1
|
Tiller C, Reindl M, Lechner I, Reinstadler SJ. Circulating progenitor cells: A promising biomarker for coronary collateral formation in CTO? Int J Cardiol 2024; 411:132267. [PMID: 38885793 DOI: 10.1016/j.ijcard.2024.132267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Affiliation(s)
- Christina Tiller
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Martin Reindl
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ivan Lechner
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sebastian J Reinstadler
- University Clinic of Internal Medicine III, Cardiology and Angiology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Gold DA, Sandesara PB, Kindya B, Gold ME, Jain V, Vatsa N, Desai SR, Yadalam A, Razavi A, Elhage Hassan M, Ko YA, Liu C, Alkhoder A, Rahbar A, Hossain MS, Waller EK, Jaber WA, Nicholson WJ, Quyyumi AA. Circulating Progenitor Cells and Coronary Collaterals in Chronic Total Occlusion. Int J Cardiol 2024; 407:132104. [PMID: 38677332 PMCID: PMC11559591 DOI: 10.1016/j.ijcard.2024.132104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The role of circulating progenitor cells (CPC) in collateral formation that occurs in the presence of chronic total occlusions (CTO) of a coronary artery is not well established. In stable patients with a CTO, we investigated whether CPC levels are associated with (a) collateral development and (b) ischemic burden, as measured by circulating high sensitivity troponin-I (hsTn-I) levels. METHODS CPCs were enumerated by flow cytometry as CD45med+ blood mononuclear cells expressing CD34 and both CD34 and CD133 epitopes. The association between CPC counts and both Rentrop collateral grade (0, 1, 2, or 3) and hsTn-I levels were evaluated using multivariate regression analysis, after adjusting for demographic and clinical characteristics. RESULTS In 89 patients (age 65.5, 72% male, 27% Black), a higher CPC count was positively associated with a higher Rentrop collateral grade; [CD34+ adjusted odds ratio (OR) 1.49 95% confidence interval (CI) (0.95, 2.34) P = 0.082] and [CD34+/CD133+ OR 1.57 95% CI (1.05, 2.36) P = 0.028]. Every doubling of CPC counts was also associated with lower hsTn-I levels [CD34+ β -0.35 95% CI (-0.49, -0.15) P = 0.002] and [CD34+/CD133+ β -0.27 95% CI (-0.43, -0.08) P = 0.009] after adjustment. CONCLUSION Individuals with higher CPC counts have greater collateral development and lower ischemic burden in the presence of a CTO.
Collapse
Affiliation(s)
- Daniel A Gold
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bryan Kindya
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Matthew E Gold
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Vardhmaan Jain
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Nishant Vatsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Shivang R Desai
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Adithya Yadalam
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alexander Razavi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Malika Elhage Hassan
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Chang Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Ayman Alkhoder
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alireza Rahbar
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Mohammad S Hossain
- Division of Hematology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Division of Hematology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Wissam A Jaber
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - William J Nicholson
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
3
|
Almuwaqqat Z, Wittbrodt M, Moazzami K, Garcia M, Lima B, Martini A, Sullivan S, Nye JA, Pearce BD, Shah AJ, Waller EK, Vaccarino V, Bremner JD, Quyyumi AA. Acute psychological stress-induced progenitor cell mobilization and cardiovascular events. J Psychosom Res 2024; 178:111412. [PMID: 38281471 PMCID: PMC10823179 DOI: 10.1016/j.jpsychores.2023.111412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 01/30/2024]
Abstract
OBJECTIVE Certain brain activation responses to psychological stress are associated with worse outcomes in CVD patients. We hypothesized that elevated acute psychological stress, manifesting as greater activity within neural centers for emotional regulation, mobilizes CPC from the bone marrow to the peripheral blood and predicts future cardiovascular events. METHODS In 427 patients with stable CAD undergoing a laboratory-based mental stress (MS) test, CPCs were enumerated using flow cytometry as CD34-expressing mononuclear cells (CD34+) before and 45 min after stress. Changes in brain regional blood flow with MS were measured using high resolution-positron emission tomography (HR-PET). Association between the change in CPC with MS and the risk of cardiovascular death or myocardial infarction (MI) during a 5-year follow-up period was analyzed. RESULTS MS increased CPC counts by a mean of 150 [630] cells/mL (15%), P < 0.001. Greater limbic lobe activity, indicative of activation of emotion-regulating centers, was associated with greater CPC mobilization (P < 0.005). Using Fine and Gray models after adjustment for demographioc, clinical risk factors and medications use, greater CPC mobilization was associated with a higher adjusted risk of adverse events; a rise of 1000 cells/mL was associated with a 50% higher risk of cardiovascular death/MI [hazards ratio, 1.5, 95% confidence interval, 1.1-2.2). CONCLUSION Greater limbic lobe activity, brain areas involved in emotional regulation, is associated with MS-induced CPC mobilization. This mobilization isindependently associated with cardiovascular events. These findings provide novel insights into mechanisms through which psychological stressors modulate cardiovascular risk.
Collapse
Affiliation(s)
- Zakaria Almuwaqqat
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matthew Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA
| | - Kasra Moazzami
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Mariana Garcia
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Bruno Lima
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Afif Martini
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Samaah Sullivan
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center-Houston, Houston, Texas
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bradley D Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amit J Shah
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Atlanta VA Medical Center, Decatur, GA, USA
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, USA; Atlanta VA Medical Center, Decatur, GA, USA; Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Desai SR, Ko YA, Liu C, Hafeez Z, Park J, Faaborg-Andersen C, Alvi Z, Alras Z, Alkhoder AA, Martini A, Varughese A, Ejaz K, Cheung B, Wang M, Gold DA, Gold ME, Jain V, Vatsa N, Islam SJ, Almuwaqqat Z, Dhindsa DS, Mehta A, Kim JH, Wilson P, Waller EK, Vaccarino V, Quyyumi AA. Vitamin D Deficiency, Inflammation, and Diminished Endogenous Regenerative Capacity in Coronary Heart Disease. JACC. ADVANCES 2024; 3:100804. [PMID: 38939377 PMCID: PMC11198268 DOI: 10.1016/j.jacadv.2023.100804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/13/2023] [Accepted: 11/10/2023] [Indexed: 06/29/2024]
Abstract
Background Vitamin D deficiency (VDD) is associated with coronary heart disease (CHD) and poor outcomes, but supplementation does not improve prognosis. VDD has been implicated in and may promote greater risk through inflammation and impaired progenitor cell function. Objectives The authors examined VDD, high-sensitivity C-reactive protein (hsCRP), circulating progenitor cell (CPC) counts, and outcomes in patients with CHD. They hypothesized that the higher risk with VDD is mediated by inflammation and impaired regenerative capacity. Methods A total of 5,452 individuals with CHD in the Emory Cardiovascular Biobank had measurement of 25-hydroxyvitamin D, subsets of whom had hsCRP measurements and CPCs estimated as CD34-expressing mononuclear cell counts. Findings were validated in an independent cohort. 25-hydroxyvitamin D <20 ng/mL was considered VDD. Cox and Fine-Gray models determined associations between marker levels and: 1) all-cause mortality; 2) cardiovascular mortality; and 3) major adverse cardiovascular events, a composite of adverse CHD outcomes. Results VDD (43.6% of individuals) was associated with higher adjusted cardiovascular mortality (HR: 1.57, 95% CI: 1.09-2.28). There were significant interactions between VDD and hsCRP and CPC counts in predicting cardiovascular mortality. Individuals with both VDD and elevated hsCRP had the greatest risk (HR: 2.82, 95% CI: 2.16-3.67). Only individuals with both VDD and low CPC counts were at high risk (HR: 2.25, 95% CI: 1.46-3.46). These findings were reproduced in the validation cohort. Conclusions VDD predicts adverse outcomes in CHD. Those with VDD, inflammation and/or diminished regenerative capacity are at a significantly greater risk of cardiovascular mortality. Whether targeted supplementation in these high-risk groups improves risk warrants further study.
Collapse
Affiliation(s)
- Shivang R. Desai
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yi-An Ko
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Chang Liu
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Zaki Hafeez
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Christian Faaborg-Andersen
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Internal Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Zain Alvi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zahran Alras
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Ayman A. Alkhoder
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Afif Martini
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anil Varughese
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kiran Ejaz
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Brian Cheung
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Maggie Wang
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Daniel A. Gold
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Matthew E. Gold
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vardhmaan Jain
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nishant Vatsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Shabatun J. Islam
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Zakaria Almuwaqqat
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Devinder S. Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- VCU Health Pauley Heart Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jonathan H. Kim
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter Wilson
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Viola Vaccarino
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Arshed A. Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Ye G, Chen X, Zhou Y, Zhou J, Song Y, Yang X, Yang L. Prognostic Value of Endothelial Progenitor Cells in Acute Myocardial Infarction Patients. Mediators Inflamm 2023; 2023:4450772. [PMID: 37899988 PMCID: PMC10613116 DOI: 10.1155/2023/4450772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2023] [Accepted: 09/11/2023] [Indexed: 10/31/2023] Open
Abstract
Objective To determine prognostic role of endothelial progenitor cells (EPCs) in intensive care patients with acute myocardial infarction (AMI). Materials and Methods From December 2018 to July 2021, a total of 91 eligible patients with AMI were consecutively examined in a single intensive care unit (ICU) in China. Patients with a history of acute coronary artery disease were excluded from the study. Samples were collected within 24 hr of onset of symptoms. EPCs, defined as coexpression of CD34+/CD133+ cells or CD133+/CD34+/KDR+, were studied using flow cytometry and categorized by quartiles. Based on the 28-days mortality outcome, the patients were further divided into two groups: death and survival. The study incorporated various variables, including cardiovascular risk factors such as body mass index, hypertension, diabetes, hypercholesterolemia, atherosclerotic burden, and medication history, as well as clinical characteristics such as APACHEⅡscore, central venous-arterial carbon dioxide difference (GAP), homocysteine, creatinine, C-reactive protein, HbAlc, and cardiac index. Cox regression analysis was employed to conduct a multivariate analysis. Results A total of 91 patients with AMI who were admitted to the ICU were deemed eligible for inclusion in the study. Among these patients, 23 (25.3%) died from various causes during the follow-up period. The counts of EPCs were found to be significantly higher in the survival group compared to the death group (P < 0.05). In the univariate analysis, it was observed that the 28-days mortality rate was associated with the several factors, including the APACHEⅡscore (P=0.00), vasoactive inotropic score (P=0.03), GAP (P=0.00), HCY (P=0.00), creatinine (P=0.00), C-reactive protein (P=0.00), HbAlc (P=0.00), CI (P=0.01), quartiles of CD34+/CD133+ cells (P=0.00), and quartiles of CD34+/CD133+/KDR+ cells (P=0.00). CD34+/CD133+/KDR+ cells retained statistical significance in Cox regression models even after controlling for clinical variables (HR: 6.258 × 10-10 and P=0.001). Nevertheless, no significant correlation was observed between CD34+/CD133+ cells and all-cause mortality. Conclusions The decreased EPCs levels, especially for CD34+/CD133+/KDR+ cells subsets, were an independent risk factor for 28-days mortality in AMI patients.
Collapse
Affiliation(s)
- Gongjie Ye
- Department of Intensive Care Unit, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, Zhejiang 315040, China
| | - Xiaodan Chen
- Department of Clinical Laboratory, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yinchao Zhou
- Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jianqing Zhou
- Internal Medicine-Cardiovascular Department, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yongfei Song
- Ningbo Institute for Medicine and Biomedical Engineering Combined Innovation, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315000, Zhejiang, China
| | - Xiaoyong Yang
- Department of Rehabilitation, Zhenhai Longsai Hospital, Ningbo 315000, Zhejiang, China
| | - Lei Yang
- Department of Intensive Care Unit, Zhenhai Longsai Hospital, 6 Gulou West Road, Chengguan, Zhaobaoshan Street, Zhenhai District, Ningbo 315299, Zhejiang, China
| |
Collapse
|
6
|
de Bakker M, Kraan J, Akkerhuis KM, Oemrawsingh R, Asselbergs FW, Hoefer I, Kardys I, Boersma E. Longitudinal profile of circulating endothelial cells in post-acute coronary syndrome patients. Biomarkers 2023; 28:152-159. [PMID: 36617894 DOI: 10.1080/1354750x.2022.2162966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IntroductionPatients who have experienced an acute coronary syndrome (ACS) are at risk of a recurrent event, but their level of risk varies. Because of their close temporal relationship with vascular injury, longitudinal measurements of circulating endothelial cells (CECs) carry potential to improve individual risk assessment.MethodsWe conducted an explorative nested case-control study within our multicenter, prospective, observational biomarker study (BIOMArCS) of 844 ACS patients. Following an index ACS, high-frequency blood sampling was performed during 1-year follow-up. CECs were identified using flow cytometric analyses in 15 cases with recurrent event, and 30 matched controls.ResultsCases and controls had a median (25th-75thpercentile) age of 64.1 (58.1-75.1) years and 80% were men. During the months preceding the endpoint, the mean (95%CI) CEC concentration in cases was persistently higher than in controls (12.8 [8.2-20.0] versus 10.0 [7.0-14.4] cells/ml), although this difference was non-significant (P = 0.339). In controls, the mean cell concentration was significantly (P = 0.030) lower in post 30-day samples compared to samples collected within one day after index ACS: 10.1 (7.5-13.6) versus 17.0 (10.8-26.6) cells/ml. Similar results were observed for CEC subsets co-expressing CD133 and CD309 (VEGFR-2) or CD106 (VCAM-1).ConclusionDespite their close relation to vascular damage, no increase in cell concentrations were found prior to the occurrence of a secondary adverse cardiac event.
Collapse
Affiliation(s)
- Marie de Bakker
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jaco Kraan
- Department of Medical Oncology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - K Martijn Akkerhuis
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rohit Oemrawsingh
- Department of Cardiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Folkert W Asselbergs
- Amsterdam University Medical Centers, Department of Cardiology, University of Amsterdam, Amsterdam, The Netherlands.,Health Data Research UK and Institute of Health Informatics, University College London, London, UK
| | - Imo Hoefer
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Isabella Kardys
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Eric Boersma
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
7
|
The Long Telling Story of "Endothelial Progenitor Cells": Where Are We at Now? Cells 2022; 12:cells12010112. [PMID: 36611906 PMCID: PMC9819021 DOI: 10.3390/cells12010112] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Endothelial progenitor cells (EPCs): The name embodies years of research and clinical expectations, but where are we now? Do these cells really represent the El Dorado of regenerative medicine? Here, past and recent literature about this eclectic, still unknown and therefore fascinating cell population will be discussed. This review will take the reader through a temporal journey that, from the first discovery, will pass through years of research devoted to attempts at their definition and understanding their biology in health and disease, ending with the most recent evidence about their pathobiological role in cardiovascular disease and their recent applications in regenerative medicine.
Collapse
|
8
|
Moazzami K, Mehta A, Young A, Dhindsa DS, Martin G, Mokhtari A, Hesaroieh IG, Shah A, Bremner JD, Vaccarino V, Waller EK, Quyyumi AA. The association between baseline circulating progenitor cells and vascular function: The role of aging and risk factors. Vasc Med 2022; 27:532-541. [PMID: 36062298 PMCID: PMC10150400 DOI: 10.1177/1358863x221116411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND To investigate the cross-sectional and longitudinal relationships between vascular function and circulating progenitor cell (CPC) counts with respect to aging and exposure to risk factors. METHODS In 797 adult participants, CPCs were enumerated by flow cytometry as CD45med mononuclear cells expressing CD34 epitope and its subsets co-expressing CD133, and chemokine C-X-C motif receptor 4 (CXCR4+). Arterial stiffness was evaluated by tonometry-derived pulse wave velocity (PWV) and microvascular function was assessed as digital reactive hyperemia index (RHI). RESULTS In cross-sectional analyses, for every doubling in CD34+ cell counts, PWV was 15% higher and RHI was 9% lower, after adjusting for baseline characteristics and risk factors (p for all < 0.01). There were significant CPC-by-age-by-risk factor interactions (p <0.05) for both vascular measures. Among younger subjects (< 48 years), CPC counts were higher in those with risk factors and vascular function was better in those with higher compared to those with lower CPC counts (p for all < 0.0l). In contrast, in older participants, CPCs were not higher in those with risk factors, and vascular function was worse compared to the younger age group. A lower CPC count at baseline was an independent predictor of worsening vascular function during 2-year follow-up. CONCLUSION A higher CPC count in the presence of risk factors is associated with better vascular function among younger individuals. There is no increase in CPC count with risk factors in older individuals who have worse vascular function. Moreover, a higher CPC count is associated with less vascular dysfunction with aging.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Anurag Mehta
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - An Young
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Devinder Singh Dhindsa
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Greg Martin
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Ali Mokhtari
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Iraj Ghaini Hesaroieh
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Medical Center, Decatur, GA, USA
| | - J Douglas Bremner
- Atlanta VA Medical Center, Decatur, GA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Edmund K Waller
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Division of Cardiology, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
Zhou J, Li H, Xun L, Wang L, Zhao Q. Hyperlipidemia attenuates the mobilization of endothelial progenitor cells induced by acute myocardial ischemia via VEGF/eNOS/NO/MMP-9 pathway. Aging (Albany NY) 2022; 14:7877-7889. [PMID: 36202115 PMCID: PMC9596200 DOI: 10.18632/aging.204314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
This study aims to explore the role of hyperlipidemia in the mobilization of bone marrow (BM) endothelial progenitor cells (EPCs) induced by acute myocardial ischemia (AMI). To establish the hyperlipidemia complicated with AMI (HL-AMI) model, SD rats were intragastrically administered the high-fat emulsion for 4 weeks. Then their left anterior descending arteries were ligated. Rats in each group were randomly subdivided into seven subgroups. During 1st ~ 7th day following AMI modeling, rats in 1st ~ 7th subgroups were selected to be phlebotomized from their celiac artery after being anesthetized by pentobarbitone in turn. The quantity of circulating EPCs (CEPCs) was detected by flow cytometry, the expression of VEGF, eNOS, NO, MMP-9 in myocardial tissue was analyzed by western blot, and their plasma level was assayed by ELISA. Dynamic curves were plotted using these data. Within 7 days following AMI, compared with the AMI rats, in the HL-AMI rats, the myocardial infarct size, the plasma activity of CK, CK-MB, and the collagen deposition all remained at the higher levels; meanwhile, these rats showed more significant decreases in the count of CEPCs, the plasma level of VEGF etc., and their expression in myocardial tissue (P < 0.05 or P < 0.01). Our study showed that hyperlipidemia may attenuate the mobilization of BM EPCs induced by AMI via VEGF/eNOS/NO/MMP-9 signal pathway, which might partly account for hyperlipidemia hampering the repairs of AMI-induced cardiac injury.
Collapse
Affiliation(s)
- Jidong Zhou
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hang Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- R&D Department, Hubei Minkang Pharmaceutical Group Co. Ltd., Wuhan 430040, China
| | - Liying Xun
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lei Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qitao Zhao
- School of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
10
|
Functional Impairment of Endothelial Colony Forming Cells (ECFC) in Patients with Severe Atherosclerotic Cardiovascular Disease (ASCVD). Int J Mol Sci 2022; 23:ijms23168969. [PMID: 36012229 PMCID: PMC9409296 DOI: 10.3390/ijms23168969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Endothelial dysfunction is a key factor in atherosclerosis. However, the link between endothelial repair and severity of atherosclerotic cardiovascular disease (ASCVD) is unclear. This study investigates the relationship between ASCVD, markers of inflammation, and circulating endothelial progenitor cells, namely hematopoietic cells with paracrine angiogenic activity and endothelial colony forming cells (ECFC). Two hundred and forty-three subjects from the TELARTA study were classified according to the presence of clinical atherosclerotic disease. ASCVD severity was assessed by the number of involved vascular territories. Flow cytometry was used to numerate circulating progenitor cells (PC) expressing CD34 and those co-expressing CD45, CD34, and KDR. Peripheral blood mononuclear cells ex vivo culture methods were used to determine ECFC and Colony Forming Unit- endothelial cells (CFU-EC). The ECFC subpopulation was analyzed for proliferation, senescence, and vasculogenic properties. Plasma levels of IL-6 and VEGF-A were measured using Cytokine Array. Despite an increased number of circulating precursors in ASCVD patients, ASCVD impaired the colony forming capacity and the angiogenic properties of ECFC in a severity-dependent manner. Alteration of ECFC was associated with increased senescent phenotype and IL-6 levels. Our study demonstrates a decrease in ECFC repair capacity according to ASCVD severity in an inflammatory and senescence-associated secretory phenotype context.
Collapse
|
11
|
Kowalski JL, Nguyen N, Battaglino RA, Falci SP, Charlifue S, Morse LR. miR-338-5p Levels and Cigarette Smoking are Associated With Neuropathic Pain Severity in Individuals With Spinal Cord Injury: Preliminary Findings From a Genome-Wide microRNA Expression Profiling Screen. Arch Phys Med Rehabil 2022; 103:738-746. [PMID: 34717922 DOI: 10.1016/j.apmr.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE To identify microRNA biomarkers and clinical factors associated with neuropathic pain after spinal cord injury. DESIGN Cross-sectional, secondary analysis of baseline data collected from ongoing clinical studies. Using a genome-wide microRNA screening approach, we studied differential microRNA expression in serum from 43 adults with spinal cord injury enrolled in ongoing clinical studies. Least squares regression was used to identify associations between microRNA expression, clinical factors, and neuropathic pain severity. SETTING Community-dwelling individuals with spinal cord injury. PARTICIPANTS Participants (N=43) were at least 18 years old with spinal cord injury, with 28 reporting neuropathic pain and 15 reporting no neuropathic pain. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Pain presence, type, and intensity were assessed with the International Spinal Cord Injury Pain Basic Data Set. Serum microRNA normalized deep sequencing counts were quantified from blood samples. Participant demographic factors, injury characteristics, medication use, and health habits were collected via questionnaire. RESULTS miR-338-5p expression and history of cigarette smoking were associated with and explained 37% of the variance in neuropathic pain severity (R2=0.37, F2,18=5.31, P=.02) independent of other clinical factors. No association was identified between miR-338-5p levels and nociceptive pain severity. CONCLUSIONS Our findings suggest that miR-338-5p and cigarette smoking may both play a role in the development or maintenance of neuropathic pain after spinal cord injury. While additional work is needed to confirm these findings, validated target analysis suggests a neuroprotective role of miR-338-5p in modulating neuroinflammation and neuronal apoptosis and that its downregulation may result in maladaptive neuroplastic mechanisms contributing to neuropathic pain after spinal cord injury.
Collapse
Affiliation(s)
- Jesse L Kowalski
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Nguyen Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Ricardo A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Scott P Falci
- Department of Neurosurgery, Swedish Medical Center, Englewood, Colorado; Research Department, Craig Hospital, Englewood, Colorado
| | | | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
12
|
Wang M, Yang D, Hu Z, Shi Y, Ma Y, Cao X, Guo T, Cai H, Cai H. Extracorporeal Cardiac Shock Waves Therapy Improves the Function of Endothelial Progenitor Cells After Hypoxia Injury via Activating PI3K/Akt/eNOS Signal Pathway. Front Cardiovasc Med 2021; 8:747497. [PMID: 34708093 PMCID: PMC8542843 DOI: 10.3389/fcvm.2021.747497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Extracorporeal cardiac shock waves (ECSW) have great potential in the treatment of coronary heart disease. Endothelial progenitor cells (EPCs) are a class of pluripotent progenitor cells derived from bone marrow or peripheral blood, which have the capacity to migrate to ischemic myocardium and differentiate into mature endothelial cells and play an important role in neovascularization and endothelial repair. In this study, we investigated whether ECSW therapy can improve EPCs dysfunction and apoptosis induced by hypoxia and explored the underlying mechanisms. Methods: EPCs were separated from ApoE gene knockout rat bone marrow and identified using flow cytometry and fluorescence staining. EPCs were used to produce in vitro hypoxia-injury models which were then divided into six groups: Control, Hypoxia, Hypoxia + ECSW, Hypoxia + LY294002 + ECSW, Hypoxia + MK-2206 + ECSW, and Hypoxia + L-NAME + ECSW. EPCs from the Control, Hypoxia, and Hypoxia + ECSW groups were used in mRNA sequencing reactions. mRNA and protein expression levels were analyzed using qRT-PCR and western blot analysis, respectively. Proliferation, apoptosis, adhesion, migration, and angiogenesis were measured using CCK-8, flow cytometry, gelatin, transwell, and tube formation, respectively. Nitric oxide (NO) levels were measured using an NO assay kit. Results: Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed genes were enriched in cancer signaling, PI3K-Akt signaling, and Rap1 signaling pathways. We selected differentially expressed genes in the PI3K-Akt signaling pathway and verified them using a series of experiments. The results showed that ECSW therapy (500 shots at 0.09 mJ/mm2) significantly improved proliferation, adhesion, migration, and tube formation abilities of EPCs following hypoxic injury, accompanied by upregulation of p-PI3K, p-Akt, p-eNOS, Bcl-2 protein and NO, PI3K, and Akt mRNA expression, and downregulation of Bax and Caspase3 protein expression. All these effects of ECSW were eliminated using inhibitors specific to PI3K (LY294002), Akt (MK-2206), and eNOS (L-NAME). Conclusion: ECSW exerted a strong repaired effect on EPCs suffering inhibited hypoxia injury by inhibiting cell apoptosis and promoting angiogenesis, mainly through activating the PI3K/Akt/eNOS signaling pathway, which provide new evidence for ECSW therapy in CHD.
Collapse
Affiliation(s)
- Mingqiang Wang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Yang
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yunke Shi
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yiming Ma
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingyu Cao
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tao Guo
- Department of Cardiology, Yunnan Fuwai Cardiovascular Hospital, Kunming, China
| | - Hongbo Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongyan Cai
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
13
|
Bo X, Liu Y, Yang M, Lu Z, Zhao Y, Chen L. Development and Validation of a Nomogram of In-hospital Major Adverse Cardiovascular and Cerebrovascular Events in Patients With Acute Coronary Syndrome. Front Cardiovasc Med 2021; 8:699023. [PMID: 34434977 PMCID: PMC8380764 DOI: 10.3389/fcvm.2021.699023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Background and Objective: This study aims to develop and validate a nomogram for the occurrence of in-hospital major adverse cardiovascular and cerebrovascular events (MACCE) in acute coronary syndrome (ACS) patients. Methods: A total of 1,360 ACS patients admitted between November 2014 and October 2019 from Zhongda Hospital and Yancheng Third People's Hospital were included. Patients admitted in Zhongda Hospital before 2018 were split into the training cohort (n = 793). Those admitted after 2018 in Zhongda Hospital and patients from Yancheng Third People's Hospital were split into the validation cohort (n = 567). Twenty eight clinical features routinely assessed including baseline characteristics, past medical history and auxiliary examinations were used to inform the models to predict in-hospital MACCE (all-cause mortality, reinfarction, stroke, and heart failure) in ACS patients. The best-performing model was tested in the validation cohort. The accuracy and clinical applicability were tested by the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analyses (DCA). Results: The in-hospital MACCE occurred in 93 (6.83%) patients. The final prediction model consists of four variables: age, Killip grading, fasting blood-glucose (FBG) and whether percutaneous coronary intervention (PCI) was performed at early stage. A nomogram was used to present the final result. Individualized nomogram exhibited comparable discrimination to the Global Registry of Acute Coronary Events (GRACE) score [AUC: 0.807 (95% CI 0.736-0.878) vs. 0.761 (95% CI 0.69-0.878)], P = 0.10) and a better discrimination than the Evaluation of the Methods and Management of Acute Coronary Events (EMMACE) score [AUC: 0.807 (95% CI 0.736-0.878) vs. 0.723(95% CI 0.648-0.798), P = 0.01] in predicting the risk of in-hospital MACCE in ACS patients. A good prediction performance was maintained in the validation cohort (AUC =0.813, 95% CI 0.738-0.889). The prediction model also exhibited decent calibration (P = 0.972) and clinical usefulness. Conclusion: The nomogram may be a simple and effective tool in predicting the occurrence of in-hospital MACCE in ACS patients. Further longitudinal studies are warranted to validate its value in guiding clinical decision-making and optimizing the treatment of high-risk patients.
Collapse
Affiliation(s)
- Xiangwei Bo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yang Liu
- School of Medicine, Southeast University, Nanjing, China
| | - Mingming Yang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhengri Lu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| |
Collapse
|
14
|
Moazzami K, Wittbrodt MT, Lima BB, Kim JH, Hammadah M, Ko YA, Obideen M, Abdelhadi N, Kaseer B, Gafeer MM, Nye JA, Shah AJ, Ward L, Raggi P, Waller EK, Bremner JD, Quyyumi AA, Vaccarino V. Circulating Progenitor Cells and Cognitive Impairment in Men and Women with Coronary Artery Disease. J Alzheimers Dis 2021; 74:659-668. [PMID: 32083582 DOI: 10.3233/jad-191063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Circulating progenitor cells (CPC) have been associated with memory function and cognitive impairment in healthy adults. However, it is unclear whether such associations also exist in patients with coronary artery disease (CAD). OBJECTIVE To assess the association between CPCs and memory performance among individuals with CAD. METHODS We assessed cognitive function in 509 patients with CAD using the verbal and visual Memory subtests of the Wechsler memory scale-IV and the Trail Making Test parts A and B. CPCs were enumerated with flow cytometry as CD45med/CD34+ blood mononuclear cells, those co-expressing other epitopes representing populations enriched for hematopoietic and endothelial progenitors. RESULTS After adjusting for demographic and cardiovascular risk factors, lower number of endothelial progenitor cell counts were independently associated with lower visual and verbal memory scores (p for all < 0.05). There was a significant interaction in the magnitude of this association with race (p < 0.01), such that the association of verbal memory scores with endothelial progenitor subsets was present in Black but not in non-Black participants. No associations were present with the hematopoietic progenitor-enriched cells or with the Trail Making Tests. CONCLUSION Lower numbers of circulating endothelial progenitor cells are associated with cognitive impairment in patients with CAD, suggesting a protective effect of repair/regeneration processes in the maintenance of cognitive status. Impairment of verbal memory function was more strongly associated with lower CPC counts in Black compared to non-Black participants with CAD. Whether strategies designed to improve regenerative capacity will improve cognition needs further study.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeong Hwan Kim
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Malik Obideen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Naser Abdelhadi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Belal Kaseer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Mazen Gafeer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Paolo Raggi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Taylor GS, Shaw A, Smith K, Capper TE, Scragg JH, Cronin M, Bashir A, Flatt A, Campbell MD, Stevenson EJ, Shaw JA, Ross M, West DJ. Type 1 diabetes patients increase CXCR4 + and CXCR7 + haematopoietic and endothelial progenitor cells with exercise, but the response is attenuated. Sci Rep 2021; 11:14502. [PMID: 34267242 PMCID: PMC8282661 DOI: 10.1038/s41598-021-93886-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023] Open
Abstract
Exercise mobilizes angiogenic cells, which stimulate vascular repair. However, limited research suggests exercise-induced increase of endothelial progenitor cell (EPCs) is completely lacking in type 1 diabetes (T1D). Clarification, along with investigating how T1D influences exercise-induced increases of other angiogenic cells (hematopoietic progenitor cells; HPCs) and cell surface expression of chemokine receptor 4 (CXCR4) and 7 (CXCR7), is needed. Thirty T1D patients and 30 matched non-diabetes controls completed 45 min of incline walking. Circulating HPCs (CD34+, CD34+CD45dim) and EPCs (CD34+VEGFR2+, CD34+CD45dimVEGFR2+), and subsequent expression of CXCR4 and CXCR7, were enumerated by flow cytometry at rest and post-exercise. Counts of HPCs, EPCs and expression of CXCR4 and CXCR7 were significantly lower at rest in the T1D group. In both groups, exercise increased circulating angiogenic cells. However, increases was largely attenuated in the T1D group, up to 55% lower, with CD34+ (331 ± 437 Δcells/mL vs. 734 ± 876 Δcells/mL p = 0.048), CD34+VEGFR2+ (171 ± 342 Δcells/mL vs. 303 ± 267 Δcells/mL, p = 0.006) and CD34+VEGFR2+CXCR4+ (126 ± 242 Δcells/mL vs. 218 ± 217 Δcells/mL, p = 0.040) significantly lower. Exercise-induced increases of angiogenic cells is possible in T1D patients, albeit attenuated compared to controls. Decreased mobilization likely results in reduced migration to, and repair of, vascular damage, potentially limiting the cardiovascular benefits of exercise.Trial registration: ISRCTN63739203.
Collapse
Affiliation(s)
- Guy S Taylor
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andy Shaw
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Kieran Smith
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tess E Capper
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Jadine H Scragg
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Michael Cronin
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Ayat Bashir
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anneliese Flatt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew D Campbell
- Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, UK.,Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Emma J Stevenson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - James A Shaw
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Daniel J West
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
16
|
Muggeridge D, Dodd J, Ross MD. CD34 + progenitors are predictive of mortality and are associated with physical activity in cardiovascular disease patients. Atherosclerosis 2021; 333:108-115. [PMID: 34340831 DOI: 10.1016/j.atherosclerosis.2021.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND AIMS Circulating progenitor cells (CPCs) play an important role in vascular repair and can influence cardiovascular (CV) health and longevity. Exercise is known to modulate these cells via mobilization from the bone marrow. The primary aims of this study were to evaluate the association of CPCs with mortality and explore the association between physical activity (PA) and CPCs. METHODS 1751 individuals from the Framingham Offspring cohort (66 ± 9 years [40-92 years], 54% female) were included in the study. CPCs (CD34+, CD34+CD133+, CD34+CD133+KDR+) were measured by flow cytometry. Multivariable Cox regression analyses were performed to investigate relationship of CPCs with future CV event and mortality. Multivariate regression analyses were performed to determine the relationship between self-reported PA and CPC counts. RESULTS Following adjustment for standard risk factors, there was an inverse association between CD34+ CPCs and all-cause mortality (hazard ratio (HR) per unit increase in CD34+, 0.79; 95% CI 0.64-0.98, p = 0.036). CD34+CD133+ CPCs were inversely associated with CV mortality (HR 0.63, 95% CI 0.44-0.91, p = 0.013). Associations of CD34+ and CD34+CD133+ with mortality were strongest in participants with pre-existing CVD. PA was associated with CD34+ CPCs only in CVD participants (PA Index: β = 0.176, p = 0.003; moderate-to-vigorous [MVPA]: β = 0.159, p = 0.007). This relationship was maintained after adjustment for confounding variables. CONCLUSIONS A higher number of CD34+ and CD34+ CD133+ CPCs was inversely associated with all-cause and CV mortality. These associations were strongest in participants with CVD. PA is independently associated with CD34+ CPCs in individuals with CVD only, suggestive of greater benefit for this population group.
Collapse
Affiliation(s)
- David Muggeridge
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom; Institute of Health Research & Innovation, Division of Biomedical Science, University of the Highlands and Islands, Inverness, United Kingdom
| | - Jennifer Dodd
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Mark D Ross
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom.
| |
Collapse
|
17
|
Ozcan I, Toya T, Corban MT, Ahmad A, Loeffler D, Morse D, Lerman LO, Kushwaha SS, Lerman A. Circulating Progenitor Cells Are Associated With Plaque Progression And Long-Term Outcomes In Heart Transplant Patients. Cardiovasc Res 2021; 118:1703-1712. [PMID: 34132771 DOI: 10.1093/cvr/cvab203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
AIMS Circulating progenitor cells (CPCs) play a role in vascular repair and plaque stability, while osteocalcin (OC) expressing CPCs have been linked to unstable plaque and adverse cardiovascular outcomes. However, their role in cardiac allograft vasculopathy (CAV) has not been elucidated. This cohort study aimed to investigate the contribution of CPCs on CAV progression and cardiovascular events after heart transplantation. METHODS AND RESULTS A total of 80 heart transplant patients (mean age 55 ± 14 years, 72% male) undergoing annual intravascular ultrasound (IVUS) had fresh CPCs marked by CD34, CD133, and OC counted in peripheral blood using flow cytometry, on the same day as baseline IVUS. CAV progression was assessed by IVUS as the change (Δ) in plaque volume divided by segment length (PV/SL), adjusted for the time between IVUS measurements (median 3.0, interquartile range (IQR) [2.8, 3.1] years), and was defined as ΔPV/SL that is above the median ΔPV/SL of study population. Major adverse cardiac events (MACE) was defined as any incident of revascularization, myocardial infarction, heart failure admission, re-transplantation, stroke and death. Patients with higher CD34+CD133+ CPCs had a decreased risk of CAV progression (odds ratio 0.58, 95% confidence interval [CI] [0.37, 0.92], p = 0.01) and MACE (hazard ratio [HR] 0.79, 95% CI [0.66, 0.99], p = 0.05) during a median (IQR) follow up of 8.0 years (7.2, 8.3). Contrarily, higher OC+ cell counts were associated with an increased risk of MACE (HR 1.26, 95% CI [1.03, 1.57], p = 0.02). CONCLUSIONS Lower levels of CD34+CD133+ CPCs are associated with plaque progression and adverse long-term outcomes in patients who underwent allograft heart transplantation. In contrast, higher circulating OC+ levels are associated with adverse long term outcomes. Thus, CPCs might play a role in amelioration of transplant vasculopathy, while OC expression by these cells might play a role in progression. TRANSLATIONAL PERSPECTIVE The results of the current study suggest lower levels of circulating CD34+CD133+ cell levels are associated with cardiac allograft vasculopathy progression and future adverse cardiovascular events, while higher OC+ cell levels are associated with a greater risk of future cardiovascular events. Further studies confirming our findings might elucidate the role of circulating progenitor cells in the pathophysiology of CAV. Moreover, our findings might support the use of circulating progenitors as biomarkers, as well as the notion of cell therapy as potential treatment option for CAV, a disease with severe burden and limited treatment options.
Collapse
Affiliation(s)
- Ilke Ozcan
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.,Division of Cardiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Michel T Corban
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ali Ahmad
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Darrell Loeffler
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Morse
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Sudhir S Kushwaha
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
18
|
Toupance S, Simonici S, Labat C, Dumoulin C, Lai T, Lakomy C, Regnault V, Lacolley P, Dignat George F, Sabatier F, Aviv A, Benetos A. Number and Replating Capacity of Endothelial Colony-Forming Cells are Telomere Length Dependent: Implication for Human Atherogenesis. J Am Heart Assoc 2021; 10:e020606. [PMID: 33955230 PMCID: PMC8200696 DOI: 10.1161/jaha.120.020606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
Background Short leukocyte telomere length (TL) is associated with atherosclerotic cardiovascular disease. Endothelial repair plays a key role in the development of atherosclerosis. The objective was to examine associations between TL and proliferative dynamics of endothelial colony-forming cells (ECFCs), which behave as progenitor cells displaying endothelial repair activity. Methods and Results To isolate ECFCs, we performed a clonogenic assay on blood samples from 116 participants (aged 24-94 years) in the TELARTA (Telomere in Arterial Aging) cohort study. We detected no ECFC clones in 29 (group 1), clones with no replating capacity in other 29 (group 2), and clones with replating capacity in the additional 58 (group 3). Leukocyte TL was measured by Southern blotting and ECFCs (ECFC-TL). Age- and sex-adjusted leukocyte TL (mean±SEM) was the shortest in group 1 (6.51±0.13 kb), longer in group 2 (6.69±0.13 kb), and the longest in group 3 (6.78±0.09 kb) (P<0.05). In group 3, ECFC-TL was associated with the number of detected clones (P<0.01). ECFC-TL (7.98±0.13 kb) was longer than leukocyte TL (6.74±0.012 kb) (P<0.0001) and both parameters were strongly correlated (r=0.82; P<0.0001). Conclusions Individuals with longer telomeres display a higher number of self-renewing ECFCs. Our results also indicate that leukocyte TL, as a proxy of TL dynamics in ECFCs, could be used as a surrogate marker of endothelial repair capacity in clinical and laboratory practice because of easy accessibility of leukocytes. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT02176941.
Collapse
Affiliation(s)
- Simon Toupance
- InsermDCACUniversité de LorraineNancyFrance
- CHRU‐NancyPôle Maladies du vieillissement, Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILESUniversité de LorraineNancyFrance
| | | | | | | | - Tsung‐Po Lai
- Center of Human Development and AgingRutgersThe State University of New JerseyNew Jersey Medical SchoolNewarkNJ
| | | | | | | | | | | | - Abraham Aviv
- Center of Human Development and AgingRutgersThe State University of New JerseyNew Jersey Medical SchoolNewarkNJ
| | - Athanase Benetos
- InsermDCACUniversité de LorraineNancyFrance
- CHRU‐NancyPôle Maladies du vieillissement, Gérontologie et Soins Palliatifs and Fédération Hospitalo‐Universitaire CARTAGE‐PROFILESUniversité de LorraineNancyFrance
| |
Collapse
|
19
|
Elbehairy MM, Abdelnasser HY, Hanafi RS, Hassanein SI, Gad MZ. An intronic DHCR7 genetic polymorphism associates with vitamin D serum level and incidence of acute coronary syndrome. Steroids 2021; 169:108825. [PMID: 33741398 DOI: 10.1016/j.steroids.2021.108825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/20/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Vitamin D deficiency has been linked to cardiovascular pathologies including acute coronary syndrome (ACS). Polymorphisms in vitamin D associated genes have been confounding to vitamin D serum levels and pathological predispositions. 7-hydrocholesterol is a common precursor in cholesterol and vitamin D synthesis. DHCR7/NADSYN1 genetic locus expresses 7-hydrocholesterol reductase (DHCR7), an enzyme that recruits 7-hydrocholesterol in cholesterol biosynthesis, and NAD synthetase 1 (NADSYN1), which participates in the hydroxylation of 25 hydroxyvitamin D. AIM This study aims to correlate two polymorphisms in the DHCR7/NADSYN1 genetic locus with levels of circulatory vitamin D and the presentation of ACS in an Egyptian population. METHODS In a case control study, 189 ACS patients and 106 healthy control subjects were genotyped for SNPs rs11606033 of the DHCR7 gene and rs2276360 of the NADSYN1 gene using the amplification-refractory mutation system (ARMS). The levels of 25(OH)D2 and 25(OH)D3 were measured using an in-house developed and validated ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) based protocol. RESULTS ACS patients have significantly lower levels of circulating vitamin D in comparison to healthy controls. Allele A of the DHCR7 polymorphism was found to correlate with serum vitamin D deficiency and incidence of ACS classes: NSTEMI, STEMI and unstable angina, when compared to allele G. On the other hand, the NADSYN1 polymorphism rs2276360 correlated with serum 25(OH)D3 deficiency. Yet, no significant correlation was found with incidences of ACS. CONCLUSION We conclude that rs11606033, which is an intronic SNP between exon 4 and exon 5 of the DHCR7 gene, influences vitamin D serum abundance and more importantly ACS incidence.
Collapse
Affiliation(s)
- Mariam M Elbehairy
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Hala Y Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Rasha S Hanafi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Sally I Hassanein
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt
| | - Mohamed Z Gad
- Department of Biochemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Egypt.
| |
Collapse
|
20
|
Moazzami K, Lima BB, Hammadah M, Ramadan R, Al Mheid I, Kim JH, Alkhoder A, Obideen M, Levantsevych O, Shah A, Liu C, Bremner JD, Kutner M, Sun YV, Waller EK, Hesaroieh IG, Raggi P, Vaccarino V, Quyyumi AA. Association Between Change in Circulating Progenitor Cells During Exercise Stress and Risk of Adverse Cardiovascular Events in Patients With Coronary Artery Disease. JAMA Cardiol 2021; 5:147-155. [PMID: 31799987 PMCID: PMC6902161 DOI: 10.1001/jamacardio.2019.4528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance Stem and progenitor cells mobilize from the bone marrow in response to myocardial ischemia. However, the association between the change in circulating progenitor cell (CPC) counts and disease prognosis among patients with ischemia is unknown. Objective To investigate the association between the change in CPC counts during stress testing and the risk of adverse cardiovascular events in patients with stable coronary artery disease (CAD). Design, Setting, and Participants This prospective cohort study included a population-based sample of 454 patients with stable CAD who were recruited between June 1, 2011, and August 15, 2014, at Emory University-affiliated hospitals and followed up for 3 years. Data were analyzed from September 15, 2018, to October 15, 2018. Exposures Myocardial perfusion imaging with technetium Tc 99m sestamibi at rest and 30 to 60 minutes after conventional stress testing. Main Outcomes and Measures Circulating progenitor cells were enumerated with flow cytometry as CD34-expressing mononuclear cells (CD45med/CD34+), with additional quantification of subsets coexpressing the chemokine (C-X-C motif) receptor 4 (CD34+/CXCR4+). Changes in CPC counts were calculated as poststress minus resting CPC counts. Cox proportional hazards regression models were used to identify factors associated with the combined end point of cardiovascular death and myocardial infarction after adjusting for clinical covariates, including age, sex, race, smoking history, body mass index, and history of heart failure, hypertension, dyslipidemia, and diabetes. Results Of the 454 patients (mean [SD] age, 63 [9] years; 76% men) with stable CAD enrolled in the study, 142 (31.3%) had stress-induced ischemia and 312 (68.7%) did not, as measured by single-photon emission computed tomography. During stress testing, patients with stress-induced ischemia had a mean decrease of 20.2% (interquartile range [IQR], -45.3 to 5.5; P < .001) in their CD34+/CXCR4+ counts, and patients without stress-induced ischemia had a mean increase of 3.2% (IQR, -20.6 to 35.1; P < .001) in their CD34+/CXCR4+ counts. Twenty-four patients (5.2%) experienced adverse events. After adjustment, baseline CPC counts were associated with worse adverse outcomes, but this association was not present after stress-induced ischemia was included in the model. However, the change in CPC counts during exercise remained significantly associated with adverse events (hazard ratio, 2.59; 95% CI, 1.15-5.32, per 50% CD34+/CXCR4+ count decrease), even after adjustment for clinical variables and the presence of ischemia. The discrimination of risk factors associated with incident adverse events improved (increase in C statistic from 0.72 to 0.77; P = .003) with the addition of the change in CD34+/CXCR4+ counts to a model that included clinical characteristics, baseline CPC count, and ischemia. Conclusions and Relevance In this study of patients with CAD, a decrease in CPC counts during exercise is associated with a worse disease prognosis compared with the presence of stress-induced myocardial ischemia. Further studies are needed to evaluate whether strategies to improve CPC responses during exercise stress will be associated with improvements in the prognosis of patients with CAD.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Mohammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ronnie Ramadan
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ibhar Al Mheid
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Jeong Hwan Kim
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Ayman Alkhoder
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Malik Obideen
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Oleksiy Levantsevych
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Amit Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia.,Atlanta VA Medical Center, Decatur, Georgia
| | - Chang Liu
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - J Douglas Bremner
- Atlanta VA Medical Center, Decatur, Georgia.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Edmund K Waller
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Ghaini Hesaroieh
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Olkowicz M, Czyzynska-Cichon I, Szupryczynska N, Kostogrys RB, Kochan Z, Debski J, Dadlez M, Chlopicki S, Smolenski RT. Multi-omic signatures of atherogenic dyslipidaemia: pre-clinical target identification and validation in humans. J Transl Med 2021; 19:6. [PMID: 33407555 PMCID: PMC7789501 DOI: 10.1186/s12967-020-02663-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Dyslipidaemia is a major risk factor for atherosclerosis and cardiovascular diseases. The molecular mechanisms that translate dyslipidaemia into atherogenesis and reliable markers of its progression are yet to be fully elucidated. To address this issue, we conducted a comprehensive metabolomic and proteomic analysis in an experimental model of dyslipidaemia and in patients with familial hypercholesterolemia (FH). METHODS Liquid chromatography/mass spectrometry (LC/MS) and immunoassays were used to find out blood alterations at metabolite and protein levels in dyslipidaemic ApoE-/-/LDLR-/- mice and in FH patients to evaluate their human relevance. RESULTS We identified 15 metabolites (inhibitors and substrates of nitric oxide synthase (NOS), low-molecular-weight antioxidants (glutamine, taurine), homocysteine, methionine, 1-methylnicotinamide, alanine and hydroxyproline) and 9 proteins (C-reactive protein, proprotein convertase subtilisin/kexin type 9, apolipoprotein C-III, soluble intercellular adhesion molecule-1, angiotensinogen, paraoxonase-1, fetuin-B, vitamin K-dependent protein S and biglycan) that differentiated FH patients from healthy controls. Most of these changes were consistently found in dyslipidaemic mice and were further amplified if mice were fed an atherogenic (Western or low-carbohydrate, high-protein) diet. CONCLUSIONS The alterations highlighted the involvement of an immune-inflammatory response system, oxidative stress, hyper-coagulation and impairment in the vascular function/regenerative capacity in response to dyslipidaemia that may also be directly engaged in development of atherosclerosis. Our study further identified potential biomarkers for an increased risk of atherosclerosis that may aid in clinical diagnosis or in the personalized treatment.
Collapse
Affiliation(s)
- Mariola Olkowicz
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland. .,Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.
| | - Izabela Czyzynska-Cichon
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland
| | - Natalia Szupryczynska
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Renata B Kostogrys
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, 122 Balicka St., 30-149, Krakow, Poland
| | - Zdzislaw Kochan
- Department of Nutritional Biochemistry, Faculty of Health Sciences, Medical University of Gdansk, 7 Debinki St., 80-211, Gdansk, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Michal Dadlez
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 5a Pawinskiego St., 02-106, Warsaw, Poland
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, 14 Bobrzynskiego St., 30-348, Krakow, Poland.,Chair of Pharmacology, Jagiellonian University Medical College, 16 Grzegorzecka St., 31-531, Krakow, Poland
| | - Ryszard T Smolenski
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 1 Debinki St, 80-211, Gdansk, Poland.
| |
Collapse
|
22
|
Jarajapu YPR. Targeting Angiotensin-Converting Enzyme-2/Angiotensin-(1-7)/Mas Receptor Axis in the Vascular Progenitor Cells for Cardiovascular Diseases. Mol Pharmacol 2021; 99:29-38. [PMID: 32321734 PMCID: PMC7725063 DOI: 10.1124/mol.119.117580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 03/31/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow-derived hematopoietic stem/progenitor cells are vasculogenic and play an important role in endothelial health and vascular homeostasis by participating in postnatal vasculogenesis. Progenitor cells are mobilized from bone marrow niches in response to remote ischemic injury and migrate to the areas of damage and stimulate revascularization largely by paracrine activation of angiogenic functions in the peri-ischemic vasculature. This innate vasoprotective mechanism is impaired in certain chronic clinical conditions, which leads to the development of cardiovascular complications. Members of the renin-angiotensin system-angiotensin-converting enzymes (ACEs) ACE and ACE2, angiotensin II (Ang II), Ang-(1-7), and receptors AT1 and Mas-are expressed in vasculogenic progenitor cells derived from humans and rodents. Ang-(1-7), generated by ACE2, is known to produce cardiovascular protective effects by acting on Mas receptor and is considered as a counter-regulatory mechanism to the detrimental effects of Ang II. Evidence has now been accumulating in support of the activation of the ACE2/Ang-(1-7)/Mas receptor pathway by pharmacologic or molecular maneuvers, which stimulates mobilization of progenitor cells from bone marrow, migration to areas of vascular damage, and revascularization of ischemic areas in pathologic conditions. This minireview summarizes recent studies that have enhanced our understanding of the physiology and pharmacology of vasoprotective axis in bone marrow-derived progenitor cells in health and disease. SIGNIFICANCE STATEMENT: Hematopoietic stem progenitor cells (HSPCs) stimulate revascularization of ischemic areas. However, the reparative potential is diminished in certain chronic clinical conditions, leading to the development of cardiovascular diseases. ACE2 and Mas receptor are key members of the alternative axis of the renin-angiotensin system and are expressed in HSPCs. Accumulating evidence points to activation of ACE2 or Mas receptor as a promising approach for restoring the reparative potential, thereby preventing the development of ischemic vascular diseases.
Collapse
Affiliation(s)
- Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
23
|
Fadini GP, Mehta A, Dhindsa DS, Bonora BM, Sreejit G, Nagareddy P, Quyyumi AA. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J 2020; 41:4271-4282. [PMID: 31891403 PMCID: PMC7825095 DOI: 10.1093/eurheartj/ehz923] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/19/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo, persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and adverse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond CSCs' ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections between haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Devinder Singh Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | | | - Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Prabhakara Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Arshed Ali Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Upregulation of MicroRNA-125b Leads to the Resistance to Inflammatory Injury in Endothelial Progenitor Cells. Cardiol Res Pract 2020; 2020:6210847. [PMID: 33005452 PMCID: PMC7509550 DOI: 10.1155/2020/6210847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives MicroRNA-125b (miR-125b) has been recognized as one of the key regulators of the inflammatory responses in cardiovascular diseases recently. This study sought to dissect the role of miR-125b in modulating the function of endothelial progenitor cells (EPCs) in the inflammatory environment of ischemic hearts. Methods EPCs were cultured and transfected with miR-125b mimic and negative control mimic. Cell migration and adhesion assays were performed after tumor necrosis factor-α (TNF-α) treatment to determine EPC function. Cell apoptosis was analyzed by flow cytometry. The activation of the NF-κB pathway was measured by western blotting. EPC-mediated neovascularization in vivo was studied by using a myocardial infarction model. Results miR-125b-overexpressed EPCs displayed improved cell migration, adhesion abilities, and reduced cell apoptosis compared with those of the NC group after TNF-α treatment. miR-125b overexpression in EPCs ameliorated TNF-α-induced activation of the NF-κB pathway. Mice transplanted with miR-125b-overexpressed EPCs showed improved cardiac function recovery and capillary vessel density than the ones transplanted with NC EPCs. Conclusions miR-125b protects EPCs against TNF-α-induced inflammation and cell apoptosis by attenuating the activation of NF-κB pathway and consequently improves the cardiac function recovery and EPC-mediated neovascularization in the ischemic hearts.
Collapse
|
25
|
Widimsky P, Crea F, Binder RK, Lüscher TF. The year in cardiology 2018: acute coronary syndromes. Eur Heart J 2020; 40:271-282. [PMID: 30601993 DOI: 10.1093/eurheartj/ehy904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Petr Widimsky
- Cardiocenter, Third Faculty of Medicine, Charles University, Hospital Kralovske Vinohrady, Ruska 87, Prague 10, Czech Republic
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Policlinico A. Gemelli-IRCCS, Catholic University, Roma, Italy
| | - Ronald K Binder
- Cardiology and Intensive Care, University Teaching Hospital Klinikum Wels Grieskirchen, A-4600 Wels, Austria
| | - Thomas F Lüscher
- Royal Brompton and Harefield Hospitals and Imperial College, London, UK.,Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Cathepsin K Deficiency Impaired Ischemia-Induced Neovascularization in Aged Mice. Stem Cells Int 2020; 2020:6938620. [PMID: 32676120 PMCID: PMC7346230 DOI: 10.1155/2020/6938620] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background Aging is a major risk factor for cardiovascular disease. Cysteine protease cathepsin K (CatK) has been implicated in the process of angiogenesis, but the exact roles of individual CatK in vessel formation during aging are poorly understood. Methods and Results To study the putative role of CatK in ischemia-induced angiogenesis, we applied a hindlimb ischemia model to aged wild-type (CatK+/+) and CatK-deficient (CatK−/−) mice. A serial laser Doppler blood-flow analysis revealed that the recovery of the ischemic/normal blood-flow ratio in the aged CatK−/−mice was impaired throughout the follow-up period. On postoperative day 14, CatK deficiency had also impaired capillary formation. CatK deficiency reduced the levels of cleaved Notch1, phospho-Akt, and/or vascular endothelial growth factor (VEGF) proteins in the ischemic muscles and bone marrow-derived c-Kit+ cells. A flow cytometry analysis revealed that CatK deficiency reduced the numbers of endothelial progenitor cell (EPC)-like CD31+/c-Kit+ cells in the peripheral blood as well as the ischemic vasculature. In vitro experiments, CatK−/− impaired bone-derived c-Kit+ cellular functions (migration, invasion, proliferation, and tubulogenesis) in aged mice. Our findings demonstrated that aging impaired the ischemia-induced angiogenesis associated with the reductions of the production and mobilization of CD31+/c-Kit+ cells in mice. Conclusions These findings established that the impairment of ischemia-induced neovascularization in aged CatK−/− mice is due, at least in part, to the reduction of EPC mobilization and the homing of the cells into vasculature that is associated with the impairment of Notch1 signaling activation at advanced ages.
Collapse
|
27
|
Berezin AE, Berezin AA. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. DISEASE MARKERS 2020; 2020:1215802. [PMID: 32626540 PMCID: PMC7306098 DOI: 10.1155/2020/1215802] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
The prevalence of heart failure (HF) due to cardiac remodelling after acute myocardial infarction (AMI) does not decrease regardless of implementation of new technologies supporting opening culprit coronary artery and solving of ischemia-relating stenosis with primary percutaneous coronary intervention (PCI). Numerous studies have examined the diagnostic and prognostic potencies of circulating cardiac biomarkers in acute coronary syndrome/AMI and heart failure after AMI, and even fewer have depicted the utility of biomarkers in AMI patients undergoing primary PCI. Although complete revascularization at early period of acute coronary syndrome/AMI is an established factor for improved short-term and long-term prognosis and lowered risk of cardiovascular (CV) complications, late adverse cardiac remodelling may be a major risk factor for one-year mortality and postponded heart failure manifestation after PCI with subsequent blood flow resolving in culprit coronary artery. The aim of the review was to focus an attention on circulating biomarker as a promising tool to stratify AMI patients at high risk of poor cardiac recovery and developing HF after successful PCI. The main consideration affects biomarkers of inflammation, biomechanical myocardial stress, cardiac injury and necrosis, fibrosis, endothelial dysfunction, and vascular reparation. Clinical utilities and predictive modalities of natriuretic peptides, cardiac troponins, galectin 3, soluble suppressor tumorogenicity-2, high-sensitive C-reactive protein, growth differential factor-15, midregional proadrenomedullin, noncoding RNAs, and other biomarkers for adverse cardiac remodelling are discussed in the review.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye 69035, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye 69096, Ukraine
| |
Collapse
|
28
|
Islam SJ, Kim JH, Topel M, Liu C, Ko YA, Mujahid MS, Sims M, Mubasher M, Ejaz K, Morgan-Billingslea J, Jones K, Waller EK, Jones D, Uppal K, Dunbar SB, Pemu P, Vaccarino V, Searles CD, Baltrus P, Lewis TT, Quyyumi AA, Taylor H. Cardiovascular Risk and Resilience Among Black Adults: Rationale and Design of the MECA Study. J Am Heart Assoc 2020; 9:e015247. [PMID: 32340530 PMCID: PMC7428584 DOI: 10.1161/jaha.119.015247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Cardiovascular disease incidence, prevalence, morbidity, and mortality have declined in the past several decades; however, disparities persist among subsets of the population. Notably, blacks have not experienced the same improvements on the whole as whites. Furthermore, frequent reports of relatively poorer health statistics among the black population have led to a broad assumption that black race reliably predicts relatively poorer health outcomes. However, substantial intraethnic and intraracial heterogeneity exists; moreover, individuals with similar risk factors and environmental exposures are often known to experience vastly different cardiovascular health outcomes. Thus, some individuals have good outcomes even in the presence of cardiovascular risk factors, a concept known as resilience. Methods and Results The MECA (Morehouse‐Emory Center for Health Equity) Study was designed to investigate the multilevel exposures that contribute to “resilience” in the face of risk for poor cardiovascular health among blacks in the greater Atlanta, GA, metropolitan area. We used census tract data to determine “at‐risk” and “resilient” neighborhoods with high or low prevalence of cardiovascular morbidity and mortality, based on cardiovascular death, hospitalization, and emergency department visits for blacks. More than 1400 individuals from these census tracts assented to demographic, health, and psychosocial questionnaires administered through telephone surveys. Afterwards, ≈500 individuals were recruited to enroll in a clinical study, where risk biomarkers, such as oxidative stress, and inflammatory markers, endothelial progenitor cells, metabolomic and microRNA profiles, and subclinical vascular dysfunction were measured. In addition, comprehensive behavioral questionnaires were collected and ideal cardiovascular health metrics were assessed using the American Heart Association's Life Simple 7 measure. Last, 150 individuals with low Life Simple 7 were recruited and randomized to a behavioral mobile health (eHealth) plus health coach or eHealth only intervention and followed up for improvement. Conclusions The MECA Study is investigating socioenvironmental and individual behavioral measures that promote resilience to cardiovascular disease in blacks by assessing biological, functional, and molecular mechanisms. REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT03308812.
Collapse
Affiliation(s)
- Shabatun J Islam
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Jeong Hwan Kim
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Matthew Topel
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Chang Liu
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics Rollins School of Public Health Emory University Atlanta GA
| | - Mahasin S Mujahid
- Division of Epidemiology School of Public Health University of California Berkeley CA
| | - Mario Sims
- Department of Medicine University of Mississippi Medical Center Jackson MS
| | - Mohamed Mubasher
- Department of Community Health and Preventive Medicine Morehouse School of Medicine Atlanta GA
| | - Kiran Ejaz
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Jan Morgan-Billingslea
- Department of Community Health and Preventive Medicine Morehouse School of Medicine Atlanta GA
| | - Kia Jones
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Edmund K Waller
- Department of Hematology and Oncology Winship Cancer Institute Emory University School of Medicine Atlanta GA
| | - Dean Jones
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine Department of Medicine Emory University School of Medicine Atlanta GA
| | - Karan Uppal
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine Department of Medicine Emory University School of Medicine Atlanta GA
| | - Sandra B Dunbar
- Nell Hodgson Woodruff School of Nursing Emory University Atlanta GA
| | - Priscilla Pemu
- Department of Medicine Morehouse School of Medicine Atlanta GA
| | - Viola Vaccarino
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA.,Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Charles D Searles
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Peter Baltrus
- Department of Community Health and Preventive Medicine Morehouse School of Medicine Atlanta GA.,National Center for Primary Care Morehouse School of Medicine Atlanta GA
| | - Tené T Lewis
- Department of Epidemiology Rollins School of Public Health Emory University Atlanta GA
| | - Arshed A Quyyumi
- Division of Cardiology Department of Medicine Emory University School of Medicine Atlanta GA
| | - Herman Taylor
- Department of Medicine Morehouse School of Medicine Atlanta GA
| |
Collapse
|
29
|
Emmi G, Mannucci A, Argento FR, Silvestri E, Vaglio A, Bettiol A, Fanelli A, Stefani L, Taddei N, Prisco D, Fiorillo C, Becatti M. Stem-Cell-Derived Circulating Progenitors Dysfunction in Behçet's Syndrome Patients Correlates With Oxidative Stress. Front Immunol 2019; 10:2877. [PMID: 31921141 PMCID: PMC6923242 DOI: 10.3389/fimmu.2019.02877] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 11/22/2019] [Indexed: 12/29/2022] Open
Abstract
Behçet's syndrome (BS) is a systemic vasculitis considered as the prototype of a systemic inflammation-induced thrombotic condition whose pathogenesis cannot be explained just by coagulation abnormalities. Circulating hematopoietic progenitor cells (CPC), a population of rare, pre-differentiated adult stem cells originating in the bone marrow and capable of both self-renewal and multi-lineage differentiation, are mobilized in response to vascular injury and play a key role in tissue repair. In cardiovascular and thrombotic diseases, low circulating CPC number and reduced CPC function have been observed. Oxidative stress may be one of the relevant culprits that account for the dysfunctional and numerically reduced CPC in these conditions. However, the detailed mechanisms underlying CPC number reduction are unknown. On this background, the present study was designed to evaluate for the first time the possible relationship between CPC dysfunction and oxidative stress in BS patients. In BS patients, we found signs of plasma oxidative stress and significantly lower CD34+/CD45−/dim and CD34+/CD45−/dim/CD133+ CPC levels. Importantly, in all the considered CPC subsets, significantly higher ROS levels with respect to controls were observed. Higher levels of caspase-3 activity in all the considered CPC population and a strong reduction in GSH content in CPC subpopulation from BS patients with respect to controls were also observed. Interestingly, in BS patients, ROS significantly correlated with CPC number and CPC caspase-3 activity and CPC GSH content significantly correlated with CPC number, in all CPC subsets. Collectively, these data demonstrate for the first time that CPC from BS patients show signs of oxidative stress and apoptosis and that a reduced CPC number is present in BS patients with respect to controls. Interestingly, we observed an inverse correlation between circulating CPC number and CPC ROS production, suggesting a possible toxic ROS effect on CPC in BS patients. The significant correlations between ROS production/GSH content and caspase-3 activity point out that oxidative stress can represent a determinant in the onset of apoptosis in CPC. These data support the hypothesis that oxidative-stress-mediated CPC dysfunctioning may counteract their vascular repair actions, thereby contributing to the pathogenesis and the progression of vascular disease in BS.
Collapse
Affiliation(s)
- Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Amanda Mannucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Flavia Rita Argento
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Elena Silvestri
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Augusto Vaglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alessandra Fanelli
- Central Laboratory, Azienda Ospedaliero Universitaria Careggi, Firenze, Italy
| | - Laura Stefani
- Department of Clinical and Experimental Medicine, Center of Sports Medicine, University of Firenze, Firenze, Italy
| | - Niccolò Taddei
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Firenze, Firenze, Italy
| |
Collapse
|
30
|
Williams R. Circulation Research "In This Issue" Anthology. Circ Res 2019; 124:e123-e148. [PMID: 31170049 DOI: 10.1161/res.0000000000000275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Tahhan AS, Hammadah M, Mohamed-Kelli H, Kim JH, Sandesara PB, Alkhoder A, Kaseer B, Gafeer MM, Topel M, Hayek SS, O’Neal WT, Obideen M, Ko YA, Liu C, Hesaroieh I, Mahar E, Vaccarino V, Waller EK, Quyyumi AA. Circulating Progenitor Cells and Racial Differences. Circ Res 2018; 123:467-476. [PMID: 29930146 PMCID: PMC6202175 DOI: 10.1161/circresaha.118.313282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Blacks compared with whites have a greater risk of adverse cardiovascular outcomes. Impaired regenerative capacity, measured as lower levels of circulating progenitor cells (CPCs), is a novel determinant of adverse outcomes; however, little is known about racial differences in CPCs. OBJECTIVE To investigate the number of CPCs, PC-mobilizing factors, PC mobilization during acute myocardial infarction and the predictive value of CPC counts in blacks compared with whites. METHODS AND RESULTS CPCs were enumerated by flow cytometry as CD45med+ blood mononuclear cells expressing CD34+, CD133+, VEGF2R+, and CXCR4+ epitopes in 1747 subjects, mean age 58.4±13, 55% male, and 26% self-reported black. Patients presenting with acute myocardial infarction (n=91) were analyzed separately. Models were adjusted for relevant clinical variables. SDF-1α (stromal cell-derived factor-1α), VEGF (vascular endothelial growth factor), and MMP-9 (matrix metallopeptidase-9) levels were measured (n=561), and 623 patients were followed for median of 2.2 years for survival analysis. Blacks were younger, more often female, with a higher burden of cardiovascular risk, and lower CPC counts. Blacks had fewer CD34+ cells (-17.6%; [95% confidence interval (CI), -23.5% to -11.3%]; P<0.001), CD34+/CD133+ cells (-15.5%; [95% CI, -22.4% to -8.1%]; P<0.001), CD34+/CXCR4+ cells (-17.3%; [95% CI, -23.9% to -10.2%]; P<0.001), and CD34+/VEGF2R+ cells (-27.9%; [95% CI, -46.9% to -2.0%]; P=0.04) compared with whites. The association between lower CPC counts and black race was not affected by risk factors or cardiovascular disease. Results were validated in a separate cohort of 411 patients. Blacks with acute myocardial infarction had significantly fewer CPCs compared with whites ( P=0.02). Blacks had significantly lower plasma MMP-9 levels ( P<0.001) which attenuated the association between low CD34+ and black race by 19% (95% CI, 13%-33%). However, VEGF and SDF-1α levels were not significantly different between the races. Lower CD34+ counts were similarly predictive of mortality in blacks (hazard ratio, 2.83; [95% CI, 1.12-7.20]; P=0.03) and whites (hazard ratio, 1.79; [95% CI, 1.09-2.94]; P=0.02) without significant interaction. CONCLUSIONS Black subjects have lower levels of CPCs compared with whites which is partially dependent on lower circulating MMP-9 levels. Impaired regenerative capacity is predictive of adverse outcomes in blacks and may partly account for their increased risk of cardiovascular events.
Collapse
Affiliation(s)
- Ayman Samman Tahhan
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Muhammad Hammadah
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Heval Mohamed-Kelli
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Jeong Hwan Kim
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ayman Alkhoder
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Belal Kaseer
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Mohamad Mazen Gafeer
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Matthew Topel
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Salim S Hayek
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Wesley T O’Neal
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Malik Obideen
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Chang Liu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ernestine Mahar
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Viola Vaccarino
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
32
|
Premer C, Schulman IH. Predictive Value of Circulating Progenitor Cells in Acute Coronary Syndrome: Implications for Treatment. Circ Res 2018; 122:1491-1493. [PMID: 29798897 DOI: 10.1161/circresaha.118.313032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Courtney Premer
- From the Interdisciplinary Stem Cell Institute (C.P., I.H.S.)
| | - Ivonne Hernandez Schulman
- From the Interdisciplinary Stem Cell Institute (C.P., I.H.S.) .,Katz Family Division of Nephrology and Hypertension (I.H.S.), University of Miami Miller School of Medicine, FL
| |
Collapse
|