1
|
Zhao LY, Wang XY, Wen ML, Pan NN, Yin XQ, An MW, Wang L, Liu Y, Song JB. Advances in injectable hydrogels for radiation-induced heart disease. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1031-1063. [PMID: 38340315 DOI: 10.1080/09205063.2024.2314364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Radiological heart damage (RIHD) is damage caused by unavoidable irradiation of the heart during chest radiotherapy, with a long latency period and a progressively increasing proportion of delayed cardiac damage due to conventional doses of chest radiotherapy. There is a risk of inducing diseases such as acute/chronic pericarditis, myocarditis, delayed myocardial fibrosis and damage to the cardiac conduction system in humans, which can lead to myocardial infarction or even death in severe cases. This paper details the pathogenesis of RIHD and gives potential targets for treatment at the molecular and cellular level, avoiding the drawbacks of high invasiveness and immune rejection due to drug therapy, medical device implantation and heart transplantation. Injectable hydrogel therapy has emerged as a minimally invasive tissue engineering therapy to provide necessary mechanical support to the infarcted myocardium and to act as a carrier for various bioactive factors and cells to improve the cellular microenvironment in the infarcted area and induce myocardial tissue regeneration. Therefore, this paper combines bioactive factors and cellular therapeutic mechanisms with injectable hydrogels, presents recent advances in the treatment of cardiac injury after RIHD with different injectable gels, and summarizes the therapeutic potential of various types of injectable hydrogels as a potential solution.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xin-Yue Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Ling Wen
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Ning-Ning Pan
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Xing-Qi Yin
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Mei-Wen An
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Li Wang
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
| | - Yang Liu
- Institute of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan, China
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jian-Bo Song
- Shanghai NewMed Medical Corporation, Shanghai, China
| |
Collapse
|
2
|
Olteanu G, Neacșu SM, Joița FA, Musuc AM, Lupu EC, Ioniță-Mîndrican CB, Lupuliasa D, Mititelu M. Advancements in Regenerative Hydrogels in Skin Wound Treatment: A Comprehensive Review. Int J Mol Sci 2024; 25:3849. [PMID: 38612660 PMCID: PMC11012090 DOI: 10.3390/ijms25073849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
This state-of-the-art review explores the emerging field of regenerative hydrogels and their profound impact on the treatment of skin wounds. Regenerative hydrogels, composed mainly of water-absorbing polymers, have garnered attention in wound healing, particularly for skin wounds. Their unique properties make them well suited for tissue regeneration. Notable benefits include excellent water retention, creating a crucially moist wound environment for optimal healing, and facilitating cell migration, and proliferation. Biocompatibility is a key feature, minimizing adverse reactions and promoting the natural healing process. Acting as a supportive scaffold for cell growth, hydrogels mimic the extracellular matrix, aiding the attachment and proliferation of cells like fibroblasts and keratinocytes. Engineered for controlled drug release, hydrogels enhance wound healing by promoting angiogenesis, reducing inflammation, and preventing infection. The demonstrated acceleration of the wound healing process, particularly beneficial for chronic or impaired healing wounds, adds to their appeal. Easy application and conformity to various wound shapes make hydrogels practical, including in irregular or challenging areas. Scar minimization through tissue regeneration is crucial, especially in cosmetic and functional regions. Hydrogels contribute to pain management by creating a protective barrier, reducing friction, and fostering a soothing environment. Some hydrogels, with inherent antimicrobial properties, aid in infection prevention, which is a crucial aspect of successful wound healing. Their flexibility and ability to conform to wound contours ensure optimal tissue contact, enhancing overall treatment effectiveness. In summary, regenerative hydrogels present a promising approach for improving skin wound healing outcomes across diverse clinical scenarios. This review provides a comprehensive analysis of the benefits, mechanisms, and challenges associated with the use of regenerative hydrogels in the treatment of skin wounds. In this review, the authors likely delve into the application of rational design principles to enhance the efficacy and performance of hydrogels in promoting wound healing. Through an exploration of various methodologies and approaches, this paper is poised to highlight how these principles have been instrumental in refining the design of hydrogels, potentially revolutionizing their therapeutic potential in addressing skin wounds. By synthesizing current knowledge and highlighting potential avenues for future research, this review aims to contribute to the advancement of regenerative medicine and ultimately improve clinical outcomes for patients with skin wounds.
Collapse
Affiliation(s)
- Gabriel Olteanu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| | - Sorinel Marius Neacșu
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Florin Alexandru Joița
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | | | - Elena Carmen Lupu
- Department of Mathematics and Informatics, Faculty of Pharmacy, “Ovidius” University of Constanta, 900001 Constanta, Romania;
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania;
| | - Dumitru Lupuliasa
- Department of Pharmaceutical Technology and Bio-Pharmacy, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020945 Bucharest, Romania; (S.M.N.); (D.L.)
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 020956 Bucharest, Romania; (G.O.); (M.M.)
| |
Collapse
|
3
|
Abstract
Biomaterials with the ability to self-heal and recover their structural integrity offer many advantages for applications in biomedicine. The past decade has witnessed the rapid emergence of a new class of self-healing biomaterials commonly termed injectable, or printable in the context of 3D printing. These self-healing injectable biomaterials, mostly hydrogels and other soft condensed matter based on reversible chemistry, are able to temporarily fluidize under shear stress and subsequently recover their original mechanical properties. Self-healing injectable hydrogels offer distinct advantages compared to traditional biomaterials. Most notably, they can be administered in a locally targeted and minimally invasive manner through a narrow syringe without the need for invasive surgery. Their moldability allows for a patient-specific intervention and shows great prospects for personalized medicine. Injected hydrogels can facilitate tissue regeneration in multiple ways owing to their viscoelastic and diffusive nature, ranging from simple mechanical support, spatiotemporally controlled delivery of cells or therapeutics, to local recruitment and modulation of host cells to promote tissue regeneration. Consequently, self-healing injectable hydrogels have been at the forefront of many cutting-edge tissue regeneration strategies. This study provides a critical review of the current state of self-healing injectable hydrogels for tissue regeneration. As key challenges toward further maturation of this exciting research field, we identify (i) the trade-off between the self-healing and injectability of hydrogels vs their physical stability, (ii) the lack of consensus on rheological characterization and quantitative benchmarks for self-healing injectable hydrogels, particularly regarding the capillary flow in syringes, and (iii) practical limitations regarding translation toward therapeutically effective formulations for regeneration of specific tissues. Hence, here we (i) review chemical and physical design strategies for self-healing injectable hydrogels, (ii) provide a practical guide for their rheological analysis, and (iii) showcase their applicability for regeneration of various tissues and 3D printing of complex tissues and organoids.
Collapse
Affiliation(s)
- Pascal Bertsch
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands
| | - Mani Diba
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - David J. Mooney
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States,Wyss
Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, United States
| | - Sander C. G. Leeuwenburgh
- Department
of Dentistry-Regenerative Biomaterials, Radboud Institute for Molecular
Life Sciences, Radboud University Medical
Center, 6525 EX Nijmegen, The Netherlands,
| |
Collapse
|
4
|
Bioactive Scaffolds in Stem Cell-Based Therapies for Myocardial Infarction: a Systematic Review and Meta-Analysis of Preclinical Trials. Stem Cell Rev Rep 2021; 18:2104-2136. [PMID: 34463903 DOI: 10.1007/s12015-021-10186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2021] [Indexed: 10/20/2022]
Abstract
The use of bioactive scaffolds in conjunction with stem cell therapies for cardiac repair after a myocardial infarction shows significant promise for clinical translation. We performed a systematic review and meta-analysis of preclinical trials that investigated the use of bioactive scaffolds to support stem cell-aided cardiac regeneration, in comparison to stem cell treatment alone. Cochrane Library, Medline, Embase, PubMed, Scopus, Web of Science, and grey literature were searched through April 23, 2020 and 60 articles were included in the final analysis. The overall effect size observed in scaffold and stem cell-treated small animals compared to stem cell-treated controls for ejection fraction (EF) was 7.98 [95% confidence interval (CI): 6.36, 9.59] and for fractional shortening (FS) was 5.50 [95% CI: 4.35, 6.65] in small animal models. The largest improvements in EF and FS were observed when hydrogels were used (MD = 8.45 [95% CI: 6.46, 10.45] and MD = 5.76 [95% CI: 4.46, 7.05], respectively). Subgroup analysis revealed that cardiac progenitor cells had the largest effect size for FS, and was significant from pluripotent, mesenchymal and endothelial stem cell types. In large animal studies, the overall improvement of EF favoured the use of stem cell-embedded scaffolds compared to direct injection of cells (MD = 10.49 [95% CI: 6.30, 14.67]). Significant publication bias was present in the small animal trials for EF and FS. This study supports the use of bioactive scaffolds to aid in stem cell-based cardiac regeneration. Hydrogels should be further investigated in larger animal models for clinical translation.
Collapse
|
5
|
Hemalatha T, Aarthy M, Pandurangan S, Kamini NR, Ayyadurai N. A deep dive into the darning effects of biomaterials in infarct myocardium: current advances and future perspectives. Heart Fail Rev 2021; 27:1443-1467. [PMID: 34342769 DOI: 10.1007/s10741-021-10144-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 12/21/2022]
Abstract
Myocardial infarction (MI) occurs due to the obstruction of coronary arteries, a major crux that restricts blood flow and thereby oxygen to the distal part of the myocardium, leading to loss of cardiomyocytes and eventually, if left untreated, leads to heart failure. MI, a potent cardiovascular disorder, requires intense therapeutic interventions and thereby presents towering challenges. Despite the concerted efforts, the treatment strategies for MI are still demanding, which has paved the way for the genesis of biomaterial applications. Biomaterials exhibit immense potentials for cardiac repair and regeneration, wherein they act as extracellular matrix replacing scaffolds or as delivery vehicles for stem cells, protein, plasmids, etc. This review concentrates on natural, synthetic, and hybrid biomaterials; their function; and interaction with the body, mechanisms of repair by which they are able to improve cardiac function in a MI milieu. We also provide focus on future perspectives that need attention. The cognizance provided by the research results certainly indicates that biomaterials could revolutionize the treatment paradigms for MI with a positive impact on clinical translation.
Collapse
Affiliation(s)
- Thiagarajan Hemalatha
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Mayilvahanan Aarthy
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Suryalakshmi Pandurangan
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Numbi Ramudu Kamini
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology, CSIR- Central Leather Research Institute, Chennai, 600020, India.
| |
Collapse
|
6
|
Alshehri S, Susapto HH, Hauser CAE. Scaffolds from Self-Assembling Tetrapeptides Support 3D Spreading, Osteogenic Differentiation, and Angiogenesis of Mesenchymal Stem Cells. Biomacromolecules 2021; 22:2094-2106. [PMID: 33908763 PMCID: PMC8382244 DOI: 10.1021/acs.biomac.1c00205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/15/2021] [Indexed: 01/01/2023]
Abstract
The apparent rise of bone disorders demands advanced treatment protocols involving tissue engineering. Here, we describe self-assembling tetrapeptide scaffolds for the growth and osteogenic differentiation of human mesenchymal stem cells (hMSCs). The rationally designed peptides are synthetic amphiphilic self-assembling peptides composed of four amino acids that are nontoxic. These tetrapeptides can quickly solidify to nanofibrous hydrogels that resemble the extracellular matrix and provide a three-dimensional (3D) environment for cells with suitable mechanical properties. Furthermore, we can easily tune the stiffness of these peptide hydrogels by just increasing the peptide concentration, thus providing a wide range of peptide hydrogels with different stiffnesses for 3D cell culture applications. Since successful bone regeneration requires both osteogenesis and vascularization, our scaffold was found to be able to promote angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro. The results presented suggest that ultrashort peptide hydrogels are promising candidates for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Salwa Alshehri
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Hepi H. Susapto
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Charlotte A. E. Hauser
- Laboratory
for Nanomedicine, Division of Biological and Environmental
Science and Engineering and Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Zhao Y, Zhang M, Lu GL, Huang BX, Wang DW, Shao Y, Lu MJ. Hypoxic Preconditioning Enhances Cellular Viability and Pro-angiogenic Paracrine Activity: The Roles of VEGF-A and SDF-1a in Rat Adipose Stem Cells. Front Cell Dev Biol 2020; 8:580131. [PMID: 33330455 PMCID: PMC7719676 DOI: 10.3389/fcell.2020.580131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
To achieve the full therapeutic potential of implanted adipose stem cells (ASCs) in vivo, it is crucial to improve the viability and pro-angiogenic properties of the stem cells. Here, we first simulated the conditions of ischemia and hypoxia using the in vitro oxygen-glucose deprivation (OGD) model and confirmed that hypoxic preconditioning of ASCs could provide improved protection against OGD and enhance ASC viability. Second, we assessed the effect of hypoxic preconditioning on pro-angiogenic potential of ASCs, with a particular focus on the role of vascular endothelial growth factor-A (VEGF-A) and stromal derived factor-1a (SDF-1a) paracrine activity in mediating angiogenesis. We found that the conditioned medium of ASCs (ASCCM) with hypoxic preconditioning enhanced angiogenesis by a series of angiogenesis assay models in vivo and in vitro through the upregulation of and a synergistic effect between VEGF-A and SDF-1a. Finally, to investigate the possible downstream mechanisms of VEGF/VEGFR2 and SDF-1a/CXCR4 axes-driven angiogenesis, we evaluated relevant protein kinases involved the signal transduction pathway of angiogenesis and showed that VEGF/VEGFR2 and SDF-1a/CXCR4 axes may synergistically promote angiogenesis by activating Akt. Collectively, our findings demonstrate that hypoxic preconditioning may constitute a promising strategy to enhance cellular viability and angiogenesis of transplanted ASCs, therein improving the success rate of stem cell-based therapies in tissue engineering.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Zhang
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guo-Liang Lu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bao-Xing Huang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Da-Wei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Urology, Ruijin Hospital North, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu-Jun Lu
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Wu WQ, Peng S, Song ZY, Lin S. Collagen biomaterial for the treatment of myocardial infarction: an update on cardiac tissue engineering and myocardial regeneration. Drug Deliv Transl Res 2020; 9:920-934. [PMID: 30877625 DOI: 10.1007/s13346-019-00627-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Myocardial infarction (MI) remains one of the leading cause of mortality over the world. However, current treatments are more palliative than curative, which only stall the progression of the disease, but not reverse the disease. While stem cells or bioactive molecules therapy is promising, the limited survival and engraftment of bioactive agent due to a hostile environment is a bottleneck for MI treatment. In order to maximize the utility of stem cells and bioactive molecules for myocardial repair and regeneration, various types of biomaterials have been developed. Among them, collagen-based biomaterial is widely utilized for cardiac tissue engineering and regeneration due to its optimal physical and chemical properties. In this review, we summarize the properties of collagen-based biomaterial. Then, we discuss collagen-based biomaterial currently being applied to treat MI alone, or together with stem cells and/or bioactive molecules. Finally, the delivery system of collagen-based biomaterial will also be discussed.
Collapse
Affiliation(s)
- Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China.
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), No. 30 Gaotanyan, Shapingba, Chongqing, 400038, China. .,School of Medicine, University of Wollongong and Illawarra Health and Medical Research Institute, Keiraville, NSW, 2522, Australia.
| |
Collapse
|
9
|
Streeter BW, Davis ME. Therapeutic Cardiac Patches for Repairing the Myocardium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1144:1-24. [DOI: 10.1007/5584_2018_309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Ketabat F, Khorshidi S, Karkhaneh A. Application of minimally invasive injectable conductive hydrogels as stimulating scaffolds for myocardial tissue engineering. POLYM INT 2018. [DOI: 10.1002/pi.5599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Farinaz Ketabat
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Sajedeh Khorshidi
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering; Amirkabir University of Technology; Tehran Iran
| |
Collapse
|
11
|
Fakoya AOJ, Otohinoyi DA, Yusuf J. Current Trends in Biomaterial Utilization for Cardiopulmonary System Regeneration. Stem Cells Int 2018; 2018:3123961. [PMID: 29853910 PMCID: PMC5949153 DOI: 10.1155/2018/3123961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/15/2017] [Accepted: 03/01/2018] [Indexed: 12/28/2022] Open
Abstract
The cardiopulmonary system is made up of the heart and the lungs, with the core function of one complementing the other. The unimpeded and optimal cycling of blood between these two systems is pivotal to the overall function of the entire human body. Although the function of the cardiopulmonary system appears uncomplicated, the tissues that make up this system are undoubtedly complex. Hence, damage to this system is undesirable as its capacity to self-regenerate is quite limited. The surge in the incidence and prevalence of cardiopulmonary diseases has reached a critical state for a top-notch response as it currently tops the mortality table. Several therapies currently being utilized can only sustain chronically ailing patients for a short period while they are awaiting a possible transplant, which is also not devoid of complications. Regenerative therapeutic techniques now appear to be a potential approach to solve this conundrum posed by these poorly self-regenerating tissues. Stem cell therapy alone appears not to be sufficient to provide the desired tissue regeneration and hence the drive for biomaterials that can support its transplantation and translation, providing not only physical support to seeded cells but also chemical and physiological cues to the cells to facilitate tissue regeneration. The cardiac and pulmonary systems, although literarily seen as just being functionally and spatially cooperative, as shown by their diverse and dissimilar adult cellular and tissue composition has been proven to share some common embryological codevelopment. However, necessitating their consideration for separate review is the immense adult architectural difference in these systems. This review also looks at details on new biological and synthetic biomaterials, tissue engineering, nanotechnology, and organ decellularization for cardiopulmonary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Joshua Yusuf
- All Saints University School of Medicine, Roseau, Dominica
- All Saints University School of Medicine, Kingstown, Saint Vincent and the Grenadines
| |
Collapse
|
12
|
Patel M, Lee HJ, Park S, Kim Y, Jeong B. Injectable thermogel for 3D culture of stem cells. Biomaterials 2018; 159:91-107. [DOI: 10.1016/j.biomaterials.2018.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022]
|
13
|
Abstract
Stem cell therapy is a promising approach to the treatment of ischemic heart disease via replenishing cell loss after myocardial infarction. Both preclinical studies and clinical trials have indicated that cardiac function improved consistently, but very modestly after cell-based therapy. This mainly attributed to low cell survival rate, engraftment and functional integration, which became the major challenges to regenerative medicine. In recent years, several new cell types have been developed to regenerate cardiomyocytes and novel delivery approaches helped to increase local cell retention. New strategies, such as cell pretreatment, gene-based therapy, tissue engineering, extracellular vesicles application and immunologic regulation, have surged and brought about improved cell survival and functional integration leading to better therapeutic effects after cell transplantation. In this review, we summarize these new strategies targeting at challenges of cardiac regenerative medicine and discuss recent evidences that may hint their effectiveness in the future clinical settings.
Collapse
|
14
|
Feyen DA, Gaetani R, Doevendans PA, Sluijter JP. Stem cell-based therapy: Improving myocardial cell delivery. Adv Drug Deliv Rev 2016; 106:104-115. [PMID: 27133386 DOI: 10.1016/j.addr.2016.04.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/15/2022]
Abstract
Stem cell-based therapies form an exciting new class of medicine that attempt to provide the body with the building blocks required for the reconstruction of damaged organs. However, delivering cells to the correct location, while preserving their integrity and functional properties, is a complex undertaking. These challenges have led to the development of a highly dynamic interdisciplinary research field, wherein medical, biological, and chemical sciences have collaborated to develop strategies to overcome the physiological barriers imposed on the cellular therapeutics. In this respect, improving the acute retention and subsequent survival of stem cells is key to effectively increase the effect of the therapy, while proper tissue integration is imperative for stem cells to functionally replace lost cells in damaged organs. In this review, we will use the heart as an example to highlight the current knowledge of therapeutic stem cell utilization, the existing pitfalls and limitations, and the approaches that have been developed to overcome them.
Collapse
|
15
|
Feyen DAM, Gaetani R, Deddens J, van Keulen D, van Opbergen C, Poldervaart M, Alblas J, Chamuleau S, van Laake LW, Doevendans PA, Sluijter JPG. Gelatin Microspheres as Vehicle for Cardiac Progenitor Cells Delivery to the Myocardium. Adv Healthc Mater 2016; 5:1071-9. [PMID: 26913710 DOI: 10.1002/adhm.201500861] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/08/2016] [Indexed: 01/11/2023]
Abstract
Inadequate cell retention and survival in cardiac stem cell therapy seems to be reducing the therapeutic effect of the injected stem cells. In order to ameliorate their regenerative effects, various biomaterials are being investigated for their potential supportive properties. Here, gelatin microspheres (MS) are utilized as microcarriers to improve the delivery and therapeutic efficacy of cardiac progenitor cells (CPCs) in the ischemic myocardium. The gelatin MS, generated from a water-in-oil emulsion, are able to accommodate the attachment of CPCs, thereby maintaining their cardiogenic potential. In a mouse model of myocardial infarction, we demonstrated the ability of these microcarriers to substantially enhance cell engraftment in the myocardium as indicated by bioluminescent imaging and histological analysis. However, despite an observed tenfold increase in CPC numbers in the myocardium, echocardiography, and histology reveals that mice treated with MS-CPCs show marginal improvement in cardiac function compared to CPCs only. Overall, a straightforward and translational approach is developed to increase the retention of stem cells in the ischemic myocardium. Even though the current biomaterial setup with CPCs as cell source does not translate into improved therapeutic action, coupling this developed technology with stem cell-derived cardiomyocytes can lead to an effective remuscularization therapy.
Collapse
Affiliation(s)
- Dries A. M. Feyen
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Roberto Gaetani
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
- Department of Molecular Medicine; Cenci-Bolognetti Foundation; Pasteur Institute; “Sapienza” University of Rome; 00161 Rome Italy
| | - Janine Deddens
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Danielle van Keulen
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Chantal van Opbergen
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Michelle Poldervaart
- Department of Orthopedics; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Jacqueline Alblas
- Department of Orthopedics; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Steven Chamuleau
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN); Utrecht 3511 EP The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology; DH&L; University Medical Center Utrecht; Utrecht 3584 CX The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN); Utrecht 3511 EP The Netherlands
- Department of Cardiology; DH&L; University Medical Center Utrecht; Experimental Cardiology Laboratory; Heidelberglaan 100, Room G03.642 Utrecht 3584 CX The Netherlands
| |
Collapse
|
16
|
Rojas SV, Martens A, Zweigerdt R, Baraki H, Rathert C, Schecker N, Rojas-Hernandez S, Schwanke K, Martin U, Haverich A, Kutschka I. Transplantation Effectiveness of Induced Pluripotent Stem Cells Is Improved by a Fibrinogen Biomatrix in an Experimental Model of Ischemic Heart Failure. Tissue Eng Part A 2016; 21:1991-2000. [PMID: 25867819 DOI: 10.1089/ten.tea.2014.0537] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate whether a fibrinogen biomatrix improves the transplantation effectiveness of induced pluripotent stem cells (iPSCs) in a model of myocardial infarction. BACKGROUND Early retention, engraftment, and cell proliferation are important factors for successful cardiac stem cell therapy. Common transplantation techniques involve the direction injection of cells in aqueous media. However, this approach yields low retention and variable cell biodistribution, leading to reduced grafts that are unable to sufficiently regenerate damaged myocardium. Biologically compatible scaffolds that improve the retention of injected cells can improve cardiac stem cell therapy. METHODS Murine iPSCs were transfected for luciferase reporter gene expression. First, in vitro experiments were performed comparing cell viability in fibrinogen and medium. Second, iPSCs were transplanted intramyocardially by direct injection into ischemic myocardium of immunodeficient mice, following permanent left coronary artery ligation. Cells were delivered in medium or fibrinogen. Follow-up included graft assessment by bioluminescence imaging, the evaluation of cardiac function by magnetic resonance imaging, and histology to evaluate graft size and determine the extent of myocardial scarring. RESULTS In vitro experiments showed proliferation of iPSCs in fibrinogen from 6.4×10(3)±8.0×10(2) after 24 h to 2.1×10(4)±3.2×10(3) after 72 h. Early cardiac cell amount in control group animals was low (23.7%±0.7%) with massive cell accumulation in the right (46.3%±1.0%) and the left lung (30.0%±0.6%). When iPSCs were injected applying the fibrinogen biomatrix, intramyocardial cell amount was increased (66.3%±0.9%) with demonstrable graft proliferation over the experimental time course. Left ventricle-function was higher in the fibrinogen group (42.9%±2.8%), also showing a higher fraction of refilled infarcted-area (66.9%±2.7%). CONCLUSIONS The fibrinogen biomatrix improved cardiac iPSc retention, sustaining functional improvement and cellular refill of infarcted myocardium. Therefore, fibrinogen can be considered an ideal biological scaffold for intramyocardial stem cell transplantations.
Collapse
Affiliation(s)
- Sebastian V Rojas
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany .,2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Andreas Martens
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany .,2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Robert Zweigerdt
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Hassina Baraki
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| | - Christian Rathert
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Natalie Schecker
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | | | - Kristin Schwanke
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Ulrich Martin
- 2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Axel Haverich
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany .,2 Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School-REBIRTH-Cluster of Excellence , Hannover, Germany
| | - Ingo Kutschka
- 1 Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School , Hannover, Germany
| |
Collapse
|
17
|
Shafiq M, Jung Y, Kim SH. Insight on stem cell preconditioning and instructive biomaterials to enhance cell adhesion, retention, and engraftment for tissue repair. Biomaterials 2016; 90:85-115. [PMID: 27016619 DOI: 10.1016/j.biomaterials.2016.03.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/09/2016] [Accepted: 03/13/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a promising solution for the treatment of a variety of diseases. However, the limited survival and engraftment of transplanted cells due to a hostile ischemic environment is a bottleneck for effective utilization and commercialization. Within this environment, the majority of transplanted cells undergo apoptosis prior to participating in lineage differentiation and cellular integration. Therefore, in order to maximize the clinical utility of stem/progenitor cells, strategies must be employed to increase their adhesion, retention, and engraftment in vivo. Here, we reviewed key strategies that are being adopted to enhance the survival, retention, and engraftment of transplanted stem cells through the manipulation of both the stem cells and the surrounding environment. We describe how preconditioning of cells or cell manipulations strategies can enhance stem cell survival and engraftment after transplantation. We also discuss how biomaterials can enhance the function of stem cells for effective tissue regeneration. Biomaterials can incorporate or mimic extracellular function (ECM) function and enhance survival or differentiation of transplanted cells in vivo. Biomaterials can also promote angiogenesis, enhance engraftment and differentiation, and accelerate electromechanical integration of transplanted stem cells. Insight gained from this review may direct the development of future investigations and clinical trials.
Collapse
Affiliation(s)
- Muhammad Shafiq
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Youngmee Jung
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea
| | - Soo Hyun Kim
- Korea University of Science and Technology, 176 Gajeong-dong, Yuseong-gu, Daejeon, Republic of Korea; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea.
| |
Collapse
|
18
|
Stem cells and injectable hydrogels: Synergistic therapeutics in myocardial repair. Biotechnol Adv 2016; 34:362-379. [PMID: 26976812 DOI: 10.1016/j.biotechadv.2016.03.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/27/2016] [Accepted: 03/07/2016] [Indexed: 02/08/2023]
Abstract
One of the major problems in the treatment of cardiovascular diseases is the inability of myocardium to self-regenerate. Current therapies are unable to restore the heart's function after myocardial infarction. Myocardial tissue engineering is potentially a key approach to regenerate damaged heart muscle. Myocardial patches are applied surgically, whereas injectable hydrogels provide effective minimally invasive approaches to recover functional myocardium. These hydrogels are easily administered and can be either cell free or loaded with bioactive agents and/or cardiac stem cells, which may apply paracrine effects. The aim of this review is to investigate the advantages and disadvantages of injectable stem cell-laden hydrogels and highlight their potential applications for myocardium repair.
Collapse
|
19
|
Perea-Gil I, Prat-Vidal C, Bayes-Genis A. In vivo experience with natural scaffolds for myocardial infarction: the times they are a-changin'. Stem Cell Res Ther 2015; 6:248. [PMID: 26670389 PMCID: PMC4681026 DOI: 10.1186/s13287-015-0237-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Treating a myocardial infarction (MI), the most frequent cause of death worldwide, remains one of the most exciting medical challenges in the 21st century. Cardiac tissue engineering, a novel emerging treatment, involves the use of therapeutic cells supported by a scaffold for regenerating the infarcted area. It is essential to select the appropriate scaffold material; the ideal one should provide a suitable cellular microenvironment, mimic the native myocardium, and allow mechanical and electrical coupling with host tissues. Among available scaffold materials, natural scaffolds are preferable for achieving these purposes because they possess myocardial extracellular matrix properties and structures. Here, we review several natural scaffolds for applications in MI management, with a focus on pre-clinical studies and clinical trials performed to date. We also evaluate scaffolds combined with different cell types and proteins for their ability to promote improved heart function, contractility and neovascularization, and attenuate adverse ventricular remodeling. Although further refinement is necessary in the coming years, promising results indicate that natural scaffolds may be a valuable translational therapeutic option with clinical impact in MI repair.
Collapse
Affiliation(s)
- Isaac Perea-Gil
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain
| | - Cristina Prat-Vidal
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain.
| | - Antoni Bayes-Genis
- ICREC (Heart Failure and Cardiac Regeneration) Research Lab, Health Sciences Research Institute Germans Trias i Pujol (IGTP). Cardiology Service, Hospital Universitari Germans Trias i Pujol, 08916, Badalona, Barcelona, Spain.,Department of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
20
|
Breckwoldt K, Weinberger F, Eschenhagen T. Heart regeneration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1749-59. [PMID: 26597703 DOI: 10.1016/j.bbamcr.2015.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/14/2023]
Abstract
Regenerating an injured heart holds great promise for millions of patients suffering from heart diseases. Since the human heart has very limited regenerative capacity, this is a challenging task. Numerous strategies aiming to improve heart function have been developed. In this review we focus on approaches intending to replace damaged heart muscle by new cardiomyocytes. Different strategies for the production of cardiomyocytes from human embryonic stem cells or human induced pluripotent stem cells, by direct reprogramming and induction of cardiomyocyte proliferation are discussed regarding their therapeutic potential and respective advantages and disadvantages. Furthermore, different methods for the transplantation of pluripotent stem cell-derived cardiomyocytes are described and their clinical perspectives are discussed. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Florian Weinberger
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
21
|
Hasan A, Khattab A, Islam MA, Hweij KA, Zeitouny J, Waters R, Sayegh M, Hossain MM, Paul A. Injectable Hydrogels for Cardiac Tissue Repair after Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2015; 2:1500122. [PMID: 27668147 PMCID: PMC5033116 DOI: 10.1002/advs.201500122] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/09/2015] [Indexed: 05/17/2023]
Abstract
Cardiac tissue damage due to myocardial infarction (MI) is one of the leading causes of mortality worldwide. The available treatments of MI include pharmaceutical therapy, medical device implants, and organ transplants, all of which have severe limitations including high invasiveness, scarcity of donor organs, thrombosis or stenosis of devices, immune rejection, and prolonged hospitalization time. Injectable hydrogels have emerged as a promising solution for in situ cardiac tissue repair in infarcted hearts after MI. In this review, an overview of various natural and synthetic hydrogels for potential application as injectable hydrogels in cardiac tissue repair and regeneration is presented. The review starts with brief discussions about the pathology of MI, its current clinical treatments and their limitations, and the emergence of injectable hydrogels as a potential solution for post MI cardiac regeneration. It then summarizes various hydrogels, their compositions, structures and properties for potential application in post MI cardiac repair, and recent advancements in the application of injectable hydrogels in treatment of MI. Finally, the current challenges associated with the clinical application of injectable hydrogels to MI and their potential solutions are discussed to help guide the future research on injectable hydrogels for translational therapeutic applications in regeneration of cardiac tissue after MI.
Collapse
Affiliation(s)
- Anwarul Hasan
- Center for Biomedical Engineering Department of Medicine Brigham and Women's Hospital Harvard Medical School Cambridge MA 02139 USA; Harvard-MIT Division of Health Sciences and Technology Massachusetts Institute of Technology Cambridge MA 02139 USA; Biomedical Engineering and Department of Mechanical Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Ahmad Khattab
- Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Mohammad Ariful Islam
- Laboratory of Nanomedicine and Biomaterials Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA; Laboratory for Nanoengineering and Drug Delivery Brigham and Women's Hospital Harvard Medical School Boston MA 02115 USA
| | - Khaled Abou Hweij
- Department of Mechanical Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Joya Zeitouny
- Department of Electrical and Computer Engineering Faculty of Engineering and Architecture American University of Beirut Beirut 1107 2020 Lebanon
| | - Renae Waters
- BioIntel Research Laboratory Department of Chemical and Petroleum Engineering Bioengineering Graduate Program School of Engineering University of Kansas Lawrence KS 66045 USA
| | | | - Md Monowar Hossain
- Department of Medicine Lyell McEwin Hospital University of Adelaide South Australia 5112 Australia
| | - Arghya Paul
- BioIntel Research Laboratory Department of Chemical and Petroleum Engineering Bioengineering Graduate Program School of Engineering University of Kansas Lawrence KS 66045 USA
| |
Collapse
|
22
|
Chen X, Thibeault S. Effect of DMSO concentration, cell density and needle gauge on the viability of cryopreserved cells in three dimensional hyaluronan hydrogel. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2013:6228-31. [PMID: 24111163 DOI: 10.1109/embc.2013.6610976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For cells seeded in scaffolds, transplanted cell survival rate plays an important role for cell transplantation efficiency, and is essential for successful cell transplantation. Fibroblast viability in HyStem-C was examined by a double staining Live/Dead Viability/Cytotoxicity assay, and cell images were analyzed using MetaMorph software for calculating live cell percentage for fresh and cryopreserved cells at different incubation time points, delivery methods, differing DMSO and cell concentrations. The results of this research demonstrated that in HyStem-C, the viability of cryopreserved cells (85%) was significantly lower than fresh collected cells (96.7%). In addition, the physical force from a 27 gauge needle significantly decreased frozen cell survival rates to 83-85% compared to pipette delivered cells. Higher DMSO concentration (1.0%) and higher cell density (2 × 10(7) per milliliter) also significantly decreased cell survival to 73%. Cryopreserved cell viability in three dimensional scaffolding can be maintained over 80% with cell density of 1 × 10(7) per milliliter, total DMSO concentration of 0.5%, and passed through a 27-gauge needle. These results demonstrate the viability of cells seeded in hyaluronan hydrogel with commonly used storage and delivery methods can bring rather satisfactory cell transplantation efficiency.
Collapse
|
23
|
Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo N, Gorman JH, Pilla JJ, Gorman RC, Wenk JF, Burdick JA. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 2015; 69:65-75. [PMID: 26280951 DOI: 10.1016/j.biomaterials.2015.08.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022]
Abstract
Injectable biomaterials are an attractive therapy to attenuate left ventricular (LV) remodeling after myocardial infarction (MI). Although studies have shown that injectable hydrogels improve cardiac structure and function in vivo, temporal changes in infarct material properties after treatment have not been assessed. Emerging imaging and modeling techniques now allow for serial, non-invasive estimation of infarct material properties. Specifically, cine magnetic resonance imaging (MRI) assesses global LV structure and function, late-gadolinium enhancement (LGE) MRI enables visualization of infarcted tissue to quantify infarct expansion, and spatial modulation of magnetization (SPAMM) tagging provides passive wall motion assessment as a measure of tissue strain, which can all be used to evaluate infarct properties when combined with finite element (FE) models. In this work, we investigated the temporal effects of degradable hyaluronic acid (HA) hydrogels on global LV remodeling, infarct thinning and expansion, and infarct stiffness in a porcine infarct model for 12 weeks post-MI using MRI and FE modeling. Hydrogel treatment led to decreased LV volumes, improved ejection fraction, and increased wall thickness when compared to controls. FE model simulations demonstrated that hydrogel therapy increased infarct stiffness for 12 weeks post-MI. Thus, evaluation of myocardial tissue properties through MRI and FE modeling provides insight into the influence of injectable hydrogel therapies on myocardial structure and function post-MI.
Collapse
Affiliation(s)
- Shauna M Dorsey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy R McGarvey
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Wang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Amir Nikou
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Leron Arama
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin J Koomalsingh
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norihiro Kondo
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James J Pilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan F Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA; Department of Surgery, University of Kentucky, Lexington, KY 40506, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
24
|
Salazar BH, Cashion AT, Dennis RG, Birla RK. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs. Cardiovasc Eng Technol 2015; 6:533-45. [PMID: 26577484 DOI: 10.1007/s13239-015-0236-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/14/2015] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.
Collapse
Affiliation(s)
- Betsy H Salazar
- Department of Biomedical Engineering, Science and Engineering Research Center (SERC), Cullen College of Engineering, University of Houston, 3605 Cullen Blvd, Rm. 2021, Houston, TX, 77204, USA.
| | - Avery T Cashion
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, NC, USA
| | - Robert G Dennis
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, NC, USA
| | - Ravi K Birla
- Department of Biomedical Engineering, Science and Engineering Research Center (SERC), Cullen College of Engineering, University of Houston, 3605 Cullen Blvd, Rm. 2021, Houston, TX, 77204, USA.
| |
Collapse
|
25
|
Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B Biointerfaces 2015. [PMID: 26209968 DOI: 10.1016/j.colsurfb.2015.07.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiac tissue engineering promises to revolutionize the treatment of patients with end-stage heart failure and provide new solutions to the serious problems of shortage of heart donors. The influence of extracellular matrix (ECM) plays an influential role along with nanostructured components for guided stem cell differentiation. Hence, nanoparticle embedded Nanofibrous scaffolds of FDA approved polycaprolactone (PCL), Vitamin B12 (Vit B12), Aloe Vera(AV) and Silk fibroin(SF) was constructed to differentiate mesenchymal stem cells into cardiac lineage. Cardiomyocytes (CM) and Mesenchymal stem cells (MSC) were co-cultured on these fabricated nanofibrous scaffolds for the regeneration of infarcted myocardium. Results demonstrated that synthesized gold nanoparticles were of the size 16 nm and the nanoparticle loaded nanofibrous scaffold has a mechanical strength of 2.56 MPa matching that of the native myocardium. The gold nanoparticle blended PCL scaffolds were found to be enhancing the MSCs proliferation and differentiation into cardiogenesis. Most importantly the phenotype and cardiac marker expression in differentiated MSCs were highly resonated in gold nanoparticle loaded nanofibrous scaffolds. The appropriate mechanical strength provided by the functionalized nanofibrous scaffolds profoundly supported MSCs to produce contractile proteins and achieve typical cardiac phenotype.
Collapse
|
26
|
Zhu H, Jiang X, Li X, Hu M, Wan W, Wen Y, He Y, Zheng X. Intramyocardial delivery of VEGF165 via a novel biodegradable hydrogel induces angiogenesis and improves cardiac function after rat myocardial infarction. Heart Vessels 2015; 31:963-75. [PMID: 26142379 DOI: 10.1007/s00380-015-0710-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 06/24/2015] [Indexed: 12/20/2022]
Abstract
Vascular endothelial growth factor (VEGF), an independent mitogen, has been reported to induce angiogenesis and thus attenuates the damage induced by myocardial infarction (MI). VEGF165 is the most abundant and predominant isoform of VEGF. This study investigates whether this effect could be strengthened by local intramyocardial injection of VEGF165 along with a novel biodegradable Dex-PCL-HEMA/PNIPAAm hydrogel and ascertains its possible mechanism of action. Rat models of myocardial infarction were induced by coronary artery ligation. Phosphate-buffered saline (PBS group), Dex-PCL-HEMA/PNIPAAm hydrogel (Gel group), phosphate-buffered saline containing VEGF165 (VP group), and hydrogel containing VEGF165 (VPG group) were injected into a peri-infarcted area of cardiac tissue immediately after myocardial infarction, respectively. The sham group was thoracic but without myocardial infarction. The injection of VEGF165 along with a hydrogel induced angiogenesis, reduced collagen content and MI area, inhibited cell apoptosis, increased the level of VEGF165 protein and the expression of flk-1 and flt-1, and improved cardiac function compared with the injection of either alone after MI in rats. The results suggest that injection of VEGF165 along with a hydrogel acquires more cardioprotective effects than either alone in rat with MI by sustained release of VEGF165, then may enhance the feedback between VEGF and its receptors flk-1 and flt-1.
Collapse
Affiliation(s)
- Hongling Zhu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Xiaoyan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Miaoyang Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Ying Wen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Yiyu He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| |
Collapse
|
27
|
Takawale A, Sakamuri SS, Kassiri Z. Extracellular Matrix Communication and Turnover in Cardiac Physiology and Pathology. Compr Physiol 2015; 5:687-719. [DOI: 10.1002/cphy.c140045] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
Xu G, Wang X, Deng C, Teng X, Suuronen EJ, Shen Z, Zhong Z. Injectable biodegradable hybrid hydrogels based on thiolated collagen and oligo(acryloyl carbonate)-poly(ethylene glycol)-oligo(acryloyl carbonate) copolymer for functional cardiac regeneration. Acta Biomater 2015; 15:55-64. [PMID: 25545323 DOI: 10.1016/j.actbio.2014.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/24/2014] [Accepted: 12/18/2014] [Indexed: 12/23/2022]
Abstract
Injectable biodegradable hybrid hydrogels were designed and developed based on thiolated collagen (Col-SH) and multiple acrylate containing oligo(acryloyl carbonate)-b-poly(ethylene glycol)-b-oligo(acryloyl carbonate) (OAC-PEG-OAC) copolymers for functional cardiac regeneration. Hydrogels were readily formed under physiological conditions (37°C and pH 7.4) from Col-SH and OAC-PEG-OAC via a Michael-type addition reaction, with gelation times ranging from 0.4 to 8.1 min and storage moduli from 11.4 to 55.6 kPa, depending on the polymer concentrations, solution pH and degrees of substitution of Col-SH. The collagen component in the hybrid hydrogels retained its enzymatic degradability against collagenase, and the degradation time of the hydrogels increased with increasing polymer concentration. In vitro studies showed that bone marrow mesenchymal stem cells (BMSCs) exhibited rapid cell spreading and extensive cellular network formation on these hybrid hydrogels. In a rat infarction model, the infarcted left ventricle was injected with PBS, hybrid hydrogels, BMSCs or BMSC-encapsulating hybrid hydrogels. Echocardiography demonstrated that the hybrid hydrogels and BMSC-encapsulating hydrogels could increase the ejection fraction at 28 days compared to the PBS control group, resulting in improved cardiac function. Histology revealed that the injected hybrid hydrogels significantly reduced the infarct size and increased the wall thickness, and these were further improved with the BMSC-encapsulating hybrid hydrogel treatment, probably related to the enhanced engraftment and persistence of the BMSCs when delivered within the hybrid hydrogel. Thus, these injectable hybrid hydrogels combining intrinsic bioactivity of collagen, controlled mechanical properties and enhanced stability provide a versatile platform for functional cardiac regeneration.
Collapse
|
29
|
Vu TD, Pal SN, Ti LK, Martinez EC, Rufaihah AJ, Ling LH, Lee CN, Richards AM, Kofidis T. An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: a translational approach: Vu and Pal "Myocardial Repair: PRP, Hydrogel and Supplements". Biomaterials 2015; 45:27-35. [PMID: 25662492 DOI: 10.1016/j.biomaterials.2014.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
AIMS Cell-based myocardial restoration has not penetrated broad clinical practice yet due to poor cell retention and survival rates. In this study, we attempt a translational, large-scale restorative but minimally invasive approach in the pig, aiming at both structurally stabilizing the left ventricular (LV) wall and enhancing function following ischemic injury. METHODS AND RESULTS A myocardial infarction (MI) was created by permanent ligation of left circumflex coronary artery through a small lateral thoracotomy. Thirty-six Yorkshire pigs were randomized to receive transthoracic intramyocardial injection into both infarct and border zone areas with different compounds: 1) Hyaluronic acid-based hydrogel; 2) autologous platelet-rich plasma (PRP); 3) ascorbic acid-enriched hydrogel (50 mg/L), combined with IV ibuprofen (25 mg/kg) and allopurinol (25 mg/kg) (cocktail group); 4) PRP and cocktail (full-compound); or 5) saline (control). The latter two groups received daily oral ibuprofen (25 mg/kg) for 7 days and allopurinol (25 mg/kg) for 30 days, postoperatively. Hemodynamic and echocardiographic studies were carried out at baseline, immediately after infarction and at end-point. Eight weeks after MI, the full-compound group had better LV fractional area change, ejection fraction and smaller LV dimensions than the control group. Also, dp/dtmax was significantly higher in the full-compound group when the heart rate increased from 100 bpm to 160bpm in stress tests. Blood vessel density was higher in the full-compound group, compared to the other treatment groups. CONCLUSIONS A combination of PRP, anti-oxidant and anti-inflammatory factors with intramyocardial injection of hydrogel has the potential to structurally and functionally improve the injured heart muscle while attenuating adverse cardiac remodeling after acute myocardial infarction.
Collapse
Affiliation(s)
- Thang Duc Vu
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shripad N Pal
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lian-Kah Ti
- Department of Anesthesia, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Eliana C Martinez
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Abdul Jalil Rufaihah
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lieng H Ling
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chuen-Neng Lee
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Health System, Singapore
| | - Arthur Mark Richards
- Cardiovascular Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Cardiac, Thoracic and Vascular Surgery, National University Health System, Singapore.
| |
Collapse
|
30
|
Yuan X, He B, Lv Z, Luo S. Fabrication of self-assembling peptide nanofiber hydrogels for myocardial repair. RSC Adv 2014. [DOI: 10.1039/c4ra08582e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
31
|
Jadczyk T, Faulkner A, Madeddu P. Stem cell therapy for cardiovascular disease: the demise of alchemy and rise of pharmacology. Br J Pharmacol 2014; 169:247-68. [PMID: 22712727 DOI: 10.1111/j.1476-5381.2012.01965.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Regenerative medicine holds great promise as a way of addressing the limitations of current treatments of ischaemic disease. In preclinical models, transplantation of different types of stem cells or progenitor cells results in improved recovery from ischaemia. Furthermore, experimental studies indicate that cell therapy influences a spectrum of processes, including neovascularization and cardiomyogenesis as well as inflammation, apoptosis and interstitial fibrosis. Thus, distinct strategies might be required for specific regenerative needs. Nonetheless, clinical studies have so far investigated a relatively small number of options, focusing mainly on the use of bone marrow-derived cells. Rapid clinical translation resulted in a number of small clinical trials that do not have sufficient power to address the therapeutic potential of the new approach. Moreover, full exploitation has been hindered so far by the absence of a solid theoretical framework and inadequate development plans. This article reviews the current knowledge on cell therapy and proposes a model theory for interpretation of experimental and clinical outcomes from a pharmacological perspective. Eventually, with an increased association between cell therapy and traditional pharmacotherapy, we will soon need to adopt a unified theory for understanding how the two practices additively interact for a patient's benefit.
Collapse
Affiliation(s)
- T Jadczyk
- Third Division of Cardiology, Medical University of Silesia, Katovice, Poland
| | | | | |
Collapse
|
32
|
Li X, Zhou J, Liu Z, Chen J, Lü S, Sun H, Li J, Lin Q, Yang B, Duan C, Xing M(M, Wang C. A PNIPAAm-based thermosensitive hydrogel containing SWCNTs for stem cell transplantation in myocardial repair. Biomaterials 2014; 35:5679-88. [DOI: 10.1016/j.biomaterials.2014.03.067] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/22/2014] [Indexed: 01/26/2023]
|
33
|
Castellano D, Blanes M, Marco B, Cerrada I, Ruiz-Saurí A, Pelacho B, Araña M, Montero JA, Cambra V, Prosper F, Sepúlveda P. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair. Stem Cells Dev 2014; 23:1479-90. [PMID: 24564648 DOI: 10.1089/scd.2013.0578] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair.
Collapse
Affiliation(s)
- Delia Castellano
- 1 Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe , Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Emmert MY, Hitchcock RW, Hoerstrup SP. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliv Rev 2014; 69-70:254-69. [PMID: 24378579 DOI: 10.1016/j.addr.2013.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/06/2013] [Accepted: 12/17/2013] [Indexed: 01/02/2023]
Abstract
Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.
Collapse
|
35
|
Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials 2014; 35:3956-74. [PMID: 24560461 DOI: 10.1016/j.biomaterials.2014.01.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.
Collapse
|
36
|
The effect of matrix stiffness of injectable hydrogels on the preservation of cardiac function after a heart attack. Biomaterials 2014; 35:1429-38. [PMID: 24268664 DOI: 10.1016/j.biomaterials.2013.10.058] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/19/2013] [Indexed: 01/06/2023]
|
37
|
Abstract
Tissue engineering aims to create, repair and/or replace tissues and organs by using cells, scaffolds, biologically active molecules and physiologic signals. It is an interdisciplinary field that integrates aspects of engineering, chemistry, biology and medicine. One of the most challenging goals in the field of cardiovascular tissue engineering is the creation of a heart muscle patch. This review describes the principles, achievements and challenges of achieving this ambitious goal of creating contractile heart muscle. In addition, the new strategy of in situ and injectable tissue engineering for myocardial repair and regeneration is presented.
Collapse
Affiliation(s)
- Jonathan Leor
- Sheba-Medical Center, Neufeld Cardiac Research Institute, Tel-Aviv University, Tel-Hashomer 52621, Israel.
| | | | | |
Collapse
|
38
|
Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev Rep 2014; 9:281-302. [PMID: 22529015 DOI: 10.1007/s12015-012-9366-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite current treatment options, cardiac failure is associated with significant morbidity and mortality highlighting a compelling clinical need for novel therapeutic approaches. Based on promising pre-clinical data, stem cell therapy has been suggested as a possible therapeutic strategy. Of the candidate cell types evaluated, mesenchymal stromal/stem cells (MSCs) have been widely evaluated due to their ease of isolation and ex vivo expansion, potential allogeneic utility and capacity to promote neo-angiogenesis and endogenous cardiac repair. However, the clinical application of MSCs for mainstream cardiovascular use is currently hindered by several important limitations, including suboptimal retention and engraftment and restricted capacity for bona fide cardiomyocyte regeneration. Consequently, this has prompted intense efforts to advance the therapeutic properties of MSCs for cardiovascular disease. In this review, we consider the scope of benefit from traditional plastic adherence-isolated MSCs and the lessons learned from their conventional use in preclinical and clinical studies. Focus is then given to the evolving strategies aimed at optimizing MSC therapy, including discussion of cell-targeted techniques that encompass the preparation, pre-conditioning and manipulation of these cells ex vivo, methods to improve their delivery to the heart and innovative substrate-directed strategies to support their interaction with the host myocardium.
Collapse
Affiliation(s)
- James D Richardson
- Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
39
|
Abstract
The heart is a large organ containing many cell types, each of which is necessary for normal function. Because of this, cardiac regenerative medicine presents many unique challenges. Because each of the many types of cells within the heart has unique physiological and electrophysiological characteristics, donor cells must be well matched to the area of the heart into which they are grafted to avoid mechanical dysfunction or arrhythmia. In addition, grafted cells must be functionally integrated into host tissue to effectively repair cardiac function. Because of its size and physiological function, the metabolic needs of the heart are considerable. Therefore grafts must contain not only cardiomyocytes but also a functional vascular network to meet their needs for oxygen and nutrition. In this article we review progress in the use of pluripotent stem cells as a source of donor cardiomyocytes and highlight current unmet needs in the field. We also examine recent tissue engineering approaches integrating cells with various engineered materials that should address some of these unmet needs.
Collapse
Affiliation(s)
- Yunkai Dai
- Bioengineering Department, Clemson University, Clemson, South Carolina
| | - Ann C. Foley
- Bioengineering Department, Clemson University, Clemson, South Carolina
- Department of Cell and Regenerative Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
40
|
Mironi-Harpaz I, Berdichevski A, Seliktar D. Fabrication of PEGylated fibrinogen: a versatile injectable hydrogel biomaterial. Methods Mol Biol 2014; 1181:61-8. [PMID: 25070327 DOI: 10.1007/978-1-4939-1047-2_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hydrogels are one of the most versatile biomaterials in use for tissue engineering and regenerative medicine. They are assembled from either natural or synthetic polymers, and their high water content gives these materials practical advantages in numerous biomedical applications. Semisynthetic hydrogels, such as those that combine synthetic and biological building blocks, have the added advantage of controlled bioactivity and material properties. In myocardial regeneration, injectable hydrogels premised on a semisynthetic design are advantageous both as bioactive bulking agents and as a delivery vehicle for controlled release of bioactive factors and/or cardiomyocytes. A new semisynthetic hydrogel based on PEGylated fibrinogen has been developed to address the many requirements of an injectable biomaterial in cardiac restoration. This chapter highlights the fundamental aspects of making this biomimetic hydrogel matrix for cardiac applications.
Collapse
Affiliation(s)
- Iris Mironi-Harpaz
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, office silver 168, Haifa, 32000, Israel
| | | | | |
Collapse
|
41
|
Bastings MMC, Koudstaal S, Kieltyka RE, Nakano Y, Pape ACH, Feyen DAM, van Slochteren FJ, Doevendans PA, Sluijter JPG, Meijer EW, Chamuleau SAJ, Dankers PYW. A fast pH-switchable and self-healing supramolecular hydrogel carrier for guided, local catheter injection in the infarcted myocardium. Adv Healthc Mater 2014; 3:70-8. [PMID: 23788397 DOI: 10.1002/adhm.201300076] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 03/27/2013] [Indexed: 11/09/2022]
Abstract
Minimally invasive intervention strategies after myocardial infarction use state-of-the-art catheter systems that are able to combine mapping of the infarcted area with precise, local injection of drugs. To this end, catheter delivery of drugs that are not immediately pumped out of the heart is still challenging, and requires a carrier matrix that in the solution state can be injected through a long catheter, and instantaneously gelates at the site of injection. To address this unmet need, a pH-switchable supramolecular hydrogel is developed. The supramolecular hydrogel is switched into a liquid at pH > 8.5, with a viscosity low enough to enable passage through a 1-m long catheter while rapidly forming a hydrogel in contact with tissue. The hydrogel has self-healing properties taking care of adjustment to the injection site. Growth factors are delivered from the hydrogel thereby clearly showing a reduction of infarct scar in a pig myocardial infarction model.
Collapse
Affiliation(s)
- Maartje M. C. Bastings
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Stefan Koudstaal
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, PO Box 85.500, 3508 GA Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), PO Box 19258, 3501 DG Utrecht, The Netherlands
| | - Roxanne E. Kieltyka
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yoko Nakano
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - A. C. H. Pape
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Dries A. M. Feyen
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, PO Box 85.500, 3508 GA Utrecht, The Netherlands
| | - Frebus J. van Slochteren
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, PO Box 85.500, 3508 GA Utrecht, The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, PO Box 85.500, 3508 GA Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), PO Box 19258, 3501 DG Utrecht, The Netherlands
| | - Joost P. G. Sluijter
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, PO Box 85.500, 3508 GA Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), PO Box 19258, 3501 DG Utrecht, The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Steven A. J. Chamuleau
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, PO Box 85.500, 3508 GA Utrecht, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands (ICIN), PO Box 19258, 3501 DG Utrecht, The Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
- Laboratory of Chemical Biology, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
42
|
Chen Y, Ye L, Zhong J, Li X, Yan C, Chandler MP, Calvin S, Xiao F, Negia M, Low WC, Zhang J, Yu X. The Structural Basis of Functional Improvement in Response to Human Umbilical Cord Blood Stem Cell Transplantation in Hearts With Postinfarct LV Remodeling. Cell Transplant 2013; 24:971-83. [PMID: 24332083 DOI: 10.3727/096368913x675746] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cellular therapy for myocardial repair has been one of the most intensely investigated interventional strategies for acute myocardial infarction. Although the therapeutic potential of stem cells has been demonstrated in various studies, the underlying mechanisms for such improvements are poorly understood. In the present study, we investigated the long-term effects of stem cell therapy on both myocardial fiber organization and regional contractile function using a rat model of postinfarct remodeling. Human nonhematopoietic umbilical cord blood stem cells (nh-UCBSCs) were administered via tail vein to rats 2 days after infarct surgery. Animals were maintained without immunosuppressive therapy. In vivo and ex vivo MR imaging was performed on infarct hearts 10 months after cell transplantation. Compared to the age-matched rats exposed to the identical surgery, both global and regional cardiac functions of the nh-UCBSC-treated hearts, such as ejection fraction, ventricular strain, and torsion, were significantly improved. More importantly, the treated hearts exhibited preserved fiber orientation and water diffusivities that were similar to those in sham-operated control hearts. These data provide the first evidence that nh-UCBSC treatment may prevent/delay untoward structural remodeling in postinfarct hearts, which supports the improved LV function observed in vivo in the absence of immunosuppression, suggesting a beneficial paracrine effect occurred with the cellular therapy.
Collapse
Affiliation(s)
- Yong Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kwon SU, Yeung AC, Ikeno F. The role of large animal studies in cardiac regenerative therapy concise review of translational stem cell research. Korean Circ J 2013; 43:511-8. [PMID: 24044009 PMCID: PMC3772295 DOI: 10.4070/kcj.2013.43.8.511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Animal models have long been developed for cardiovascular research. These animal models have been helpful in understanding disease, discovering potential therapeutics, and predicting efficacy. Despite many efforts, however, translational study has been underestimated. Recently, investigations have identified stem cell treatment as a potentially promising cell therapy for regenerative medicine, largely because of the stem cell's ability to differentiate into many functional cell types. Stem cells promise a new era of cell-based therapy for salvaging the heart. However, stem cells have the potential risk of tumor formation. These properties of stem cells are considered a major concern over the efficacy of cell therapy. The translational/preclinical study of stem cells is essential but only at the beginning stages. What types of heart disease are indicated for stem cell therapy, what type of stem cell, what type of animal model, how do we deliver stem cells, and how do we improve heart function? These may be the key issues that the settlement of which would facilitate the transition of stem cell research from bench to bedside. In this review article, we discuss state-of-the-art technology in stem cell therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Sung Uk Kwon
- Division of Cardiovascular Medicine, Stanford University Medical Center, Stanford, CA, USA. ; Vision 21 Cardiac and Vascular Center, Inje University Ilsan Paik Hospital, Goyang, Korea
| | | | | |
Collapse
|
44
|
Liu Z, Zhou J, Wang H, Zhao M, Wang C. Current status of induced pluripotent stem cells in cardiac tissue regeneration and engineering. Regen Med Res 2013; 1:6. [PMID: 25984325 PMCID: PMC4376510 DOI: 10.1186/2050-490x-1-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Accepted: 02/20/2013] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction (MI) is associated with damage to the myocardium which results in a great loss of functional cardiomyocytes. As one of the most terminally differentiated organs, the endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for the myocardial loss occurring after MI. Consequentially, exogenous regenerative strategies, especially cell replacement therapy, have emerged and attracted increasing more attention in the field of cardiac tissue regeneration. A renewable source of seeding cells is therefore one of the most important subject in the field. Induced pluripotent stem cells (iPSCs), embryonic stem cell (ESC)-like cells that are derived from somatic cells by reprogramming, represent a promising candidate due to their high potentials for self-renewal, proliferation, differentiation and more importantly, they provide an invaluable method of deriving patient-specific pluripotent stem cells. Therefore, iPSC-based cardiac tissue regeneration and engineering has been extensively investigated in recent years. This review will discuss the achievements and current status in this field, including development of iPSC derivation, in vitro strategies for cardiac generation from iPSCs, cardiac application of iPSCs, challenges confronted at present as well as perspective in the future.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Jin Zhou
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Haibin Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| | - Mengge Zhao
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China ; Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 USA
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing, 100850 P.R China
| |
Collapse
|
45
|
Dunn DA, Hodge AJ, Lipke EA. Biomimetic materials design for cardiac tissue regeneration. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:15-39. [DOI: 10.1002/wnan.1241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 07/10/2013] [Accepted: 07/29/2013] [Indexed: 01/12/2023]
Affiliation(s)
- David A. Dunn
- Department of Chemical Engineering, Auburn University, Auburn, AL, USA
| | | | | |
Collapse
|
46
|
Duran JM, Makarewich CA, Sharp TE, Starosta T, Fang Z, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR. Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 2013; 113:539-52. [PMID: 23801066 PMCID: PMC3822430 DOI: 10.1161/circresaha.113.301202] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 06/25/2013] [Indexed: 12/21/2022]
Abstract
RATIONALE Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE To determine the mechanism by which novel bone-derived stem cells support the injured heart. METHODS AND RESULTS Cortical bone-derived stem cells (CBSCs) and cardiac-derived stem cells were isolated from enhanced green fluorescent protein (EGFP+) transgenic mice and were shown to express c-kit and Sca-1 as well as 8 paracrine factors involved in cardioprotection, angiogenesis, and stem cell function. Wild-type C57BL/6 mice underwent sham operation (n=21) or myocardial infarction with injection of CBSCs (n=67), cardiac-derived stem cells (n=36), or saline (n=60). Cardiac function was monitored using echocardiography. Only 2/8 paracrine factors were detected in EGFP+ CBSCs in vivo (basic fibroblast growth factor and vascular endothelial growth factor), and this expression was associated with increased neovascularization of the infarct border zone. CBSC therapy improved survival, cardiac function, regional strain, attenuated remodeling, and decreased infarct size relative to cardiac-derived stem cells- or saline-treated myocardial infarction controls. By 6 weeks, EGFP+ cardiomyocytes, vascular smooth muscle, and endothelial cells could be identified in CBSC-treated, but not in cardiac-derived stem cells-treated, animals. EGFP+ CBSC-derived isolated myocytes were smaller and more frequently mononucleated, but were functionally indistinguishable from EGFP- myocytes. CONCLUSIONS CBSCs improve survival, cardiac function, and attenuate remodeling through the following 2 mechanisms: (1) secretion of proangiogenic factors that stimulate endogenous neovascularization, and (2) differentiation into functional adult myocytes and vascular cells.
Collapse
Affiliation(s)
- Jason M. Duran
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | | | - Thomas E. Sharp
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Timothy Starosta
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Zhu Fang
- Fox Chase Cancer Center Biostatistics and Bioinformatics Facility, Philadelphia PA
| | - Nicholas E. Hoffman
- Temple University School of Medicine Center for Translational Medicine, Philadelphia, PA
| | - Yumi Chiba
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Muniswamy Madesh
- Temple University School of Medicine Center for Translational Medicine, Philadelphia, PA
| | - Remus M. Berretta
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Hajime Kubo
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| | - Steven R. Houser
- Temple University School of Medicine Cardiovascular Research Center, Philadelphia, PA
| |
Collapse
|
47
|
Miller R, Davies NH, Kortsmit J, Zilla P, Franz T. Outcomes of myocardial infarction hydrogel injection therapy in the human left ventricle dependent on injectate distribution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2013; 29:870-884. [PMID: 23640777 DOI: 10.1002/cnm.2551] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 01/29/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
Myocardial infarction therapies involving biomaterial injections have shown benefits in inhibiting progression towards heart failure. However, the underlying mechanisms remain unclear. A finite element model of the human left ventricle was developed from magnetic resonance images. An anteroapical infarct was represented at acute (AI) and fibrotic (FI) stage. Hydrogel injections in the infarct region were modelled with layered (L) and bulk (B) distribution. In the FI, injectates reduced end-systolic myofibre stresses from 291.6% to 117.6% (FI-L) and 115.3% (FI-B) of the healthy value, whereas all AI models exhibited sub-healthy stress levels (AI: 90.9%, AI-L: 20.9%, AI-B: 30.5%). Reduction in end-diastolic infarct stress were less pronounced for both FI (FI: 294.1%, FI-L: 176.5%, FI-B: 188.2%) and AI (AI: 94.1%, AI-L: 35.3%, AI-B: 41.2%). In the border zone, injectates reduced end-systolic fibre stress by 8-10% and strain from positive (AI) and zero (FI) to negative. Layered and bulk injectates increased ejection fraction by 7.4% and 8.4% in AI and 14.1% and 13.7% in FI. The layered injectate had a greater impact on infarct stress and strain at acute stage, whereas the bulk injectate exhibited greater benefits at FI stage. These findings were confirmed by our previous in vivo results.
Collapse
Affiliation(s)
- Renee Miller
- Cardiovascular Research Unit, Chris Barnard Division of Cardiothoracic Surgery, University of Cape Town, Observatory, South Africa
| | | | | | | | | |
Collapse
|
48
|
Radisic M, Christman KL. Materials science and tissue engineering: repairing the heart. Mayo Clin Proc 2013; 88:884-98. [PMID: 23910415 PMCID: PMC3786696 DOI: 10.1016/j.mayocp.2013.05.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/01/2013] [Accepted: 05/06/2013] [Indexed: 01/12/2023]
Abstract
Heart failure after a myocardial infarction continues to be a leading killer in the Western world. Currently, there are no therapies that effectively prevent or reverse the cardiac damage and negative left ventricular remodeling process that follows a myocardial infarction. Because the heart has limited regenerative capacity, there has been considerable effort to develop new therapies that could repair and regenerate the myocardium. Although cell transplantation alone was initially studied, more recently, tissue engineering strategies using biomaterial scaffolds have been explored. In this review, we cover the different approaches to engineering the myocardium, including cardiac patches, which are in vitro-engineered constructs of functional myocardium, and injectable scaffolds, which can either encourage endogenous repair and regeneration or act as vehicles to support the delivery of cells and other therapeutics.
Collapse
Affiliation(s)
- Milica Radisic
- Institute of Biomaterials and Biomedical Engineering and the Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
49
|
du Pré BC, Doevendans PA, van Laake LW. Stem cells for cardiac repair: an introduction. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:186-97. [PMID: 23888179 PMCID: PMC3708059 DOI: 10.3969/j.issn.1671-5411.2013.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/16/2013] [Accepted: 04/22/2013] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.
Collapse
Affiliation(s)
- Bastiaan C du Pré
- Departments of Cardiology and Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, P.O. box 85500, 3508 GA Utrecht, the Netherlands
| | | | | |
Collapse
|
50
|
Jia X, Lü H, Li C, Feng G, Yao X, Mao L, Ke T, Che Y, Xu Y, Li Z, Kong D. Human embryonic stem cells-derived endothelial cell therapy facilitates kidney regeneration by stimulating renal resident stem cell proliferation in acute kidney injury. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5890-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|