1
|
Goñi-Olóriz M, Garaikoetxea Zubillaga M, San Ildefonso-García S, Fernández-Celis A, Castillo P, Navarro A, Álvarez V, Sádaba R, Jover E, Martín-Núñez E, López-Andrés N. Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis. Am J Physiol Heart Circ Physiol 2025; 328:H639-H647. [PMID: 39832303 DOI: 10.1152/ajpheart.00763.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/04/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in the early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM. We performed discovery studies using Olink Proteomics technology in 87 AS patient-derived aortic valves (AVs) (N = 28 and N = 19 nondiabetic and diabetic men; N = 32 and N = 8 nondiabetic and diabetic women, respectively) and human cytokine array (N = 24 AVs/sex/condition). Both approaches revealed chemerin as a target differentially upregulated in AVs from male diabetic patients, further validated in a cohort of stenotic AVs (N = 283, 27.6% DM, 59.4% men). Valvular chemerin levels are directly correlated with valve interstitial cell (VIC) activation, MR, inflammation, angiogenesis, and calcification markers exclusively in diabetic men. In vitro, Aldo (10-8 M) treatment exclusively increased chemerin levels in valve interstitial cells (VICs) from male patients with DM. Aldo also upregulated inflammatory, angiogenic, and osteogenic markers in DM and non-DM donors' VICs, which were prevented by MR antagonism. Increased glucose levels in cell media upregulated chemerin in VICs from male diabetic patients. Overall, RARRES2-knockdown in male diabetic VICs resulted in the downregulation of inflammatory, angiogenic, and osteogenic markers and blocked Aldo-induced responses in high glucose conditions. These data suggest the Aldo/MR pathway selectively increases chemerin in VICs from diabetic men, promoting inflammation, angiogenesis, and calcification associated with AS progression.NEW & NOTEWORTHY Chemerin is upregulated in AV of male diabetic patients with AS, correlating with valve degeneration markers and influenced by Aldo/MR activation. This highlights chemerin as a sex-specific target for AS therapy.
Collapse
Affiliation(s)
- Miriam Goñi-Olóriz
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Mattie Garaikoetxea Zubillaga
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Susana San Ildefonso-García
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Paula Castillo
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| |
Collapse
|
2
|
Jaisser F, Barrera-Chimal J. Mineralocorticoid receptor antagonism for non-diabetic kidney disease. Nephrol Dial Transplant 2025; 40:i29-i36. [PMID: 39907538 DOI: 10.1093/ndt/gfae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Indexed: 02/06/2025] Open
Abstract
The use of mineralocorticoid receptor antagonists (MRAs) in preclinical models of non-diabetic chronic kidney disease (CKD) has consistently shown a beneficial effect by preventing renal structural injury, reducing albuminuria and preserving renal function. In this context, MR activation in non-epithelial cells contributes to renal injury through the activation of inflammatory and fibrotic pathways, increasing oxidative stress and modulating renal hemodynamics. The protective effects of MRAs in animal models of CKD are not restricted to the kidney. Cardiovascular benefits, such as the prevention of cardiac fibrosis, hypoperfusion and vascular calcification, have also been observed. The translation of these preclinical findings into clinical practice has been difficult, mainly due to the lack of clinical studies testing the efficacy of steroidal MRAs in CKD patients due to their contraindication because of an increased risk of hyperkalemia in these patients. Here, we review the latest preclinical evidence showing new mechanisms by which MR inhibition results in beneficial effects against cardiorenal damage in non-diabetic kidney disease. Moreover, we summarize the clinical trials testing the safety and efficacy of steroidal and non-steroidal MRAs in patients with advanced non-diabetic CKD. PLAIN ENGLISH SUMMARY The mineralocorticoid receptor (MR) is known for its role in the regulation of sodium and potassium balance in the distal tubules of the kidney. However, under pathological conditions the activation of the MR in other renal cell types (including the vasculature and immune cells) leads to harmful effects, damaging the main structural components of the kidney, and ultimately causing renal dysfunction. Over the past 20 years, several studies performed in mouse and rat models of non-diabetic kidney disease have shown that using a specific drug class that inhibits the MR (MR antagonists: MRAs) positively impacts the preservation of the kidney structure and helps to prevent the decline of renal function, thus positioning MRAs as a good therapeutic option against kidney diseases from non-diabetic origin. In addition, the use of MRAs also benefited the cardiovascular system health as shown by improved cardiac structural and functional parameters as well as preventing the calcification of blood vessels. Nevertheless, an important barrier to translating these findings into clinical practice is that the use of MRAs could lead to increased serum potassium levels, particularly in kidney disease patients, an adverse effect that could lead to life-threatening cardiac arrhythmias. In this review, we summarize the latest data in animal models showing new evidences of MR benefits in non-diabetic kidney disease. In addition, we review the clinical trials that evaluated the safety and efficacy of MRAs in patients with advanced non-diabetic kidney disease including those that tested a new generation of MRAs (non-steroidal MRAs) and are expected to reduce the frequency of adverse effects while retaining their renal and cardiovascular benefits.
Collapse
Affiliation(s)
- Frédéric Jaisser
- Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy 54500, France
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris 75006, France
| | - Jonatan Barrera-Chimal
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Faculté de Médecine, Centre affilié à l'Université de Montréal, Montréal, Québec H1T 2M4, Canada
| |
Collapse
|
3
|
Cai H, Tian S, Liu A, Xie G, Zhang H, Wu X, Wan J, Li S. Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma. Eur J Med Res 2025; 30:17. [PMID: 39780198 PMCID: PMC11715937 DOI: 10.1186/s40001-024-02192-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely. METHODS We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints. We also explored potential associations with drug sensitivity. To assess the impact on glioma cell proliferation and apoptosis, we employed various assays, including the Cell Counting Kit-8, colony formation assay, and flow cytometry. RESULTS CTF1 gene and protein expression were significantly elevated in glioma tissues, and correlated with malignancy and poor prognosis. CTF1 was an independent prognostic factor and negatively associated with DNA methylation. The involvement of CTF1 in m6A modifications contributed to glioma progression. Enrichment analysis revealed immune response pathways linked with CTF1 in glioma, including natural killer cell cytotoxicity, NOD-like receptor signaling, Toll-like receptor signaling, antigen processing, chemokine signaling, and cytokine receptor interactions. CTF1 expression correlated positively with pathways related to apoptosis, inflammation, proliferation, and epithelial-mesenchymal transition, and PI3K-AKT-mTOR signaling. Additionally, CTF1 expression was positively associated with macrophage, eosinophil, and neutrophil contents and immune checkpoint-related genes, but negatively associated with sensitivity to 14 drugs. In vitro experiments confirmed that CTF1 knockdown inhibited glioma cell proliferation and promoted apoptosis. CONCLUSION This study identifies CTF1 as a significant independent prognostic factor that is closely associated with the tumor immune microenvironment in glioma. Additionally, reduced expression of CTF1 suppresses the proliferation and induces apoptosis of glioma cells in vitro. Consequently, CTF1 is a potentially promising novel therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Hongqing Cai
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shen Tian
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Angsi Liu
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guanchao Xie
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Hongsheng Zhang
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China
| | - Xiaogang Wu
- Department of Neurosurgery, No. 901 Hospital of the Chinese People's Liberation Army Logistic Support Force, No 424 Changjiang West Road, Shushan District, Hefei, Anhui, 230000, People's Republic of China.
| | - Jinghai Wan
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| | - Sai Li
- Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Economic and Technological Development Zone, Hefei, 230000, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Chang WT, Lin YW, Chen CY, Hong CS, Chen ZC, Lin YC, Shih JY. The Combination of Valsartan and Spironolactone Mitigated Mitral Regurgitation-Induced Cardiac Dysfunction in a Novel Rat Model. J Cardiovasc Pharmacol 2024; 84:410-417. [PMID: 39115805 DOI: 10.1097/fjc.0000000000001614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 10/05/2024]
Abstract
ABSTRACT Despite its high prevalence, effective treatment for degenerative mitral regurgitation (MR) remains elusive. Although the mineralocorticoid-receptor antagonist spironolactone, in conjunction with renin-angiotensin-aldosterone system inhibitors, has been shown to reduce mortality in patients with heart failure with reduced ejection fraction, its efficacy in managing degenerative MR is uncertain. In this study, we aimed to compare the effectiveness of valsartan (a renin-angiotensin system inhibitor), spironolactone, and combination therapy in mitigating MR-induced myocardial dysfunction. Using a mini-invasive model of degenerative MR, we administered valsartan (31 mg/kg/d), spironolactone (80 mg/kg/d), or a combination of both to rats over a 4-week period. Serial echocardiography and pressure-volume loops were utilized to assess cardiac function and hemodynamics. Rats with degenerative MR treated with valsartan or spironolactone alone did not show significant improvement in myocardial dysfunction. In contrast, combination therapy resulted in significant improvement. Similarly, the pressure-volume relationship was significantly improved in rats treated with the combination therapy compared with that in rats treated with a single therapy. Mechanistically, combination therapy effectively suppressed circulating and cardiac expression of aldosterone- and apoptosis-associated proteins. Overall, combination treatment with valsartan and spironolactone significantly attenuated the degenerative MR-induced myocardial stress and dysfunction, suggesting a potential therapeutic avenue for managing degenerative MR-induced heart failure.
Collapse
Affiliation(s)
- Wei-Ting Chang
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan; Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan; Taiwan
| | - Chin-Yu Chen
- Department of Radiology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chon-Seng Hong
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan; Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan ; and
| | - Zhih-Cherng Chen
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan; Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - You-Cheng Lin
- Division of Plastic Surgery, Department of Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jhih-Yuan Shih
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan; Taiwan
- Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Palacios-Ramirez R, Soulié M, Fernandez-Celis A, Nakamura T, Boujardine N, Bonnard B, Bamberg K, Lopez-Andres N, Jaisser F. Mineralocorticoid receptor (MR) antagonist eplerenone and MR modulator balcinrenone prevent renal extracellular matrix remodeling and inflammation via the MR/proteoglycan/TLR4 pathway. Clin Sci (Lond) 2024; 138:1025-1038. [PMID: 39092535 DOI: 10.1042/cs20240302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Excessive activation of the mineralocorticoid receptor (MR) is implicated in cardiovascular and renal disease. Decreasing MR activation with MR antagonists (MRA) is effective to slow chronic kidney disease (CKD) progression and its cardiovascular comorbidities in animal models and patients. The present study evaluates the effects of the MR modulator balcinrenone and the MRA eplerenone on kidney damage in a metabolic CKD mouse model combining nephron reduction and a 60% high-fat diet. Balcinrenone and eplerenone prevented the progression of renal damages, extracellular matrix remodeling and inflammation to a similar extent. We identified a novel mechanism linking MR activation to the renal proteoglycan deposition and inflammation via the TLR4 pathway activation. Balcinrenone and eplerenone similarly blunted this pathway activation.
Collapse
Affiliation(s)
- Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Matthieu Soulié
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Toshifumi Nakamura
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Nabiha Boujardine
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
| | - Krister Bamberg
- Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Natalia Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Team Diabetes, Metabolic Diseases and Comorbidities, Sorbonne Université, Inserm, Université de Paris, Paris, France
- Université de Lorraine, INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT, Nancy, France
| |
Collapse
|
6
|
Camarda ND, Ibarrola J, Biwer LA, Jaffe IZ. Mineralocorticoid Receptors in Vascular Smooth Muscle: Blood Pressure and Beyond. Hypertension 2024; 81:1008-1020. [PMID: 38426347 PMCID: PMC11023801 DOI: 10.1161/hypertensionaha.123.21358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
After half a century of evidence suggesting the existence of mineralocorticoid receptors (MR) in the vasculature, the advent of technology to specifically knockout the MR from smooth muscle cells (SMCs) in mice has elucidated contributions of SMC-MR to cardiovascular function and disease, independent of the kidney. This review summarizes the latest understanding of the molecular mechanisms by which SMC-MR contributes to (1) regulation of vasomotor function and blood pressure to contribute to systemic and pulmonary hypertension; (2) vascular remodeling in response to hypertension, vascular injury, obesity, and aging, and the impact on vascular calcification; and (3) cardiovascular pathologies including aortic aneurysm, heart valve dysfunction, and heart failure. Data are reviewed from in vitro studies using SMCs and in vivo findings from SMC-specific MR-knockout mice that implicate target genes and signaling pathways downstream of SMC-MR. By regulating expression of the L-type calcium channel subunit Cav1.2 and angiotensin II type-1 receptor, SMC-MR contributes to myogenic tone and vasoconstriction, thereby contributing to systemic blood pressure. MR activation also promotes SMC proliferation, migration, production and degradation of extracellular matrix, and osteogenic differentiation by regulating target genes including connective tissue growth factor, osteopontin, bone morphogenetic protein 2, galectin-3, and matrix metallopeptidase-2. By these mechanisms, SMC-MR promotes disease progression in models of aging-associated vascular stiffness, vascular calcification, mitral and aortic valve disease, pulmonary hypertension, and heart failure. While rarely tested, when sexes were compared, the mechanisms of SMC-MR-mediated disease were sexually dimorphic. These advances support targeting SMC-MR-mediated mechanisms to prevent and treat diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Nicholas D. Camarda
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Lauren A. Biwer
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, USA
| |
Collapse
|
7
|
Ho YC, Geng X, O’Donnell A, Ibarrola J, Fernandez-Celis A, Varshney R, Subramani K, Azartash-Namin ZJ, Kim J, Silasi R, Wylie-Sears J, Alvandi Z, Chen L, Cha B, Chen H, Xia L, Zhou B, Lupu F, Burkhart HM, Aikawa E, Olson LE, Ahamed J, López-Andrés N, Bischoff J, Yutzey KE, Srinivasan RS. PROX1 Inhibits PDGF-B Expression to Prevent Myxomatous Degeneration of Heart Valves. Circ Res 2023; 133:463-480. [PMID: 37555328 PMCID: PMC10487359 DOI: 10.1161/circresaha.123.323027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Cardiac valve disease is observed in 2.5% of the general population and 10% of the elderly people. Effective pharmacological treatments are currently not available, and patients with severe cardiac valve disease require surgery. PROX1 (prospero-related homeobox transcription factor 1) and FOXC2 (Forkhead box C2 transcription factor) are transcription factors that are required for the development of lymphatic and venous valves. We found that PROX1 and FOXC2 are expressed in a subset of valvular endothelial cells (VECs) that are located on the downstream (fibrosa) side of cardiac valves. Whether PROX1 and FOXC2 regulate cardiac valve development and disease is not known. METHODS We used histology, electron microscopy, and echocardiography to investigate the structure and functioning of heart valves from Prox1ΔVEC mice in which Prox1 was conditionally deleted from VECs. Isolated valve endothelial cells and valve interstitial cells were used to identify the molecular mechanisms in vitro, which were tested in vivo by RNAScope, additional mouse models, and pharmacological approaches. The significance of our findings was tested by evaluation of human samples of mitral valve prolapse and aortic valve insufficiency. RESULTS Histological analysis revealed that the aortic and mitral valves of Prox1ΔVEC mice become progressively thick and myxomatous. Echocardiography revealed that the aortic valves of Prox1ΔVEC mice are stenotic. FOXC2 was downregulated and PDGF-B (platelet-derived growth factor-B) was upregulated in the VECs of Prox1ΔVEC mice. Conditional knockdown of FOXC2 and conditional overexpression of PDGF-B in VECs recapitulated the phenotype of Prox1ΔVEC mice. PDGF-B was also increased in mice lacking FOXC2 and in human mitral valve prolapse and insufficient aortic valve samples. Pharmacological inhibition of PDGF-B signaling with imatinib partially ameliorated the valve defects of Prox1ΔVEC mice. CONCLUSIONS PROX1 antagonizes PDGF-B signaling partially via FOXC2 to maintain the extracellular matrix composition and prevent myxomatous degeneration of cardiac valves.
Collapse
Affiliation(s)
- Yen-Chun Ho
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Now with Sanegene Bio, Woburn, MA (X.G.)
| | - Anna O’Donnell
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (A.O., K.E.Y.)
| | - Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA (J.I.)
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Amaya Fernandez-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Rohan Varshney
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Zheila J. Azartash-Namin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jang Kim
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Department of Cell Biology, University of Oklahoma Health Sciences Center (J.K.)
| | - Robert Silasi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jill Wylie-Sears
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Zahra Alvandi
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Lijuan Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Boksik Cha
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Now with Daegu Gyeongbuk Medical Innovation Foundation, Republic of Korea (B.C.)
| | - Hong Chen
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Bin Zhou
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY (B.Z.)
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Harold M. Burkhart
- Oklahoma Children’s Hospital, University of Oklahoma Health Heart Center, Oklahoma City, OK (H.M.B.)
| | - Elena Aikawa
- Department of Medicine, Cardiovascular Division, Brigham and Women’s Hospital, Boston, MA (E.A.)
| | - Lorin E. Olson
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Boston, MA (J.W.-S., Z.A., H.C., J.B.)
| | - Katherine E. Yutzey
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (A.O., K.E.Y.)
| | - R. Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK (Y.-C.H., X.G., R.V., K.S., Z.J.A.-N., J.K., R.S., L.C., B.C., L.X., F.L., L.E.O., J.A., R.S.S.)
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain (J.I., A.F.-C., N.L.-A., R.S.S.)
| |
Collapse
|
8
|
Rivera A, Vega C, Ramos-Rivera A, Maldonado ER, Prado GN, Karnes HE, Fesko YA, Snyder LM, Alper SL, Romero JR. Blockade of the mineralocorticoid receptor improves markers of human endothelial cell dysfunction and hematological indices in a mouse model of sickle cell disease. FASEB J 2023; 37:e23092. [PMID: 37482902 PMCID: PMC10372847 DOI: 10.1096/fj.202300671r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Increased endothelin-1 (ET-1) levels in patients with sickle cell disease (SCD) and transgenic mouse models of SCD contribute to disordered hematological, vascular, and inflammatory responses. Mineralocorticoid receptor (MR) activation by aldosterone, a critical component of the Renin-Angiotensin-Aldosterone-System, modulates inflammation and vascular reactivity, partly through increased ET-1 expression. However, the role of MR in SCD remains unclear. We hypothesized that MR blockade in transgenic SCD mice would reduce ET-1 levels, improve hematological parameters, and reduce inflammation. Berkeley SCD (BERK) mice, a model of severe SCD, were randomized to either sickle standard chow or chow containing the MR antagonist (MRA), eplerenone (156 mg/Kg), for 14 days. We found that MRA treatment reduced ET-1 plasma levels (p = .04), improved red cell density gradient profile (D50 ; p < .002), and increased mean corpuscular volume in both erythrocytes (p < .02) and reticulocytes (p < .024). MRA treatment also reduced the activity of the erythroid intermediate-conductance Ca2+ -activated K+ channel - KCa 3.1 (Gardos channel, KCNN4), reduced cardiac levels of mRNAs encoding ET-1, Tumor Necrosis Factor Receptor-1, and protein disulfide isomerase (PDI) (p < .01), and decreased plasma PDI and myeloperoxidase activity. Aldosterone (10-8 M for 24 h in vitro) also increased PDI mRNA levels (p < .01) and activity (p < .003) in EA.hy926 human endothelial cells, in a manner blocked by pre-incubation with the MRA canrenoic acid (1 μM; p < .001). Our results suggest a novel role for MR activation in SCD that may exacerbate SCD pathophysiology and clinical complications.
Collapse
Affiliation(s)
- Alicia Rivera
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Christopher Vega
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Arelys Ramos-Rivera
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Enrique R. Maldonado
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gregory N. Prado
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Seth L. Alper
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Ibarrola J, Lopez-Andres N. Editorial: Heart valve diseases: from molecular mechanisms to clinical implications. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1260912. [PMID: 39086670 PMCID: PMC11285579 DOI: 10.3389/fmmed.2023.1260912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2024]
Affiliation(s)
- Jaime Ibarrola
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Natalia Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Instituto de Investigacion Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
10
|
De Chiara L, Conte C, Semeraro R, Diaz-Bulnes P, Angelotti ML, Mazzinghi B, Molli A, Antonelli G, Landini S, Melica ME, Peired AJ, Maggi L, Donati M, La Regina G, Allinovi M, Ravaglia F, Guasti D, Bani D, Cirillo L, Becherucci F, Guzzi F, Magi A, Annunziato F, Lasagni L, Anders HJ, Lazzeri E, Romagnani P. Tubular cell polyploidy protects from lethal acute kidney injury but promotes consequent chronic kidney disease. Nat Commun 2022; 13:5805. [PMID: 36195583 PMCID: PMC9532438 DOI: 10.1038/s41467-022-33110-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 09/02/2022] [Indexed: 11/09/2022] Open
Abstract
Acute kidney injury (AKI) is frequent, often fatal and, for lack of specific therapies, can leave survivors with chronic kidney disease (CKD). We characterize the distribution of tubular cells (TC) undergoing polyploidy along AKI by DNA content analysis and single cell RNA-sequencing. Furthermore, we study the functional roles of polyploidization using transgenic models and drug interventions. We identify YAP1-driven TC polyploidization outside the site of injury as a rapid way to sustain residual kidney function early during AKI. This survival mechanism comes at the cost of senescence of polyploid TC promoting interstitial fibrosis and CKD in AKI survivors. However, targeting TC polyploidization after the early AKI phase can prevent AKI-CKD transition without influencing AKI lethality. Senolytic treatment prevents CKD by blocking repeated TC polyploidization cycles. These results revise the current pathophysiological concept of how the kidney responds to acute injury and identify a novel druggable target to improve prognosis in AKI survivors. Acute kidney injury is frequent, often fatal and can leave survivors with chronic kidney disease. Here the authors show that tubular cell polyploidy reduces early fatality sustaining residual function but promotes chronic kidney disease, which can be prevented by blocking YAP1
Collapse
Affiliation(s)
- Letizia De Chiara
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Carolina Conte
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Roberto Semeraro
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy
| | - Paula Diaz-Bulnes
- Translational immunology, Instituto de Investigación Sanitaria del Principado de Asturias ISPA, 33011, Oviedo, Asturias, España
| | - Maria Lucia Angelotti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Benedetta Mazzinghi
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Alice Molli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Giulia Antonelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Samuela Landini
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Maria Elena Melica
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy
| | - Marta Donati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Gilda La Regina
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Marco Allinovi
- Nephrology, Dialysis and Transplantation Unit, Careggi University Hospital, Florence, 50134, Italy
| | - Fiammetta Ravaglia
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, 59100, Italy
| | - Daniele Guasti
- Department of Experimental & Clinical Medicine, Imaging Platform, University of Florence, Florence, 50139, Italy
| | - Daniele Bani
- Department of Experimental & Clinical Medicine, Imaging Platform, University of Florence, Florence, 50139, Italy
| | - Luigi Cirillo
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Francesca Becherucci
- Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy
| | - Francesco Guzzi
- Nephrology and Dialysis Unit, Santo Stefano Hospital, Prato, 59100, Italy
| | - Alberto Magi
- Department of Information Engineering, University of Florence, Florence, 50139, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, 50139, Italy.,Flow Cytometry Diagnostic Center and Immunotherapy (CDCI), Careggi University Hospital, Florence, 50134, Italy
| | - Laura Lasagni
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Internal Medicine IV, LMU Hospital, Munich, 80336, Germany
| | - Elena Lazzeri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy.
| | - Paola Romagnani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50139, Italy. .,Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, 50139, Italy.
| |
Collapse
|
11
|
Mineralocorticoid Receptor Antagonists Mitigate Mitral Regurgitation-Induced Myocardial Dysfunction. Cells 2022; 11:cells11172750. [PMID: 36078158 PMCID: PMC9455158 DOI: 10.3390/cells11172750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Mitral regurgitation (MR), the disruption of the mitral valve, contributes to heart failure (HF). Under conditions of volume overload, excess mineralocorticoids promote cardiac fibrosis. The mineralocorticoid receptor antagonist spironolactone is a potassium-sparing diuretic and a guideline-recommended therapy for HF, but whether it can ameliorate degenerative MR remains unknown. Herein, we investigate the efficacy of spironolactone in improving cardiac remodeling in MR-induced HF compared with that of a loop diuretic, furosemide. Using a novel and mini-invasive technique, we established a rat model of MR. We treated the rats with spironolactone or furosemide for twelve weeks. The levels of cardiac fibrosis, apoptosis, and stress-associated proteins were then measured. In parallel, we compared the cardiac remodeling of 165 patients with degenerative MR receiving either spironolactone or furosemide. Echocardiography was performed at baseline and at six months. In MR rats treated with spironolactone, left ventricular function—especially when strained—and the pressure volume relationship significantly improved compared to those of rats treated with furosemide. Spironolactone treatment demonstrated significant attenuation of cardiac fibrosis and apoptosis in left ventricular tissue compared to furosemide. Further, spironolactone suppressed the expression of apoptosis-, NADPH oxidase 4 (NOX4)- and inducible nitric oxide synthase (iNOS)-associated proteins. Similarly, compared with MR patients receiving furosemide those prescribed spironolactone demonstrated a trend toward reduction in MR severity and showed improvement in left ventricular function. Collectively, MR-induced cardiovascular dysfunction, including fibrosis and apoptosis, was effectively attenuated by spironolactone treatment. Our findings suggest a potential therapeutic option for degenerative MR-induced HF.
Collapse
|
12
|
Matilla L, Jover E, Garaikoetxea M, Martín-Nuñez E, Arrieta V, García-Peña A, Navarro A, Fernández-Celis A, Gainza A, Álvarez V, Álvarez de la Rosa D, Sádaba R, Jaisser F, López-Andrés N. Sex-Related Signaling of Aldosterone/Mineralocorticoid Receptor Pathway in Calcific Aortic Stenosis. Hypertension 2022; 79:1724-1737. [PMID: 35549329 DOI: 10.1161/hypertensionaha.122.19526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND There are sex differences in the pathophysiology of aortic valve (AV) calcification in patients with aortic stenosis, although the molecular and cellular mechanisms have not been elucidated. Aldosterone (Aldo) promotes proteoglycan synthesis in valve interstitial cells (VICs) from mitral valves via the mineralocorticoid receptor (MR). We investigated the influence of sex in the role of Aldo/MR pathway in AV alterations in patients with aortic stenosis. METHODS AND RESULTS MR was expressed by primary aortic VICs and in AVs from patients with aortic stenosis. MR expression positively correlated with VIC activation markers in AVs from both sexes. However, MR expression was positively associated with molecules involved in AV calcification only in AV from men. Aldo enhanced VIC activation markers in cells from men and women. Interestingly, Aldo increased the expression of calcification markers only in VICs isolated from men. In female VICs, Aldo enhanced fibrotic molecules. MR antagonism (spironolactone) blocked all the above effects. Cytokine arrays showed ICAM (intercellular adhesion molecule)-1 and osteopontin to be specifically increased by Aldo in male VICs. In AVs from men, MR expression positively associated with both ICAM-1 (intercellular adhesion molecule-1) and osteopontin. Only in female VICs, estradiol treatment blocked Aldo-induced VICs activation, inflammation, and fibrosis. CONCLUSIONS These findings demonstrate that the Aldo/MR pathway could play a role in early stages of aortic stenosis by promoting VICs activation, fibrosis, and ulterior calcification. Importantly, Aldo/MR pathway is involved in fibrosis in women and in early AV calcification only in men. Accordingly, MR antagonism emerges as a new sex-specific pharmacological treatment to prevent AV alterations.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Ernesto Martín-Nuñez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Vanessa Arrieta
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Amaia García-Peña
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Diego Álvarez de la Rosa
- Department of Physiology, Institute of Biomedical Technology, University of Laguna, La Laguna, Spain (D.A.d.l.R.)
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris, Team Diabetes, Metabolic Diseases and Comorbidities, Paris, France (F.J.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain (L.M., E.J., M.G., E.M.-N., V.A., A.G.-P., A.N., A.F.-C., A.G., V.A., R.S., N.L.-A.)
| |
Collapse
|
13
|
Nakamura T, Bonnard B, Palacios-Ramirez R, Fernández-Celis A, Jaisser F, López-Andrés N. Biglycan Is a Novel Mineralocorticoid Receptor Target Involved in Aldosterone/Salt-Induced Glomerular Injury. Int J Mol Sci 2022; 23:ijms23126680. [PMID: 35743123 PMCID: PMC9224513 DOI: 10.3390/ijms23126680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
The beneficial effects of mineralocorticoid receptor (MR) antagonists (MRAs) for various kidney diseases are established. However, the underlying mechanisms of kidney injury induced by MR activation remain to be elucidated. We recently reported aldosterone-induced enhancement of proteoglycan expression in mitral valve interstitial cells and its association with fibromyxomatous valvular disorder. As the expression of certain proteoglycans is elevated in several kidney diseases, we hypothesized that proteoglycans mediate kidney injury in the context of aldosterone/MR pathway activation. We evaluated the proteoglycan expression and tissue injury in the kidney and isolated glomeruli of uninephrectomy/aldosterone/salt (NAS) mice. The MRA eplerenone was administered to assess the role of the MR pathway. We investigated the direct effects of biglycan, one of the proteoglycans, on macrophages using isolated macrophages. The kidney samples from NAS-treated mice showed enhanced fibrosis and increased expression of biglycan accompanying glomerular macrophage infiltration and enhanced expression of TNF-α, iNOS, Nox2, CCL3 (C-C motif chemokine ligand 3), and phosphorylated NF-κB. Eplerenone blunted these changes. Purified biglycan stimulated macrophages to express TNF-α, iNOS, Nox2, and CCL3. This was prevented by a toll-like receptor 4 (TLR4) or NF-κB inhibitor, indicating that biglycan stimulation is dependent on the TLR4/NF-κB pathway. We identified the proteoglycan biglycan as a novel target of MR involved in MR-induced glomerular injury and macrophage infiltration via a biglycan/TLR4/NF-κB/CCL3 cascade.
Collapse
Affiliation(s)
- Toshifumi Nakamura
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
| | - Roberto Palacios-Ramirez
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
| | - Frédéric Jaisser
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, 75006 Paris, France; (T.N.); (B.B.); (R.P.-R.)
- INSERM, Clinical Investigation Centre 1433, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), 54500 Nancy, France
- Correspondence: (F.J.); (N.L.-A.); Tel.: +33-144276485 (F.J.); +34-848428539 (N.L.-A.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain;
- Correspondence: (F.J.); (N.L.-A.); Tel.: +33-144276485 (F.J.); +34-848428539 (N.L.-A.)
| |
Collapse
|
14
|
Morales M, Martín-Vasallo P, Ávila J. Genetic Profiling of Glucocorticoid (NR3C1) and Mineralocorticoid (NR3C2) Receptor Polymorphisms before Starting Therapy with Androgen Receptor Inhibitors: A Study of a Patient Who Developed Toxic Myocarditis after Enzalutamide Treatment. Biomedicines 2022; 10:biomedicines10061271. [PMID: 35740293 PMCID: PMC9220762 DOI: 10.3390/biomedicines10061271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Enzalutamide is a nonsteroidal inhibitor of the androgen receptor (AR) signaling pathway and is used to treat patients with metastatic castration-resistant prostate cancer. However, the risk of cardiovascular-related hospitalization in patients with no contraindications for the use of enzalutamide is about 1–2%. To date, the underlying molecular basis of this has not been established. The androgen receptor, glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) are nuclear receptors that share structural similarities and have closely related DNA-binding sites and coregulators. In non-epithelial cells, a fine balance of the activities of these receptors is essential to ensure correct cellular function. In this study, we present a molecular characterization of these nuclear receptors in a prostate cancer patient who developed congestive heart failure after enzalutamide treatment. White cell RNAseq revealed a homozygous rs5522 MR polymorphism and both the rs143711342 and rs56149945 GR polymorphisms, carried in different alleles. No different specific splice isoforms were detected. Recent research suggests that AR inhibition by enzalutamide makes available a coregulator that specifically interacts with the rs5522-mutated MR, increasing its activity and producing adverse effects on cardiovascular health. We suggest an evaluation of the MR rs5522 polymorphism before starting therapy with AR inhibitors.
Collapse
Affiliation(s)
- Manuel Morales
- Service of Medical Oncology, University Hospital Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain;
| | - Pablo Martín-Vasallo
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain;
| | - Julio Ávila
- Laboratorio de Biología del Desarrollo, UD de Bioquímica y Biología Molecular and Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, 38200 La Laguna, Spain;
- Correspondence:
| |
Collapse
|
15
|
Bauersachs J, Lother A. Mineralocorticoid receptor activation and antagonism in cardiovascular disease: cellular and molecular mechanisms. Kidney Int Suppl (2011) 2022; 12:19-26. [DOI: 10.1016/j.kisu.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023] Open
|
16
|
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases. Annu Rev Physiol 2022; 84:585-610. [PMID: 35143332 DOI: 10.1146/annurev-physiol-060821-013950] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mineralocorticoid receptor (MR) activation in the heart and vessels leads to pathological effects, such as excessive extracellular matrix accumulation, oxidative stress, and sustained inflammation. In these organs, the MR is expressed in cardiomyocytes, fibroblasts, endothelial cells, smooth muscle cells, and inflammatory cells. We review the accumulating experimental and clinical evidence that pharmacological MR antagonism has a positive impact on a battery of cardiac and vascular pathological states, including heart failure, myocardial infarction, arrhythmic diseases, atherosclerosis, vascular stiffness, and cardiac and vascular injury linked to metabolic comorbidities and chronic kidney disease. Moreover, we present perspectives on optimization of the use of MR antagonists in patients more likely to respond to such therapy and review the evidence suggesting that novel nonsteroidal MR antagonists offer an improved safety profile while retaining their cardiovascular protective effects. Finally, we highlight future therapeutic applications of MR antagonists in cardiovascular injury.
Collapse
Affiliation(s)
- Jonatan Barrera-Chimal
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación UNAM-INC, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Benjamin Bonnard
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France;
| | - Frederic Jaisser
- INSERM, UMRS 1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France; .,INSERM Centre d'Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN INI-CRCT), Université de Lorraine, Nancy, France
| |
Collapse
|
17
|
Bagardi M, Zamboni V, Locatelli C, Galizzi A, Ghilardi S, Brambilla PG. Management of Chronic Congestive Heart Failure Caused by Myxomatous Mitral Valve Disease in Dogs: A Narrative Review from 1970 to 2020. Animals (Basel) 2022; 12:ani12020209. [PMID: 35049831 PMCID: PMC8773235 DOI: 10.3390/ani12020209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Myxomatous mitral valve disease (MMVD) is the most common acquired cardiovascular disease in dogs. The progression of the disease and the increasing severity of valvular regurgitation cause a volume overload of the left heart, leading to left atrial and ventricular remodeling and congestive heart failure (CHF). The treatment of chronic CHF secondary to MMVD in dogs has not always been the same over time. In the last fifty years, the drugs utilized have considerably changed, as well as the therapeutic protocols. Some drugs have also changed their intended use. An analysis of the literature concerning the therapy of chronic heart failure in dogs affected by this widespread degenerative disease is not available; a synthesis of the published literature on this topic and a description of its current state of art are needed. To the authors’ knowledge, a review of this topic has never been published in veterinary medicine; therefore, the aim of this study is to overview the treatments of chronic CHF secondary to MMVD in dogs from 1970 to 2020 using the general framework of narrative reviews. Abstract The treatment of chronic congestive heart failure (CHF), secondary to myxomatous mitral valve disease (MMVD) in dogs, has considerably changed in the last fifty years. An analysis of the literature concerning the therapy of chronic CHF in dogs affected by MMVD is not available, and it is needed. Narrative reviews (NRs) are aimed at identifying and summarizing what has been previously published, avoiding duplications, and seeking new study areas that have not yet been addressed. The most accessible open-access databases, PubMed, Embase, and Google Scholar, were chosen, and the searching time frame was set in five decades, from 1970 to 2020. The 384 selected studies were classified into categories depending on the aim of the study, the population target, the pathogenesis of MMVD (natural/induced), and the resulting CHF. Over the years, the types of studies have increased considerably in veterinary medicine. In particular, there have been 43 (24.29%) clinical trials, 41 (23.16%) randomized controlled trials, 10 (5.65%) cross-over trials, 40 (22.60%) reviews, 5 (2.82%) comparative studies, 17 (9.60%) case-control studies, 2 (1.13%) cohort studies, 2 (1.13%) experimental studies, 2 (1.13%) questionnaires, 6 (3.40%) case-reports, 7 (3.95%) retrospective studies, and 2 (1.13%) guidelines. The experimental studies on dogs with an induced form of the disease were less numerous (49–27.68%) than the studies on dogs affected by spontaneous MMVD (128–72.32%). The therapy of chronic CHF in dogs has considerably changed in the last fifty years: in the last century, some of the currently prescribed drugs did not exist yet, while others had different indications.
Collapse
|
18
|
Bauersachs J, López-Andrés N. Mineralocorticoid receptor in cardiovascular diseases-Clinical trials and mechanistic insights. Br J Pharmacol 2021; 179:3119-3134. [PMID: 34643952 DOI: 10.1111/bph.15708] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Aldosterone binds to the mineralocorticoid receptor (NR3C2), a transcription factor of the nuclear receptor family, present in the kidney and in various other non-epithelial cells including the heart and the vasculature. Indeed, extra-renal pathophysiological effects of this hormone have been characterized, extending its actions to the cardiovascular system. A growing body of clinical and pre-clinical evidence suggests that mineralocorticoid receptor overactivation plays an important pathophysiological role in cardiovascular remodelling by promoting cardiac hypertrophy, fibrosis, arterial stiffness and in inflammation and oxidative stress. The following review article outlines the role of mineralocorticoid receptor in cardiovascular disease with a focus on myocardial remodelling and heart failure (HF) including clinical trials as well as cellular and animal studies.
Collapse
Affiliation(s)
- Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Natalia López-Andrés
- Cardiovascular Translational Research. Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Spain
| |
Collapse
|
19
|
Wang L, Tang R, Zhang Y, Chen S, Guo Y, Wang X, Liu Z, Liu H, Zhang X, Liu BC. PTH-induced EndMT via miR-29a-5p/GSAP/Notch1 pathway contributed to valvular calcification in rats with CKD. Cell Prolif 2021; 54:e13018. [PMID: 33945189 PMCID: PMC8168417 DOI: 10.1111/cpr.13018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022] Open
Abstract
Background Endothelial‐to‐mesenchymal transition (EndMT) is a common pathophysiology in valvular calcification (VC) among non‐chronic kidney disease (CKD) patients. However, few studies were investigated in CKD‐induced VC. Parathyroid hormone (PTH) was considered to be an important component of EndMT in CKD‐induced cardiovascular diseases. Therefore, determining whether PTH could induce valvular EndMT and elucidating corresponding mechanism involved further study. Methods Performing a 5/6 nephrectomy with a high phosphorus diet was done to construct VC models in rats with CKD. miRNA sequencing was used to ascertain changes in microRNA in human umbilical vein endothelial cells (HUVECs) intervened by PTH. VC was observed by Von Kossa staining and scanning electron microscope. Results PTH induced valvular EndMT in VC. Global microRNA expression profiling of HUVECs was examined in PTH versus the control in vitro, in which miR‐29a‐5p was most notably decreased and was resumed by PTHrP(7‐34) (PTH‐receptor1 inhibitor). Overexpression of miR‐29a‐5p could inhibit PTH‐induced EndMT in vitro and valvular EndMT in vivo. The dual‐luciferase assay verified that γ‐secretase‐activating protein (GASP) served as the target of miR‐29a‐5p. miR‐29a‐5p‐mimics, si‐GSAP and DAPT (γ‐secretase inhibitor) inhibited PTH‐induced γ‐secretase activation, thus blocking Notch1 pathway activation to inhibit EndMT in vitro. Moreover, Notch1 pathway activation was observed in VC. Blocking Notch1 pathway activation via AAV‐miR‐29a and DAPT inhibited valvular EndMT. In addition, blocking Notch1 pathway activation was also shown to alleviate VC. Conclusion PTH activates valvular EndMT via miR‐29a‐5p/GSAP/Notch1 pathway, which can contribute to VC in CKD rats.
Collapse
Affiliation(s)
- Liting Wang
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.,Institute of Nephrology, School of Medicine, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Rining Tang
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.,Institute of Nephrology, School of Medicine, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yuxia Zhang
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.,Institute of Nephrology, School of Medicine, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Sijie Chen
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.,Institute of Nephrology, School of Medicine, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Yu Guo
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China.,Institute of Nephrology, School of Medicine, NanJing LiShui People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China
| | - Xiaochen Wang
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Zixiao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Hong Liu
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xiaoliang Zhang
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, School of Medicine, Zhong Da Hospital, Southeast University, Nanjing, China
| |
Collapse
|
20
|
Ibarrola J, Garaikoetxea M, Garcia-Peña A, Matilla L, Jover E, Bonnard B, Cuesta M, Fernández-Celis A, Jaisser F, López-Andrés N. Beneficial Effects of Mineralocorticoid Receptor Antagonism on Myocardial Fibrosis in an Experimental Model of the Myxomatous Degeneration of the Mitral Valve. Int J Mol Sci 2020; 21:ijms21155372. [PMID: 32731636 PMCID: PMC7432373 DOI: 10.3390/ijms21155372] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
Mitral valve prolapse (MVP) patients develop myocardial fibrosis that is not solely explained by volume overload, but the pathophysiology has not been defined. Mineralocorticoid receptor antagonists (MRAs) improve cardiac function by decreasing cardiac fibrosis in other heart diseases. We examined the role of MRA in myocardial fibrosis associated with myxomatous degeneration of the mitral valve. Myocardial fibrosis has been analyzed in a mouse model of mitral valve myxomatous degeneration generated by pharmacological treatment with Nordexfenfluramine (NDF) in the presence of the MRA spironolactone. In vitro, adult human cardiac fibroblasts were treated with NDF and spironolactone. In an experimental mouse, MRA treatment reduced interstitial/perivascular fibrosis and collagen type I deposition. MRA administration blunted NDF-induced cardiac expression of vimentin and the profibrotic molecules galectin-3/cardiotrophin-1. In parallel, MRA blocked the increase in cardiac non-fibrillar proteins such as fibronectin, aggrecan, decorin, lumican and syndecan-4. The following effects are blocked by MRA: in vitro, in adult human cardiac fibroblasts, NDF-treatment-induced myofibroblast activation, collagen type I and proteoglycans secretion. Our findings demonstrate, for the first time, the contribution of the mineralocorticoid receptor (MR) to the development of myocardial fibrosis associated with mitral valve myxomatous degeneration. MRA could be a therapeutic approach to reduce myocardial fibrosis associated with MVP.
Collapse
Affiliation(s)
- Jaime Ibarrola
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Amaia Garcia-Peña
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Benjamin Bonnard
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75013 Paris, France; (B.B.); (F.J.)
| | - Maria Cuesta
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
| | - Frederic Jaisser
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, USPC, Université Paris Descartes, Université Paris Diderot, 75013 Paris, France; (B.B.); (F.J.)
- Université de Lorraine, INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Instituto de Investigación Sanitaria de Navarra (IdiSNA), 31008 Pamplona, Spain; (J.I.); (M.G.); (A.G.-P.); (L.M.); (E.J.); (M.C.); (A.F.-C.)
- Université de Lorraine, INSERM, Centre d’Investigations Cliniques-Plurithématique 1433, UMR 1116, CHRU de Nancy, French-Clinical Research Infrastructure Network (F-CRIN) INI-CRCT (Cardiovascular and Renal Clinical Trialists), Nancy, France
- Correspondence: ; Tel.: +34-848428539; Fax: +34-848422300
| |
Collapse
|
21
|
Affiliation(s)
- Achim Lother
- From the Department of Cardiology and Angiology I, Faculty of Medicine, Heart Center Freiburg University, University of Freiburg, Germany (A.L.)
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Germany (A.L.)
| |
Collapse
|