1
|
Wang P, Ahmed MS, Nguyen NUN, Menendez-Montes I, Hsu CC, Farag AB, Thet S, Lam NT, Wansapura JP, Crossley E, Ma N, Zhao SR, Zhang T, Morimoto S, Singh R, Elhelaly W, Tassin TC, Cardoso AC, Williams NS, Pointer HL, Elliott DA, McNamara JW, Watt KI, Porrello ER, Sadayappan S, Sadek HA. An FDA-approved drug structurally and phenotypically corrects the K210del mutation in genetic cardiomyopathy models. J Clin Invest 2025; 135:e174081. [PMID: 39959972 PMCID: PMC11827848 DOI: 10.1172/jci174081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/19/2024] [Indexed: 02/20/2025] Open
Abstract
Dilated cardiomyopathy (DCM) due to genetic disorders results in decreased myocardial contractility, leading to high morbidity and mortality rates. There are several therapeutic challenges in treating DCM, including poor understanding of the underlying mechanism of impaired myocardial contractility and the difficulty of developing targeted therapies to reverse mutation-specific pathologies. In this report, we focused on K210del, a DCM-causing mutation, due to 3-nucleotide deletion of sarcomeric troponin T (TnnT), resulting in loss of Lysine210. We resolved the crystal structure of the troponin complex carrying the K210del mutation. K210del induced an allosteric shift in the troponin complex resulting in distortion of activation Ca2+-binding domain of troponin C (TnnC) at S69, resulting in calcium discoordination. Next, we adopted a structure-based drug repurposing approach to identify bisphosphonate risedronate as a potential structural corrector for the mutant troponin complex. Cocrystallization of risedronate with the mutant troponin complex restored the normal configuration of S69 and calcium coordination. Risedronate normalized force generation in K210del patient-induced pluripotent stem cell-derived (iPSC-derived) cardiomyocytes and improved calcium sensitivity in skinned papillary muscles isolated from K210del mice. Systemic administration of risedronate to K210del mice normalized left ventricular ejection fraction. Collectively, these results identify the structural basis for decreased calcium sensitivity in K210del and highlight structural and phenotypic correction as a potential therapeutic strategy in genetic cardiomyopathies.
Collapse
Affiliation(s)
- Ping Wang
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mahmoud Salama Ahmed
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, USA
| | - Ngoc Uyen Nhi Nguyen
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ivan Menendez-Montes
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ching-Cheng Hsu
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayman B. Farag
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suwannee Thet
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas T. Lam
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Eric Crossley
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ning Ma
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Shane Rui Zhao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Tiejun Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, USA
| | - Sachio Morimoto
- School of Health Sciences Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Rohit Singh
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
| | - Waleed Elhelaly
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tara C. Tassin
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alisson C. Cardoso
- Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Noelle S. Williams
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hayley L. Pointer
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
| | - David A. Elliott
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, and
| | - James W. McNamara
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Kevin I. Watt
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Enzo R. Porrello
- Novo Nordisk Foundation Center for Stem Cell Medicine, Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Victoria, Australia
- Department of Paediatrics, and
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Sakthivel Sadayappan
- Heart, Lung and Vascular Institute, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, Ohio, USA
- Department of Cellular & Molecular Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Hesham A. Sadek
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Division of Cardiology, The University of Arizona College of Medicine, Tucson, Arizona, USA
- The University of Arizona Sarver Heart Center, Tucson, Arizona, USA
| |
Collapse
|
2
|
Xu M, Liu X, Lu L, Li Z. Metrnl and Cardiomyopathies: From Molecular Mechanisms to Therapeutic Insights. J Cell Mol Med 2025; 29:e70371. [PMID: 39853716 PMCID: PMC11756984 DOI: 10.1111/jcmm.70371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Cardiomyopathies, a diverse group of diseases affecting the heart muscle, continue to pose significant clinical challenges due to their complex aetiologies and limited treatment options targeting underlying genetic and molecular dysregulations. Emerging evidence indicates that Metrnl, a myokine, adipokine and cardiokine, plays a significant role in the pathogenesis of various cardiomyopathies. Therefore, the objective of this review is to examine the role and mechanism of Metrnl in various cardiomyopathies, with the expectation of providing new insights for the treatment of these diseases.
Collapse
Affiliation(s)
- Miaomiao Xu
- School of Physical Education and HealthGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Xiaoguang Liu
- College of Sports and HealthGuangzhou Sport UniversityGuangzhouGuangdongChina
| | - Liming Lu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu‐Moxi and RehabilitationGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Zhaowei Li
- School of Physical Education and HealthGuangzhou University of Chinese MedicineGuangzhouGuangdongChina
| |
Collapse
|
3
|
Saul T, Bui QM, Argiro A, Keyt L, Olivotto I, Adler E. Natural history and clinical outcomes of patients with hypertrophic cardiomyopathy from thin filament mutations. ESC Heart Fail 2024; 11:3501-3510. [PMID: 38773858 PMCID: PMC11631233 DOI: 10.1002/ehf2.14848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024] Open
Abstract
Hypertrophic cardiomyopathy (HCM) due to thick filament variants is more common; however, HCM due to thin filament variants (HCM-Thin) may be associated with a more malignant phenotype with an increased risk of sudden cardiac death. The aim of this study was to review all the published cases of HCM-Thin to better understand the natural history and clinical outcomes of this disease. A literature review of HCM-Thin identified 21 studies with a total of 177 patients that were suitable for analysis. There were three outcomes of interest, which included a heart failure composite, a ventricular arrhythmia composite and a heart failure and arrhythmia composite outcome. Kaplan-Meier (KM) survival analyses for freedom from each of the abovementioned composite outcomes were completed for the entire cohort and stratified by age of onset and sarcomeric variant. The heart failure composite occurred in 24 (13.6%) patients, the ventricular arrhythmia composite occurred in 30 patients (16.9%) and the combined heart failure and arrhythmia composite occurred in 50 patients (28.2%). In regard to left ventricular ejection fraction (LVEF), the majority of patients were preserved (LVEF > 50%) compared with mildly reduced (LVEF 41%-50%) and reduced (LVEF ≤ 40%) (respectively 26.6% vs. 0.6% vs. 3.4%). The median maximal left ventricular wall thickness (LVWT) was 19.0 mm [interquartile range (IQR) 5.3]. Only 10.7% of the cohort had evidence of left ventricular outflow tract (LVOT) obstruction. Those with paediatric-onset HCM had earlier onset and were at higher risk for each endpoint than their adult counterparts. When stratified by genetic variant, patients with TNNI3 and TPM1 were at a higher risk of the heart failure composite endpoint and the combined heart failure and arrhythmia composite endpoint in comparison with those with the other genetic variants. HCM-Thin is associated with significant morbidity and mortality, with a high arrhythmia burden despite low rates of cardiac obstruction and mild hypertrophy. The paediatric onset of disease and certain sarcomeric variants appear to be associated with a worse prognosis than their adult-onset and other sarcomeric variant counterparts. HCM-Thin seems to have a distinct phenotype, which may require a different management approach.
Collapse
Affiliation(s)
- Tatiana Saul
- Division of Cardiovascular Medicine, Department of MedicineUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - Quan M. Bui
- Division of Cardiovascular Medicine, Department of MedicineUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | - Alessia Argiro
- Cardiomyopathy UnitCareggi University HospitalFlorenceItaly
| | - Lucas Keyt
- Division of Cardiovascular Medicine, Department of MedicineUniversity of California, San DiegoSan DiegoCaliforniaUSA
| | | | - Eric Adler
- Division of Cardiovascular Medicine, Department of MedicineUniversity of California, San DiegoSan DiegoCaliforniaUSA
| |
Collapse
|
4
|
Huang S, Li J, Li Q, Wang Q, Zhou X, Chen J, Chen X, Bellou A, Zhuang J, Lei L. Cardiomyopathy: pathogenesis and therapeutic interventions. MedComm (Beijing) 2024; 5:e772. [PMID: 39465141 PMCID: PMC11502724 DOI: 10.1002/mco2.772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Cardiomyopathy is a group of disease characterized by structural and functional damage to the myocardium. The etiologies of cardiomyopathies are diverse, spanning from genetic mutations impacting fundamental myocardial functions to systemic disorders that result in widespread cardiac damage. Many specific gene mutations cause primary cardiomyopathy. Environmental factors and metabolic disorders may also lead to the occurrence of cardiomyopathy. This review provides an in-depth analysis of the current understanding of the pathogenesis of various cardiomyopathies, highlighting the molecular and cellular mechanisms that contribute to their development and progression. The current therapeutic interventions for cardiomyopathies range from pharmacological interventions to mechanical support and heart transplantation. Gene therapy and cell therapy, propelled by ongoing advancements in overarching strategies and methodologies, has also emerged as a pivotal clinical intervention for a variety of diseases. The increasing number of causal gene of cardiomyopathies have been identified in recent studies. Therefore, gene therapy targeting causal genes holds promise in offering therapeutic advantages to individuals diagnosed with cardiomyopathies. Acting as a more precise approach to gene therapy, they are gradually emerging as a substitute for traditional gene therapy. This article reviews pathogenesis and therapeutic interventions for different cardiomyopathies.
Collapse
Affiliation(s)
- Shitong Huang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Jiaxin Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuying Li
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Qiuyu Wang
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Xianwu Zhou
- Department of Cardiovascular SurgeryZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Jimei Chen
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Xuanhui Chen
- Department of Medical Big Data CenterGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
| | - Abdelouahab Bellou
- Department of Emergency Medicine, Institute of Sciences in Emergency MedicineGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Emergency MedicineWayne State University School of MedicineDetroitMichiganUSA
| | - Jian Zhuang
- Department of Cardiovascular SurgeryGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| | - Liming Lei
- Department of Cardiac Surgical Intensive Care UnitGuangdong Cardiovascular InstituteGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)Southern Medical UniversityGuangzhouChina
- Department of Cardiovascular SurgeryGuangdong Provincial Key Laboratory of South China Structural Heart DiseaseGuangzhouChina
| |
Collapse
|
5
|
Lauerer AM, Caravia XM, Maier LS, Chemello F, Lebek S. Gene editing in common cardiovascular diseases. Pharmacol Ther 2024; 263:108720. [PMID: 39284367 DOI: 10.1016/j.pharmthera.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/29/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024]
Abstract
Cardiovascular diseases are the leading cause of morbidity and mortality worldwide, highlighting the high socioeconomic impact. Current treatment strategies like compound-based drugs or surgeries are often limited. On the one hand, systemic administration of substances is frequently associated with adverse side effects; on the other hand, they typically provide only short-time effects requiring daily intake. Thus, new therapeutic approaches and concepts are urgently needed. The advent of CRISPR-Cas9 genome editing offers great promise for the correction of disease-causing hereditary mutations. As such mutations are often very rare, gene editing strategies to correct them are not broadly applicable to many patients. Notably, there is recent evidence that gene editing technology can also be deployed to disrupt common pathogenic signaling cascades in a targeted, specific, and efficient manner, which offers a more generalizable approach. However, several challenges remain to be addressed ranging from the optimization of the editing strategy itself to a suitable delivery strategy up to potential immune responses to the editing components. This review article discusses important CRISPR-Cas9-based gene editing approaches with their advantages and drawbacks and outlines opportunities in their application for treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Anna-Maria Lauerer
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Xurde M Caravia
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Francesco Chemello
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simon Lebek
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
6
|
Tuxen A, Malmborg M, Nouravesh N, Videbaek L, Malik M, Zahir D, Koeber L, Andersen CF, Butt JH, Jensen J, Foesbol E, Andersson C, Gustafsson F, Schou M. Excess long-term risk of adverse outcomes in heart failure patients with high and low levels of NT-proBNP: A 7-year follow-up study (NorthStar Trial). IJC HEART & VASCULATURE 2024; 53:101441. [PMID: 39228977 PMCID: PMC11368590 DOI: 10.1016/j.ijcha.2024.101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 06/02/2024] [Indexed: 09/05/2024]
Abstract
Background This study investigated excess risk in patients with heart failure with reduced left ventricular ejection fraction (HFrEF) with or without elevated levels of NT-proBNP (N-terminal pro-brain natriuretic peptide). Methods Patients with HFrEF from the NorthStar cohort (n = 1120) were matched on age, sex, and presence of AF (atrial fibrillation/flutter) to five controls without HFrEF from The Danish National Patient Registries. Patients were compared with controls before and after stratification according to baseline NT-proBNP levels, with cutoffs defined as ≥ 600 pg/ml in patients with sinus rhythm and ≥ 900 pg/ml in patients with AF. The primary composite endpoint was a 7-year risk of cardiovascular death or HF admission. Results In the HFrEF cohort, 704 patients had high NT-proBNP (median age, 73; mean left ventricular ejection fraction (LVEF), 33%). 416 patients had low NT-proBNP (median age, 65; LVEF, 30%). Patients from both groups were in NYHA class I-III. The primary endpoint occurred in 531 patients (75.4%) with HFrEF and elevated NT-proBNP, and 748 controls (21.3%) (risk difference, 54.2%; 95% confidence interval (CI) 50.7-57.6%). In comparison, it occurred in 199 patients (47.9%) with HFrEF and without elevated NT-proBNP, and 185 controls (8,9%) (risk difference, 38.9%; 95% CI 34.0-43.9%). Risk differences for all secondary endpoints were significant, except for overall mortality in the low NT-proBNP group (risk difference, 3.8%; 95% CI, -0.4-8.0%). Conclusion This study identified a significant excess risk in patients with HFrEF across various endpoints, which persisted after stratification into high and low levels of NT-proBNP.
Collapse
Affiliation(s)
- Anna Tuxen
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
| | - Morten Malmborg
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
| | - Nina Nouravesh
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
| | - Lars Videbaek
- Department of Cardiology, Odense University Hospital, Odense, Denmark
| | - Mariam Malik
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
| | - Deewa Zahir
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
| | - Lars Koeber
- Department of Clinical Medicine, University of Copenhagen, Denmark
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark
| | | | - Jawad H. Butt
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jesper Jensen
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Emil Foesbol
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Charlotte Andersson
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
- Cardiovascular Division, Brigham and Women’s Hospital, Harvard School of Medicine, Boston, MA, USA
| | - Finn Gustafsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Herlev and Gentofte University Hospital, Denmark
- Department of Clinical Medicine, University of Copenhagen, Denmark
| |
Collapse
|
7
|
Li Y, Ma K, Dong Z, Gao S, Zhang J, Huang S, Yang J, Fang G, Li Y, Li X, Welch C, Griffin EL, Ramaswamy P, Valivullah Z, Liu X, Dong J, Wang DW, Du, Chung WK, Li Y. Frameshift variants in C10orf71 cause dilated cardiomyopathy in human, mouse, and organoid models. J Clin Invest 2024; 134:e177172. [PMID: 38950288 PMCID: PMC11178530 DOI: 10.1172/jci177172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 07/03/2024] Open
Abstract
Research advances over the past 30 years have confirmed a critical role for genetics in the etiology of dilated cardiomyopathies (DCMs). However, full knowledge of the genetic architecture of DCM remains incomplete. We identified candidate DCM causal gene, C10orf71, in a large family with 8 patients with DCM by whole-exome sequencing. Four loss-of-function variants of C10orf71 were subsequently identified in an additional group of492 patients with sporadic DCM from 2 independent cohorts. C10orf71 was found to be an intrinsically disordered protein specifically expressed in cardiomyocytes. C10orf71-KO mice had abnormal heart morphogenesis during embryonic development and cardiac dysfunction as adults with altered expression and splicing of contractile cardiac genes. C10orf71-null cardiomyocytes exhibited impaired contractile function with unaffected sarcomere structure. Cardiomyocytes and heart organoids derived from human induced pluripotent stem cells with C10orf71 frameshift variants also had contractile defects with normal electrophysiological activity. A rescue study using a cardiac myosin activator, omecamtiv mecarbil, restored contractile function in C10orf71-KO mice. These data support C10orf71 as a causal gene for DCM by contributing to the contractile function of cardiomyocytes. Mutation-specific pathophysiology may suggest therapeutic targets and more individualized therapy.
Collapse
Affiliation(s)
- Yang Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Ke Ma
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Zhujun Dong
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Shan Huang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Jie Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Guangming Fang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Yujie Li
- Novogene Co. Ltd., Beijing, China
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Carrie Welch
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Emily L. Griffin
- Department of Pediatrics, Columbia University, New York, New York, USA
| | | | | | | | - Jianzeng Dong
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| | - Wendy K. Chung
- Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yulin Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung & Blood Vessel Disease, Beijing, China
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing, China
| |
Collapse
|
8
|
Li X, Li J, Samuelsson AM, Thakur H, Kapiloff MS. Protein phosphatase 2A anchoring disruptor gene therapy for familial dilated cardiomyopathy. Mol Ther Methods Clin Dev 2024; 32:101233. [PMID: 38572067 PMCID: PMC10988123 DOI: 10.1016/j.omtm.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024]
Abstract
Familial dilated cardiomyopathy is a prevalent cause of heart failure that results from the mutation of genes encoding proteins of diverse function. Despite modern therapy, dilated cardiomyopathy typically has a poor outcome and is the leading cause of cardiac transplantation. The phosphatase PP2A at cardiomyocyte perinuclear mAKAPβ signalosomes promotes pathological eccentric cardiac remodeling, as is characteristic of dilated cardiomyopathy. Displacement of PP2A from mAKAPβ, inhibiting PP2A function in that intracellular compartment, can be achieved by expression of a mAKAPβ-derived PP2A binding domain-derived peptide. To test whether PP2A anchoring disruption would be effective at preventing dilated cardiomyopathy-associated cardiac dysfunction, the adeno-associated virus gene therapy vector AAV9sc.PBD was devised to express the disrupting peptide in cardiomyocytes in vivo. Proof-of-concept is now provided that AAV9sc.PBD improves the cardiac structure and function of a cardiomyopathy mouse model involving transgenic expression of a mutant α-tropomyosin E54K Tpm1 allele, while AAV9sc.PBD has no effect on normal non-transgenic mice. At the cellular level, AAV9sc.PBD restores cardiomyocyte morphology and gene expression in the mutant Tpm1 mouse. As the mechanism of AAV9sc.PBD action suggests potential efficacy in dilated cardiomyopathy regardless of the underlying etiology, these data support the further testing of AAV9sc.PBD as a broad-based treatment for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Xueyi Li
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Jinliang Li
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Anne-Maj Samuelsson
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Hrishikesh Thakur
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Michael S. Kapiloff
- Stanford Cardiovascular Institute, Departments of Ophthalmology and Medicine, Stanford University, Palo Alto, CA 94304, USA
| |
Collapse
|
9
|
Latchupatula L, Benayon M, Mansoor M, Luu J. Myosin Heavy Chain 7 (MYH7) Variant Associated Cardiovascular Disease: An Unusual Case of Heart Failure in a Young Male. Cureus 2024; 16:e61252. [PMID: 38813076 PMCID: PMC11135834 DOI: 10.7759/cureus.61252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
A 37-year-old male with type two diabetes presented to the hospital with new-onset heart failure and renal dysfunction. His left ventricular (LV) ejection fraction was less than 10%. Transthoracic echocardiography and cardiovascular magnetic resonance (CMR) imaging also revealed severe bicuspid aortic valve stenosis, dilated cardiomyopathy with LV hypertrophy, prominent LV trabeculations, and features suggestive of mild myocarditis with active inflammation. While myocarditis was suspected on CMR imaging, his mild degree of myocardial involvement did not explain the entirety of his clinical presentation, degree of LV dysfunction, or other structural abnormalities. An extensive work-up for his LV dysfunction was unremarkable for ischemic, metabolic, infiltrative, infectious, toxic, oncologic, connective tissue, and autoimmune etiologies. Genetic testing was positive for a myosin heavy chain 7 (MYH7) variant, which was deemed likely to be a unifying etiology underlying his presentation. The MYH7 sarcomere gene allows beta-myosin expression in heart ventricles, with variants associated with hypertrophic and dilated cardiomyopathies, congenital heart diseases, myocarditis, and excessive trabeculation (formerly known as left ventricular noncompaction). This case highlights the diverse array of cardiac pathologies that can present with MYH7 gene variants and reviews an extensive work-up for this unusual presentation of heart failure in a young patient.
Collapse
Affiliation(s)
| | - Myles Benayon
- Internal Medicine, McMaster University, Hamilton, CAN
| | | | - Judy Luu
- Cardiology, McGill University, Montreal, CAN
| |
Collapse
|
10
|
Franke M, Książczyk TM, Dux M, Chmielewski P, Truszkowska G, Czapczak D, Pietrzak R, Bilinska ZT, Demkow U, Werner B. A MYH7 variant in a five-generation-family with hypertrophic cardiomyopathy. Front Genet 2024; 15:1306333. [PMID: 38389574 PMCID: PMC10883303 DOI: 10.3389/fgene.2024.1306333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
Background: Hypertrophic cardiomyopathy (HCM) is a genetic condition with a prevalence of 1:500-1:3 000. Variants in genes encoding sarcomeric proteins are mainly responsible for the disease. MYH7 gene encoding a myosin heavy chain beta, together with MYPBC3 gene are the two most commonly affected genes. The clinical presentation of this disease varies widely between individuals. This study aims to report a variant of MYH7 responsible for HCM in a five-generation family with a history of cardiac problems. Methods: The diagnosis was established according to the European Society of Cardiology HCM criteria based on two-dimensional Doppler echocardiography or cardiovascular magnetic resonance. Genetic analysis was performed using next-generation-sequencing and Sanger method. Results: The medical history of the presented family began with a prenatal diagnosis of HCM in the first child of a family with previously healthy parents. Five generations of the family had a long history of sudden cardiac death and cardiac problems. A NM_000257.4:c.2342T>A (p.Leu781Gln) variant was detected in the MYH7 gene. It was heterozygous in the proband and in all affected individuals in a large family. The variant was present in 10 affected members of the family, and was absent in 7 members. The clinical course of the disease was severe in several members of the family: three family members died of sudden cardiac death, one patient required heart transplantation, three underwent septal myectomy, and three required implantable cardioverter defibrillator (ICD) implantation. Conclusion: Herein, we report a MYH7 variant responsible for HCM. Familial HCM is inherited primarily in autosomal dominant mode, which is in accordance with our study. However, the presented family showed a broad clinical spectrum of HCM. Out of 10 family members with positive genetic testing 8 had severe presentation of the disease and 2 had a mild phenotype. This suggests that the severity of the disease may depend on other factors, most likely genetic.
Collapse
Affiliation(s)
- Magda Franke
- Department of Pediatric Cardiology and General Pediatrics, Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Marcin Książczyk
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Marta Dux
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Chmielewski
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Stefan Cardinal Wyszynski National Institute of Cardiology, Warsaw, Poland
| | - Grażyna Truszkowska
- Department of Medical Biology, Stefan Cardinal Wyszynski National Institute of Cardiology, Warsaw, Poland
| | - Dorota Czapczak
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Radosław Pietrzak
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - Zofia Teresa Bilinska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, Stefan Cardinal Wyszynski National Institute of Cardiology, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Bożena Werner
- Department of Pediatric Cardiology and General Pediatrics, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Pavo N, Hengstenberg C. [Management of cardiomyopathies : New ESC guidelines 2023]. Herz 2024; 49:22-32. [PMID: 38051386 PMCID: PMC10830601 DOI: 10.1007/s00059-023-05224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
The group of cardiomyopathies has received increasing attention over the last few years after some of the causes were identified and they could be characterized more exactly using modern imaging methods. New definitions and classification schemes were regularly provided by national and international cardiac societies. The new guidelines of the European Society of Cardiology (ESC) from 2023 on the management of cardiomyopathies are the first guidelines that comprehensively address all cardiomyopathies in one document. As these are new guidelines most of the recommendations are also new. An exception is the section on hypertrophic cardiomyopathy (HCM), which provides a targeted update of the 2014 ESC guidelines on the diagnosis and treatment of HCM. The main aim of the guidelines is to provide clear guidance for the diagnosis of cardiomyopathies, to highlight general assessment and management problems and to point out the relevant scientific evidence for the recommendations to the readership. Due to the magnitude detailed descriptions and recommendations cannot be provided for each individual cardiomyopathy phenotype; however, reference is made to the relevant literature.
Collapse
Affiliation(s)
- Noemi Pavo
- Klinische Abteilung für Kardiologie, Universitätsklinik für Innere Medizin II, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich
| | - Christian Hengstenberg
- Klinische Abteilung für Kardiologie, Universitätsklinik für Innere Medizin II, Medizinische Universität Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.
| |
Collapse
|
12
|
Masè M, Rossi M, Setti M, Barbati G, Teso MV, Ribichini FL, Koni M, Stolfo D, Merlo M, Sinagra G. Applicability and performance of heart failure prognostic scores in dilated cardiomyopathy: the real-world experience of an Italian referral center for cardiomyopathies. Int J Cardiol 2024; 396:131562. [PMID: 37907097 DOI: 10.1016/j.ijcard.2023.131562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND The performance of heart failure (HF) risk models is validated in the general population with HF but in specific aetiological settings, and specifically in dilated cardiomyopathy (DCM), has scarcely been explored. We tested eight of the main prognostic scores used in HF in a large real-world population of patients with DCM. METHODS We included 784 consecutive DCM patients enrolled, both inpatients and outpatients, enrolled between January 2000 and December 2017. The risk of 1 and/or 3-year all-cause mortality/heart transplantation/durable left ventricular assist device (LVAD) implantation (D/HTx/LVAD) was estimated in our cohort according to the following risk scores SHFM, 3-CHF, CHARM, MAGGIC, GISSI-HF, MECKI, Barcelona Bio-HF, Krakow score and their accuracy calculated through the receiver operator characteristic (ROC) curve analysis. RESULTS During a median follow-up of 5.8 years (Interquartile Range 3.2-7.6 years), 191 patients (20%) died or underwent HTx/LVAD (158 deaths, 30 heart transplantations, and 3 LVAD implantations). The high missing rate allowed to calculated only four prognostic models (MAGGIC, CHARM, 3-CHF and SHFM). All the scores overestimated the rate of D/HTx/LVAD. The prognostic accuracy was suboptimal for MAGGIC (AUC 0.754) and CHARM (AUC 0.720) scores and only modest for 3-CHF (AUC 0.677) and SHFM (AUC 0.667). CONCLUSIONS Main prognostic scores for the risk stratification of HF are only partially applicable to real-world patients with DCM. MAGGIC and CHARM scores showed the best accuracy, despite the overestimation of risk. Our findings corroborate the need of specific risk scores for the prognostic stratification of DCM. CLINICAL PERSPECTIVE What is new? The present study is the largest analysis in literature which investigate how the main existing heart failure prognostic risk scores performed in a real-world of dilated cardiomyopathy population, both in- and outpatients. What are the clinical implications? DCM is a stand-alone model of heart failure, where the performance of multiple heart failure prognostic scores for the risk stratification is quite limited. The need for contemporary, dedicated prognostic scores in this disease is increasingly evident.
Collapse
Affiliation(s)
- M Masè
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| | - M Rossi
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| | - M Setti
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy; Division of Cardiology, Department of Medicine, University of Verona, Italy
| | - G Barbati
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Trieste, Italy
| | | | - F L Ribichini
- Division of Cardiology, Department of Medicine, University of Verona, Italy
| | - M Koni
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| | - D Stolfo
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| | - M Merlo
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy.
| | - G Sinagra
- Centre for Diagnosis and Treatment of Cardiomyopathies, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| |
Collapse
|
13
|
Wu KJ, Chen Q, Leung CH, Sun N, Gao F, Chen Z. Recent discoveries of the role of histone modifications and related inhibitors in pathological cardiac hypertrophy. Drug Discov Today 2024; 29:103878. [PMID: 38211819 DOI: 10.1016/j.drudis.2024.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Pathological cardiac hypertrophy is a common response of the heart to various pathological stimuli. In recent years, various histone modifications, including acetylation, methylation, phosphorylation and ubiquitination, have been identified to have crucial roles in regulating chromatin remodeling and cardiac hypertrophy. Novel drugs targeting these epigenetic changes have emerged as potential treatments for pathological cardiac hypertrophy. In this review, we provide a comprehensive summary of the roles of histone modifications in regulating the development of pathological cardiac hypertrophy, and discuss potential therapeutic targets that could be utilized for its treatment.
Collapse
Affiliation(s)
- Ke-Jia Wu
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Qi Chen
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa 999078, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa 999078, Macau.
| | - Ning Sun
- Wuxi School of Medicine, Jiangnan University, Jiangsu 214082, PR China.
| | - Fei Gao
- Department of Cardiology, Beijing An Zhen Hospital, Capital Medical University, Chaoyang District, Beijing 100029, PR China.
| | - Zhaoyang Chen
- Department of Cardiology, Heart Center of Fujian Province, Fujian Medical University Union Hospital, 29 Xin-Quan Road, Fuzhou, Fujian 350001, PR China.
| |
Collapse
|
14
|
Hong KN, Eshraghian EA, Arad M, Argirò A, Brambatti M, Bui Q, Caspi O, de Frutos F, Greenberg B, Ho CY, Kaski JP, Olivotto I, Taylor MRG, Yesso A, Garcia-Pavia P, Adler ED. International Consensus on Differential Diagnosis and Management of Patients With Danon Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2023; 82:1628-1647. [PMID: 37821174 DOI: 10.1016/j.jacc.2023.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/13/2023]
Abstract
Danon disease is a rare X-linked autophagic vacuolar cardioskeletal myopathy associated with severe heart failure that can be accompanied with extracardiac neurologic, skeletal, and ophthalmologic manifestations. It is caused by loss of function variants in the LAMP2 gene and is among the most severe and penetrant of the genetic cardiomyopathies. Most patients with Danon disease will experience symptomatic heart failure. Male individuals generally present earlier than women and die of either heart failure or arrhythmia or receive a heart transplant by the third decade of life. Herein, the authors review the differential diagnosis of Danon disease, diagnostic criteria, natural history, management recommendations, and recent advances in treatment of this increasingly recognized and extremely morbid cardiomyopathy.
Collapse
Affiliation(s)
- Kimberly N Hong
- University of California-San Diego, San Diego, California, USA
| | | | - Michael Arad
- Leviev Heart Center, Sheba Hospital and Tel Aviv University, Tel Aviv, Israel
| | - Alessia Argirò
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Quan Bui
- University of California-San Diego, San Diego, California, USA
| | - Oren Caspi
- Rambam Medical Centre and B. Rappaport Faculty of Medicine, Technion Medical School, Haifa, Israel
| | - Fernando de Frutos
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain
| | - Barry Greenberg
- University of California-San Diego, San Diego, California, USA
| | - Carolyn Y Ho
- Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juan Pablo Kaski
- Great Ormond Street Hospital and University College London, London, United Kingdom
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Meyer Children's Hospital IRCCS, Florence, Italy
| | | | - Abigail Yesso
- Division of Cardiology/Department of Pediatrics, Texas Children's Hospital/Baylor College of Medicine, Houston, Texas, USA
| | - Pablo Garcia-Pavia
- Hospital Universitario Puerta de Hierro Majadahonda, IDIPHISA, CIBERCV, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Universidad Francisco de Vitoria, Pozuelo de Alarcon, Spain.
| | - Eric D Adler
- University of California-San Diego, San Diego, California, USA.
| |
Collapse
|
15
|
Hedaya OM, Venkata Subbaiah KC, Jiang F, Xie LH, Wu J, Khor ES, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. Nat Commun 2023; 14:6166. [PMID: 37789015 PMCID: PMC10547706 DOI: 10.1038/s41467-023-41799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we data-mined human and mouse heart ribosome profiling analyses and identified a double-stranded RNA (dsRNA) structure within the GATA4 uORF that cooperates with the start codon to augment uORF translation and inhibits mORF translation. A trans-acting RNA helicase DDX3X inhibits the GATA4 uORF-dsRNA activity and modulates the translational balance of uORF and mORF. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the broad utility of uORF-dsRNA- or mORF-targeting ASO to regulate mORF translation for other mRNAs. This work demonstrates that the uORF-dsRNA element regulates the translation of multiple mRNAs as a generalizable translational control mechanism. Moreover, we develop a valuable strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon.
Collapse
Affiliation(s)
- Omar M Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Kadiam C Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Eng-Soon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - David H Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
16
|
Ryan T, Roberts JD. Emerging Targeted Therapies for Inherited Cardiomyopathies and Arrhythmias. Card Electrophysiol Clin 2023; 15:261-271. [PMID: 37558297 DOI: 10.1016/j.ccep.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Inherited cardiomyopathy and arrhythmia syndromes are associated with significant morbidity and mortality, particularly in young people. Medical management of these conditions has primarily been limited to agents previously developed for more common forms of heart disease and not tailored to their distinct pathophysiology. As our understanding of their underlying genetics and disease mechanisms has improved, an era of targeted therapies for these rare conditions has begun to emerge. In recent years, several novel agents have been developed and tested in preclinical models and, in some cases, have advanced to both the clinical trial and clinical approval stages with exciting results. These new treatments are derived from multiple classes of therapeutics, including small molecules, antisense oligonucleotides, small interfering RNAs, adeno-associated virus-mediated gene therapies, and in vivo gene editing. Collectively, they carry the promise of revolutionizing management of affected patients and their families.
Collapse
Affiliation(s)
- Tammy Ryan
- McMaster University, Hamilton, Ontario, Canada; Department of Medicine, Division of Cardiology, DBCVSRI, Hamilton General Hospital, Room C3-121, 237 Barton Street East, Hamilton, Ontario L8L2X2, Canada
| | - Jason D Roberts
- McMaster University, Hamilton, Ontario, Canada; DBCVSRI, Room C3-111, 237 Barton Street East, Hamilton, Ontario L8L2X2, Canada; Population Health Research Institute and Hamilton Health Sciences, Hamilton, Ontario, Canada.
| |
Collapse
|
17
|
Sheng SY, Li JM, Hu XY, Wang Y. Regulated cell death pathways in cardiomyopathy. Acta Pharmacol Sin 2023; 44:1521-1535. [PMID: 36914852 PMCID: PMC10374591 DOI: 10.1038/s41401-023-01068-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/16/2023]
Abstract
Heart disease is a worldwide health menace. Both intractable primary and secondary cardiomyopathies contribute to malignant cardiac dysfunction and mortality. One of the key cellular processes associated with cardiomyopathy is cardiomyocyte death. Cardiomyocytes are terminally differentiated cells with very limited regenerative capacity. Various insults can lead to irreversible damage of cardiomyocytes, contributing to progression of cardiac dysfunction. Accumulating evidence indicates that majority of cardiomyocyte death is executed by regulating molecular pathways, including apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Importantly, these forms of regulated cell death (RCD) are cardinal features in the pathogenesis of various cardiomyopathies, including dilated cardiomyopathy, diabetic cardiomyopathy, sepsis-induced cardiomyopathy, and drug-induced cardiomyopathy. The relevance between abnormity of RCD with adverse outcome of cardiomyopathy has been unequivocally evident. Therefore, there is an urgent need to uncover the molecular and cellular mechanisms for RCD in order to better understand the pathogenesis of cardiomyopathies. In this review, we summarize the latest progress from studies on RCD pathways in cardiomyocytes in context of the pathogenesis of cardiomyopathies, with particular emphasis on apoptosis, necroptosis, ferroptosis, autophagy, and pyroptosis. We also elaborate the crosstalk among various forms of RCD in pathologically stressed myocardium and the prospects of therapeutic applications targeted to various cell death pathways.
Collapse
Affiliation(s)
- Shu-Yuan Sheng
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Jia-Min Li
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Xin-Yang Hu
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China
| | - Yibin Wang
- Department of Cardiology, Zhejiang University School of Medicine, Second Affiliated Hospital, Hangzhou, 310009, China.
- Signature Program in Cardiovascular and Metabolic Diseases, DukeNUS Medical School and National Heart Center of Singapore, Singapore, Singapore.
| |
Collapse
|
18
|
Tsabedze N, Ramsay M, Krause A, Wells Q, Mpanya D, Manga P. The genetic basis for adult-onset idiopathic dilated cardiomyopathy in people of African descent. Heart Fail Rev 2023; 28:879-892. [PMID: 36917398 PMCID: PMC10011790 DOI: 10.1007/s10741-023-10302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/16/2023]
Abstract
Cardiomyopathies are a heterogeneous group of cardiac muscle disorders that result in dilated, hypertrophic, or restrictive pathophysiological entities. Dilated cardiomyopathy (DCM) is the most common form in sub-Saharan Africa (SSA). However, population-specific research studies reporting the actual burden of DCM in this region are still lacking. Also, little is known about the genetic basis of DCM in this population, and genetic testing is still not readily accessible. This review describes the common pathogenic genes implicated in DCM globally and discusses the evidence-based management of patients with DCM. We also present a summary of studies describing genes implicated or associated with DCM in patients residing in SSA.
Collapse
Affiliation(s)
- Nqoba Tsabedze
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| | - Michele Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Services and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2001 South Africa
| | - Quinn Wells
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, 37232 TN USA
| | - Dineo Mpanya
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| | - Pravin Manga
- Division of Cardiology, Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Charlotte Maxeke Johannesburg Academic Hospital, 17 Jubilee Road, Parktown, Johannesburg, Gauteng 2193 South Africa
| |
Collapse
|
19
|
Hedaya OM, Subbaiah KCV, Jiang F, Xie LH, Wu J, Khor E, Zhu M, Mathews DH, Proschel C, Yao P. Secondary structures that regulate mRNA translation provide insights for ASO-mediated modulation of cardiac hypertrophy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.545153. [PMID: 37397986 PMCID: PMC10312771 DOI: 10.1101/2023.06.15.545153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Translation of upstream open reading frames (uORFs) typically abrogates translation of main (m)ORFs. The molecular mechanism of uORF regulation in cells is not well understood. Here, we identified a double-stranded RNA (dsRNA) structure residing within the GATA4 uORF that augments uORF translation and inhibits mORF translation. Antisense oligonucleotides (ASOs) that disrupt this dsRNA structure promote mORF translation, while ASOs that base-pair immediately downstream (i.e., forming a bimolecular double-stranded region) of either the uORF or mORF start codon enhance uORF or mORF translation, respectively. Human cardiomyocytes and mice treated with a uORF-enhancing ASO showed reduced cardiac GATA4 protein levels and increased resistance to cardiomyocyte hypertrophy. We further show the general utility of uORF-dsRNA- or mORF- targeting ASO to regulate mORF translation for other mRNAs. Our work demonstrates a regulatory paradigm that controls translational efficiency and a useful strategy to alter protein expression and cellular phenotypes by targeting or generating dsRNA downstream of a uORF or mORF start codon. Bullet points for discoveries dsRNA within GATA4 uORF activates uORF translation and inhibits mORF translation. ASOs that target the dsRNA can either inhibit or enhance GATA4 mORF translation. ASOs can be used to impede hypertrophy in human cardiomyocytes and mouse hearts.uORF- and mORF-targeting ASOs can be used to control translation of multiple mRNAs.
Collapse
Affiliation(s)
- Omar M. Hedaya
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Kadiam C. Venkata Subbaiah
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Feng Jiang
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Li Huitong Xie
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Jiangbin Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - EngSoon Khor
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Mingyi Zhu
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - David H. Mathews
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Chris Proschel
- Department of Biomedical Genetics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| | - Peng Yao
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- Department of Biochemistry & Biophysics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
- The Center for Biomedical Informatics, University of Rochester School of Medicine & Dentistry, Rochester, New York 14642
| |
Collapse
|
20
|
Litt MJ, Ali A, Reza N. Familial Hypertrophic Cardiomyopathy: Diagnosis and Management. Vasc Health Risk Manag 2023; 19:211-221. [PMID: 37050929 PMCID: PMC10084873 DOI: 10.2147/vhrm.s365001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/28/2023] [Indexed: 04/07/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is widely recognized as one of the most common inheritable cardiac disorders. Since its initial description over 60 years ago, advances in multimodality imaging and translational genetics have revolutionized our understanding of the disorder. The diagnosis and management of patients with HCM are optimized with a multidisciplinary approach. This, along with increased safety and efficacy of medical, percutaneous, and surgical therapies for HCM, has afforded more personalized care and improved outcomes for this patient population. In this review, we will discuss our modern understanding of the molecular pathophysiology that underlies HCM. We will describe the range of clinical presentations and discuss the role of genetic testing in diagnosis. Finally, we will summarize management strategies for the hemodynamic subtypes of HCM with specific emphasis on the rationale and evidence for the use of implantable cardioverter defibrillators, septal reduction therapy, and cardiac myosin inhibitors.
Collapse
MESH Headings
- Humans
- Cardiomyopathy, Hypertrophic, Familial/diagnosis
- Cardiomyopathy, Hypertrophic, Familial/genetics
- Cardiomyopathy, Hypertrophic, Familial/therapy
- Cardiomyopathy, Hypertrophic/diagnosis
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/therapy
- Diagnostic Imaging
- Defibrillators, Implantable
Collapse
Affiliation(s)
- Michael J Litt
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ayan Ali
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Nosheen Reza
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Correspondence: Nosheen Reza, Perelman School of Medicine at the University of Pennsylvania, Department of Medicine, 3400 Civic Center Boulevard, 11th Floor South Pavilion, Philadelphia, PA, 19104, USA, Tel +1 215 615 0044, Fax +1 215 615 1263, Email
| |
Collapse
|
21
|
Higo S. Disease modeling of desmosome-related cardiomyopathy using induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells 2023; 15:71-82. [PMID: 37007457 PMCID: PMC10052339 DOI: 10.4252/wjsc.v15.i3.71] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity of heart tissues. Genetic mutations in desmosomal genes cause arrhythmogenic cardiomyopathy (AC), a rare inheritable disease, and predispose patients to sudden cardiac death and heart failure. Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies. Among desmosomal genes, mutations in PKP2 (which encodes PKP2) are most frequently identified in patients with AC. PKP2 deficiency causes various pathological cardiac phenotypes. Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSCs) in combination with genome editing, which allows the precise arrangement of the targeted genome, are powerful experimental tools for studying disease. This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
22
|
Titin-truncating variants in hiPSC cardiomyocytes induce pathogenic proteinopathy and sarcomere defects with preserved core contractile machinery. Stem Cell Reports 2022; 18:220-236. [PMID: 36525964 PMCID: PMC9860080 DOI: 10.1016/j.stemcr.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022] Open
Abstract
Titin-truncating variants (TTNtv) are the single largest genetic cause of dilated cardiomyopathy (DCM). In this study we modeled disease phenotypes of A-band TTNtv-induced DCM in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using genome editing and tissue engineering technologies. Transcriptomic, cellular, and micro-tissue studies revealed that A-band TTNtv hiPSC-CMs exhibit pathogenic proteinopathy, sarcomere defects, aberrant Na+ channel activities, and contractile dysfunction. These phenotypes establish a dual mechanism of poison peptide effect and haploinsufficiency that collectively contribute to DCM pathogenesis. However, TTNtv cellular defects did not interfere with the function of the core contractile machinery, the actin-myosin-troponin-Ca2+ complex, and preserved the therapeutic mechanism of sarcomere modulators. Treatment of TTNtv cardiac micro-tissues with investigational sarcomere modulators augmented contractility and resulted in sustained transcriptomic changes that promote reversal of DCM disease signatures. Together, our findings elucidate the underlying pathogenic mechanisms of A-band TTNtv-induced DCM and demonstrate the validity of sarcomere modulators as potential therapeutics.
Collapse
|
23
|
Beyond Sarcomeric Hypertrophic Cardiomyopathy: How to Diagnose and Manage Phenocopies. Curr Cardiol Rep 2022; 24:1567-1585. [PMID: 36053410 DOI: 10.1007/s11886-022-01778-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW We describe the most common phenocopies of hypertrophic cardiomyopathy, their pathogenesis, and clinical presentation highlighting similarities and differences. We also suggest a step-by-step diagnostic work-up that can guide in differential diagnosis and management. RECENT FINDINGS In the last years, a wider application of genetic testing and the advances in cardiac imaging have significantly changed the diagnostic approach to HCM phenocopies. Different prognosis and management, with an increasing availability of disease-specific therapies, make differential diagnosis mandatory. The HCM phenotype can be the cardiac manifestation of different inherited and acquired disorders presenting different etiology, prognosis, and treatment. Differential diagnosis requires a cardiomyopathic mindset allowing to recognize red flags throughout the diagnostic work-up starting from clinical and family history and ending with advanced imaging and genetic testing. Different prognosis and management, with an increasing availability of disease-specific therapies make differential diagnosis mandatory.
Collapse
|
24
|
Keyt LK, Duran JM, Bui QM, Chen C, Miyamoto MI, Silva Enciso J, Tardiff JC, Adler ED. Thin filament cardiomyopathies: A review of genetics, disease mechanisms, and emerging therapeutics. Front Cardiovasc Med 2022; 9:972301. [PMID: 36158814 PMCID: PMC9489950 DOI: 10.3389/fcvm.2022.972301] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
All muscle contraction occurs due to the cyclical interaction between sarcomeric thin and thick filament proteins within the myocyte. The thin filament consists of the proteins actin, tropomyosin, Troponin C, Troponin I, and Troponin T. Mutations in these proteins can result in various forms of cardiomyopathy, including hypertrophic, restrictive, and dilated phenotypes and account for as many as 30% of all cases of inherited cardiomyopathy. There is significant evidence that thin filament mutations contribute to dysregulation of Ca2+ within the sarcomere and may have a distinct pathomechanism of disease from cardiomyopathy associated with thick filament mutations. A number of distinct clinical findings appear to be correlated with thin-filament mutations: greater degrees of restrictive cardiomyopathy and relatively less left ventricular (LV) hypertrophy and LV outflow tract obstruction than that seen with thick filament mutations, increased morbidity associated with heart failure, increased arrhythmia burden and potentially higher mortality. Most therapies that improve outcomes in heart failure blunt the neurohormonal pathways involved in cardiac remodeling, while most therapies for hypertrophic cardiomyopathy involve use of negative inotropes to reduce LV hypertrophy or septal reduction therapies to reduce LV outflow tract obstruction. None of these therapies directly address the underlying sarcomeric dysfunction associated with thin-filament mutations. With mounting evidence that thin filament cardiomyopathies occur through a distinct mechanism, there is need for therapies targeting the unique, underlying mechanisms tailored for each patient depending on a given mutation.
Collapse
Affiliation(s)
- Lucas K. Keyt
- Department of Internal Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jason M. Duran
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Quan M. Bui
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Chao Chen
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | | | - Jorge Silva Enciso
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| | - Jil C. Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Eric D. Adler
- Department of Cardiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
25
|
Tamargo J, Tamargo M, Caballero R. Hypertrophic cardiomyopathy: an up-to-date snapshot of the clinical drug development pipeline. Expert Opin Investig Drugs 2022; 31:1027-1052. [PMID: 36062808 DOI: 10.1080/13543784.2022.2113374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypertrophic cardiomyopathy (HCM) is a complex cardiac disease with highly variable phenotypic expression and clinical course most often caused by sarcomeric gene mutations resulting in left ventricular hypertrophy, fibrosis, hypercontractility, and diastolic dysfunction. For almost 60 years, HCM has remained an orphan disease and still lacks a disease-specific treatment. AREAS COVERED This review summarizes recent preclinical and clinical trials with repurposed drugs and new emerging pharmacological and gene-based therapies for the treatment of HCM. EXPERT OPINION The off-label drugs routinely used alleviate symptoms but do not target the core pathophysiology of HCM or prevent or revert the phenotype. Recent advances in the genetics and pathophysiology of HCM led to the development of cardiac myosin adenosine triphosphatase inhibitors specifically directed to counteract the hypercontractility associated with HCM-causing mutations. Mavacamten, the first drug specifically developed for HCM successfully tested in a phase 3 trial, represents the major advance for the treatment of HCM. This opens new horizons for the development of novel drugs targeting HCM molecular substrates which hopefully modify the natural history of the disease. The role of current drugs in development and genetic-based approaches for the treatment of HCM are also discussed.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| | - María Tamargo
- Department of Cardiology, Hospital Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, Doctor Esquerdo, 46, 28007 Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
26
|
Abstract
Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.
Collapse
Affiliation(s)
- Sarah J Lehman
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
| | - Claudia Crocini
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Leslie A Leinwand
- BioFrontiers Institute, University of Colorado at Boulder, Boulder, CO, USA.
- Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
27
|
Migliore L, Galvagni F, Pierantozzi E, Sorrentino V, Rossi D. Allele-specific silencing by RNAi of R92Q and R173W mutations in cardiac troponin T. Exp Biol Med (Maywood) 2022; 247:805-814. [PMID: 35067102 PMCID: PMC9160939 DOI: 10.1177/15353702211072453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/17/2021] [Indexed: 08/30/2024] Open
Abstract
Autosomal dominant mutations in sarcomere proteins such as the cardiac troponin T (TNNT2) are the main genetic causes of human hypertrophic cardiomyopathy and dilated cardiomyopathy. Allele-specific silencing by RNA interference (ASP-RNAi) holds promise as a therapeutic strategy for downregulating a single mutant allele with minimal suppression of the corresponding wild-type allele. Here, we propose ASP-RNAi as a possible strategy to specifically knockdown mutant alleles coding for R92Q and R173W mutant TNNT2 proteins, identified in hypertrophic and dilated cardiomyopathy, respectively. Different siRNAs were designed and validated by luciferase reporter assay and following analysis in HEK293T cells expressing either the wild-type or mutant TNNT2 alleles. This study is the first exploration of ASP-RNAi on TNNT2-R173W and TNNT2-R92Q mutations in vitro and gives a base for further application of allele silencing as a therapeutic treatment for TNNT2-mutation-associated cardiomyopathies.
Collapse
Affiliation(s)
- Loredana Migliore
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology,
Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and
Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
28
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
29
|
Manca P, Nuzzi V, Cannatà A, Castrichini M, Bromage DI, De Luca A, Stolfo D, Schulz U, Merlo M, Sinagra G. The right ventricular involvement in dilated cardiomyopathy: prevalence and prognostic implications of the often-neglected child. Heart Fail Rev 2022; 27:1795-1805. [PMID: 35315505 PMCID: PMC9388461 DOI: 10.1007/s10741-022-10229-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 12/02/2022]
Abstract
Dilated cardiomyopathy (DCM) is a primary heart muscle disease characterized by left or biventricular systolic impairment. Historically, most of the clinical attention has been devoted to the evaluation of left ventricular function and morphology, while right ventricle (RV) has been for many years the forgotten chamber. Recently, progresses in cardiac imaging gave clinicians precious tools for the evaluation of RV, raising the awareness of the importance of biventricular assessment in DCM. Indeed, RV involvement is far from being uncommon in DCM, and the presence of right ventricular dysfunction (RVD) is one of the major negative prognostic determinants in DCM patients. However, some aspects such as the possible role of specific genetic mutations in determining the biventricular phenotype in DCM, or the lack of specific treatments able to primarily counteract RVD, still need research. In this review, we summarized the current knowledge on RV involvement in DCM, giving an overview on the epidemiology and pathogenetic mechanisms implicated in determining RVD. Furthermore, we discussed the imaging techniques to evaluate RV function and the role of RV failure in advanced heart failure.
Collapse
Affiliation(s)
- Paolo Manca
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy
| | - Vincenzo Nuzzi
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy
| | - Antonio Cannatà
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy.,Department of Cardiovascular Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Matteo Castrichini
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy
| | - Daniel I Bromage
- Department of Cardiovascular Science, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Antonio De Luca
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy
| | - Davide Stolfo
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy.,Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Uwe Schulz
- Department of Cardiac Surgery, Heart Center, University of Leipzig, Leipzig, Germany
| | - Marco Merlo
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy.
| | - Gianfranco Sinagra
- Division of Cardiology, Cardiovascular Department, Azienda Sanitaria Universitaria Integrata Giuliana Isontina (ASUGI), University of Trieste, Via Valdoni 7, 34149, Trieste, Italy
| |
Collapse
|
30
|
Suay-Corredera C, Alegre-Cebollada J. The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP-C. FEBS Lett 2022; 596:703-746. [PMID: 35224729 DOI: 10.1002/1873-3468.14301] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), a disease characterized by cardiac muscle hypertrophy and hypercontractility, is the most frequently inherited disorder of the heart. HCM is mainly caused by variants in genes encoding proteins of the sarcomere, the basic contractile unit of cardiomyocytes. The most frequently mutated among them is MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), a key regulator of sarcomere contraction. In this review, we summarize clinical and genetic aspects of HCM and provide updated information on the function of the healthy and HCM sarcomere, as well as on emerging therapeutic options targeting sarcomere mechanical activity. Building on what is known about cMyBP-C activity, we examine different pathogenicity drivers by which MYBPC3 variants can cause disease, focussing on protein haploinsufficiency as a common pathomechanism also in nontruncating variants. Finally, we discuss recent evidence correlating altered cMyBP-C mechanical properties with HCM development.
Collapse
|
31
|
Sex related differences in exercise performance in patients with hypertrophic cardiomyopathy: Hemodynamic insights through non-invasive pressure volume analysis. Int J Cardiol 2021; 351:78-83. [PMID: 34968627 DOI: 10.1016/j.ijcard.2021.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND Women with HCM have worse cardiopulmonary exercise performance compared to men. We used non-invasive pressure-volume (PV) analysis to delineate sex related hemodynamic differences in HCM. METHODS PV loops were constructed from echocardiograms using left ventricular (LV) volumes indexed to body surface area, Doppler estimates of LV end-diastolic pressure and blood pressure. The end-systolic PV relationship (ESPVR) and end-diastolic PV relationship (EDPVR) were derived from validated single-beat techniques. The area between the ESPVR and EDPVR (isovolumetric PV area), was indexed to an LV end-diastolic pressure of 30 mmHg (PVAiso30), as the integrated metric of LV function. LV volume at an end-diastolic pressure of 30 mmHg (V30) indexed ventricular capacity. RESULTS 202 patients were included, 56 women. Women were older (51 vs 44 years, p = 0.012) and had reduced exercise capacity (5.6 vs 6.9 METs, p < 0.001). Only 32 patients (16%) had a peak gradient >30 mmHg at rest with no sex differences. Women had significantly lower indexed PVAiso30 (9094 vs 10,255 mmHg*mL/m2, p = 0.02) driven by reduced ventricular capacitance (V30 54 vs 62 mL/m2, p < 0.001). In multivariable linear regression indexed V30 was an independent predictor of exercise capacity. CONCLUSION Impaired exercise capacity in women with HCM appears associated with abnormalities in passive diastolic properties, suggesting a unique pathophysiology compared to men, and a potential difference in viable therapeutic molecular targets.
Collapse
|
32
|
Zhang Q, Burrage MK, Lukaschuk E, Shanmuganathan M, Popescu IA, Nikolaidou C, Mills R, Werys K, Hann E, Barutcu A, Polat SD, Salerno M, Jerosch-Herold M, Kwong RY, Watkins HC, Kramer CM, Neubauer S, Ferreira VM, Piechnik SK. Toward Replacing Late Gadolinium Enhancement With Artificial Intelligence Virtual Native Enhancement for Gadolinium-Free Cardiovascular Magnetic Resonance Tissue Characterization in Hypertrophic Cardiomyopathy. Circulation 2021; 144:589-599. [PMID: 34229451 PMCID: PMC8378544 DOI: 10.1161/circulationaha.121.054432] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging is the gold standard for noninvasive myocardial tissue characterization but requires intravenous contrast agent administration. It is highly desired to develop a contrast agent-free technology to replace LGE for faster and cheaper CMR scans. METHODS A CMR virtual native enhancement (VNE) imaging technology was developed using artificial intelligence. The deep learning model for generating VNE uses multiple streams of convolutional neural networks to exploit and enhance the existing signals in native T1 maps (pixel-wise maps of tissue T1 relaxation times) and cine imaging of cardiac structure and function, presenting them as LGE-equivalent images. The VNE generator was trained using generative adversarial networks. This technology was first developed on CMR datasets from the multicenter Hypertrophic Cardiomyopathy Registry, using hypertrophic cardiomyopathy as an exemplar. The datasets were randomized into 2 independent groups for deep learning training and testing. The test data of VNE and LGE were scored and contoured by experienced human operators to assess image quality, visuospatial agreement, and myocardial lesion burden quantification. Image quality was compared using a nonparametric Wilcoxon test. Intra- and interobserver agreement was analyzed using intraclass correlation coefficients (ICC). Lesion quantification by VNE and LGE were compared using linear regression and ICC. RESULTS A total of 1348 hypertrophic cardiomyopathy patients provided 4093 triplets of matched T1 maps, cines, and LGE datasets. After randomization and data quality control, 2695 datasets were used for VNE method development and 345 were used for independent testing. VNE had significantly better image quality than LGE, as assessed by 4 operators (n=345 datasets; P<0.001 [Wilcoxon test]). VNE revealed lesions characteristic of hypertrophic cardiomyopathy in high visuospatial agreement with LGE. In 121 patients (n=326 datasets), VNE correlated with LGE in detecting and quantifying both hyperintensity myocardial lesions (r=0.77-0.79; ICC=0.77-0.87; P<0.001) and intermediate-intensity lesions (r=0.70-0.76; ICC=0.82-0.85; P<0.001). The native CMR images (cine plus T1 map) required for VNE can be acquired within 15 minutes and producing a VNE image takes less than 1 second. CONCLUSIONS VNE is a new CMR technology that resembles conventional LGE but without the need for contrast administration. VNE achieved high agreement with LGE in the distribution and quantification of lesions, with significantly better image quality.
Collapse
Affiliation(s)
- Qiang Zhang
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Matthew K. Burrage
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Elena Lukaschuk
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Mayooran Shanmuganathan
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Iulia A. Popescu
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Chrysovalantou Nikolaidou
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Rebecca Mills
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Konrad Werys
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Evan Hann
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Ahmet Barutcu
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
| | - Suleyman D. Polat
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
| | | | - Michael Salerno
- Department of Medicine, University of Virginia Health System, Charlottesville, VA (M.Salerno, C.M.K.)
| | - Michael Jerosch-Herold
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (M.J-H., R.Y.K.)
| | - Raymond Y. Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (M.J-H., R.Y.K.)
| | - Hugh C. Watkins
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Christopher M. Kramer
- Department of Medicine, University of Virginia Health System, Charlottesville, VA (M.Salerno, C.M.K.)
| | - Stefan Neubauer
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Vanessa M. Ferreira
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| | - Stefan K. Piechnik
- Oxford Centre for Clinical Magnetic Resonance Research, Oxford Biomedical Research Centre National Institute for Health Research, Division of Cardiovascular (Q.Z., M.J.B., E.L., M.Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., A.B., S.D.P., H.C.W., S.N., V.M.F., S.K.P.)
- Radcliffe Department of Medicine (Q.Z., M.J.B., E.L., M. Shanmuganathan, I.A.P., C.N., R.M., K.W., E.H., H.C.W., S.N., V.M.F., S.K.P.), University of Oxford, UK
| |
Collapse
|
33
|
Braumann S, Schumacher W, Im NG, Nettersheim FS, Mehrkens D, Bokredenghel S, Hof A, Nies RJ, Adler C, Winkels H, Knöll R, Freeman BA, Rudolph V, Klinke A, Adam M, Baldus S, Mollenhauer M, Geißen S. Nitro-Oleic Acid (NO 2-OA) Improves Systolic Function in Dilated Cardiomyopathy by Attenuating Myocardial Fibrosis. Int J Mol Sci 2021; 22:9052. [PMID: 34445757 PMCID: PMC8396484 DOI: 10.3390/ijms22169052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022] Open
Abstract
Nitro-oleic acid (NO2-OA), a nitric oxide (NO)- and nitrite (NO2-)-derived electrophilic fatty acid metabolite, displays anti-inflammatory and anti-fibrotic signaling actions and therapeutic benefit in murine models of ischemia-reperfusion, atrial fibrillation, and pulmonary hypertension. Muscle LIM protein-deficient mice (Mlp-/-) develop dilated cardiomyopathy (DCM), characterized by impaired left ventricular function and increased ventricular fibrosis at the age of 8 weeks. This study investigated the effects of NO2-OA on cardiac function in Mlp-/- mice both in vivo and in vitro. Mlp-/- mice were treated with NO2-OA or vehicle for 4 weeks via subcutaneous osmotic minipumps. Wildtype (WT) littermates treated with vehicle served as controls. Mlp-/- mice exhibited enhanced TGFβ signalling, fibrosis and severely reduced left ventricular systolic function. NO2-OA treatment attenuated interstitial myocardial fibrosis and substantially improved left ventricular systolic function in Mlp-/- mice. In vitro studies of TGFβ-stimulated primary cardiac fibroblasts further revealed that the anti-fibrotic effects of NO2-OA rely on its capability to attenuate fibroblast to myofibroblast transdifferentiation by inhibiting phosphorylation of TGFβ downstream targets. In conclusion, we demonstrate a substantial therapeutic benefit of NO2-OA in a murine model of DCM, mediated by interfering with endogenously activated TGFβ signaling.
Collapse
Affiliation(s)
- Simon Braumann
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Wibke Schumacher
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Nam Gyu Im
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Felix Sebastian Nettersheim
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Dennis Mehrkens
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Senai Bokredenghel
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Alexander Hof
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Richard Julius Nies
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Christoph Adler
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
| | - Holger Winkels
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institute, 17177 Stockholm, Sweden;
- Bioscience, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, 43150 Mölndal, Sweden
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA;
| | - Volker Rudolph
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany;
| | - Anna Klinke
- Agnes Wittenborg Institute for Translational Cardiovascular Research, Clinic for General and Interventional Cardiology/Angiology, Herz- und Diabeteszentrum NRW, University Hospital of the Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany;
| | - Matti Adam
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Stephan Baldus
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| | - Martin Mollenhauer
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
| | - Simon Geißen
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; (F.S.N.); (D.M.); (S.B.); (A.H.); (R.J.N.); (C.A.); (H.W.); (M.A.); (S.B.); (M.M.); (S.G.)
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and Faculty of Mathematics and Natural Sciences, University of Cologne, 50937 Cologne, Germany; (W.S.); (N.G.I.)
- Cologne Cardiovascular Research Center (CCRC), Faculty of Medicine, University of Cologne, 50937 Cologne, Germany;
| |
Collapse
|
34
|
Ahimaz P, Sabatello M, Qian M, Wang A, Miller EM, Parrott A, Lal AK, Chatfield KC, Rossano JW, Ware SM, Parent JJ, Kantor P, Yue L, Wynn J, Lee TM, Addonizio LJ, Appelbaum PS, Chung WK. Impact of Genetic Testing for Cardiomyopathy on Emotional Well-Being and Family Dynamics: A Study of Parents and Adolescents. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003189. [PMID: 34255550 PMCID: PMC8373687 DOI: 10.1161/circgen.120.003189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/06/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Genetic testing is indicated for children with a personal or family history of hereditary cardiomyopathy to determine appropriate management and inform risk stratification for family members. The implications of a positive genetic result for children can potentially impact emotional well-being. Given the nuances of cardiomyopathy genetic testing for minors, this study aimed to understand how parents involve their children in the testing process and investigate the impact of genetic results on family dynamics. METHODS A survey was distributed to participants recruited from the Children's Cardiomyopathy Foundation and 7 North American sites in the Pediatric Cardiomyopathy Registry. The survey explored adolescent and parent participants' emotions upon receiving their/their child's genetic results, parent-child result communication and its impact on family functionality, using the McMaster Family Assessment Device. RESULTS One hundred sixty-two parents of minors and 48 adolescents who were offered genetic testing for a personal or family history of cardiomyopathy completed the survey. Parents whose child had cardiomyopathy were more likely to disclose positive diagnostic genetic results to their child (P=0.014). Parents with unaffected children and positive predictive testing results were more likely to experience negative emotions about the result (P≤0.001) but also had better family functioning scores than those with negative predictive results (P=0.019). Most adolescents preferred results communicated directly to the child, but parents were divided about whether their child's result should first be released to them or their child. CONCLUSIONS These findings have important considerations for how providers structure genetic services for adolescents and facilitate discussion between parents and their children about results.
Collapse
Affiliation(s)
- Priyanka Ahimaz
- Dept of Pediatrics, Division of Molecular Genetics, Columbia Univ, New York, NY
| | - Maya Sabatello
- Center for Precision Medicine & Genomics, Dept of Medicine & Division of Ethics, Dept of Medical Humanities & Ethics, Columbia Univ, New York, NY
| | - Min Qian
- Dept of Biostatistics, Mailman School of Public Health, Columbia Univ, New York, NY
| | - Aijin Wang
- Dept of Biostatistics, Mailman School of Public Health, Columbia Univ, New York, NY
| | - Erin M. Miller
- Dept of Pediatrics, Univ of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Heart Institute Cincinnati, Cincinnati, OH
| | - Ashley Parrott
- The Heart Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Ashwin K. Lal
- Univ of Utah, Primary Children’s Hospital, Salt Lake City, UT
| | | | | | - Stephanie M. Ware
- Depts of Pediatrics & Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN
| | - John J Parent
- Dept of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Paul Kantor
- Stollery Children’s Hospital, Edmonton, Alberta, Canada
| | - Lisa Yue
- Children’s Cardiomyopathy Foundation, Columbia Univ, New York, NY
| | - Julia Wynn
- Dept of Pediatrics, Division of Molecular Genetics, Columbia Univ, New York, NY
| | - Teresa M. Lee
- Dept of Pediatrics, Division of Cardiology, Columbia Univ, New York, NY
| | | | - Paul S. Appelbaum
- Center for Precision Medicine & Genomics, Dept of Medicine & Division of Ethics, Dept of Medical Humanities & Ethics, Columbia Univ, New York, NY
| | - Wendy K. Chung
- Dept of Pediatrics, Division of Molecular Genetics, Columbia Univ, New York, NY
- Dept of Medicine, Columbia Univ Irving Medical Center, Columbia Univ, New York, NY
| |
Collapse
|
35
|
Whittle J, Johnson A, Dobbs MB, Gurnett CA. Models of Distal Arthrogryposis and Lethal Congenital Contracture Syndrome. Genes (Basel) 2021; 12:genes12060943. [PMID: 34203046 PMCID: PMC8234565 DOI: 10.3390/genes12060943] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 12/28/2022] Open
Abstract
Distal arthrogryposis and lethal congenital contracture syndromes describe a broad group of disorders that share congenital limb contractures in common. While skeletal muscle sarcomeric genes comprise many of the first genes identified for Distal Arthrogyposis, other mechanisms of disease have been demonstrated, including key effects on peripheral nerve function. While Distal Arthrogryposis and Lethal Congenital Contracture Syndromes display superficial similarities in phenotype, the underlying mechanisms for these conditions are diverse but overlapping. In this review, we discuss the important insights gained into these human genetic diseases resulting from in vitro molecular studies and in vivo models in fruit fly, zebrafish, and mice.
Collapse
Affiliation(s)
- Julia Whittle
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Aaron Johnson
- Department of Developmental Biology, Washington University in St Louis, St Louis, MO 63130, USA;
| | - Matthew B. Dobbs
- Paley Orthopaedic and Spine Institute, West Palm Beach, FL 33407, USA;
| | - Christina A. Gurnett
- Department of Neurology, Washington University in St Louis, St Louis, MO 63130, USA;
- Correspondence:
| |
Collapse
|
36
|
Pertici I, Taft MH, Greve JN, Fedorov R, Caremani M, Manstein DJ. Allosteric modulation of cardiac myosin mechanics and kinetics by the conjugated omega-7,9 trans-fat rumenic acid. J Physiol 2021; 599:3639-3661. [PMID: 33942907 DOI: 10.1113/jp281563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Direct binding of rumenic acid to the cardiac myosin-2 motor domain increases the release rate for orthophosphate and increases the Ca2+ responsiveness of cardiac muscle at low load. Physiological cellular concentrations of rumenic acid affect the ATP turnover rates of the super-relaxed and disordered relaxed states of β-cardiac myosin, leading to a net increase in myocardial metabolic load. In Ca2+ -activated trabeculae, rumenic acid exerts a direct inhibitory effect on the force-generating mechanism without affecting the number of force-generating motors. In the presence of saturating actin concentrations rumenic acid binds to the β-cardiac myosin-2 motor domain with an EC50 of 200 nM. Molecular docking studies provide information about the binding site, the mode of binding, and associated allosteric communication pathways. Free rumenic acid may exceed thresholds in cardiomyocytes above which contractile efficiency is reduced and interference with small molecule therapeutics, targeting cardiac myosin, occurs. ABSTRACT Based on experiments using purified myosin motor domains, reconstituted actomyosin complexes and rat heart ventricular trabeculae, we demonstrate direct binding of rumenic acid, the cis-delta-9-trans-delta-11 isomer of conjugated linoleic acid, to an allosteric site located in motor domain of mammalian cardiac myosin-2 isoforms. In the case of porcine β-cardiac myosin, the EC50 for rumenic acid varies from 10.5 μM in the absence of actin to 200 nM in the presence of saturating concentrations of actin. Saturating concentrations of rumenic acid increase the maximum turnover of basal and actin-activated ATPase activity of β-cardiac myosin approximately 2-fold but decrease the force output per motor by 23% during isometric contraction. The increase in ATP turnover is linked to an acceleration of the release of the hydrolysis product orthophosphate. In the presence of 5 μM rumenic acid, the difference in the rate of ATP turnover by the super-relaxed and disordered relaxed states of cardiac myosin increases from 4-fold to 20-fold. The equilibrium between the two functional myosin states is not affected by rumenic acid. Calcium responsiveness is increased under zero-load conditions but unchanged under load. Molecular docking studies provide information about the rumenic acid binding site, the mode of binding, and associated allosteric communication pathways. They show how the isoform-specific replacement of residues in the binding cleft induces a different mode of rumenic acid binding in the case of non-muscle myosin-2C and blocks binding to skeletal muscle and smooth muscle myosin-2 isoforms.
Collapse
Affiliation(s)
- Irene Pertici
- PhysioLab, University of Florence, Florence, 50019, Italy.,Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Johannes N Greve
- Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Roman Fedorov
- Division of Structural Biochemistry, OE8830, Medizinische Hochschule Hannover, Hannover, 30625, Germany.,RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| | - Marco Caremani
- PhysioLab, University of Florence, Florence, 50019, Italy
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, OE4350, Medizinische Hochschule Hannover, Hannover, 30625, Germany.,Division of Structural Biochemistry, OE8830, Medizinische Hochschule Hannover, Hannover, 30625, Germany.,RESiST, Cluster of Excellence 2155, Medizinische Hochschule Hannover, Hannover, 30625, Germany
| |
Collapse
|
37
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
38
|
Schmid M, Toepfer CN. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol Open 2021; 10:bio057646. [PMID: 33589442 PMCID: PMC7904003 DOI: 10.1242/bio.057646] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fundamental basis of muscle contraction 'the sliding filament model' (Huxley and Niedergerke, 1954; Huxley and Hanson, 1954) and the 'swinging, tilting crossbridge-sliding filament mechanism' (Huxley, 1969; Huxley and Brown, 1967) nucleated a field of research that has unearthed the complex and fascinating role of myosin structure in the regulation of contraction. A recently discovered energy conserving state of myosin termed the super relaxed state (SRX) has been observed in filamentous myosins and is central to modulating force production and energy use within the sarcomere. Modulation of myosin function through SRX is a rapidly developing theme in therapeutic development for both cardiovascular disease and infectious disease. Some 70 years after the first discoveries concerning muscular function, modulation of myosin SRX may bring the first myosin targeted small molecule to the clinic, for treating hypertrophic cardiomyopathy (Olivotto et al., 2020). An often monogenic disease HCM afflicts 1 in 500 individuals, and can cause heart failure and sudden cardiac death. Even as we near therapeutic translation, there remain many questions about the governance of muscle function in human health and disease. With this review, we provide a broad overview of contemporary understanding of myosin SRX, and explore the complexities of targeting this myosin state in human disease.This article has an associated Future Leaders to Watch interview with the authors of the paper.
Collapse
Affiliation(s)
- Manuel Schmid
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher N Toepfer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
39
|
Stafford F, Thomson K, Butters A, Ingles J. Hypertrophic Cardiomyopathy: Genetic Testing and Risk Stratification. Curr Cardiol Rep 2021; 23:9. [PMID: 33433738 DOI: 10.1007/s11886-020-01437-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Our knowledge of the genetic basis and molecular pathogenesis of hypertrophic cardiomyopathy (HCM) continues to evolve. We describe the genetic basis of HCM, recent advances in genetic testing and the role of genetics in guiding risk stratification and management, both now and in the future. RECENT FINDINGS While initially thought to be an exclusively Mendelian disease, we now know there are important HCM sub-groups. A proportion will have sarcomere variants as the cause of their disease, while others will have genetic variants in genes that can give rise to conditions that can mimic HCM. The role of genetics is primarily for cascade genetic testing, though there is emerging evidence of a role for prognosis and patient management. Genetic testing is a useful addition to management. Genotype may play a greater role in risk stratification, management, treatment and prognosis in future, offering improved outcomes for patients and their families with HCM.
Collapse
Affiliation(s)
- Fergus Stafford
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
| | - Kate Thomson
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alexandra Butters
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Jodie Ingles
- Cardio Genomics Program at Centenary Institute, The University of Sydney, Locked Bag 6, Newtown, NSW, 2042, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia.
| |
Collapse
|
40
|
Ding Y, Bu H, Xu X. Modeling Inherited Cardiomyopathies in Adult Zebrafish for Precision Medicine. Front Physiol 2020; 11:599244. [PMID: 33329049 PMCID: PMC7717946 DOI: 10.3389/fphys.2020.599244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiomyopathies are a highly heterogeneous group of heart muscle disorders. More than 100 causative genes have been linked to various cardiomyopathies, which explain about half of familial cardiomyopathy cases. More than a dozen candidate therapeutic signaling pathways have been identified; however, precision medicine is not being used to treat the various types of cardiomyopathy because knowledge is lacking for how to tailor treatment plans for different genetic causes. Adult zebrafish (Danio rerio) have a higher throughout than rodents and are an emerging vertebrate model for studying cardiomyopathy. Herein, we review progress in the past decade that has proven the feasibility of this simple vertebrate for modeling inherited cardiomyopathies of distinct etiology, identifying effective therapeutic strategies for a particular type of cardiomyopathy, and discovering new cardiomyopathy genes or new therapeutic strategies via a forward genetic approach. On the basis of this progress, we discuss future research that would benefit from integrating this emerging model, including discovery of remaining causative genes and development of genotype-based therapies. Studies using this efficient vertebrate model are anticipated to significantly accelerate the implementation of precision medicine for inherited cardiomyopathies.
Collapse
Affiliation(s)
- Yonghe Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Haisong Bu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States.,Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
41
|
Dilated Cardiomyopathy: A Paradigm of Revolution in Medicine. J Clin Med 2020; 9:jcm9113385. [PMID: 33105590 PMCID: PMC7690260 DOI: 10.3390/jcm9113385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
|
42
|
Heliö T, Elliott P, Koskenvuo JW, Gimeno JR, Tavazzi L, Tendera M, Kaski JP, Mansencal N, Bilińska Z, Carr-White G, Damy T, Frustaci A, Kindermann I, Ripoll-Vera T, Čelutkienė J, Axelsson A, Lorenzini M, Saad A, Maggioni AP, Laroche C, Caforio ALP, Charron P. ESC EORP Cardiomyopathy Registry: real-life practice of genetic counselling and testing in adult cardiomyopathy patients. ESC Heart Fail 2020; 7:3013-3021. [PMID: 32767651 PMCID: PMC7524128 DOI: 10.1002/ehf2.12925] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 01/14/2023] Open
Abstract
Aims Cardiomyopathies comprise a heterogeneous group of diseases, often of genetic origin. We assessed the current practice of genetic counselling and testing in the prospective European Society of Cardiology EURObservational Research Programme Cardiomyopathy Registry. Methods and results A total of 3208 adult patients from 69 centres in 18 countries were enrolled. Genetic counselling was performed in 60.8% of all patients [75.4% in hypertrophic cardiomyopathy (HCM), 39.2% in dilated cardiomyopathy (DCM), 70.8% in arrhythmogenic right ventricular cardiomyopathy (ARVC), and 49.2% in restrictive cardiomyopathy (RCM), P < 0.001]. Comparing European geographical areas, genetic counselling was performed from 42.4% to 83.3% (P < 0.001). It was provided by a cardiologist (85.3%), geneticist (15.1%), genetic counsellor (11.3%), or a nurse (7.5%) (P < 0.001). Genetic testing was performed in 37.3% of all patients (48.8% in HCM, 18.6% in DCM, 55.6% in ARVC, and 43.6% in RCM, P < 0.001). Index patients with genetic testing were younger at diagnosis and had more familial disease, family history of sudden cardiac death, or implanted cardioverter defibrillators but less co‐morbidities than those not tested (P < 0.001 for each comparison). At least one disease‐causing variant was found in 41.7% of index patients with genetic testing (43.3% in HCM, 33.3% in DCM, 51.4% in ARVC, and 42.9% in RCM, P = 0.13). Conclusions This is the first detailed report on the real‐life practice of genetic counselling and testing in cardiomyopathies in Europe. Genetic counselling and testing were performed in a substantial proportion of patients but less often than recommended by European guidelines and much less in DCM than in HCM and ARVC, despite evidence for genetic background.
Collapse
Affiliation(s)
- Tiina Heliö
- Department of Cardiology, University of Helsinki, Helsinki, University Hospital, Helsinki, Finland
| | - Perry Elliott
- University College London, St. Bartholomew's Hospital, London, UK
| | - Juha W Koskenvuo
- Blueprint Genetics, Helsinki, Finland.,Clinical Physiology and Nuclear Medicine, Turku University Hospital, University of Turku, Turku, Finland
| | - Juan R Gimeno
- Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Luigi Tavazzi
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Michal Tendera
- Department of Cardiology and Structural Heart Disease, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Juan Pablo Kaski
- Cardiology Department, Great Ormond Street Hospital for Children, London, UK
| | - Nicolas Mansencal
- Hôpital Ambroise Paré, Centre de Référence des Cardiomyopathies, Assistance Publique-Hôpitaux de Paris, Inserm U1018, CESP, UVSQ, Boulogne-Billancourt, France
| | - Zofia Bilińska
- Unit for Screening Studies in Inherited Cardiovascular Diseases, The Cardinal Stefan Wyszynski Institute of Cardiology, Warsaw, Poland
| | | | | | | | - Ingrid Kindermann
- Department of Internal Medicine III, Saarland University Hospital, Saarland University, Homburg, Germany
| | - Tomas Ripoll-Vera
- Hospital Universitario Son Llatzer, IdISBa, Palma de Mallorca, Spain
| | - Jelena Čelutkienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Anna Axelsson
- Department of Cardiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Aly Saad
- Zagazig University, Zagazig, Egypt
| | - Aldo P Maggioni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy.,EURObservational Research Programme, European Society of Cardiology, Sophia-Antipolis, France
| | - Cécile Laroche
- EURObservational Research Programme, European Society of Cardiology, Sophia-Antipolis, France
| | - Alida L P Caforio
- Department of Cardiological, Thoracic and Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Philippe Charron
- Centre de Référence des Maladies Cardiaques Héréditaires, Assistance Publique-Hôpitaux de Paris, ICAN, Inserm UMR1166, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | | |
Collapse
|
43
|
Armstrong SM, Seidman MA. Do These Genes Make My Heart Look Fat? Why Molecular Changes Matter in Congenital Heart Disease. Can J Cardiol 2020; 36:997-999. [DOI: 10.1016/j.cjca.2020.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 11/30/2022] Open
|
44
|
Antunes MDO, Scudeler TL. Hypertrophic cardiomyopathy. IJC HEART & VASCULATURE 2020; 27:100503. [PMID: 32309534 PMCID: PMC7154317 DOI: 10.1016/j.ijcha.2020.100503] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiac disease. The disease is characterized by marked variability in morphological expression and natural history, ranging from asymptomatic to heart failure or sudden cardiac death. Left ventricular hypertrophy and abnormal ventricular configuration result in dynamic left ventricular outflow obstruction in most patients. The goal of pharmacological therapy in HCM is to alleviate the symptoms, and it includes pharmacotherapies and septal reduction therapies. In this review, we summarize the relevant clinical issues and treatment options of HCM.
Collapse
Affiliation(s)
- Murillo de Oliveira Antunes
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Universidade São Francisco (USF), Bragança Paulista, São Paulo, Brazil
| | - Thiago Luis Scudeler
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
45
|
Lannou S, Mansencal N, Couchoud C, Lassalle M, Dubourg O, Stengel B, Jacquelinet C, Charron P. The Public Health Burden of Cardiomyopathies: Insights from a Nationwide Inpatient Study. J Clin Med 2020; 9:jcm9040920. [PMID: 32230881 PMCID: PMC7230913 DOI: 10.3390/jcm9040920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
Cardiomyopathies are responsible for heart failure and sudden cardiac death, but epidemiological data are scarce and the public health burden may be underestimated. We studied aggregating data from all public or private hospitals in France. Patients were categorized from relevant ICD-10 codes into dilated, hypertrophic, restrictive, or other cardiomyopathies (DCM, HCM, RCM, or OCM, respectively). Between 2008 and 2015, a total of 326,461 distinct patients had cardiomyopathy-related hospitalizations. The hospital-based prevalence of cardiomyopathy was 809 per million inhabitants (PMI) per year, including 428 PMI for DCM, 101 PMI for HCM, 26 PMI for RCM, and 253 PMI for OCM. Patients with cardiomyopathies accounted for 51% of all heart transplants, 33% of defibrillator implantations, 38% of mechanical circulatory supports, and 11.3% of hospitalizations for heart failure. In patients less than 40 years of age, these figures were 71%, 51%, 63%, and 23%, respectively. Over 2008–2015 and considering all cardiomyopathies, there was a significant increase for heart transplant (average annual percentage change, AAPC: +3.86%, p = 0.0015) and for defibrillator implantation (AAPC: +6.98%, p < 0.0001), and a significant decrease of in-hospital mortality (AAPC: −4.7%, p = 0.0002). This nationwide study shows that cardiomyopathies constitute an important cause of hospitalization, with increasing invasive therapeutic procedures and decreasing mortality.
Collapse
Affiliation(s)
- Simon Lannou
- APHP, Service de Cardiologie, Centre de référence des maladies cardiaques héréditaires ou rares, Hôpital Ambroise Paré, 92100 Boulogne Billancourt, France; (S.L.); (N.M.); (O.D.)
| | - Nicolas Mansencal
- APHP, Service de Cardiologie, Centre de référence des maladies cardiaques héréditaires ou rares, Hôpital Ambroise Paré, 92100 Boulogne Billancourt, France; (S.L.); (N.M.); (O.D.)
- Univ Paris-Saclay, Univ Versailles-Saint Quentin, Univ Paris-Sud, Inserm, Clinical Epidemiology Team, CESP Centre for Research in Epidemiology and Population Health, 94807 Villejuif, France; (B.S.); (C.J.)
| | - Cécile Couchoud
- Agence de la Biomédecine, 93212 Saint-Denis la Plaine, France; (C.C.); (M.L.)
| | - Mathilde Lassalle
- Agence de la Biomédecine, 93212 Saint-Denis la Plaine, France; (C.C.); (M.L.)
| | - Olivier Dubourg
- APHP, Service de Cardiologie, Centre de référence des maladies cardiaques héréditaires ou rares, Hôpital Ambroise Paré, 92100 Boulogne Billancourt, France; (S.L.); (N.M.); (O.D.)
- Univ Paris-Saclay, Univ Versailles-Saint Quentin, Univ Paris-Sud, Inserm, Clinical Epidemiology Team, CESP Centre for Research in Epidemiology and Population Health, 94807 Villejuif, France; (B.S.); (C.J.)
| | - Bénédicte Stengel
- Univ Paris-Saclay, Univ Versailles-Saint Quentin, Univ Paris-Sud, Inserm, Clinical Epidemiology Team, CESP Centre for Research in Epidemiology and Population Health, 94807 Villejuif, France; (B.S.); (C.J.)
| | - Christian Jacquelinet
- Univ Paris-Saclay, Univ Versailles-Saint Quentin, Univ Paris-Sud, Inserm, Clinical Epidemiology Team, CESP Centre for Research in Epidemiology and Population Health, 94807 Villejuif, France; (B.S.); (C.J.)
- Agence de la Biomédecine, 93212 Saint-Denis la Plaine, France; (C.C.); (M.L.)
| | - Philippe Charron
- APHP, Service de Cardiologie, Centre de référence des maladies cardiaques héréditaires ou rares, Hôpital Ambroise Paré, 92100 Boulogne Billancourt, France; (S.L.); (N.M.); (O.D.)
- APHP, Département de Génétique, Centre de référence des maladies cardiaques héréditaires ou rares, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Sorbonne Université, INSERM, UMR_S 1166 and ICAN Institute for Cardiometabolism and Nutrition, 75013 Paris, France
- Correspondence: ; Tel.: +33-1-42-16-13-47
| |
Collapse
|
46
|
|
47
|
|
48
|
Sinagra G, Porcari A, Merlo M. Precision medicine in heart failure no longer a visual theory but a realistic opportunity. Eur J Intern Med 2020; 71:20-22. [PMID: 31727453 DOI: 10.1016/j.ejim.2019.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022]
Affiliation(s)
- G Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Via P. Valdoni 7, 34100, Trieste, Italy.
| | - A Porcari
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Via P. Valdoni 7, 34100, Trieste, Italy
| | - M Merlo
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata (ASUITS) and University of Trieste, Via P. Valdoni 7, 34100, Trieste, Italy
| |
Collapse
|
49
|
Johnston JR, Landim-Vieira M, Marques MA, de Oliveira GAP, Gonzalez-Martinez D, Moraes AH, He H, Iqbal A, Wilnai Y, Birk E, Zucker N, Silva JL, Chase PB, Pinto JR. The intrinsically disordered C terminus of troponin T binds to troponin C to modulate myocardial force generation. J Biol Chem 2019; 294:20054-20069. [PMID: 31748410 PMCID: PMC6937556 DOI: 10.1074/jbc.ra119.011177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.
Collapse
Affiliation(s)
- Jamie R Johnston
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Mayra A Marques
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - David Gonzalez-Martinez
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - Adolfo H Moraes
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Huan He
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Anwar Iqbal
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Yael Wilnai
- Department of Pediatrics, Dana-Dwek ChildrenγÇÖs Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel 6423906
| | - Einat Birk
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Nili Zucker
- Department of Cardiology, Schneider ChildrenγÇÖs Medical Center, Tel Aviv University, Petah Tikva, Israel 4920235
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, Instituto Nacional de Biologia Estrutural e Bioimagem, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - P Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
50
|
Sinagra G, Elliott PM, Merlo M. Dilated cardiomyopathy: so many cardiomyopathies! Eur Heart J 2019; 41:3784-3786. [DOI: 10.1093/eurheartj/ehz908] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/20/2019] [Accepted: 12/09/2019] [Indexed: 11/15/2022] Open
Affiliation(s)
- Gianfranco Sinagra
- Cardiovascular Department, Center for Diagnosis and Treatment of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata (ASUITS), University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| | - Perry M Elliott
- Centre for Heart Muscle Disease, Institute of Cardiological Sciences, University College London and St. Bartholomew's Hospital, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Marco Merlo
- Cardiovascular Department, Center for Diagnosis and Treatment of Cardiomyopathies, Azienda Sanitaria Universitaria Integrata (ASUITS), University of Trieste, Via P. Valdoni 7, 34100 Trieste, Italy
| |
Collapse
|