1
|
Fu J, Su C, Ge Y, Ao Z, Xia L, Chen Y, Yang Y, Chen S, Xu R, Yang X, Huang K, Fu Q. PDE4D inhibition ameliorates cardiac hypertrophy and heart failure by activating mitophagy. Redox Biol 2025; 81:103563. [PMID: 40015131 PMCID: PMC11909752 DOI: 10.1016/j.redox.2025.103563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Cyclic adenosine monophosphate (cAMP) plays a major role in normal and pathologic signaling in the heart. Phosphodiesterase 4 (PDE4) is a major PDE degrading cAMP in the heart. There are inconsistencies concerning the roles of the PDE4 isoforms 4B and 4D in regulation of cardiac function. Cardiac PDE4B overexpression is beneficial in remodeling and heart failure (HF), however, the effect of PDE4D and PDE4 inhibitor in HF remains unclear. We generated global and conditional cardiac-specific heterozygous PDE4D knockout mice and adeno-associated virus serotype 9-PDE4D overexpression to determine the role of PDE4D in cardiac hypertrophy and HF. PDE4D upregulation was observed in failing hearts from human and isoproterenol injection and TAC mice. In vitro, isoproterenol stimulation increased PDE4D expression via PKA but had no effect on PDE4B expression in cardiomyocytes. PDE4D overexpression per se induced oxidative stress, mitochondrial damage and cardiomyocyte hypertrophy by decreasing PINK1/Parkin-mediated mitophagy through inhibiting cAMP-PKA-CREB-Sirtuin1 (SIRT1) signaling pathway, while PDE4B overexpression did not affect CREB-SIRT1 pathway and mitophagy but exhibited a protective effect on isoproterenol-induced oxidative stress and hypertrophy in cardiomyocytes. PDE4D silencing or inhibition with PDE4 inhibitor roflumilast ameliorated isoproterenol-induced mitochondrial injury and cardiomyocyte hypertrophy. In vivo, ISO injection or TAC inhibited cardiac mitophagy and caused cardiac hypertrophy and HF, which were ameliorated by roflumilast or cardiac-specific PDE4D haploinsufficiency. Conversely, cardiac PDE4D overexpression suppressed cardiac mitophagy and abolished the protective effects of global PDE4D haploinsufficiency on TAC-induced cardiac hypertrophy and HF. In conclusion, these studies elucidate a novel mechanism by which sustained adrenergic stimulation contributes to cardiac hypertrophy and HF by increasing PDE4D via cAMP-PKA signaling, which in turn reduces cAMP-PKA activity, resulting in cardiomyocyte hypertrophy and mitochondrial injury via inhibition of CREB-SIRT1 signaling-mediated mitophagy. PDE4D inhibition may represent a novel therapeutic strategy for HF.
Collapse
Affiliation(s)
- Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Congping Su
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Ge
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Ao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xia
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingxiang Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yizheng Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiwei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
2
|
Tang J, Tudi X, Zhang T, Zhu J, Shen T. Neutrophil-related IL1R2 gene predicts the occurrence and early progression of myocardial infarction. Front Cardiovasc Med 2025; 12:1516043. [PMID: 40231027 PMCID: PMC11994735 DOI: 10.3389/fcvm.2025.1516043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/19/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction Myocardial infarction (MI) is a leading cause of death worldwide. Immune cells play a significant role in the MI development. This study aims to identify a marker related to neutrophil for the diagnosis and early progression of MI. Methods Key genes were screened using three machine learning algorithms to establish a diagnostic model. A gene associated with the early progression of MI was identified based on single cell RNA sequencing data. To further validate the predictive value of the gene, the mouse models of MI were constructed. Immunofluorescence (IF) analysis demonstrated the co-expression of the gene with neutrophils. Immunohistochemistry (IHC) was performed to validate the role of the gene in the progression of MI. Results Neutrophils were identified and verified as the key infiltrating immune cells (IICs) involved in the onset of MI. A diagnostic panel with superior performance was developed using five key genes related to neutrophils in MI (AUC = 0.887). Among the panel, IL1R2 was found to early phase of MI, which was further corroborated by IHC in mouse models of MI. Conclusions This study suggests that IL1R2, which is specific to neutrophils, can predict the diagnosis and early progression of MI, providing new insights into the clinical management of MI.
Collapse
Affiliation(s)
- Jieqiong Tang
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xierenayi Tudi
- Department of Cardiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianxiang Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingbo Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongtong Shen
- Department of Cardiology, Chuzhou Hospital Affiliated to Anhui Medical University, Chuzhou, China
| |
Collapse
|
3
|
Lian Y, Lai X, Wu C, Wang L, Shang J, Zhang H, Jia S, Xing W, Liu H. The roles of neutrophils in cardiovascular diseases. Front Cardiovasc Med 2025; 12:1526170. [PMID: 40176832 PMCID: PMC11961988 DOI: 10.3389/fcvm.2025.1526170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
The immune response plays a vital role in the development of cardiovascular diseases (CVDs). As a crucial component of the innate immune system, neutrophils are involved in the initial inflammatory response following cardiovascular injury, thereby inducing subsequent damage and promoting recovery. Neutrophils exert their functional effects in tissues through various mechanisms, including activation and the formation of neutrophil extracellular traps (NETs). Once activated, neutrophils are recruited to the site of injury, where they release inflammatory mediators and cytokines. This study discusses the main mechanisms associated with neutrophil activity and proposes potential new therapeutic targets. In this review, we systematically summarize the diverse phenotypes of neutrophils in disease regulatory mechanisms, different modes of cell death, and focus on the relevance of neutrophils to various CVDs, including atherosclerosis, acute coronary syndrome, myocardial ischemia/reperfusion injury, hypertension, atrial fibrillation, heart failure, and viral myocarditis. Finally, we also emphasize the preclinical/clinical translational significance of neutrophil-targeted strategies.
Collapse
Affiliation(s)
- Yanjie Lian
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Xiaolei Lai
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Cong Wu
- Beijing Hospital of Traditional Chinese Medicine, Huairou Hospital, Beijing, China
| | - Li Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - JuJu Shang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Heyi Zhang
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Sihan Jia
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenlong Xing
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Hongxu Liu
- Department of Cardiovascular Medicine, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Ren HL, Zhang SH, Li PY. The multifaceted role of phosphodiesterase 4 in tumor: from tumorigenesis to immunotherapy. Front Immunol 2025; 16:1528932. [PMID: 40129976 PMCID: PMC11931042 DOI: 10.3389/fimmu.2025.1528932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Phosphodiesterase 4 (PDE4) is an enzyme that specifically hydrolyzes the second messenger cAMP and has a critical role in the regulation of a variety of cellular functions. In recent years, PDE4 has attracted great interest in cancer research, and its role in tumorigenesis and development has been gradually elucidated. Research indicates that abnormal expression or heightened activity of PDE4 is associated with the initiation and progression of multiple cancers, including lung, colorectal, and hematological cancers, by facilitating cell proliferation, migration, invasion, and anti-apoptosis. Moreover, PDE4 also influences the tumor immune microenvironment, significantly immune evasion by suppressing anti-tumor immune responses, reducing T-cell activation, and promoting the polarization of tumor-associated macrophages toward a pro-tumorigenic phenotype. However, the PDE4 family may have both oncogenic and tumor-suppressive effects, which could depend on the specific type and grade of the tumor. PDE4 inhibitors have garnered substantial interest as potential anti-cancer therapeutics, directly inhibiting tumor cell growth and restoring immune surveillance capabilities to enhance the clearance of tumor cells. Several PDE4 inhibitors are currently under investigation with the aim of exploring their potential in cancer therapy, particularly in combination strategies with immune checkpoint inhibitors, to improve therapeutic efficacy and mitigate the side effects of conventional chemotherapy. This review provides an overview of PDE4 in tumorigenesis, drug resistance, immunotherapy, and the anti-tumor actions of its inhibitors, intending to guide the exploration of PDE4 as a new target in tumor therapy.
Collapse
Affiliation(s)
- Huili-li Ren
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shao-hui Zhang
- Department of Pharmacy, Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei-yuan Li
- Division of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Wenchang People’s Hospital, Wenchang, Hainan, China
| |
Collapse
|
5
|
Dos Santos TCF, Silva EN, Frezarim GB, Salatta BM, Baldi F, Fonseca LFS, Albuquerque LGD, Muniz MMM, Silva DBDS. Identification of cis-sQTL demonstrates genetic associations and functional implications of inflammatory processes in Nelore cattle muscle tissue. Mamm Genome 2025; 36:106-117. [PMID: 39825903 DOI: 10.1007/s00335-024-10100-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/22/2024] [Indexed: 01/20/2025]
Abstract
This study aimed to identify splicing quantitative trait loci (cis-sQTL) in Nelore cattle muscle tissue and explore the involvement of spliced genes (sGenes) in immune system-related biological processes. Genotypic data from 80 intact male Nelore cattle were obtained using SNP-Chip technology, while RNA-Seq analysis was performed to measure gene expression levels, enabling the integration of genomic and transcriptomic datasets. The normalized expression levels of spliced transcripts were associated with single nucleotide polymorphisms (SNPs) through an analysis of variance using an additive linear model with the MatrixEQTL package. A permutation analysis then assessed the significance of the best SNPs for each spliced transcript. Functional enrichment analysis was performed on the sGenes to investigate their roles in the immune system. In total, 3,187 variants were linked to 3,202 spliced transcripts, with 83 sGenes involved in immune system processes. Of these, 31 sGenes were enriched for five transcription factors. Most cis-sQTL effects were found in intronic regions, with 27 sQTL variants associated with disease susceptibility and resistance in cattle. Key sGenes identified, such as GSDMA, NLRP6, CASP6, GZMA, CASP4, CASP1, TREM2, NLRP1, and NAIP, were related to inflammasome formation and pyroptosis. Additionally, genes like PIDD1, OPTN, NFKBIB, STAT1, TNIP3, and TREM2 were involved in regulating the NF-kB pathway. These findings lay the groundwork for breeding disease-resistant cattle and enhance our understanding of genetic mechanisms in immune responses.
Collapse
Affiliation(s)
- Thaís Cristina Ferreira Dos Santos
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP, Brasil.
| | - Evandro Neves Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brasil
| | | | - Bruna Maria Salatta
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
| | | | - Lucia Galvão De Albuquerque
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brasil
| | - Maria Malane Magalhães Muniz
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil
- University of Guelph, UOGELPH, Guelph, Canada
| | - Danielly Beraldo Dos Santos Silva
- Universidade Professor Edson Antônio Velano (UNIFENAS), Rodovia 179, Km 0, Alfenas, MG, 37132440, Brasil.
- Faculdade de Ciências Agrárias e Veterinárias (FCAV-UNESP), Jaboticabal, SP, Brasil.
| |
Collapse
|
6
|
Liu C, Yan C, Liu D, Song H, Han Y. GABARAPL1 Exerts Regulatory Effects on Hypoxia-Induced Pyroptosis in the Pathogenesis of Myocardial Infarction. J Cell Mol Med 2025; 29:e70469. [PMID: 40095893 PMCID: PMC11913011 DOI: 10.1111/jcmm.70469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/04/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Myocardial infarction (MI) is a major health threat, with high incidence and poor prognosis. This study aims to discover novel biomarkers and therapeutic targets to reduce myocardial damage and improve patient survival. A comprehensive bioinformatics analysis of MI datasets was conducted to identify pivotal genes related to pyroptosis and autophagy. These genes underwent protein-protein interaction (PPI) analysis, functional enrichment analysis, and immune infiltration analysis. Receiver operating characteristic (ROC) curves and nomograms were used to pinpoint the most diagnostic hub genes. Western blotting and qRT-PCR were performed to evaluate their expression and mechanisms. Drug prediction and molecular docking identified potential therapeutic agents targeting hub genes, with validation of their effects on hypoxia-induced pyroptosis both in vivo and in vitro. In conclusion, GABARAPL1 was identified as a hub gene, and PIK90 emerged as a promising therapeutic candidate drug. GABARAPL1 expression was significantly upregulated in heart tissue following MI and in endothelial cells subjected to hypoxic conditions. Silencing GABARAPL1 aggravated hypoxia-induced pyroptosis in endothelial cells. In vivo, PIK90 improved survival, reduced cardiac dysfunction, and alleviated myocardial fibrosis induced by MI. In vitro, PIK90 inhibited hypoxia-induced pyroptosis in endothelial cells. Consequently, GABARAPL1 may represent a promising therapeutic target for the treatment of MI.
Collapse
Affiliation(s)
- Chunying Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), cardiovascular Research Institute and Department of Cardiology, Shenyang, China
- Beifang Hospital of China Medical University, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), cardiovascular Research Institute and Department of Cardiology, Shenyang, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), cardiovascular Research Institute and Department of Cardiology, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), cardiovascular Research Institute and Department of Cardiology, Shenyang, China
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), cardiovascular Research Institute and Department of Cardiology, Shenyang, China
- Beifang Hospital of China Medical University, Shenyang, China
| |
Collapse
|
7
|
Liu Y, Qi F, Xiang LJ, Yi ZJ, Li SW. Rutaecarpine alleviates hepatic ischemia‒reperfusion injury in liver transplantation by inhibiting inflammatory response and oxidative stress. Front Pharmacol 2025; 16:1539744. [PMID: 39963247 PMCID: PMC11830625 DOI: 10.3389/fphar.2025.1539744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Background Donation after circulatory death (DCD) livers are limited by mandatory warm ischemia and are more susceptible to ischemia‒reperfusion injury (IRI). Inflammation and oxidative stress play key roles in the development of hepatic IRI, and Rutaecarpine (Rut) has anti-inflammatory and anti-oxidative stress effects. The aim of this study was to investigate whether Rut can alleviate hepatic IRI in liver transplantation (LT) and to explore the underlying mechanisms. Methods Rat DCD LT and oxygen-glucose deprivation/reoxygenation (OGD/R) cell models were established to clarify the effect of Rut on hepatic IRI. The key molecules involved in the hepatoprotective effects of Rut were identified through joint analysis of data from LT patients and drug targets. The target was further validated by in silico, in vivo and in vitro experiments. Results Rut significantly alleviated liver dysfunction, pathological injury, and apoptosis and improved the survival rate of the rats subjected to LT. In addition, Rut significantly inhibited inflammatory response and oxidative stress. Rut also had similar effects on OGD/R-induced hepatocyte injury. Mechanistically, bioinformatics analysis and in vivo and in vitro experiments revealed that PDE4B may be a key target by which Rut exerts its protective effect, and molecular docking and cellular thermal shift assay confirmed this result. The function of PDE4B was studied via gene intervention technology, and the results showed that PDE4B can aggravate hepatic IRI. Furthermore, PDE4B overexpression abrogated the protective effect of Rut on the liver in LT. Conclusion Rut alleviates hepatic IRI by targeting PDE4B to inhibit inflammation and oxidative stress. These findings highlight the potential of Rut as a drug candidate for the treatment of patients undergoing LT.
Collapse
Affiliation(s)
- Yan Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Hepatobiliary Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Feng Qi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lun-Jian Xiang
- Department of Hepatobiliary Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhu-Jun Yi
- Department of Hepatobiliary Surgery, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Sheng-Wei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Muhtar E, Ylham G, Tiemuer A, Edirs S. Unraveling the Dual Anti-Inflammatory and Antioxidant Mechanisms of Acteoside: Computational Insights and Experimental Validation. Chem Biodivers 2025; 22:e202401564. [PMID: 39365024 DOI: 10.1002/cbdv.202401564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
Acteoside (ACT) is one of the primary bioactive ingredients in Cistanche tubulosa (Schenk). Its remarkable efficacy in treating immune-related and inflammatory disorders has garnered significant interest among scientific circles. However, the anti-inflammatory and antioxidant effects of ACT and its underlying molecular mechanisms require further investigation. In this study, pharmacophore-based reverse docking and molecular dynamics simulations identified potential anti-inflammatory targets in silico. Studies conducted in vitro with lipopolysaccharide (LPS)-induced RAW264.7 cells validated the anti-inflammatory properties of ACT. Methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays indicated ACT's non-toxic and growth-promoting effects on cells. ACT significantly reduced nitric oxide (NO) and reactive oxygen species (ROS) production and restored levels of antioxidant enzymes. It also decreased pro-inflammatory cytokines. Western blotting assays indicated that ACT inhibited p38, TNF-α, PI3 K/AKT, and NF-κB signaling pathways. These findings underscore ACT's ability to mitigate acute inflammation in RAW264.7 cells by modulating key signaling pathways and provide the scientific basis for enhancing the medicinal value of ACT and future drug development.
Collapse
Affiliation(s)
- Eldar Muhtar
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| | - Gulfira Ylham
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| | - Atawulla Tiemuer
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| | - Salamet Edirs
- Institute of Agro-products Storage and Processing, Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi, Xinjiang, 830091, China
| |
Collapse
|
9
|
Beltrami VA, Martins FRB, Martins DG, Queiroz-Junior CM, Félix FB, Resende LC, Santos FRDS, Lacerda LDSB, Costa VRDM, da Silva WN, Guimaraes PPG, Guimaraes G, Soriani FM, Teixeira MM, Costa VV, Pinho V. Selective phosphodiesterase 4 inhibitor roflumilast reduces inflammation and lung injury in models of betacoronavirus infection in mice. Inflamm Res 2025; 74:24. [PMID: 39862252 DOI: 10.1007/s00011-024-01985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE We aimed to understand the potential therapeutic and anti-inflammatory effects of the phosphodiesterase-4 (PDE4) inhibitor roflumilast in models of pulmonary infection caused by betacoronaviruses. METHODS Mice were infected intranasally with murine hepatitis virus (MHV-3) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Roflumilast was given to MHV-3-infected mice therapeutically at doses of 1 mg/kg or 10 mg/kg, or prophylactically at 10 mg/kg. In SARS-CoV-2-infected mice, roflumilast was given therapeutically at a dose of 10 mg/kg. Lung histopathology, chemokines (CXCL-1 and CCL2), cytokines (IL-1β, IL-6, TNF, IFN-γ, IL-10 and TGFβ), neutrophil immunohistochemical staining (Ly6G+ cells), macrophage immunofluorescence staining (F4/80+ cells), viral titration plaque assay, real-time PCR virus detection, and blood cell counts were examined. RESULTS Therapeutic treatment with roflumilast at 10 mg/kg reduced lung injury in SARS-CoV-2 or MHV-3-infected mice without compromising viral clearance. In MHV-3-infected mice, reduced lung injury was associated with decreased chemokines levels, prevention of neutrophil aggregates and reduced macrophage accumulation in the lung tissue. However, the prophylactic treatment strategy with roflumilast increased lung injury in MHV-3-infected mice. CONCLUSION Our findings indicate that therapeutic treatment with roflumilast reduced lung injury in MHV-3 and SARS-CoV-2 lung infections. Given the protection induced by roflumilast in inflammation, PDE4 targeting could be a promising therapeutic avenue worth exploring following severe viral infections of the lung.
Collapse
Affiliation(s)
- Vinícius Amorim Beltrami
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Flávia Rayssa Braga Martins
- Departamento Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Débora Gonzaga Martins
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Celso Martins Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Franciel Batista Félix
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Letícia Cassiano Resende
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Felipe Rocha da Silva Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Larisse de Souza Barbosa Lacerda
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Victor Rodrigues de Melo Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Walison Nunes da Silva
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Pedro Pires Goulart Guimaraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Goulart Guimaraes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Frederico Marianetti Soriani
- Departamento Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vivian Vasconcelos Costa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Vanessa Pinho
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil.
| |
Collapse
|
10
|
Jin S, Wu Z. Study on Immune-Related Genes and Clinical Validation of Acute Myocardial Infarction Based on Bioinformatics. Biochem Genet 2025:10.1007/s10528-025-11029-y. [PMID: 39820825 DOI: 10.1007/s10528-025-11029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Acute myocardial infarction (AMI) is a cardiovascular disease featuring the narrowing and hardening of coronary arteries triggered by a combination of factors, which ultimately leads to the death of heart muscle. We retrieved the GSE109048 and GSE123342 datasets from the Gene Expression Omnibus (GEO) database. After integrating these datasets, we selected 154 module key genes with the help of weighted correlation network analysis (WGCNA). After that, we used protein-protein interaction networks (PPI) analysis to screen out 18 core genes in the protein interaction network from 154 genes. Finally, we used three machine learning algorithms to jointly identify three genes (CLEC4D, CLEC4E and LY96) that may predict or influence the progression of AMI. In the dataset, CLEC4D, CLEC4E and LY96 were significantly overexpressed in AMI patients. Immune infiltration analysis revealed that CLEC4D, CLEC4E and LY96 could affect the extent of immune cell infiltration. For further verification, we found that the expression levels of CLEC4D, CLEC4E and LY96 in the AMI cohort were significantly higher than those in coronary heart disease (CAD) patients by qRT-PCR. This finding corroborated the results derived from bioinformatics analysis. In summary, CLEC4D, CLEC4E and LY96 can be used to predict the occurrence of AMI.
Collapse
Affiliation(s)
- Shuang Jin
- Department of Emergency, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhang Wu
- Department of Emergency, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
11
|
Talabieke S, Yang X, Yang J, Wan Q, Zhu D, Rao H, Wu Y, Chen Z, Li H, Xu P, Chen H, Liu DP, Zhang X, FitzGerald GA, Wang M. Arachidonic acid synergizes with aspirin preventing myocardial ischemia-reperfusion injury and mitigates bleeding risk. Cardiovasc Res 2025:cvae254. [PMID: 39780702 DOI: 10.1093/cvr/cvae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/14/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025] Open
Abstract
AIMS The therapeutic efficacy of coronary revascularization is compromised by myocardial ischemia-reperfusion (MI/R) injury. Higher levels of circulating arachidonic acid (AA) are reportedly associated with lower risk of cardiovascular disease. The cyclooxygenase (COX) pathway metabolizes AA into prostaglandins (PGs) and the platelet-activating thromboxane A2 (TXA2), which is inhibited by aspirin. We aimed to explore whether AA or its combination with aspirin modulates MI/R injury and aspirin-caused gastric bleeding. METHODS AND RESULTS Mice were subjected to 30min coronary artery ligation followed by reperfusion. AA reduced MI/R injury in mice, and its combination with aspirin provided further cardioprotection. Aspirin inhibited MI/R-triggered platelet activation and ameliorated microvascular obstruction immediately upon reperfusion, whereas AA improved microvascular perfusion at a later stage of reperfusion, coinciding with increased coronary vasodilatation. Co-administration of AA and aspirin markedly reduced cardiac neutrophil infiltration and vascular permeability and improved microcirculation. AA increased urinary metabolites of PGI2 and PGE2, not TXA2, and this selective augmentation was further enhanced by co-treatment with aspirin. Elevation in PGI2 and PGE2 correlated with reduced infarction and improved ventricular function, and inhibiting COX-2 attenuated the synergistic cadioprotection. Furthermore, oral administration of AA with aspirin after reperfusion provided a maximal cardioprotection and abolished aspirin-caused gastric bleeding. CONCLUSION AA synergizes with aspirin in protecting against MI/R injury, while minimizing the related bleeding risk, a major concern for patients with acute myocardial infarction. This is attributable to the selective augmentation of PGI2 and PGE2 that is amplified by TXA2 suppression by aspirin, underscoring improved microcirculation and ameliorated inflammation.
Collapse
Affiliation(s)
- Shaletanati Talabieke
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xuejian Yang
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dekun Zhu
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Yifei Wu
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Huihui Li
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Pengfei Xu
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xu Zhang
- Tianjin Key Laboratory of Metabolic Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Center for Cardiovascular Diseases, Research Center of Basic Medical Sciences, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
- National Health Commission Cardiovascular Disease Regenerative Medicine Research Key Laboratory, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University. Zhengzhou 450046, China
| |
Collapse
|
12
|
Qiao X, Cao X, Xu S, Wang C, Guo R, Yao X, Zhang Q. Menisoxoisoaporphine A, a novel oxoisoaporphine alkaloid from Menispermi Rhizoma, inhibits inflammation by targeting PDE4B. Front Pharmacol 2024; 15:1505116. [PMID: 39691395 PMCID: PMC11649434 DOI: 10.3389/fphar.2024.1505116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Background Dysregulated and excessive inflammatory reactions can lead to tissue damage, which is the underlying cause of most human diseases. Menisoxoisoaporphine A (MA), a novel oxoisoaporphine alkaloid, was obtained from Menispermi Rhizoma, a traditional Chinese medicinal herb used in the treatment of inflammatory conditions in clinical practice. This suggests that MA has very promising potential for the development of anti-inflammatory therapeutics. Hence, this study aims to investigate the anti-inflammatory effects and underlying mechanisms of MA. Method The anti-inflammatory effects of MA were evaluated in lipopolysaccharide (LPS)-induced mouse macrophage RAW264.7 cells. Its underlying mechanisms were explored through RNA sequencing and Western blotting. The binding modes and interactions sites between MA and phosphodiesterase 4B (PDE4B) were predicted using molecular docking and validated by molecular dynamics simulation. Results MA treatment significantly reduced LPS-induced morphological changes, inflammatory cytokine relesae, and proinflammatory genes expression in RAW264.7 cells compared to the LPS-induced controls. Transcriptome sequencing analysis suggested that PDE4B might be a key target for MA to exert its therapeutic effect. Mechanismly, MA directly acted on Tyr405 site of PDE4B, thus leading to a sustained elevation of the cyclic adenosine monophosphate (cAMP) levels, which subsequently inactivated NF-κB signaling pathway by phosphorylating protein kinase A (PKA). MA inhibited the NF-κB-mediated inflammatory response depending on PDE4B. Conclusion MA, a natural and novel compound, exerted anti-inflammatory effects in LPS-induced RAW264.7 macrophage cells. It demonstrated a strong binding ability to the Tyr405 sites of PDE4B, thereby inhibiting NF-κB signaling pathway by regulating the cAMP-PKA axis. Elucidating the interaction between MA and PDE4B holds significant potential for the advancement of innovative therapeutic strategies aimed at inflammatory diseases. By strategically modulating this interaction, it may be feasible to achieve more precise regulation of inflammatory responses, thereby offering promising therapeutic benefits for conditions such as rheumatoid arthritis, asthma, and inflammatory bowel disease.
Collapse
Affiliation(s)
- Xin Qiao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Cao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Shuang Xu
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Cunlin Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Rui Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Xiaojuan Yao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| | - Qiong Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
- Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan, China
- Shanxi Provincial Key Laboratory of Drug Synthesis and Novel Pharmaceutical Preparation Technology, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
13
|
Chen Y, Li S, Hou X, Jia Y. PDE4B abrogation extenuates angiotensin II-induced endothelial dysfunction related to hypertension through up-regulation of AMPK/Sirt1/Nrf2/ARE signaling. Tissue Cell 2024; 91:102637. [PMID: 39591723 DOI: 10.1016/j.tice.2024.102637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Endothelial dysfunction is commonly perceived as a precursor in the process of hypertension, a severe cardiovascular disorder. Phosphodiesterase 4B (PDE4B) inactivation has been proposed to exert cardioprotective effects and prevent pulmonary hypertension. However, the role of PDE4B in endothelial dysfunction in hypertension remains inexplicit, which will be investigated in the present work. In angiotensin II (Ang II)-induced human umbilical vein endothelial cells (HUVECs), RT-qPCR and Western blotting were used to analyze PDE4B expression. CCK-8 method was used to detect cell viability. Flow cytometry assay and Caspase 3 assay kit were used to detect cellular apoptotic level. Wound healing and tube formation assays were respectively used to detect cell migration and angiogenesis. Western blotting and corresponding assay kits were respectively used to analyze the expressions and contents of endothelial dysfunction markers. JC-1 assay, RT-qPCR and relevant assay kit were respectively used to detect mitochondrial membrane potential (ΔΨm), quantify mitochondrial DNA (mtDNA) copy number and mitochondrial permeability transition pore (mPTP) opening. Besides, Western blotting was used to analyze the expressions of endoplasmic reticulum stress (ERS) and AMP-activated protein kinase (AMPK)/sirtuin 1 (Sirt1)/nuclear factor-erythroid 2 related factor 2 (Nrf2)/antioxidant response element (ARE) signaling-associated proteins. PDE4B expression was increased in Ang II- induced HUVECs. PDE4B knockdown promoted the viability, migration, angiogenesis while inhibiting the apoptosis, endothelial dysfunction, ERS and mitochondrial damage in Ang II-induced HUVECs. Additionally, PDE4B silence activated AMPK/Sirt1/Nrf2/ARE pathway and AMPK inhibitor Compound C (CC) partially reversed the effects of PDE4B down-regulation on Ang II-induced HUVECs. Conclusively, PDE4B inhibition might protect against Ang II-induced endothelial dysfunction in HUVECs via up-regulating AMPK/Sirt1/Nrf2/ARE pathway, which might be mediated by the suppression of ERS and mitochondrial damage.
Collapse
Affiliation(s)
- Yong Chen
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China.
| | - Suipeng Li
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China
| | - Xuqing Hou
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China
| | - Yinfeng Jia
- Cardiovascular Department, Yueqing Second People's Hospital, Hongqiao Town, Yueqing City, Zhejiang Province 325608, China
| |
Collapse
|
14
|
Zhao B, Zhao Y, Sun X. Mechanism and therapeutic targets of circulating immune cells in diabetic retinopathy. Pharmacol Res 2024; 210:107505. [PMID: 39547465 DOI: 10.1016/j.phrs.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic retinopathy (DR) continues to be the leading cause of preventable vision loss among working-aged adults, marked by immune dysregulation within the retinal microenvironment. Typically, the retina is considered as an immune-privileged organ, where circulating immune cells are restricted from entry under normal conditions. However, during the progression of DR, this immune privilege is compromised as circulating immune cells breach the barrier and infiltrate the retina. Increasing evidence suggests that vascular and neuronal degeneration in DR is largely driven by the infiltration of immune cells, particularly neutrophils, monocyte-derived macrophages, and lymphocytes. This review delves into the mechanisms and therapeutic targets associated with these immune cell populations in DR, offering a promising and innovative approach to managing the disease.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
16
|
Köhler D, Leiss V, Beichert L, Killinger S, Grothe D, Kushwaha R, Schröter A, Roslan A, Eggstein C, Focken J, Granja T, Devanathan V, Schittek B, Lukowski R, Weigelin B, Rosenberger P, Nürnberg B, Beer-Hammer S. Targeting Gα i2 in neutrophils protects from myocardial ischemia reperfusion injury. Basic Res Cardiol 2024; 119:717-732. [PMID: 38811421 PMCID: PMC11461587 DOI: 10.1007/s00395-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gαi proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gαi2 proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras. In fact, the absence of Gαi2 in all blood cells reduced the extent of mIRI (22,9% infarct size of area at risk (AAR) Gnai2-/- → wt vs 44.0% wt → wt; p < 0.001) whereas the absence of Gαi2 in non-hematopoietic cells increased the infarct damage (66.5% wt → Gnai2-/- vs 44.0% wt → wt; p < 0.001). Previously we have reported the impact of platelet Gαi2 for mIRI. Here, we show that infarct size was substantially reduced when Gαi2 signaling was either genetically ablated in neutrophils/macrophages using LysM-driven Cre recombinase (AAR: 17.9% Gnai2fl/fl LysM-Cre+/tg vs 42.0% Gnai2fl/fl; p < 0.01) or selectively blocked with specific antibodies directed against Gαi2 (AAR: 19.0% (anti-Gαi2) vs 49.0% (IgG); p < 0.001). In addition, the number of platelet-neutrophil complexes (PNCs) in the infarcted area were reduced in both, genetically modified (PNCs: 18 (Gnai2fl/fl; LysM-Cre+/tg) vs 31 (Gnai2fl/fl); p < 0.001) and in anti-Gαi2 antibody-treated (PNCs: 9 (anti-Gαi2) vs 33 (IgG); p < 0.001) mice. Of note, significant infarct-limiting effects were achieved with a single anti-Gαi2 antibody challenge immediately prior to vessel reperfusion without affecting bleeding time, heart rate or cellular distribution of neutrophils. Finally, anti-Gαi2 antibody treatment also inhibited transendothelial migration of human neutrophils (25,885 (IgG) vs 13,225 (anti-Gαi2) neutrophils; p < 0.001), collectively suggesting that a therapeutic concept of functional Gαi2 inhibition during thrombolysis and reperfusion in patients with myocardial infarction should be further considered.
Collapse
Affiliation(s)
- David Köhler
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Veronika Leiss
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Lukas Beichert
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Simon Killinger
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Daniela Grothe
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Ragini Kushwaha
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Agnes Schröter
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Anna Roslan
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Claudia Eggstein
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Jule Focken
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Tiago Granja
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Vasudharani Devanathan
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
- Department of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, 517507, India
| | - Birgit Schittek
- Division of Dermatooncology, Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Robert Lukowski
- Department of Pharmacology, Toxicology and Clinical Pharmacy, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Multiscale Immunoimaging, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Peter Rosenberger
- Department of Anesthesiology and Intensive Care Medicine, Eberhard Karls University, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomic, Eberhard Karls University, and Interfaculty Center of Pharmacogenomic and Drug Research, Wilhelmstrasse 56, 72074, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
17
|
Zhang Y, Chen Z, Guo J, Wan Q, Zhang Y, Li H, Rao H, Yang J, Xu P, Chen H, Wang M. Factor XII and prekallikrein promote microvascular inflammation and psoriasis in mice. Br J Pharmacol 2024; 181:3760-3778. [PMID: 38872396 DOI: 10.1111/bph.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 06/15/2024] Open
Abstract
BACKGROUND AND PURPOSE Psoriasis is an autoimmune inflammatory skin disease, featuring microvascular abnormalities and elevated levels of bradykinin. Contact activation of Factor XII can initiate the plasma kallikrein-kinin cascade, producing inflammation and angioedema. The role of Factor XII in psoriasis is unknown. EXPERIMENTAL APPROACH The effects of deficiency of Factor XII or its enzymatic substrate, prekallikrein, were examined in the imiquimod-induced mouse model of psoriasis. Skin microcirculation was assessed using intravital confocal microscopy and laser Doppler flowmeter. A novel antibody blocking Factor XII activation was evaluated for psoriasis prevention. KEY RESULTS Expression of Factor XII was markedly up-regulated in human and mouse psoriatic skin. Genetic deletion of Factor XII or prekallikrein, attenuated imiquimod-induced psoriatic lesions in mice. Psoriatic induction increased skin microvascular blood perfusion, causing vasodilation, hyperpermeability and angiogenesis. It also promoted neutrophil-vascular interaction, inflammatory cytokine release and enhanced Factor XII / prekallikrein enzymatic activity with elevated bradykinin. Factor XII or prekallikrein deficiency ameliorated these microvascular abnormalities and abolished bradykinin increase. Antagonism of bradykinin B2 receptors reproduced the microvascular protection of Factor XII / prekallikrein deficiency, attenuated psoriatic lesions, and prevented protection by Factor XII / prekallikrein deficiency against psoriasis. Furthermore, treatment of mice with Factor XII antibody alleviated experimentally induced psoriasis and suppressed microvascular inflammation. CONCLUSION AND IMPLICATIONS Activation of Factor XII promoted psoriasis via prekallikrein-dependent formation of bradykinin, which critically mediated psoriatic microvascular inflammation. Inhibition of contact activation represents a novel therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Yurong Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zengrong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyan Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Life Science, Zhejiang Normal University, Jinhua City, China
| | - Qing Wan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huihui Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianfeng Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pengfei Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Xu P, Zhang Y, Guo J, Li H, Konrath S, Zhou P, Cai L, Rao H, Chen H, Lin J, Cui Z, Ji B, Wang J, Li N, Liu DP, Renné T, Wang M. A single-domain antibody targeting factor XII inhibits both thrombosis and inflammation. Nat Commun 2024; 15:7898. [PMID: 39266545 PMCID: PMC11393108 DOI: 10.1038/s41467-024-51745-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 08/16/2024] [Indexed: 09/14/2024] Open
Abstract
Factor XII (FXII) is the zymogen of the plasma protease FXIIa that activates the intrinsic coagulation pathway and the kallikrein kinin-system. The role of FXII in inflammation has been obscure. Here, we report a single-domain antibody (nanobody, Nb) fused to the Fc region of a human immunoglobulin (Nb-Fc) that recognizes FXII in a conformation-dependent manner and interferes with FXIIa formation. Nb-Fc treatment inhibited arterial thrombosis in male mice without affecting hemostasis. In a mouse model of extracorporeal membrane oxygenation (ECMO), FXII inhibition or knockout reduced thrombus deposition on oxygenator membranes and systemic microvascular thrombi. ECMO increased circulating levels of D-dimer, alkaline phosphatase, creatinine and TNF-α and triggered microvascular neutrophil adherence, platelet aggregation and their interaction, which were substantially attenuated by FXII blockade. Both Nb-Fc treatment and FXII knockout markedly ameliorated immune complex-induced local vasculitis and anti-neutrophil cytoplasmic antibody-induced systemic vasculitis, consistent with selectively suppressed neutrophil migration. In human blood microfluidic analysis, Nb-Fc treatment prevented collagen-induced fibrin deposition and neutrophil adhesion/activation. Thus, FXII is an important mediator of inflammatory responses in vasculitis and ECMO, and Nb-Fc provides a promising approach to alleviate thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Pengfei Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junyan Guo
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Life Science, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Huihui Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sandra Konrath
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Peng Zhou
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Liming Cai
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haojie Rao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Lin
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhao Cui
- Renal Division, Peking University First Hospital, Beijing, China
| | - Bingyang Ji
- Department of Cardiopulmonary Bypass, State Key Laboratory of Cardiovascular Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianwei Wang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institute, Stockholm, Sweden
| | - De-Pei Liu
- Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Thomas Renné
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- National Health Commission Cardiovascular Disease Regenerative Medicine Research Key Laboratory, Central China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
19
|
Wu Y, Zou Y, Song C, Cao K, Cai K, Chen S, Zhang Z, Geng D, Zhang N, Feng H, Tang M, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed Pharmacother 2024; 177:117093. [PMID: 38971012 DOI: 10.1016/j.biopha.2024.117093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024] Open
Abstract
Protein phosphorylation is an important link in a variety of signaling pathways, and most of the important life processes in cells involve protein phosphorylation. Based on the amino acid residues of phosphorylated proteins, protein kinases can be categorized into the following families: serine/threonine protein kinases, tyrosine-specific protein kinases, histidine-specific protein kinases, tryptophan kinases, and aspartate/glutamyl protein kinases. Of all the protein kinases, most are serine/threonine kinases, where serine/threonine protein kinases are protein kinases that catalyze the phosphorylation of serine or threonine residues on target proteins using ATP as a phosphate donor. The current socially accepted classification of serine/threonine kinases is to divide them into seven major groups: protein kinase A, G, C (AGC), CMGC, Calmodulin-dependent protein kinase (CAMK), Casein kinase (CK1), STE, Tyrosine kinase (TKL) and others. After decades of research, a preliminary understanding of the specific classification and respective functions of serine/threonine kinases has entered a new period of exploration. In this paper, we review the literature of the previous years and introduce the specific signaling pathways and related therapeutic modalities played by each of the small protein kinases in the serine/threonine protein kinase family, respectively, in some common cardiovascular system diseases such as heart failure, myocardial infarction, ischemia-reperfusion injury, and diabetic cardiomyopathy. To a certain extent, the current research results, including molecular mechanisms and therapeutic methods, are fully summarized and a systematic report is made for the prevention and treatment of cardiovascular diseases in the future.
Collapse
Affiliation(s)
- Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang 110004, China.
| | - Hao Feng
- Department of Ophthalmology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Man Tang
- Department of clinical pharmacology, College of Pharmacy, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning Province 110004, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province 110001, People's Republic of China; Institute of health sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, Liaoning Province 110001, People's Republic of China.
| |
Collapse
|
20
|
Wang Y, Shou X, Wu Y, Li D. Immuno-inflammatory pathogenesis in ischemic heart disease: perception and knowledge for neutrophil recruitment. Front Immunol 2024; 15:1411301. [PMID: 39050842 PMCID: PMC11266024 DOI: 10.3389/fimmu.2024.1411301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
Ischemic heart disease (IHD) can trigger responses from the innate immune system, provoke aseptic inflammatory processes, and result in the recruitment and accumulation of neutrophils. Excessive recruitment of neutrophils is a potential driver of persistent cardiac inflammation. Once recruited, neutrophils are capable of secreting a plethora of inflammatory and chemotactic agents that intensify the inflammatory cascade. Additionally, neutrophils may obstruct microvasculature within the inflamed region, further augmenting myocardial injury in the context of IHD. Immune-related molecules mediate the recruitment process of neutrophils, such as immune receptors and ligands, immune active molecules, and immunocytes. Non-immune-related molecular pathways represented by pro-resolving lipid mediators are also involved in the regulation of NR. Finally, we discuss novel regulating strategies, including targeted intervention, agents, and phytochemical strategies. This review describes in as much detail as possible the upstream molecular mechanism and external intervention strategies for regulating NR, which represents a promising therapeutic avenue for IHD.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Traditional Chinese Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xintian Shou
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Wu
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiovascular, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
21
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
22
|
Guo Z, Yang Z, Song Z, Li Z, Xiao Y, Zhang Y, Wen T, Pan G, Xu H, Sheng X, Jiang G, Guo L, Wang Y. Inflammation and coronary microvascular disease: relationship, mechanism and treatment. Front Cardiovasc Med 2024; 11:1280734. [PMID: 38836066 PMCID: PMC11148780 DOI: 10.3389/fcvm.2024.1280734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/09/2024] [Indexed: 06/06/2024] Open
Abstract
Coronary microvascular disease (CMVD) is common in patients with cardiovascular risk factors and is linked to an elevated risk of adverse cardiovascular events. Although modern medicine has made significant strides in researching CMVD, we still lack a comprehensive understanding of its pathophysiological mechanisms due to its complex and somewhat cryptic etiology. This greatly impedes the clinical diagnosis and treatment of CMVD. The primary pathological mechanisms of CMVD are structural abnormalities and/or dysfunction of coronary microvascular endothelial cells. The development of CMVD may also involve a variety of inflammatory factors through the endothelial cell injury pathway. This paper first reviews the correlation between the inflammatory response and CMVD, then summarizes the possible mechanisms of inflammatory response in CMVD, and finally categorizes the drugs used to treat CMVD based on their effect on the inflammatory response. We hope that this paper draws attention to CMVD and provides novel ideas for potential therapeutic strategies based on the inflammatory response.
Collapse
Affiliation(s)
- Zehui Guo
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Zhihua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhihui Song
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhenzhen Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yang Xiao
- Department of Pharmacy, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhang Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wen
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guiyun Pan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haowei Xu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodi Sheng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Guowang Jiang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Liping Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yi Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Bahr F, Ricke-Hoch M, Ponimaskin E, Müller F. Serotonin Receptors in Myocardial Infarction: Friend or Foe? ACS Chem Neurosci 2024; 15:1619-1634. [PMID: 38573542 PMCID: PMC11027101 DOI: 10.1021/acschemneuro.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death worldwide and treatment costs pose a major burden on the global health care system. Despite the variety of treatment options, individual recovery can be still poor and the mortality rate, especially in the first few years after the event, remains high. Therefore, intense research is currently focused on identifying novel target molecules to improve the outcome following AMI. One of the potentially interesting targets is the serotonergic system (5-HT system), not at least because of its connection to mental disorders. It is known that patients suffering from AMI have an increased risk of developing depression and vice versa. This implicates that the 5-HT system can be affected in response to AMI and might thus represent a target structure for patients' treatment. This review aims to highlight the importance of the 5-HT system after AMI by describing the role of individual serotonin receptors (5-HTR) in the regulation of physiological and pathophysiological responses. It particularly focuses on the signaling pathways of the serotonin receptors 1, 2, 4, and 7, which are expressed in the cardiovascular system, during disease onset, and the following remodeling process. This overview also emphasizes the importance of the 5-HT system in AMI etiology and highlights 5-HTRs as potential treatment targets.
Collapse
Affiliation(s)
- F.S. Bahr
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - M. Ricke-Hoch
- Cardiology
and Angiology, Hannover Medical School, 30625 Hannover, Germany
| | - E. Ponimaskin
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - F.E. Müller
- Cellular
Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
24
|
Tan Y, Wang X, Gu Y, Bao X, Lu H, Sun X, Kang L, Xu B. Neutrophil and endothelial cell membranes coassembled roflumilast nanoparticles attenuate myocardial ischemia/reperfusion injury. Nanomedicine (Lond) 2024; 19:779-797. [PMID: 38426485 DOI: 10.2217/nnm-2023-0313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Aim: This study aimed to develop biomimetic nanoparticles (NPs) of roflumilast (ROF) for attenuating myocardial ischemia/reperfusion (MI/R) injury. Materials & methods: We synthesized biomimetic ROF NPs and assembled ROF NPs in neutrophil and endothelial cell membranes (NE/ROF NPs). The physical properties of NE/ROF NPs were characterized and biological functions of NE/ROF NPs were tested in vitro. Targeting characteristics, therapeutic efficacy and safety of NE/ROF NPs were examined in mice model of MI/R. Results: NE/ROF NPs exhibited significant anti-inflammatory and antiadhesion effects. Meanwhile, they was effective in reducing MI/R injury in mice. Furthermore, NE/ROF NPs exhibited stronger targeting capabilities and demonstrated good safety. Conclusion: NE/ROF NPs may be a versatile biomimetic drug-delivery system for attenuating MI/R injury.
Collapse
Affiliation(s)
- Ying Tan
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Xun Wang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Yu Gu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Xue Bao
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - He Lu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210000, China
| | - Xuan Sun
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210000, China
| |
Collapse
|
25
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
26
|
Liu M, Li S, Yin M, Li Y, Chen J, Chen Y, Zhou Y, Li Q, Xu F, Dai C, Xia Y, Chen A, Lu D, Chen Z, Qian J, Ge J. Pinacidil ameliorates cardiac microvascular ischemia-reperfusion injury by inhibiting chaperone-mediated autophagy of calreticulin. Basic Res Cardiol 2024; 119:113-131. [PMID: 38168863 PMCID: PMC10837255 DOI: 10.1007/s00395-023-01028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Calcium overload is the key trigger in cardiac microvascular ischemia-reperfusion (I/R) injury, and calreticulin (CRT) is a calcium buffering protein located in the endoplasmic reticulum (ER). Additionally, the role of pinacidil, an antihypertensive drug, in protecting cardiac microcirculation against I/R injury has not been investigated. Hence, this study aimed to explore the benefits of pinacidil on cardiac microvascular I/R injury with a focus on endothelial calcium homeostasis and CRT signaling. Cardiac vascular perfusion and no-reflow area were assessed using FITC-lectin perfusion assay and Thioflavin-S staining. Endothelial calcium homeostasis, CRT-IP3Rs-MCU signaling expression, and apoptosis were assessed by real-time calcium signal reporter GCaMP8, western blotting, and fluorescence staining. Drug affinity-responsive target stability (DARTS) assay was adopted to detect proteins that directly bind to pinacidil. The present study found pinacidil treatment improved capillary density and perfusion, reduced no-reflow and infraction areas, and improved cardiac function and hemodynamics after I/R injury. These benefits were attributed to the ability of pinacidil to alleviate calcium overload and mitochondria-dependent apoptosis in cardiac microvascular endothelial cells (CMECs). Moreover, the DARTS assay showed that pinacidil directly binds to HSP90, through which it inhibits chaperone-mediated autophagy (CMA) degradation of CRT. CRT overexpression inhibited IP3Rs and MCU expression, reduced mitochondrial calcium inflow and mitochondrial injury, and suppressed endothelial apoptosis. Importantly, endothelial-specific overexpression of CRT shared similar benefits with pinacidil on cardiovascular protection against I/R injury. In conclusion, our data indicate that pinacidil attenuated microvascular I/R injury potentially through improving CRT degradation and endothelial calcium overload.
Collapse
Affiliation(s)
- Muyin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Su Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ming Yin
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Youran Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Jinxiang Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Yuqiong Chen
- Gusu School, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Nanjing, China
| | - You Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Qiyu Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Fei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chunfeng Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Xia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Ao Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Juying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China.
| |
Collapse
|
27
|
Puertas-Umbert L, Alonso J, Hove-Madsen L, Martínez-González J, Rodríguez C. PDE4 Phosphodiesterases in Cardiovascular Diseases: Key Pathophysiological Players and Potential Therapeutic Targets. Int J Mol Sci 2023; 24:17017. [PMID: 38069339 PMCID: PMC10707411 DOI: 10.3390/ijms242317017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
3',5'-cyclic adenosine monophosphate (cAMP) is a second messenger critically involved in the control of a myriad of processes with significant implications for vascular and cardiac cell function. The temporal and spatial compartmentalization of cAMP is governed by the activity of phosphodiesterases (PDEs), a superfamily of enzymes responsible for the hydrolysis of cyclic nucleotides. Through the fine-tuning of cAMP signaling, PDE4 enzymes could play an important role in cardiac hypertrophy and arrhythmogenesis, while it decisively influences vascular homeostasis through the control of vascular smooth muscle cell proliferation, migration, differentiation and contraction, as well as regulating endothelial permeability, angiogenesis, monocyte/macrophage activation and cardiomyocyte function. This review summarizes the current knowledge and recent advances in understanding the contribution of the PDE4 subfamily to cardiovascular function and underscores the intricate challenges associated with targeting PDE4 enzymes as a therapeutic strategy for the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lídia Puertas-Umbert
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Judith Alonso
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Leif Hove-Madsen
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - José Martínez-González
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| | - Cristina Rodríguez
- Institut de Recerca Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (L.P.-U.); (J.A.); (L.H.-M.)
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), 08036 Barcelona, Spain
| |
Collapse
|
28
|
Zhang X, Zheng Y, Wang Z, Gan J, Yu B, Lu B, Jiang X. Melatonin as a therapeutic agent for alleviating endothelial dysfunction in cardiovascular diseases: Emphasis on oxidative stress. Biomed Pharmacother 2023; 167:115475. [PMID: 37722190 DOI: 10.1016/j.biopha.2023.115475] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
The vascular endothelium is vital in maintaining cardiovascular health by regulating vascular permeability and tone, preventing thrombosis, and controlling vascular inflammation. However, when oxidative stress triggers endothelial dysfunction, it can lead to chronic cardiovascular diseases (CVDs). This happens due to oxidative stress-induced mitochondrial dysfunction, inflammatory responses, and reduced levels of nitric oxide. These factors cause damage to endothelial cells, leading to the acceleration of CVD progression. Melatonin, a natural antioxidant, has been shown to inhibit oxidative stress and stabilize endothelial function, providing cardiovascular protection. The clinical application of melatonin in the prevention and treatment of CVDs has received widespread attention. In this review, based on bibliometric studies, we first discussed the relationship between oxidative stress-induced endothelial dysfunction and CVDs, then summarized the role of melatonin in the treatment of atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and other CVDs. Finally, the potential clinical use of melatonin in the treatment of these diseases is discussed.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yujia Zheng
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Ziyu Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Bin Lu
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
29
|
Wang J, Tan Y, Dai Y, Hu K, Tan X, Jiang S, Li G, Zhang X, Kang L, Wang X, Xu B. Intranasal Delivery of Endothelial Cell-Derived Extracellular Vesicles with Supramolecular Gel Attenuates Myocardial Ischemia-Reperfusion Injury. Int J Nanomedicine 2023; 18:5495-5510. [PMID: 37791323 PMCID: PMC10544033 DOI: 10.2147/ijn.s420301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Purpose Myocardial ischemia-reperfusion injury after myocardial infarction has always been a difficult problem in clinical practice. Endothelial cells and their secreted extracellular vesicles are closely related to inflammation, thrombosis formation, and other processes after injury. Meanwhile, low-molecular-weight gelators have shown great potential for nasal administration. This study aims to explore the therapeutic effects and significance of endothelial cell-derived extracellular vesicles combined with a hydrogel for nasal administration on myocardial ischemia-reperfusion injury. Methods We chose a gel system composed of a derivative of glutamine amide and benzaldehyde as the extracellular vesicle delivery vehicle. This hydrogel was combined with extracellular vesicles extracted from mouse aortic endothelial cells and administered multiple times intranasally in a mouse model of ischemia-reperfusion injury to the heart. The delivery efficiency of the extracellular vesicle-hydrogel combination was evaluated by flow cytometry and immunofluorescence. Echocardiography, TTC Evan's Blue and Masson's staining were used to assess mouse cardiac function, infarct area, and cardiac fibrosis level. Flow cytometry, ELISA, and immunofluorescence staining were used to investigate changes in mouse inflammatory cells, cytokines, and vascular neogenesis. Results The vesicles combined with the hydrogel have good absorption in the nasal cavity. The hydrogel combined with vesicles reduces the levels of pro-inflammatory Ly6C (high) monocytes/macrophages and neutrophils. It can also reduce the formation of microcirculation thrombi in the infarcted area, improve endothelial barrier function, and increase microvascular density in the injured area. As a result, the heart function of mice is improved and the infarct area is reduced. Conclusion We first demonstrated that the combination of extracellular vesicles and hydrogel has a better absorption efficiency in the nasal cavity, which can improve myocardial ischemia-reperfusion injury by inhibiting inflammatory reactions and protecting endothelial function. Nasal administration of vesicles combined with hydrogel is a potential therapeutic direction.
Collapse
Affiliation(s)
- Junzhuo Wang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Ying Tan
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yang Dai
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Geriatrics, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Ke Hu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xi Tan
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Shaoli Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Guannan Li
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xinlin Zhang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Lina Kang
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, People’s Republic of China
| | - Biao Xu
- Department of Cardiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
30
|
Wan M, Lu C, Liu Y, Luo F, Zhou J, Xu F. Mesenchymal stem cell-derived extracellular vesicles prevent the formation of pulmonary arterial hypertension through a microRNA-200b-dependent mechanism. Respir Res 2023; 24:233. [PMID: 37759281 PMCID: PMC10523762 DOI: 10.1186/s12931-023-02474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 06/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cell-derived extracellular vesicles (BMSC-EVs) have been highly studied with their critical roles as carriers of therapeutic targets such as microRNAs (miRNAs) in the treatment of human diseases, including pulmonary arterial hypertension (PAH). Herein, we tried to study the potential of BMSC-EVs to deliver miR-200b for the regulation of macrophage polarization in PAH. METHODS Rat models of PAH were induced with monocrotaline treatment, followed by miR-200b expression detection in lung tissues, pulmonary artery smooth muscle cells (PASMCs) and macrophages. miR-200b-containing BMSCs or miR-200b-deficient BMSCs were selected to extract EVs. Then, we assessed the changes in rats with PAH-associated disorders as well as in vitro macrophage polarization and the functions of PASMCs after treatment with BMSC-EVs. Moreover, the interaction between miR-200b, phosphodiesterase 1 A (PDE1A) was identified with a luciferase assay, followed by an exploration of the downstream pathway, cAMP-dependent protein kinase (PKA). RESULTS miR-200b was reduced in lung tissues, PASMCs and macrophages of rats with PAH-like pathology. BMSC-EVs transferred miR-200b into macrophages, and subsequently accelerated their switch to the M2 phenotype and reversed the PAH-associated disorders. Furthermore, miR-200b carried by BMSC-EVs induced PKA phosphorylation by targeting PDE1A, thereby expediting macrophage polarization. CONCLUSION Our current study highlighted the inhibitory role of BMSC-EV-miR-200b in PAH formation.
Collapse
Affiliation(s)
- Mengzhi Wan
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Caiju Lu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Yu Liu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Feng Luo
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China
| | - Jing Zhou
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| | - Fei Xu
- Department of Respiratory Emergency and Critical Care, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, Jiangxi Province, 330006, P. R. China.
| |
Collapse
|
31
|
Wang L, Hubert F, Idres S, Belacel-Ouari M, Domergue V, Domenichini S, Lefebvre F, Mika D, Fischmeister R, Leblais V, Manoury B. Phosphodiesterases type 2, 3 and 4 promote vascular tone in mesenteric arteries from rats with heart failure. Eur J Pharmacol 2023; 944:175562. [PMID: 36736940 DOI: 10.1016/j.ejphar.2023.175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Phosphodiesterases (PDE) type 3 and 4 promote vasoconstriction by hydrolysing cAMP. In experimental heart failure (HF), PDE3 makes PDE4 redundant in aorta, but it is not known if this occurs in resistance vessels, such as mesenteric artery. As PDE2 is increased in the failing myocardium, its possible role in the vasculature also needs to be addressed. Here, the function of PDE2, PDE3 and PDE4 in rat mesenteric arteries was characterized in experimental HF. Mesenteric arteries were isolated from rats sacrificed 22 weeks after surgical stenosis of the ascending aorta (HF), or Sham surgery. PDE inhibitors were used to probe isoenzyme contributions in enzymatic and isometric tension assays. PDE2 and PDE4 activities, but not PDE3 activity, facilitate contraction produced by the thromboxane analogue U46619 in Sham arteries, while in HF all three isoenzymes contribute to this response. NO synthase inhibition by L-NAME abolished the action of the PDE2 inhibitor. L-NAME eliminated the contribution of PDE4 in HF, but unmasked a contribution for PDE3 in Sham. PDE3 and PDE4 activities attenuated relaxant response to β-adrenergic stimulation in Sham and HF. PDE2 did not participate in cAMP or cGMP-mediated relaxant responses. PDE3 and PDE4 cAMP-hydrolysing activities were smaller in HF mesenteric arteries, while PDE2 activity was scarce in both groups. Endothelial cells and arterial myocytes displayed PDE2 immunolabelling. We highlight that, by contrast with previous observations in aorta, PDE4 participates equally as PDE3 in contracting mesenteric artery in HF. PDE2 activity emerges as a promoter of contractile response that is preserved in HF.
Collapse
Affiliation(s)
- Liting Wang
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | - Fabien Hubert
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | - Sarah Idres
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | | | - Valérie Domergue
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, Orsay, France
| | | | - Delphine Mika
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France
| | | | | | - Boris Manoury
- Université Paris-Saclay, Inserm, UMR-S 1180, Orsay, France.
| |
Collapse
|
32
|
Silverberg J, Jackson JM, Kirsner RS, Adiri R, Friedman G, Gao XH, Billings SD, Kerkmann U. Narrative Review of the Pathogenesis of Stasis Dermatitis: An Inflammatory Skin Manifestation of Venous Hypertension. Dermatol Ther (Heidelb) 2023; 13:935-950. [PMID: 36949275 DOI: 10.1007/s13555-023-00908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/17/2023] [Indexed: 03/24/2023] Open
Abstract
INTRODUCTION Stasis dermatitis (SD), also known as venous dermatitis, is a form of inflammatory dermatitis of the lower extremities that typically occurs in older individuals and represents a cutaneous manifestation of venous hypertension. Venous hypertension (also known as sustained ambulatory venous pressure) is most often due to retrograde blood flow, which occurs due to calf muscle pump failure. This failure is most commonly secondary to incompetent venous valves, valve destruction, or obstruction of the venous system. Many of the common symptoms associated with SD are caused by inflammatory processes. METHODS This review summarizes the pathogenesis and key role of inflammation in SD by reviewing inflammatory biomarkers associated with SD. The literature was selected though a high-level PubMed search focusing on keywords relating to inflammation associated with SD. RESULTS Venous reflux at the lower extremities causes venous hypertension, which leads to chronic venous insufficiency. High venous pressure due to venous hypertension promotes the local accumulation and extravasation of inflammatory cells across the vascular endothelium. Leukocyte trapping in the microcirculation and perivascular space is associated with trophic skin changes. Cell adhesion molecules are linked with the perpetuated influx of activated leukocytes into inflammatory sites. Here, inflammatory cells may influence the remodeling of the extracellular matrix by inducing the secretion of proteinases such as matrix metalloproteinases (MMPs). The increased expression of MMPs is associated with the formation of venous leg ulcers and lesions. Phosphodiesterase 4 activity has also been shown to be elevated in individuals with inflammatory dermatoses compared to healthy individuals. DISCUSSION Because inflammation is a key driver of the signs and symptoms of SD, several of the highlighted biomarkers of inflammation represent potential opportunities to target and interrupt molecular pathways of cutaneous inflammation and, therefore, remediate the signs and symptoms of SD. CONCLUSION Understanding the pathogenesis of SD may help clinicians identify drivers of inflammation to use as potential targets for the development of new treatment options.
Collapse
Affiliation(s)
- Jonathan Silverberg
- The George Washington University School of Medicine & Health Sciences, 2300 I St NW, Washington, DC, 20052, USA
| | - J Mark Jackson
- Division of Dermatology, University of Louisville, 501 S 2nd St, Louisville, KY, 40202, USA
| | - Robert S Kirsner
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1295 NW 14th St, Miami, FL, 33125, USA
| | - Roni Adiri
- Pfizer Pharmaceuticals Israel Ltd., 9 Shenkar St, 4672509, Herzliya Pituach, Israel.
| | - Gary Friedman
- Pfizer Inc., 500 Arcola Rd, Collegeville, PA, 19426, USA
| | - Xing-Hua Gao
- Department of Dermatology, The First Hospital of China Medical University, 110001, Shenyang, China
| | - Steven D Billings
- Department of Pathology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Urs Kerkmann
- Pfizer Pharma GmbH, Linkstraße 10, Postfach 610194 10922, 10785, Berlin, Germany
| |
Collapse
|
33
|
Chen Y, Li S, Yin M, Li Y, Chen C, Zhang J, Sun K, Kong X, Chen Z, Qian J. Isorhapontigenin Attenuates Cardiac Microvascular Injury in Diabetes via the Inhibition of Mitochondria-Associated Ferroptosis Through PRDX2-MFN2-ACSL4 Pathways. Diabetes 2023; 72:389-404. [PMID: 36367849 DOI: 10.2337/db22-0553] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022]
Abstract
Ferroptosis is a newly identified form of regulated cell death that is driven by iron overload and uncontrolled lipid peroxidation, but the role of ferroptosis in cardiac microvascular dysfunction remains unclear. Isorhapontigenin (ISO) is an analog of resveratrol and possesses strong antioxidant capacity and cardiovascular-protective effects. Moreover, ISO has been shown to alleviate iron-induced oxidative damage and lipid peroxidation in mitochondria. Therefore, the current study aimed to explore the benefits of ISO treatment on cardiac microvascular dysfunction in diabetes and the possible mechanisms involved, with a focus on ferroptosis and mitochondria. Our data revealed that ISO treatment improved microvascular density and perfusion in db/db mice by mitigating vascular structural damage, normalizing nitric oxide (NO) production via endothelial NO synthase activation, and enhancing angiogenetic ability via vascular endothelial growth factor receptor 2 phosphorylation. PRDX2 was identified as a downstream target of ISO, and endothelial-specific overexpression of PRDX2 exerted effects on the cardiac microvascular function that were similar to those of ISO treatment. In addition, PRDX2 mediated the inhibitive effects of ISO treatment on ferroptosis by suppressing oxidative stress, iron overload, and lipid peroxidation. Further study suggested that mitochondrial dynamics and dysfunction contributed to ferroptosis, and ISO treatment or PRDX2 overexpression attenuated mitochondrial dysfunction via MFN2-dependent mitochondrial dynamics. Moreover, MFN2 overexpression suppressed the mitochondrial translocation of ACSL4, ultimately inhibiting mitochondria-associated ferroptosis. In contrast, enhancing mitochondria-associated ferroptosis via ACSL4 abolished the protective effects of ISO treatment on cardiac microcirculation. Taken together, the results of the present work demonstrated the beneficial effects of ISO treatment on cardiac microvascular protection in diabetes by suppressing mitochondria-associated ferroptosis through PRDX2-MFN2-ACSL4 pathways.
Collapse
Affiliation(s)
- Yuqiong Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Su Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Ming Yin
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yafei Li
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chao Chen
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Zhang
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Kangyun Sun
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xiangqing Kong
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhangwei Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
- National Clinical Research Center for Interventional Medicine, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
34
|
Li H, Sun X, Li Z, Zhao R, Li M, Hu T. Machine learning-based integration develops biomarkers initial the crosstalk between inflammation and immune in acute myocardial infarction patients. Front Cardiovasc Med 2023; 9:1059543. [PMID: 36684609 PMCID: PMC9846646 DOI: 10.3389/fcvm.2022.1059543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Great strides have been made in past years toward revealing the pathogenesis of acute myocardial infarction (AMI). However, the prognosis did not meet satisfactory expectations. Considering the importance of early diagnosis in AMI, biomarkers with high sensitivity and accuracy are urgently needed. On the other hand, the prevalence of AMI worldwide has rapidly increased over the last few years, especially after the outbreak of COVID-19. Thus, in addition to the classical risk factors for AMI, such as overwork, agitation, overeating, cold irritation, constipation, smoking, and alcohol addiction, viral infections triggers have been considered. Immune cells play pivotal roles in the innate immunosurveillance of viral infections. So, immunotherapies might serve as a potential preventive or therapeutic approach, sparking new hope for patients with AMI. An era of artificial intelligence has led to the development of numerous machine learning algorithms. In this study, we integrated multiple machine learning algorithms for the identification of novel diagnostic biomarkers for AMI. Then, the possible association between critical genes and immune cell infiltration status was characterized for improving the diagnosis and treatment of AMI patients.
Collapse
Affiliation(s)
- Hongyu Li
- Medical College of Soochow University, The People’s Liberation Army of China (PLA) Rocket Force Characteristic Medical Center, Beijing, China,Department of Cardiovascular Medicine, Baotou Central Hospital, Institute of Cardiovascular Diseases, Translational Medicine Center, Baotou, China
| | - Xinti Sun
- Department of Thoracic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zesheng Li
- Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruiping Zhao
- Department of Cardiovascular Medicine, Baotou Central Hospital, Institute of Cardiovascular Diseases, Translational Medicine Center, Baotou, China
| | - Meng Li
- Department of Cardiovascular Medicine, Baotou Central Hospital, Institute of Cardiovascular Diseases, Translational Medicine Center, Baotou, China,*Correspondence: Meng Li,
| | - Taohong Hu
- Medical College of Soochow University, The People’s Liberation Army of China (PLA) Rocket Force Characteristic Medical Center, Beijing, China,Taohong Hu,
| |
Collapse
|