1
|
Cimini M, Hansmann UHE, Gonzalez C, Chesney AD, Truongcao MM, Gao E, Wang T, Roy R, Forte E, Mallaredy V, Thej C, Magadum A, Joladarashi D, Benedict C, Koch WJ, Tükel Ç, Kishore R. Podoplanin-positive cell-derived small extracellular vesicles contribute to cardiac amyloidosis after myocardial infarction. Cell Rep 2025; 44:115408. [PMID: 40056419 PMCID: PMC12019684 DOI: 10.1016/j.celrep.2025.115408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/26/2024] [Accepted: 02/17/2025] [Indexed: 03/10/2025] Open
Abstract
Cardiac amyloidosis is a secondary phenomenon of an already pre-existing chronic condition. Whether cardiac amyloidosis represents one of the complications post myocardial infarction (MI) has yet to be fully understood. Here, we show that amyloidosis occurs after MI and that amyloid fibers are composed of macrophage-derived serum amyloid A 3 (SAA3) monomers. SAA3 overproduction in macrophages is triggered by exosomal communication from cardiac stromal cells (CSCs), which, in response to MI, activate the expression of a platelet aggregation-inducing type I transmembrane glycoprotein, Podoplanin (PDPN). CSCPDPN+-derived small extracellular vesicles (sEVs) are enriched in SAA3, and exosomal SAA3 engages with macrophage by Toll-like receptor 2, triggering overproduction with consequent impaired clearance and aggregation of SAA3 monomers into rigid fibers. SAA3 amyloid deposits reduce cardiac contractility and increase scar stiffness. Inhibition of SAA3 aggregation by retro-inverso D-peptide, specifically designed to bind SAA3 monomers, prevents the deposition of SAA3 amyloid fibrils and improves heart function post MI.
Collapse
Affiliation(s)
- Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ulrich H E Hansmann
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Andrew D Chesney
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019-5251, USA
| | - May M Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Erhe Gao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Tao Wang
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Rajika Roy
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | | | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Water J Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Çağla Tükel
- Center for Microbiology & Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Ai L, Binek A, Zhemkov V, Cho JH, Haghani A, Kreimer S, Israely E, Arzt M, Chazarin B, Sundararaman N, Sharma A, Marbán E, Svendsen CN, Van Eyk JE. Single Cell Proteomics Reveals Specific Cellular Subtypes in Cardiomyocytes Derived from Human iPSCs and Adult Hearts. Mol Cell Proteomics 2025:100910. [PMID: 39855627 DOI: 10.1016/j.mcpro.2025.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Single cell proteomics was performed on human induced pluripotent stem cells (iPSCs), iPSC-derived cardiomyocytes, and adult cardiomyocytes. Over 700 proteins could be simultaneously measured in each cell revealing unique subpopulations. A sub-set of iPSCs expressed higher levels of Lin28a and Tra-1-60 towards the outer edge of cell colonies. In the cardiomyocytes, two distinct populations were found that exhibited complementary metabolic profiles. Cardiomyocytes from iPSCs showed a glycolysis profile while adult cardiomyocytes were enriched in proteins involved with fatty acid metabolism. Interestingly, rare single cells also co-expressed markers of both cardiac and neuronal lineages, suggesting there maybe a novel hybrid cell type in the human heart.
Collapse
Affiliation(s)
- Lizhuo Ai
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Aleksandra Binek
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.
| | - Vladimir Zhemkov
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Ali Haghani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Simion Kreimer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Edo Israely
- Department of Medicine Research, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Madelyn Arzt
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Blandine Chazarin
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Niveda Sundararaman
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Arun Sharma
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Clive N Svendsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048.
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048.
| |
Collapse
|
3
|
Ru Q, Chen L, Xu G, Wu Y. Exosomes in the pathogenesis and treatment of cancer-related cachexia. J Transl Med 2024; 22:408. [PMID: 38689293 PMCID: PMC11062016 DOI: 10.1186/s12967-024-05201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer-related cachexia is a metabolic syndrome characterized by weight loss, adipose tissue decomposition, and progressive skeletal muscle atrophy. It is a major complication of many advanced cancers and seriously affects the quality of life and survival of cancer patients. However, the specific molecules that mediate cancer-related cachexia remain elusive, and the fundamental cellular and molecular mechanisms associated with muscle atrophy and lipidolysis in cancer patients still need to be investigated. Exosomes, a newly discovered class of small extracellular vesicles that facilitate intercellular communication, have a significant role in the onset and development of various cancers. Studies have shown that exosomes play a role in the onset and progression of cancer-related cachexia by transporting active molecules such as nucleic acids and proteins. This review aimed to provide an overview of exosome developments in cancer-induced skeletal muscle atrophy and adipose tissue degradation. More importantly, exosomes were shown to have potential as diagnostic markers or therapeutic strategies for cachexia and were prospected, providing novel strategies for the diagnosis and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
4
|
Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res 2023; 11:12. [PMID: 36854703 PMCID: PMC9975200 DOI: 10.1038/s41413-023-00247-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/03/2023] [Accepted: 01/11/2023] [Indexed: 03/02/2023] Open
Abstract
Ferroptosis, a unique type of cell death, is characterized by iron-dependent accumulation and lipid peroxidation. It is closely related to multiple biological processes, including iron metabolism, polyunsaturated fatty acid metabolism, and the biosynthesis of compounds with antioxidant activities, including glutathione. In the past 10 years, increasing evidence has indicated a potentially strong relationship between ferroptosis and the onset and progression of age-related orthopedic diseases, such as osteoporosis and osteoarthritis. Therefore, in-depth knowledge of the regulatory mechanisms of ferroptosis in age-related orthopedic diseases may help improve disease treatment and prevention. This review provides an overview of recent research on ferroptosis and its influences on bone and cartilage homeostasis. It begins with a brief overview of systemic iron metabolism and ferroptosis, particularly the potential mechanisms of ferroptosis. It presents a discussion on the role of ferroptosis in age-related orthopedic diseases, including promotion of bone loss and cartilage degradation and the inhibition of osteogenesis. Finally, it focuses on the future of targeting ferroptosis to treat age-related orthopedic diseases with the intention of inspiring further clinical research and the development of therapeutic strategies.
Collapse
|
5
|
Mo Z, Cheong JYA, Xiang L, Le MTN, Grimson A, Zhang DX. Extracellular vesicle-associated organotropic metastasis. Cell Prolif 2021; 54:e12948. [PMID: 33145869 PMCID: PMC7791170 DOI: 10.1111/cpr.12948] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis refers to the progressive dissemination of primary tumour cells and their colonization of other tissues and is associated with most cancer-related mortalities. The disproportional and systematic distribution pattern of distant metastasis in different cancers has been well documented, as is termed metastatic organotropism, a process orchestrated by a combination of anatomical, pathophysiological, genetic and biochemical factors. Extracellular vesicles (EVs), nanosized cell-derived membrane-bound particles known to mediate intercellular communication, are now considered crucial in organ-specific metastasis. Here, we review and summarize recent findings regarding EV-associated organotropic metastasis as well as some of the general mechanisms by which EVs contribute to this important process in cancer and provide a future perspective on this emerging topic. We highlight studies that demonstrate a role of tumour-derived EVs in organotropic metastasis via pre-metastatic niche modulation. The bioactive cargo carried by EVs is of diagnostic and prognostic values, and counteracting the functions of such EVs may be a novel therapeutic strategy targeting metastasis. Further investigations are warranted to better understand the functions and mechanisms of EVs in organotropic metastasis and accelerate the relevant clinical translation.
Collapse
Affiliation(s)
- Zhenzhen Mo
- Department of PaediatricsPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Jia Yang Alex Cheong
- Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Lirong Xiang
- Department of PaediatricsPeople's Hospital of Guangxi Zhuang Autonomous RegionNanningChina
| | - Minh T. N. Le
- Institute for Digital Medicine and Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Andrew Grimson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| | - Daniel Xin Zhang
- Department of Biomedical SciencesJockey Club College of Veterinary Medicine and Life SciencesCity University of Hong KongKowloonHong Kong SAR
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNYUSA
| |
Collapse
|
6
|
Subbiah R, Sridharan D, Duairaj K, Rajan KS, Khan M, Garikipati VNS. Emerging Roles of Extracellular Vesicles Derived Non-Coding RNAs in the Cardiovascular System. Subcell Biochem 2021; 97:437-453. [PMID: 33779927 DOI: 10.1007/978-3-030-67171-6_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality all over the world. Emerging evidence emphasize the importance of extracellular vesicles (EVs) in the cell to cell communication in the cardiovascular system which is majorly mediated through non-coding RNA cargo. Advancement in sequencing technologies revealed a major proportion of human genome is composed of non-coding RNAs viz., miRNAs, lncRNAs, tRNAs, snoRNAs, piRNAs and rRNAs. However, our understanding of the role of ncRNAs-containing EVs in cardiovascular health and disease is still in its infancy. This book chapter provides a comprehensive update on our understanding on the role of EVs derived ncRNAs in the cardiovascular pathophysiology and their therapeutic potential.
Collapse
Affiliation(s)
- Ramasamy Subbiah
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Divya Sridharan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Karthika Duairaj
- Cardiac Hypertrophy Laboratory, Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Mahmood Khan
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Venkata Naga Srikanth Garikipati
- Department of Emergency Medicine, Dorothy M. Davis Heart Lung and Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
7
|
Perrotta F, Perna A, Komici K, Nigro E, Mollica M, D’Agnano V, De Luca A, Guerra G. The State of Art of Regenerative Therapy in Cardiovascular Ischemic Disease: Biology, Signaling Pathways, and Epigenetics of Endothelial Progenitor Cells. Cells 2020; 9:E1886. [PMID: 32796767 PMCID: PMC7465688 DOI: 10.3390/cells9081886] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/19/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Ischemic heart disease is currently a major cause of mortality and morbidity worldwide. Nevertheless, the actual therapeutic scenario does not target myocardial cell regeneration and consequently, the progression toward the late stage of chronic heart failure is common. Endothelial progenitor cells (EPCs) are bone marrow-derived stem cells that contribute to the homeostasis of the endothelial wall in acute and chronic ischemic disease. Calcium modulation and other molecular pathways (NOTCH, VEGFR, and CXCR4) contribute to EPC proliferation and differentiation. The present review provides a summary of EPC biology with a particular focus on the regulatory pathways of EPCs and describes promising applications for cardiovascular cell therapy.
Collapse
Affiliation(s)
- Fabio Perrotta
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Angelica Perna
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Klara Komici
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
- CEINGE-Biotecnologie avanzate, 80145 Naples, Italy
| | - Mariano Mollica
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Vito D’Agnano
- Dipartimento di Scienze Mediche Traslazionali, Università della Campania “Luigi Vanvitelli”, 80131 Naples, Italy; (M.M.); (V.D.)
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Germano Guerra
- Dipartimento di Medicina e Scienze della Salute “V.Tiberio”, Università del Molise, 86100 Campobasso, Italy; (A.P.); (K.K.); (G.G.)
| |
Collapse
|
8
|
Yue Y, Wang C, Benedict C, Huang G, Truongcao M, Roy R, Cimini M, Garikipati VNS, Cheng Z, Koch WJ, Kishore R. Interleukin-10 Deficiency Alters Endothelial Progenitor Cell-Derived Exosome Reparative Effect on Myocardial Repair via Integrin-Linked Kinase Enrichment. Circ Res 2019; 126:315-329. [PMID: 31815595 DOI: 10.1161/circresaha.119.315829] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Rationale: Systemic inflammation compromises the reparative properties of endothelial progenitor cell (EPC) and their exosomes on myocardial repair, although the underlying mechanism of loss of function of exosomes from inflamed EPCs is still obscure. Objective: To determine the mechanisms of IL-10 (interleukin-10) deficient-EPC-derived exosome dysfunction in myocardial repair and to investigate if modification of specific exosome cargo can rescue reparative activity. Methods and Results: Using IL-10 knockout mice mimicking systemic inflammation condition, we compared therapeutic effect and protein cargo of exosomes isolated from wild-type EPC and IL-10 knockout EPC. In a mouse model of myocardial infarction (MI), wild-type EPC-derived exosome treatment significantly improved left ventricle cardiac function, inhibited cell apoptosis, reduced MI scar size, and promoted post-MI neovascularization, whereas IL-10 knockout EPC-derived exosome treatment showed diminished and opposite effects. Mass spectrometry analysis revealed wild-type EPC-derived exosome and IL-10 knockout EPC-derived exosome contain different protein expression pattern. Among differentially expressed proteins, ILK (integrin-linked kinase) was highly enriched in both IL-10 knockout EPC-derived exosome as well as TNFα (tumor necrosis factor-α)-treated mouse cardiac endothelial cell-derived exosomes (TNFα inflamed mouse cardiac endothelial cell-derived exosome). ILK-enriched exosomes activated NF-κB (nuclear factor κB) pathway and NF-κB-dependent gene transcription in recipient endothelial cells and this effect was partly attenuated through ILK knockdown in exosomes. Intriguingly, ILK knockdown in IL-10 knockout EPC-derived exosome significantly rescued their reparative dysfunction in myocardial repair, improved left ventricle cardiac function, reduced MI scar size, and enhanced post-MI neovascularization in MI mouse model. Conclusions: IL-10 deficiency/inflammation alters EPC-derived exosome function, content and therapeutic effect on myocardial repair by upregulating ILK enrichment in exosomes, and ILK-mediated activation of NF-κB pathway in recipient cells, whereas ILK knockdown in exosomes attenuates NF-κB activation and reduces inflammatory response. Our study provides new understanding of how inflammation may alter stem cell-exosome-mediated cardiac repair and identifies ILK as a target kinase for improving progenitor cell exosome-based cardiac therapies.
Collapse
Affiliation(s)
- Yujia Yue
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Chunlin Wang
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Cindy Benedict
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Grace Huang
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - May Truongcao
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Rajika Roy
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Maria Cimini
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Venkata Naga Srikanth Garikipati
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Zhongjian Cheng
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Walter J Koch
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Pharmacology and Medicine (W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | - Raj Kishore
- From the Center for Translational Medicine (Y.Y., C.W., C.B., G.H., M.T., R.R., M.C. V.N.S.G., Z.C., W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA.,Department of Pharmacology and Medicine (W.J.K., R.K.), Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| |
Collapse
|
9
|
Rezaie J, Rahbarghazi R, Pezeshki M, Mazhar M, Yekani F, Khaksar M, Shokrollahi E, Amini H, Hashemzadeh S, Sokullu SE, Tokac M. Cardioprotective role of extracellular vesicles: A highlight on exosome beneficial effects in cardiovascular diseases. J Cell Physiol 2019; 234:21732-21745. [PMID: 31140622 DOI: 10.1002/jcp.28894] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles, released from many cell types including cardiac cells, have recently emerged as intercellular communication tools in cell dynamics. EVs are an important mediator of signaling within cells that influencing the functional behavior of the target cells. In heart complex, cardiac cells can easily use EVs to transport bioactive molecules such as proteins, lipids, and RNAs to the regulation of neighboring cell function. Cross-talk between intracardiac cells plays pivotal roles in the heart homeostasis and in adaptive responses of the heart to stress. EVs were released by cardiomyocytes under baseline conditions, but stress condition such as hypoxia intensifies secretome capacity. EVs secreted by cardiac progenitor cells and cardiosphere-derived cells could be pinpointed as important mediators of cardioprotection and cardiogenesis. Furthermore, EVs from many different types of stem cells could potentially exert a therapeutic effect on the damaged heart. Recent evidence shows that cardiac-derived EVs are rich in microRNAs, suggesting a key role in the controlling of cellular processes. EVs harboring exosomes may be clinically useful in cell-free therapy approaches and potentially act as prognosis and diagnosis biomarkers of cardiovascular diseases.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Pezeshki
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| | - Mahdi Mazhar
- Student Research Committee, Urmia University of Medical Science, Urmia, Iran
| | - Farshid Yekani
- Department of Animal Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Majid Khaksar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elhameh Shokrollahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Hashemzadeh
- Department of General and Vascular Surgery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sadiye Emel Sokullu
- Engineering Sciences, Bioengineering Department, Faculty of Engineering and Architecture, Izmir Katip Celebi University, Izmir, Turkey
| | - Mehmet Tokac
- Cardiology Department, Medical Faculty, Izmir Katip Celebi University, Izmir, Turkey
| |
Collapse
|