiomyocyte loss. Cell-based therapies and exosome treatment have been proposed as promising strategies to lessen cardiomyocyte death, modulate immune reaction, and reduce myocardial scarring, and, therefore, are potentially beneficial in treating VAs. In this review, we summarise the current cornerstones of VA management. We also discuss recent advances and ongoing evidence regarding cell-based and exosome therapy, with special attention to VA treatment.
Collapse
Affiliation(s)
- Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, China Medical University and Hospital, Taipei, Taiwan
| | | | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Zhao L, Lee AS, Sasagawa K, Sokol J, Wang Y, Ransom RC, Zhao X, Ma C, Steininger HM, Koepke LS, Borrelli MR, Brewer RE, Lee LL, Huang X, Ambrosi TH, Sinha R, Hoover MY, Seita J, Weissman IL, Wu JC, Wan DC, Xiao J, Longaker MT, Nguyen PK, Chan CK. A Combination of Distinct Vascular Stem/Progenitor Cells for Neovascularization and Ischemic Rescue. Arterioscler Thromb Vasc Biol 2023; 43:1262-1277. [PMID: 37051932 PMCID: PMC10281192 DOI: 10.1161/atvbaha.122.317943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/09/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND Peripheral vascular disease remains a leading cause of vascular morbidity and mortality worldwide despite advances in medical and surgical therapy. Besides traditional approaches, which can only restore blood flow to native arteries, an alternative approach is to enhance the growth of new vessels, thereby facilitating the physiological response to ischemia. METHODS The ActinCreER/R26VT2/GK3 Rainbow reporter mouse was used for unbiased in vivo survey of injury-responsive vasculogenic clonal formation. Prospective isolation and transplantation were used to determine vessel-forming capacity of different populations. Single-cell RNA-sequencing was used to characterize distinct vessel-forming populations and their interactions. RESULTS Two populations of distinct vascular stem/progenitor cells (VSPCs) were identified from adipose-derived mesenchymal stromal cells: VSPC1 is CD45-Ter119-Tie2+PDGFRa-CD31+CD105highSca1low, which gives rise to stunted vessels (incomplete tubular structures) in a transplant setting, and VSPC2 which is CD45-Ter119-Tie2+PDGFRa+CD31-CD105lowSca1high and forms stunted vessels and fat. Interestingly, cotransplantation of VSPC1 and VSPC2 is required to form functional vessels that improve perfusion in the mouse hindlimb ischemia model. Similarly, VSPC1 and VSPC2 populations isolated from human adipose tissue could rescue the ischemic condition in mice. CONCLUSIONS These findings suggest that autologous cotransplantation of synergistic VSPCs from nonessential adipose tissue can promote neovascularization and represents a promising treatment for ischemic disease.
Collapse
Affiliation(s)
- Liming Zhao
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
| | - Andrew S. Lee
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China (A.S.L.)
- Institute for Cancer Research, Shenzhen Bay Laboratory, China (A.S.L.)
| | - Koki Sasagawa
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Jan Sokol
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan (J.S.)
| | - Yuting Wang
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
| | - Ryan C. Ransom
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Xin Zhao
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Chao Ma
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Holly M. Steininger
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Lauren S. Koepke
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Mimi R. Borrelli
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Rachel E. Brewer
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Lorene L.Y. Lee
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Xianxi Huang
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Thomas H. Ambrosi
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Rahul Sinha
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Malachia Y. Hoover
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Jun Seita
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
- Department of Developmental Biology (I.L.W., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, China (A.S.L.)
- Institute for Cancer Research, Shenzhen Bay Laboratory, China (A.S.L.)
- Center for Integrative Medical Sciences and Advanced Data Science Project, RIKEN, Tokyo, Japan (J.S.)
| | - Irving L. Weissman
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Developmental Biology (I.L.W., C.K.F.C.), Stanford University School of Medicine, CA
| | - Joseph C. Wu
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Derrick C. Wan
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Jun Xiao
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (L.Z., Y.W., J.X.)
| | - Michael T. Longaker
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
| | - Patricia K. Nguyen
- Stanford Cardiovascular Institute (K.S., J.S., X.Z., X.H., J.C.W., M.T.L., P.K.N., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Medicine, Division of Cardiovascular Medicine (K.S., J.S., X.Z., X.H., J.C.W., P.K.N.), Stanford University School of Medicine, CA
| | - Charles K.F. Chan
- Institute for Stem Cell Biology and Regenerative Medicine (L.Z., Y.W., R.C.R., X.Z., C.M., H.M.S., L.S.K., M.R.B., R.E.B., L.Y.L., T.H.A., R.S., M.Y.H., I.L.W., J.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Surgery, Division of Plastic and Reconstructive Surgery (L.Z., Y.W., R.C.R., C.M., H.M.S., L.S.K., M.R.B., L.L.Y.L., T.H.A., D.C.W., M.T.L., C.K.F.C.), Stanford University School of Medicine, CA
- Department of Developmental Biology (I.L.W., C.K.F.C.), Stanford University School of Medicine, CA
| |
Collapse
|
29
|
Tonkin D, Yee-Goh A, Katare R. Healing the Ischaemic Heart: A Critical Review of Stem Cell Therapies. Rev Cardiovasc Med 2023; 24:122. [PMID: 39076280 PMCID: PMC11273058 DOI: 10.31083/j.rcm2404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 07/31/2024] Open
Abstract
Ischaemic heart disease (IHD) remains the leading cause of mortality worldwide. Current pharmaceutical treatments focus on delaying, rather than preventing disease progression. The only curative treatment available is orthotopic heart transplantation, which is greatly limited by a lack of available donors and the possibility for immune rejection. As a result, novel therapies are consistently being sought to improve the quality and duration of life of those suffering from IHD. Stem cell therapies have garnered attention globally owing to their potential to replace lost cardiac cells, regenerate the ischaemic myocardium and to release protective paracrine factors. Despite recent advances in regenerative cardiology, one of the biggest challenges in the clinical translation of cell-based therapies is determining the most efficacious cell type for repair. Multiple cell types have been investigated in clinical trials; with inconsistent methodologies and isolation protocols making it difficult to draw strong conclusions. This review provides an overview of IHD focusing on pathogenesis and complications, followed by a summary of different stem cells which have been trialled for use in the treatment of IHD, and ends by exploring the known mechanisms by which stem cells mediate their beneficial effects on ischaemic myocardium.
Collapse
Affiliation(s)
- Devin Tonkin
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Anthony Yee-Goh
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| |
Collapse
|
30
|
Lang CI, Dahmen A, Vasudevan P, Lemcke H, Gäbel R, Öner A, Ince H, David R, Wolfien M. Cardiac cell therapies for the treatment of acute myocardial infarction in mice: systematic review and meta-analysis. Cytotherapy 2023; 25:640-652. [PMID: 36890093 DOI: 10.1016/j.jcyt.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
Backgound Aims: This meta-analysis aims at summarizing the whole body of research on cell therapies for acute myocardial infarction (MI) in the mouse model to bring forward ongoing research in this field of regenerative medicine. Despite rather modest effects in clinical trials, pre-clinical studies continue to report beneficial effects of cardiac cell therapies for cardiac repair following acute ischemic injury. Results: The authors' meta-analysis of data from 166 mouse studies comprising 257 experimental groups demonstrated a significant improvement in left ventricular ejection fraction of 10.21% after cell therapy compared with control animals. Subgroup analysis indicated that second-generation cell therapies such as cardiac progenitor cells and pluripotent stem cell derivatives had the highest therapeutic potential for minimizing myocardial damage post-MI. Conclusions: Whereas the vision of functional tissue replacement has been replaced by the concept of regional scar modulation in most of the investigated studies, rather basic methods for assessing cardiac function were most frequently used. Hence, future studies will highly benefit from integrating methods for assessment of regional wall properties to evolve a deeper understanding of how to modulate cardiac healing after acute MI.
Collapse
Affiliation(s)
| | - Anika Dahmen
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Heiko Lemcke
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Ralf Gäbel
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Alper Öner
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Hüseyin Ince
- Department of Cardiology, Rostock University Medical Center, Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Rostock University Medical Center, Rostock, Germany; Department of Life, Light and Matter, University of Rostock, Rostock, Germany
| | - Markus Wolfien
- Institute of Medical Informatics and Biometry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Wu P, Sai X, Li Z, Ye X, Jin L, Liu G, Li G, Yang P, Zhao M, Zhu S, Liu N, Zhu P. Maturation of induced pluripotent stem cell-derived cardiomyocytes and its therapeutic effect on myocardial infarction in mouse. Bioact Mater 2023; 20:286-305. [PMID: 35702609 PMCID: PMC9167678 DOI: 10.1016/j.bioactmat.2022.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) have an irreplaceable role in the treatment of myocardial infarction (MI), which can be injected into the transplanted area with new cardiomyocytes (Cardiomyocytes, CMs), and improve myocardial function. However, the immaturity of the structure and function of iPSC-CMs is the main bottleneck at present. Since collagen participates in the formation of extracellular matrix (ECM), we synthesized nano colloidal gelatin (Gel) with collagen as the main component, and confirmed that the biomaterial has good biocompatibility and is suitable for cellular in vitro growth. Subsequently, we combined the PI3K/AKT/mTOR pathway inhibitor BEZ-235 with Gel and found that the two combined increased the sarcomere length and action potential amplitude (APA) of iPSC-CMs, and improved the Ca2+ processing ability, the maturation of mitochondrial morphological structure and metabolic function. Not only that, Gel can also prolong the retention rate of iPSC-CMs in the myocardium and increase the expression of Cx43 and angiogenesis in the transplanted area of mature iPSC-CMs, which also provides a reliable basis for the subsequent treatment of mature iPSC-CMs. BEZ-235 + Gel promotes the maturation of sarcomere structure in iPSC-CMs. BEZ-235 + Gel promotes electrophysiological maturation of iPSC-CMs. BEZ-235 + Gel increases mitochondrial respiration in iPSC-CMs. Gel loaded with mature iPSC-CMs enhanced angiogenesis and gap junction formation at the injection site.
Collapse
|
32
|
Whole-Heart Tissue Engineering and Cardiac Patches: Challenges and Promises. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010106. [PMID: 36671678 PMCID: PMC9855348 DOI: 10.3390/bioengineering10010106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Despite all the advances in preventing, diagnosing, and treating cardiovascular disorders, they still account for a significant part of mortality and morbidity worldwide. The advent of tissue engineering and regenerative medicine has provided novel therapeutic approaches for the treatment of various diseases. Tissue engineering relies on three pillars: scaffolds, stem cells, and growth factors. Gene and cell therapy methods have been introduced as primary approaches to cardiac tissue engineering. Although the application of gene and cell therapy has resulted in improved regeneration of damaged cardiac tissue, further studies are needed to resolve their limitations, enhance their effectiveness, and translate them into the clinical setting. Scaffolds from synthetic, natural, or decellularized sources have provided desirable characteristics for the repair of cardiac tissue. Decellularized scaffolds are widely studied in heart regeneration, either as cell-free constructs or cell-seeded platforms. The application of human- or animal-derived decellularized heart patches has promoted the regeneration of heart tissue through in vivo and in vitro studies. Due to the complexity of cardiac tissue engineering, there is still a long way to go before cardiac patches or decellularized whole-heart scaffolds can be routinely used in clinical practice. This paper aims to review the decellularized whole-heart scaffolds and cardiac patches utilized in the regeneration of damaged cardiac tissue. Moreover, various decellularization methods related to these scaffolds will be discussed.
Collapse
|
33
|
Ai X, Yan B, Witman N, Gong Y, Yang L, Tan Y, Chen Y, Liu M, Lu T, Luo R, Wang H, Chien KR, Wang W, Fu W. Transient secretion of VEGF protein from transplanted hiPSC-CMs enhances engraftment and improves rat heart function post MI. Mol Ther 2023; 31:211-229. [PMID: 35982619 PMCID: PMC9840120 DOI: 10.1016/j.ymthe.2022.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/12/2022] [Indexed: 01/28/2023] Open
Abstract
Cell-based therapies offer an exciting and novel treatment for heart repair following myocardial infarction (MI). However, these therapies often suffer from poor cell viability and engraftment rates, which involve many factors, including the hypoxic conditions of the infarct environment. Meanwhile, vascular endothelial growth factor (VEGF) has previously been employed as a therapeutic agent to limit myocardial damage and simultaneously induce neovascularization. This study took an approach to transiently overexpress VEGF protein, in a controlled manner, by transfecting human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with VEGF mRNA prior to transplantation. The conditioning of iPSC-CMs with VEGF mRNA ultimately led to greater survival rates of the transplanted cells, which promoted a stable vascular network in the grafted region. Furthermore, bulk RNA transcriptomics data and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) and AGE-RAGE signaling pathways were significantly upregulated in the VEGF-treated iPSC-CMs group. The over-expression of VEGF from iPSC-CMs stimulated cell proliferation and partially attenuated the hypoxic environment in the infarcted area, resulting in reduced ventricular remodeling. This study provides a valuable solution for the survival of transplanted cells in tissue-engineered heart regeneration and may further promote the application of modified mRNA (modRNA) in the field of tissue engineering.
Collapse
Affiliation(s)
- Xuefeng Ai
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Bingqian Yan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Yiqi Gong
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li Yang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yao Tan
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ying Chen
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minglu Liu
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Lu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Runjiao Luo
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Huijing Wang
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Wei Wang
- Department of Pediatric Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China.
| |
Collapse
|
34
|
Lopez LV, Camberos V, Bailey LL, Hasaniya N, Ramos C, Hughes L, Knox C, Kearns-Jonker MK. MicroRNA Expression in the Infarcted Heart Following Neonatal Cardiovascular Progenitor Cell Transplantation in a Sheep Model of Stem Cell-Based Repair. Cell Transplant 2022; 31:9636897221136787. [PMID: 36564913 PMCID: PMC9793054 DOI: 10.1177/09636897221136787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myocardial infarctions affect approximately 735,000 people annually in the United States and have a substantial impact on quality of life. Neonates have an enhanced capability of repairing cardiovascular damage, while adults do not. The mechanistic basis for this age-dependent difference in regenerative capacity remains unknown. Recent studies have shown that microRNAs (miRNAs) play a significant role in regulating the regenerative ability of cardiovascular cells. This report defines the alterations in miRNA expression within the cardiovascular repair zone of infarcted sheep hearts following intracardiac injection of neonatal islet-1+ cardiovascular progenitor cells. Sheep were infarcted via left anterior descending coronary artery ligation. After 3 to 4 weeks of infarction, sheep neonatal islet-1+ cardiovascular progenitor cells were injected into the infarcted area for repair. Cell-treated sheep were euthanized 2 months following cell injection, and their hearts were harvested for the analysis of miRNA and gene expression within the cardiovascular repair zone. Ten miRNAs were differentially regulated in vivo, including miR-99, miR-100, miR-302a, miR-208a, miR-665, miR-1, miR-499a, miR-34a, miR-133a, and miR-199a. These miRNAs promote stemness, cell division, and survival. Several signaling pathways are regulated by these miRNAs, including Hippo, Wnt, and Erythroblastic Leukemia Viral Oncogene B (ERBB). Transcripts encoding Wnt, ERBB, and Neuregulin 1 (NRG1) were elevated in vivo in the infarct repair zone. Wnt5a signaling and ERBB/NRG1 transcripts contribute to activation of Yes-Associated Protein 1. MiRNAs that impact proliferation, cell survival, and signaling pathways that promote regeneration were induced during cardiovascular repair in the sheep model. This information can be used to design new approaches for the optimization of miRNA-based treatments for the heart.
Collapse
Affiliation(s)
- Larry V. Lopez
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Victor Camberos
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Leonard L. Bailey
- Department of Cardiovascular and
Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA,
USA
| | - Nahidh Hasaniya
- Department of Cardiovascular and
Thoracic Surgery, Loma Linda University School of Medicine, Loma Linda, CA,
USA
| | - Christopher Ramos
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Lorelei Hughes
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Cole Knox
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mary K. Kearns-Jonker
- Department of Pathology and Human
Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA,Mary K. Kearns-Jonker, Department of
Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma
Linda, CA 92350, USA.
| |
Collapse
|
35
|
Ruchaya PJ, Lewis-McDougall FC, Sornkarn N, Amin S, Grimsdell B, Shaalan A, Gritti G, Soe KT, Clark JE, Ellison-Hughes GM. Transplantation of Skeletal Muscle-Derived Sca-1 +/PW1 +/Pax7 - Interstitial Cells (PICs) Improves Cardiac Function and Attenuates Remodeling in Mice Subjected to Myocardial Infarction. Cells 2022; 11:4050. [PMID: 36552813 PMCID: PMC9776789 DOI: 10.3390/cells11244050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
We have previously shown that skeletal muscle-derived Sca-1+/PW1+/Pax7- interstitial cells (PICs) are multi-potent and enhance endogenous repair and regeneration. Here, we investigated the regenerative potential of PICs following intramyocardial transplantation in mice subjected to an acute myocardial infarction (MI). MI was induced through the ligation of the left anterior descending coronary artery in 8-week old male C57BL/6 mice. 5 × 105 eGFP-labelled PICs (MI + PICs; n = 7) or PBS (MI-PBS; n = 7) were injected intramyocardially into the border zone. Sham mice (n = 8) were not subjected to MI, or the transplantation of PICs or PBS. BrdU was administered via osmotic mini-pump for 14 days. Echocardiography was performed prior to surgery (baseline), and 1-, 3- and 6-weeks post-MI and PICs transplantation. Mice were sacrificed at 6 weeks post-MI + PICs transplantation, and heart sections were analysed for fibrosis, hypertrophy, engraftment, proliferation, and differentiation of PICs. A significant (p < 0.05) improvement in ejection fraction (EF) and fractional shortening was observed in the MI-PICs group, compared to MI + PBS group at 6-weeks post MI + PICs transplantation. Infarct size/fibrosis of the left ventricle significantly (p < 0.05) decreased in the MI-PICs group (14.0 ± 2.5%), compared to the MI-PBS group (32.8 ± 2.2%). Cardiomyocyte hypertrophy in the border zone significantly (p < 0.05) decreased in the MI-PICs group compared to the MI-PBS group (330.0 ± 28.5 µM2 vs. 543.5 ± 26.6 µm2), as did cardiomyocyte apoptosis (0.6 ± 0.9% MI-PICs vs. 2.8 ± 0.8% MI-PBS). The number of BrdU+ cardiomyocytes was significantly (p < 0.05) increased in the infarct/border zone of the MI-PICs group (7.0 ± 3.3%), compared to the MI-PBS group (1.7 ± 0.5%). The proliferation index (total BrdU+ cells) was significantly increased in the MI-PICs group compared to the MI-PBS group (27.0 ± 3.4% vs. 7.6 ± 1.0%). PICs expressed and secreted pro-survival and reparative growth factors, supporting a paracrine effect of PICs during recovery/remodeling. Skeletal muscle-derived PICs show significant reparative potential, attenuating cardiac remodelling following transplantation into the infarcted myocardium. PICs can be easily sourced from skeletal muscle and therefore show promise as a potential cell candidate for supporting the reparative and regenerative effects of cell therapies.
Collapse
Affiliation(s)
- Prashant J Ruchaya
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- School of Health, Sport and Biosciences, Stratford Campus, University of East London, London E16 2RD, UK
| | - Fiona C. Lewis-McDougall
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- The William Harvey Research Institute, Charterhouse Square, Barts & The London School of Medicine & Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Nitiphat Sornkarn
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Sachin Amin
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Benjamin Grimsdell
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Abeer Shaalan
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Guilia Gritti
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| | - Kyi Thar Soe
- School of Health, Sport and Biosciences, Stratford Campus, University of East London, London E16 2RD, UK
| | - James E. Clark
- Rayne Institute, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King’s College London, St Thomas’ Campus, London SE1 7EH, UK
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guy’s Campus, London SE1 1UL, UK
| |
Collapse
|
36
|
Brianna, Ling APK, Wong YP. Applying stem cell therapy in intractable diseases: a narrative review of decades of progress and challenges. Stem Cell Investig 2022; 9:4. [PMID: 36238449 PMCID: PMC9552054 DOI: 10.21037/sci-2022-021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023]
Abstract
Background and Objective Stem cell therapy (SCT) is one of the vastly researched branches of regenerative medicine as a therapeutic tool to treat incurable diseases. With the use of human stem cells such as embryonic stem cells (ESCs), adult stem cells (ASCs) and induced pluripotent stem cells (iPSCs), stem cell therapy aims to regenerate or repair damaged tissues and congenital defects. As stem cells are able to undergo infinite self-renewal, differentiate into various types of cells and secrete protective paracrine factors, many researchers have investigated the potential of SCT in regenerative medicine. Therefore, this review aims to provide a comprehensive review on the recent application of SCT in various intractable diseases, namely, haematological diseases, neurological diseases, diabetes mellitus, retinal degenerative disorders and COVID-19 infections along with the challenges faced in the clinical translation of SCT. Methods An extensive search was conducted on Google scholar, PubMed and Clinicaltrials.gov using related keywords. Latest articles on stem cell therapy application in selected diseases along with their challenges in clinical applications were selected. Key content and findings In vitro and in vivo studies involving SCT are shown to be safe and efficacious in treating various diseases covered in this review. There are also a number of small-scale clinical trials that validated the positive therapeutic outcomes of SCT. Nevertheless, the effectiveness of SCT are highly variable as some SCT works best in patients with early-stage diseases while in other diseases, SCT is more likely to work in patients in late stages of illnesses. Among the challenges identified in SCT translation are uncertainty in the underlying stem cell mechanism, ethical issues, genetic instability and immune rejection. Conclusions SCT will be a revolutionary treatment in the future that will provide hope to patients with intractable diseases. Therefore, studies ought to be done to ascertain the long-term effects of SCT while addressing the challenges faced in validating SCT for clinical use. Moreover, as there are many studies investigating the safety and efficacy of SCT, future studies should look into elucidating the regenerative and reparative capabilities of stem cells which largely remains unknown.
Collapse
Affiliation(s)
- Brianna
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Anna Pick Kiong Ling
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| | - Ying Pei Wong
- Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Toghiani R, Abolmaali SS, Najafi H, Tamaddon AM. Bioengineering exosomes for treatment of organ ischemia-reperfusion injury. Life Sci 2022; 302:120654. [PMID: 35597547 DOI: 10.1016/j.lfs.2022.120654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/30/2022]
Abstract
Ischemia-reperfusion (I/R) injury is a leading cause of death worldwide. It arises from blood reflowing after tissue hypoxia induced by ischemia that causes severe damages due to the accumulation of reactive oxygen species and the activation of inflammatory responses. Exosomes are the smallest members of the extracellular vesicles' family, which originate from nearly all eukaryotic cells. Exosomes have a great potential in the treatment of I/R injury either in native or modified forms. Native exosomes are secreted by different cell types, such as stem cells, and contain components such as specific miRNA molecules with tissue protective properties. On the other hand, exosome bioengineering has recently received increased attention in context of current advances in the purification, manipulation, biological characterization, and pharmacological applications. There are various pre-isolation and post-isolation manipulation approaches that can be utilized to increase the circulation half-life of exosomes or the availability of their bioactive cargos in the target site. In this review, the various therapeutic actions of native exosomes in different I/R injury will be discussed first. Exosome bioengineering approaches will then be explained, including pre- and post-isolation manipulation methods, applicability for delivery of bioactive agents to injured tissue, clinical translation issues, and future perspectives.
Collapse
Affiliation(s)
- Reyhaneh Toghiani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Haniyeh Najafi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Tamaddon
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
38
|
Cardiac regeneration following myocardial infarction: the need for regeneration and a review of cardiac stromal cell populations used for transplantation. Biochem Soc Trans 2022; 50:269-281. [PMID: 35129611 PMCID: PMC9042388 DOI: 10.1042/bst20210231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/02/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023]
Abstract
Myocardial infarction is a leading cause of death globally due to the inability of the adult human heart to regenerate after injury. Cell therapy using cardiac-derived progenitor populations emerged about two decades ago with the aim of replacing cells lost after ischaemic injury. Despite early promise from rodent studies, administration of these populations has not translated to the clinic. We will discuss the need for cardiac regeneration and review the debate surrounding how cardiac progenitor populations exert a therapeutic effect following transplantation into the heart, including their ability to form de novo cardiomyocytes and the release of paracrine factors. We will also discuss limitations hindering the cell therapy field, which include the challenges of performing cell-based clinical trials and the low retention of administered cells, and how future research may overcome them.
Collapse
|
39
|
Khan K, Caron C, Mahmoud I, Derish I, Schwertani A, Cecere R. Extracellular Vesicles as a Cell-free Therapy for Cardiac Repair: a Systematic Review and Meta-analysis of Randomized Controlled Preclinical Trials in Animal Myocardial Infarction Models. Stem Cell Rev Rep 2022; 18:1143-1167. [PMID: 35107768 DOI: 10.1007/s12015-021-10289-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Stem cell therapy for cardiac regeneration has been gaining traction as a possible intervention for the reduction of the burden associated with MI and heart failure. However, stem cell therapies have several shortcomings, including poor engraftment, limited improvements in cardiac function, and possible teratogenicity. Recently, extracellular vesicles (EVs) from stem cell sources have been explored as a novel therapy to regenerate the injured myocardium in several animal MI trials. In this systematic review and meta-analysis, we investigate the use of stem cell-derived EVs for cardiac repair preclinical trials in animal MI models. Cochrane Library, Medline, Embase, PubMed, Scopus and Web of Science and grey literature (Canadian Agency for Drugs, Technologies in Health, and Google Scholar) were searched through August 20, 2020 and 37 articles were included in the final analysis. The overall effect size observed in EV-treated small animals after MI for ejection fraction (EF) was 10.85 [95 %CI: 8.79, 12.90] and for fractional shortening (FS) was 7.19 [95 %CI: 5.43, 8.96] compared to control-treated animals. The most abundant stem cell source used were mesenchymal stem cells which showed robust improvements in EF and FS (MD = 11.89 [95 % CI: 9.44, 14.34] and MD = 6.96 [95 % CI: 4.97, 8.96], respectively). Significant publication bias was detected for EF and FS outcomes. This study supports the use of EVs derived from stem cells as a novel therapy for cardiac repair after MI. Further investigation in larger animal studies may be necessary before clinical trials.PROSPERO registration number: CRD42019142218.
Collapse
Affiliation(s)
- Kashif Khan
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Christophe Caron
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Ibtisam Mahmoud
- McConnell Resource Centre, McGill University Health Centre, Montreal, Quebec, Canada
| | - Ida Derish
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Adel Schwertani
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada
| | - Renzo Cecere
- Division of Cardiology and Cardiac Surgery, Glen Campus - The Royal Victoria Hospital, McGill University Health Centre, 1001 Decarie Blvd, Block C, C07.1284, Montreal, Quebec, Canada.
| |
Collapse
|
40
|
Hu M, Cao Z, Jiang D. The Effect of miRNA-Modified Exosomes in Animal Models of Spinal Cord Injury: A meta-Analysis. Front Bioeng Biotechnol 2022; 9:819651. [PMID: 35071220 PMCID: PMC8770826 DOI: 10.3389/fbioe.2021.819651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is currently not completely curable. Exosomes have been widely used in preclinical studies of spinal cord injury. Here, in this meta-analysis, we focused on evaluating the overall efficacy of therapies based on miRNA-modified exosomes on functional recovery in animal models of SCI. Methods: PubMed, embase and Web of Science library databases were searched. Relevant literature was included, and the random effects model was used to assess the overall effect of the intervention, with outcomes expressed as SMD. The primary outcome included motor function scores. Risk of bias (ROB) was assessed using the ROB tool of the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). R version 4.1.1software and Review Manager software were used for meta-analysis. Results: A total of 11 preclinical studies were included. The meta-analysis revealed that miRNA-modified exosome therapy was effective in improving motor function scores compared with exosomes alone or control therapy (standardized mean difference: 4.21; 95% confidence interval: 3.39-5.04). There was significant asymmetry in the funnel plot, and trim-and-fill analysis revealed four unpublished studies of motor scores. The quality of all included studies was evaluated with SYRCLE's ROB tool. The SCI model, administration time and dose had an impact on the effect of the treatment. Conclusion: MiRNA-modified exosomes have shown great potential in the treatment of SCI. Moreover, the efficacy of miRNA-modified exosomes was superior to that of exosomes alone.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Orthopedics, The Affiliated Central Hospital, Chongqing University, Chongqing, China
| | - Zhidong Cao
- Department of Orthopedics, The Affiliated Central Hospital, Chongqing University, Chongqing, China
| | - Dianming Jiang
- Department of Orthopedics, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
41
|
Stüdemann T, Weinberger F. The Guinea Pig Model in Cardiac Regeneration Research; Current Tissue Engineering Approaches and Future Directions. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:103-122. [DOI: 10.1007/978-3-030-86140-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
Osada H, Kawatou M, Fujita D, Tabata Y, Minatoya K, Yamashita JK, Masumoto H. Therapeutic potential of clinical-grade human induced pluripotent stem cell-derived cardiac tissues. JTCVS OPEN 2021; 8:359-374. [PMID: 36004071 PMCID: PMC9390608 DOI: 10.1016/j.xjon.2021.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 11/12/2022]
Abstract
Objectives To establish a protocol to prepare and transplant clinical-grade human induced pluripotent stem cell (hiPSC)-derived cardiac tissues (HiCTs) and to evaluate the therapeutic potential in an animal myocardial infarction (MI) model. Methods We simultaneously differentiated clinical-grade hiPSCs into cardiovascular cell lineages with or without the administration of canonical Wnt inhibitors, generated 5- layer cell sheets with insertion of gelatin hydrogel microspheres (GHMs) (HiCTs), and transplanted them onto an athymic rat MI model. Cardiac function was evaluated by echocardiography and cardiac magnetic resonance imaging and compared with that in animals with sham and transplantation of 5-layer cell sheets without GHMs. Graft survival, ventricular remodeling, and neovascularization were evaluated histopathologically. Results The administration of Wnt inhibitors significantly promoted cardiomyocyte (CM) (P < .0001) and vascular endothelial cell (EC) (P = .006) induction, which resulted in cellular components of 52.0 ± 6.1% CMs and 9.9 ± 3.0% ECs. Functional analyses revealed the significantly lowest left ventricular end-diastolic volume and highest ejection fraction in the HiCT group. Histopathologic evaluation revealed that the HiCT group had a significantly larger median engrafted area (4 weeks, GHM(-) vs HiCT: 0.4 [range, 0.2-0.7] mm2 vs 2.2 [range, 1.8-3.1] mm2; P = .005; 12 weeks, 0 [range, 0-0.2] mm2 vs 1.9 [range, 0.1-3.2] mm2; P = .026), accompanied by the smallest scar area and highest vascular density at the MI border zone. Conclusions Transplantation of HiCTs generated from clinical-grade hiPSCs exhibited a prominent therapeutic potential in a rat MI model and may provide a promising therapeutic strategy in cardiac regenerative medicine.
Collapse
|
43
|
Hunkler HJ, Groß S, Thum T, Bär C. Non-coding RNAs: key regulators of reprogramming, pluripotency, and cardiac cell specification with therapeutic perspective for heart regeneration. Cardiovasc Res 2021; 118:3071-3084. [PMID: 34718448 PMCID: PMC9732524 DOI: 10.1093/cvr/cvab335] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/27/2021] [Indexed: 01/01/2023] Open
Abstract
Myocardial infarction causes a massive loss of cardiomyocytes (CMs), which can lead to heart failure accompanied by fibrosis, stiffening of the heart, and loss of function. Heart failure causes high mortality rates and is a huge socioeconomic burden, which, based on diets and lifestyle in the developed world, is expected to increase further in the next years. At present, the only curative treatment for heart failure is heart transplantation associated with a number of limitations such as donor organ availability and transplant rejection among others. Thus, the development of cellular reprogramming and defined differentiation protocols provide exciting new possibilities for cell therapy approaches and which opened up a new era in regenerative medicine. Consequently, tremendous research efforts were undertaken to gain a detailed molecular understanding of the reprogramming processes and the in vitro differentiation of pluripotent stem cells into functional CMs for transplantation into the patient's injured heart. In the last decade, non-coding RNAs, particularly microRNAs, long non-coding RNAs, and circular RNAs emerged as critical regulators of gene expression that were shown to fine-tune cellular processes both on the transcriptional and the post-transcriptional level. Unsurprisingly, also cellular reprogramming, pluripotency, and cardiac differentiation and maturation are regulated by non-coding RNAs. In here, we review the current knowledge on non-coding RNAs in these processes and highlight how their modulation may enhance the quality and quantity of stem cells and their derivatives for safe and efficient clinical application in patients with heart failure. In addition, we summarize the clinical cell therapy efforts undertaken thus far.
Collapse
Affiliation(s)
- Hannah J Hunkler
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Sonja Groß
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Thum
- Corresponding authors. Tel: +49 511 532 5272; fax: +49 511 532 5274, E-mail: (T.T.); Tel: +49 511 532 2883; fax: +49 511 532 5274, E-mail: (C.B.)
| | - Christian Bär
- Corresponding authors. Tel: +49 511 532 5272; fax: +49 511 532 5274, E-mail: (T.T.); Tel: +49 511 532 2883; fax: +49 511 532 5274, E-mail: (C.B.)
| |
Collapse
|
44
|
Li H, Yu B, Yang P, Zhan J, Fan X, Chen P, Liao X, Ou C, Cai Y, Chen M. Injectable AuNP-HA matrix with localized stiffness enhances the formation of gap junction in engrafted human induced pluripotent stem cell-derived cardiomyocytes and promotes cardiac repair. Biomaterials 2021; 279:121231. [PMID: 34739980 DOI: 10.1016/j.biomaterials.2021.121231] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 01/14/2023]
Abstract
Cell therapy offers a promising paradigm for heart tissue regeneration. Human induced pluripotent stem cells (hiPS) and their cardiac derivatives are emerging as a novel treatment for post-myocardial infarction repair. However, the immature phenotype and function of hiPS-derived cardiomyocytes (hiPS-CMs), particularly poor electrical coupling, limit their potential as a therapy. Herein, we developed a hybrid gold nanoparticle (AuNP)-hyaluronic acid (HA) hydrogel matrix encapsulating hiPS-CMs to overcome this limitation. Methacrylate-modified-HA was used as the backbone and crosslinked with a matrix metalloproteinase-2 (MMP-2) degradable peptide to obtain a MMP-2-responsive hydrogel; RGD peptide was introduced as an adhesion point to enhance biocompatibility; AuNPs were incorporated to regulate the mechanical and topological properties of the matrix by significantly increasing its stiffness and surface roughness, thereby accelerating gap junction formation in hiPS-CMs and orchestrating calcium handling via the αnβ1integrin-mediated ILK-1/p-AKT/GATA4 pathway. Transplanted AuNP-HA-hydrogel-encapsulated-hiPS-CMs developed more robust gap junctions in the infarcted mice heart and resynchronized electrical conduction of the ventricle post-myocardial infarction. The hiPS-CMs delivered by the hydrogels exerted stronger angiogenic effects, which also contributed to the recovery process. This study provides insight into constructing an injectable biomimetic for structural and functional renovation of the injured heart.
Collapse
Affiliation(s)
- Hekai Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Bin Yu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Pingzhen Yang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Jie Zhan
- Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, 528300, China.
| | - Xianglin Fan
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Peier Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Xu Liao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Caiwen Ou
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| | - Minsheng Chen
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
45
|
Eschenhagen T, Ridders K, Weinberger F. How to repair a broken heart with pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol 2021; 163:106-117. [PMID: 34687723 DOI: 10.1016/j.yjmcc.2021.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/08/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Heart regeneration addresses a central problem in cardiology, the irreversibility of the loss of myocardium that eventually leads to heart failure. True restoration of heart function can only be achieved by remuscularization, i.e. replacement of lost myocardium by new, force-developing heart muscle. With the availability of principally unlimited human cardiomyocytes from pluripotent stem cells, one option to remuscularize the injured heart is to produce large numbers of cardiomyocytes plus/minus other cardiovascular cell types or progenitors ex vivo and apply them to the heart, either by injection or application as a patch. Exciting progress over the past decade has led to the first clinical applications, but important questions remain. Academic and increasingly corporate activity is ongoing to answer them and optimize the approach to finally develop a true regenerative therapy of heart failure.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | | | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
46
|
Yang F, Wang Z, Li B, He Y, Du F, Tian S, Zhang Y, Yang Y. Irisin Enhances Angiogenesis of Mesenchymal Stem Cells to Promote Cardiac Function in Myocardial Infarction via PI3k/Akt Activation. Int J Stem Cells 2021; 14:455-464. [PMID: 34456190 PMCID: PMC8611314 DOI: 10.15283/ijsc21005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives With the growing incidence of acute myocardial infarction (MI), angiogenesis is vital for cardiac function post-MI. The role of bone marrow mesenchymal stem cells (BMSCs) in angiogenesis has been previously confirmed. Irisin is considered a potential vector for angiogenesis. The objective of the present study was to investigate the potential role of irisin in the angiogenesis of BMSCs. Methods and Results In vivo, irisin-treated BMSCs (BMSCs+irisin) were transplanted into an MI mouse model. On day 28 post-MI, blood vessel markers were detected, and cardiac function and infarct areas of mice were evaluated. In vitro, paracrine effects were assessed by examining tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with the BMSCs+irisin supernatant. The scratch wound-healing assay was performed to evaluate HUVEC migration. Western blotting was performed to determine PI3k/Akt pathway activation in the BMSCs+irisin group. Transplantation of BMSCs+irisin promoted greater angiogenesis, resulting in better cardiac function in the MI mouse model than in controls. In the BMSC+irisin group, HUVECs demonstrated enhanced tube formation and migration. Activation of the PI3k/Akt pathway was found to be involved in mediating the role of irisin in the angiogenesis of BMSCs. Conclusions In cardiovascular diseases such as MI, irisin administration can enhance angiogenesis of BMSCs and promote cardiac function via the PI3k/Akt pathway, optimizing the therapeutic effect based on BMSCs transplantation.
Collapse
Affiliation(s)
- Fan Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Zhi Wang
- Qingdao Municipal Hospital (Group), Qingdao, China
| | - Bing Li
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Youfu He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Fawang Du
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Shui Tian
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| | - Yu Zhang
- Department of Cardiology, Xixiu District People's Hospital, Anshun, China
| | - Yongyao Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Department of Cardiology, Guizhou University People's Hospital, Guiyang, China
| |
Collapse
|
47
|
Vaka R, Davis DR. State-of-play for cellular therapies in cardiac repair and regeneration. Stem Cells 2021; 39:1579-1588. [PMID: 34448513 PMCID: PMC9290630 DOI: 10.1002/stem.3446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is the primary cause of death around the world. For almost two decades, cell therapy has been proposed as a solution for heart disease. In this article, we report on the “state‐of‐play” of cellular therapies for cardiac repair and regeneration. We outline the progression of new ideas from the preclinical literature to ongoing clinical trials. Recent data supporting the mechanics and mechanisms of myogenic and paracrine therapies are evaluated in the context of long‐term cardiac engraftment. This discussion informs on promising new approaches to indicate future avenues for the field.
Collapse
Affiliation(s)
- Ramana Vaka
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| | - Darryl R Davis
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, Canada
| |
Collapse
|
48
|
Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell Transplant 2021; 29:963689720954140. [PMID: 33050736 PMCID: PMC7784512 DOI: 10.1177/0963689720954140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study tested the hypothesis that both allogenic adipose-derived mesenchymal stem cells (ADMSCs) and human inducible pluripotent stem cell-derived MSCs (iPS-MSCs) offered a comparable effect for protecting the lung against ischemia-reperfusion (IR) injury in rodent through downregulating the inflammatory, oxidative stress, and autophagic signaling pathways. Adult male Sprague–Dawley rats (n = 32) were categorized into group 1 (sham-operated control), group 2 (IRI), group 3 [IRI + ADMSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and group 4 [IRI + iPS-MSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and lungs were harvested at 72 h after IR procedure. In vitro study demonstrated that protein expressions of three signaling pathways in inflammation (TLR4/MyD88/TAK1/IKK/I-κB/NF-κB/Cox-2/TNF-α/IL-1ß), mitochondrial damage/cell apoptosis (cytochrome C/cyclophilin D/DRP1/ASK1/APAF-1/mitochondrial-Bax/caspase3/8/9), and autophagy/cell death (ULK1/beclin-1/Atg5,7,12, ratio of LCB3-II/LC3B-I, p-AKT/m-TOR) were significantly higher in lung epithelial cells + 6h hypoxia as compared with the control, and those were significantly reversed by iPS-MSC treatment (all P < 0.001). Flow cytometric analysis revealed that percentages of the inflammatory cells in bronchioalveolar lavage fluid and circulation, and immune cells in circulation/spleen as well as circulatory early and late apoptotic cells were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4 (all P < 0.0001). Microscopy showed the lung injury score and numbers of inflammatory cells and Western blot analysis showed the signaling pathways of inflammation, mitochondrial damage/cell apoptosis, autophagy, and oxidative stress exhibited an identical pattern of flow cytometric results among the four groups (all P < 0.0001). Both xenogeneic and allogenic MSCs protected the lung against IRI via suppressing the inflammatory, oxidative stress, and autophagic signaling.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jun-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Fan-Yen Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,*Both the authors contributed equally to this article
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung.,Department of Nursing, Asia University, Taichung.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.,*Both the authors contributed equally to this article
| |
Collapse
|
49
|
Zhou W, Ma T, Ding S. Non-viral approaches for somatic cell reprogramming into cardiomyocytes. Semin Cell Dev Biol 2021; 122:28-36. [PMID: 34238675 DOI: 10.1016/j.semcdb.2021.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/04/2021] [Accepted: 06/23/2021] [Indexed: 11/27/2022]
Abstract
Heart disease is the leading cause of human deaths worldwide. Due to lacking cardiomyocytes with replicative capacity and cardiac progenitor cells with differentiation potential in adult hearts, massive loss of cardiomyocytes after ischemic events produces permanent damage, ultimately leading to heart failure. Cellular reprogramming is a promising strategy to regenerate heart by induction of cardiomyocytes from other cell types, such as cardiac fibroblasts. In contrast to conventional virus-based cardiac reprogramming, non-viral approaches greatly reduce the potential risk that includes disruption of genome integrity by integration of foreign DNAs, expression of exogenous genes with oncogenic potential, and appearance of partially reprogrammed cells harmful for the physiological functions of tissues/organs, which impedes their in-vivo applications. Here, we review the recent progress in development of non-viral approaches to directly reprogram somatic cells towards cardiomyocytes and their therapeutic application for heart regeneration.
Collapse
Affiliation(s)
- Wei Zhou
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Tianhua Ma
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Ding
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
50
|
Gao L, Wang L, Wei Y, Krishnamurthy P, Walcott GP, Menasché P, Zhang J. Exosomes secreted by hiPSC-derived cardiac cells improve recovery from myocardial infarction in swine. Sci Transl Med 2021; 12:12/561/eaay1318. [PMID: 32938792 DOI: 10.1126/scitranslmed.aay1318] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 04/13/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
Cell therapy treatment of myocardial infarction (MI) is mediated, in part, by exosomes secreted from transplanted cells. Thus, we compared the efficacy of treatment with a mixture of cardiomyocytes (CMs; 10 million), endothelial cells (ECs; 5 million), and smooth muscle cells (SMCs; 5 million) derived from human induced pluripotent stem cells (hiPSCs), or with exosomes extracted from the three cell types, in pigs after MI. Female pigs received sham surgery; infarction without treatment (MI group); or infarction and treatment with hiPSC-CMs, hiPSC-ECs, and hiPSC-SMCs (MI + Cell group); with homogenized fragments from the same dose of cells administered to the MI + Cell group (MI + Fra group); or with exosomes (7.5 mg) extracted from a 2:1:1 mixture of hiPSC-CMs:hiPSC-ECs:hiPSC-SMCs (MI + Exo group). Cells and exosomes were injected into the injured myocardium. In vitro, exosomes promoted EC tube formation and microvessel sprouting from mouse aortic rings and protected hiPSC-CMs by reducing apoptosis, maintaining intracellular calcium homeostasis, and increasing adenosine 5'-triphosphate. In vivo, measurements of left ventricular ejection fraction, wall stress, myocardial bioenergetics, cardiac hypertrophy, scar size, cell apoptosis, and angiogenesis in the infarcted region were better in the MI + Cell, MI + Fra, and MI + Exo groups than in the MI group 4 weeks after infarction. The frequencies of arrhythmic events in animals from the MI, MI + Cell, and MI + Exo groups were similar. Thus, exosomes secreted by hiPSC-derived cardiac cells improved myocardial recovery without increasing the frequency of arrhythmogenic complications and may provide an acellular therapeutic option for myocardial injury.
Collapse
Affiliation(s)
- Ling Gao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA. .,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, P.R. China
| | - Lu Wang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Gregory P Walcott
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Philippe Menasché
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.,Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, Université de Paris, PARCC, INSERM, F-75015 Paris, France
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|