1
|
Hamouche R, Summers SA, Holland WL, Navankasattusas S, Drakos SG, Tseliou E. The role of sphingolipids in heart failure. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeaf035. [PMID: 40322641 PMCID: PMC12046129 DOI: 10.1093/ehjopen/oeaf035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/07/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Advanced heart failure (HF) is characterized by changes in the structure, function, and metabolism of cardiac muscle. As the disease progresses, cardiomyocytes shift their ATP production from fatty acid oxidation to glycolysis. This shift results in an accumulation of lipid metabolites, particularly sphingolipids, which can disrupt normal cellular function and contribute to cardiac dysfunction. In animal models of obesity, accumulation of toxic sphingolipid metabolites in the heart has been described as cardiac lipotoxicity. In humans, HF is classified into two groups based on ejection fraction (EF): HF with reduced EF of less than 40% (HFrEF) and HF with preserved EF of greater than 50% (HFpEF). Despite shared risk factors and comorbidities, the structural and cellular differences between HFrEF and HFpEF distinguish them as separate conditions. Ceramides (Cer), a type of sphingolipid, have gained significant attention for their involvement in the development and prognosis of atherosclerotic disease and myocardial infarction, while sphingosine-1-phosphate, a downstream product of Cer, has shown cardioprotective properties. The aim of this review is to describe the role of sphingolipids in HF with reduced and preserved EF. By understanding the role of sphingolipids through animal and human studies, this review aims to pave the way for developing strategies that target abnormal signalling pathways in the failing heart, ultimately bridging the gap between scientific research and clinical applications.
Collapse
Affiliation(s)
- Rana Hamouche
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Scott A Summers
- Diabetes and Metabolism Research Center, Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - William L Holland
- Diabetes and Metabolism Research Center, Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA
| | - Eleni Tseliou
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah Health & School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
2
|
Hørsdal OK, Larsen AM, Wethelund KL, Dalsgaard FF, Seefeldt JM, Helgestad OKL, Moeslund N, Møller JE, Ravn HB, Nielsen RR, Wiggers H, Berg-Hansen K, Gopalasingam N. The ketone body 3-hydroxybutyrate increases cardiac output and cardiac contractility in a porcine model of cardiogenic shock: a randomized, blinded, crossover trial. Basic Res Cardiol 2025:10.1007/s00395-025-01103-2. [PMID: 40220139 DOI: 10.1007/s00395-025-01103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Cardiogenic shock (CS) is characterized by reduced cardiac output (CO), reduced end-organ perfusion, and high mortality. Medical therapies have failed to improve survival. The ketone body 3-hydroxybutyrate (3-OHB) enhances cardiac function in heart failure and CS. We aimed to elucidate the cardiovascular and cardiometabolic effects of 3-OHB treatment during CS. In a randomized, assessor-blinded crossover design, we studied 16 female pigs (60 kg, 5 months of age). CS was induced by left main coronary artery microsphere injections. Predefined criteria for CS were a 30% reduction in CO or mixed venous saturation (SvO2). Intravenous 3-OHB infusion and a matching control solution were administered for 120 min in random order. Hemodynamic measurements were obtained by pulmonary artery catheterization and a left ventricular (LV) pressure-volume catheter. Myocardial mitochondrial function was assessed using high resolution respirometry. During CS, infusion with 3-OHB increased CO by 0.9 L/min (95%CI 0.4-1.3 L/min) compared with control infusion. SvO2 (P = 0.026) and heart rate (P < 0.001) increased. Stroke volume (P = 0.6) was not altered. LV contractile function as determined by LV end-systolic elastance improved during 3-OHB infusion compared with control infusion (P = 0.004). Systemic and pulmonary vascular resistance decreased, and diuresis increased. LV mitochondrial function was higher after 3-OHB infusion compared with control. We conclude that 3-OHB infusion enhances cardiac function by increasing contractility and reducing vascular resistance, while also preserving myocardial mitochondrial respiratory function in a large animal model of ischemic CS. These novel findings support the therapeutic potential of exogenous ketone supplementation in CS management.
Collapse
Affiliation(s)
- Oskar Kjærgaard Hørsdal
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
- Department of Cardiology, Aarhus University Hospital, Palle Juul Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| | - Alexander Møller Larsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Frederik Flyvholm Dalsgaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Marthinsen Seefeldt
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Ole Kristian Lerche Helgestad
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Pharmacology, Aalborg University Hospital, Aalborg, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Heart-, Lung-, and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Jacob Eifer Møller
- Department of Cardiology, Heart Center, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Berg Ravn
- Department of Anesthesiology and Intensive Care, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Roni Ranghøj Nielsen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Kristoffer Berg-Hansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Nigopan Gopalasingam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Cardiology, Gødstrup Hospital, Gødstrup, Denmark
| |
Collapse
|
3
|
Paraskevaidis I, Kourek C, Farmakis D, Tsougos E. Heart Failure: A Deficiency of Energy-A Path Yet to Discover and Walk. Biomedicines 2024; 12:2589. [PMID: 39595155 PMCID: PMC11592498 DOI: 10.3390/biomedicines12112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure is a complex syndrome and our understanding and therapeutic approach relies mostly on its phenotypic presentation. Notably, the heart is characterized as the most energy-consuming organ, being both a producer and consumer, in order to satisfy multiple cardiac functions: ion exchange, electromechanical coordination, excitation-contraction coupling, etc. By obtaining further knowledge of the cardiac energy field, we can probably better characterize the basic pathophysiological events occurring in heart disease patients and understand the metabolic substance changes, the relationship between the alteration of energy production/consumption, and hence energetic deficiency not only in the heart as a whole but in every single cardiac territory, which will hopefully provide us with the opportunity to uncover the beginning of the heart failure process. In this respect, using (a) newer imaging techniques, (b) biomedicine, (c) nanotechnology, and (d) artificial intelligence, we can gain a deeper understanding of this complex syndrome. This, in turn, can lead to earlier and more effective therapeutic approaches, ultimately improving human health. To date, the scientific community has not given sufficient attention to the energetic starvation model. In our view, this review aims to encourage scientists and the medical community to conduct studies for a better understanding and treatment of this syndrome.
Collapse
Affiliation(s)
- Ioannis Paraskevaidis
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| | - Christos Kourek
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 115 21 Athens, Greece;
| | - Dimitrios Farmakis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, Medical School, National and Kapodistiran University of Athens, 124 62 Athens, Greece
| | - Elias Tsougos
- 6th Department of Cardiology, Hygeia Hospital, 151 23 Athens, Greece; (I.P.); (E.T.)
| |
Collapse
|
4
|
Trimigno A, Zhao J, Michaud WA, Paneitz DC, Chukwudi C, D’Alessandro DA, Lewis GD, Minie NF, Catricala JP, Vincent DE, Lopera Higuita M, Bolger-Chen M, Tessier SN, Li S, O’Day EM, Osho AA, Rabi SA. Metabolic Choreography of Energy Substrates During DCD Heart Perfusion. Transplant Direct 2024; 10:e1704. [PMID: 39220220 PMCID: PMC11365673 DOI: 10.1097/txd.0000000000001704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background The number of patients waiting for heart transplant far exceeds the number of hearts available. Donation after circulatory death (DCD) combined with machine perfusion can increase the number of transplantable hearts by as much as 48%. Emerging studies also suggest machine perfusion could enable allograft "reconditioning" to optimize outcomes. However, a detailed understanding of the energetic substrates and metabolic changes during perfusion is lacking. Methods Metabolites were analyzed using 1-dimensional 1H and 2-dimensional 13C-1H heteronuclear spectrum quantum correlation nuclear magnetic resonance spectroscopy on serial perfusate samples (N = 98) from 32 DCD hearts that were successfully transplanted. Wilcoxon signed-rank and Kruskal-Wallis tests were used to test for significant differences in metabolite resonances during perfusion and network analysis was used to uncover altered metabolic pathways. Results Metabolite differences were observed comparing baseline perfusate to samples from hearts at time points 1-2, 3-4, and 5-6 h of perfusion and all pairwise combinations. Among the most significant changes observed were a steady decrease in fatty acids and succinate and an increase in amino acids, especially alanine, glutamine, and glycine. This core set of metabolites was also altered in a DCD porcine model perfused with a nonblood-based perfusate. Conclusions Temporal metabolic changes were identified during ex vivo perfusion of DCD hearts. Fatty acids, which are normally the predominant myocardial energy source, are rapidly depleted, while amino acids such as alanine, glutamine, and glycine increase. We also noted depletion of ketone, β-hydroxybutyric acid, which is known to have cardioprotective properties. Collectively, these results suggest a shift in energy substrates and provide a basis to design optimal preservation techniques during perfusion.
Collapse
Affiliation(s)
| | | | - William A. Michaud
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - Dane C. Paneitz
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - Chijioke Chukwudi
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - David A. D’Alessandro
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - Greg D. Lewis
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - Nathan F. Minie
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - Joseph P. Catricala
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | | | - Manuela Lopera Higuita
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Shriner Children’s Boston, Boston, MA
| | - Maya Bolger-Chen
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Shriner Children’s Boston, Boston, MA
| | - Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Shriner Children’s Boston, Boston, MA
| | - Selena Li
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | | | - Asishana A. Osho
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| | - S. Alireza Rabi
- Division of Cardiac Surgery, Corrigan Minehan Heart Center, Massachusetts General Hospital, Corrigan Minehan Heart Center, Boston, MA
| |
Collapse
|
5
|
Saraste A, Ståhle M, Roivainen A, Knuuti J. Molecular Imaging of Heart Failure: An Update and Future Trends. Semin Nucl Med 2024; 54:674-685. [PMID: 38609753 DOI: 10.1053/j.semnuclmed.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Molecular imaging can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Targeted tracers have enabled assessment of various cellular and subcellular mechanisms of heart failure aiming for improved phenotyping, risk stratification, and personalized therapy. This review outlines the current status of molecular imaging in heart failure, accompanied with discussion on novel developments. The focus is on radionuclide methods with data from clinical studies. Imaging of myocardial metabolism can identify left ventricle dysfunction caused by myocardial ischemia that may be reversible after revascularization in the presence of viable myocardium. In vivo imaging of active inflammation and amyloid deposition have an established role in the detection of cardiac sarcoidosis and transthyretin amyloidosis. Innervation imaging has well documented prognostic value in predicting heart failure progression and arrhythmias. Tracers specific for inflammation, angiogenesis and myocardial fibrotic activity are in earlier stages of development, but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of cardiac function over time. Early detection of disease activity is a key for transition from medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive cardiac dysfunction.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland; Heart Center, Turku University Hospital and University of Turku, Turku, Finland.
| | - Mia Ståhle
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| |
Collapse
|
6
|
Zhang K, Yuan Z, Wang S, Zhao S, Cui H, Lai Y. The abnormalities of free fatty acid metabolism in patients with hypertrophic cardiomyopathy, a single-center retrospective observational study. BMC Cardiovasc Disord 2024; 24:312. [PMID: 38902636 PMCID: PMC11188237 DOI: 10.1186/s12872-024-03925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/06/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Previous studies have shown the importance of energy deficiency and malfunctioning mitochondria in the pathophysiology of hypertrophic cardiomyopathy (HCM). There has been a little research into the relationship between plasma free fatty acids (FFA), one of the heart's main energy sources, and HCM. We evaluated its clinical importance in HCM to see if there was a link between plasma FFA metabolism and HCM. METHODS In a single-center retrospective observational study, we investigated 420 HCM patients diagnosed at Beijing Anzhen Hospital between January 1, 2018, and December 31, 2022. Meanwhile, 1372 individuals without HCM (non-HCM) were recruited. 391 non-HCM patients were chosen as controls via a propensity score matching (PSM) study with a 1:1 ratio. RESULTS FFA in HCM patients showed statistically significant correlations with creatinine (r = 0.115, p = 0.023), estimated GFR (r=-0.130, p = 0.010), BNP (r = 0.152, p = 0.007), LVEF (r=-0.227, p < 0.001), LVFS (r=-0.160, p = 0.002), and LAD (r = 0.112, p = 0.028). Higher FFA levels were found in HCM patients who had atrial fibrillation and NYHY functional classes III or IV (p = 0.015 and p = 0.022, respectively). In HCM patients, multiple linear regression analysis revealed that BNP and LVEF had independent relationships with increasing FFA (Standardized = 0.139, p = 0.013 and =-0.196, p < 0.001, respectively). CONCLUSIONS Among HCM patients, the plasma FFA concentration was lower, and those with AF and NYHY functional class III or IV had higher FFA levels, and LVEF and BNP were independently associated with increasing FFA. The findings of the study should help inspire future efforts to better understand how energy deficiency contributes to hypertrophic cardiomyopathy (HCM) development.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Zhongyu Yuan
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shengwei Wang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Shifeng Zhao
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Hao Cui
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China
| | - Yongqiang Lai
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, No.2 Anzhen Road, Chaoyang District, Chaoyang District, Box: 100011, Beijing, China.
- Beijing Anzhen Hospital, The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Ministry of Education, Beijing, 100029, China.
| |
Collapse
|
7
|
Ma YL, Kong CY, Guo Z, Wang MY, Wang P, Liu FY, Yang D, Yang Z, Tang QZ. Semaglutide ameliorates cardiac remodeling in male mice by optimizing energy substrate utilization through the Creb5/NR4a1 axis. Nat Commun 2024; 15:4757. [PMID: 38834564 PMCID: PMC11150406 DOI: 10.1038/s41467-024-48970-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Semaglutide, a glucagon-like peptide-1 receptor agonist, is clinically used as a glucose-lowering and weight loss medication due to its effects on energy metabolism. In heart failure, energy production is impaired due to altered mitochondrial function and increased glycolysis. However, the impact of semaglutide on cardiomyocyte metabolism under pressure overload remains unclear. Here we demonstrate that semaglutide improves cardiac function and reduces hypertrophy and fibrosis in a mouse model of pressure overload-induced heart failure. Semaglutide preserves mitochondrial structure and function under chronic stress. Metabolomics reveals that semaglutide reduces mitochondrial damage, lipid accumulation, and ATP deficiency by promoting pyruvate entry into the tricarboxylic acid cycle and increasing fatty acid oxidation. Transcriptional analysis shows that semaglutide regulates myocardial energy metabolism through the Creb5/NR4a1 axis in the PI3K/AKT pathway, reducing NR4a1 expression and its translocation to mitochondria. NR4a1 knockdown ameliorates mitochondrial dysfunction and abnormal glucose and lipid metabolism in the heart. These findings suggest that semaglutide may be a therapeutic agent for improving cardiac remodeling by modulating energy metabolism.
Collapse
Affiliation(s)
- Yu-Lan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Chun-Yan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Ming-Yu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Fang-Yuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, PR China.
- Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, 430060, PR China.
| |
Collapse
|
8
|
Carbone S, Abbate A. SGLT2 inhibitors in Patients Admitted for Acute Heart Failure: The Earlier the Better. Am J Cardiol 2024; 214:177-179. [PMID: 38104751 DOI: 10.1016/j.amjcard.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Affiliation(s)
- Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, Richmond, Virginia; Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Antonio Abbate
- Division of Cardiology, University of Virginia, Charlottesville, Virginia; Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
9
|
Romero-Becera R, Santamans AM, Arcones AC, Sabio G. From Beats to Metabolism: the Heart at the Core of Interorgan Metabolic Cross Talk. Physiology (Bethesda) 2024; 39:98-125. [PMID: 38051123 DOI: 10.1152/physiol.00018.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/26/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023] Open
Abstract
The heart, once considered a mere blood pump, is now recognized as a multifunctional metabolic and endocrine organ. Its function is tightly regulated by various metabolic processes, at the same time it serves as an endocrine organ, secreting bioactive molecules that impact systemic metabolism. In recent years, research has shed light on the intricate interplay between the heart and other metabolic organs, such as adipose tissue, liver, and skeletal muscle. The metabolic flexibility of the heart and its ability to switch between different energy substrates play a crucial role in maintaining cardiac function and overall metabolic homeostasis. Gaining a comprehensive understanding of how metabolic disorders disrupt cardiac metabolism is crucial, as it plays a pivotal role in the development and progression of cardiac diseases. The emerging understanding of the heart as a metabolic and endocrine organ highlights its essential contribution to whole body metabolic regulation and offers new insights into the pathogenesis of metabolic diseases, such as obesity, diabetes, and cardiovascular disorders. In this review, we provide an in-depth exploration of the heart's metabolic and endocrine functions, emphasizing its role in systemic metabolism and the interplay between the heart and other metabolic organs. Furthermore, emerging evidence suggests a correlation between heart disease and other conditions such as aging and cancer, indicating that the metabolic dysfunction observed in these conditions may share common underlying mechanisms. By unraveling the complex mechanisms underlying cardiac metabolism, we aim to contribute to the development of novel therapeutic strategies for metabolic diseases and improve overall cardiovascular health.
Collapse
Affiliation(s)
| | | | - Alba C Arcones
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| |
Collapse
|
10
|
Henry JA, Couch LS, Rider OJ. Myocardial Metabolism in Heart Failure with Preserved Ejection Fraction. J Clin Med 2024; 13:1195. [PMID: 38592048 PMCID: PMC10931709 DOI: 10.3390/jcm13051195] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 04/10/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasingly prevalent and now accounts for half of all heart failure cases. This rise is largely attributed to growing rates of obesity, hypertension, and diabetes. Despite its prevalence, the pathophysiological mechanisms of HFpEF are not fully understood. The heart, being the most energy-demanding organ, appears to have a compromised bioenergetic capacity in heart failure, affecting all phenotypes and aetiologies. While metabolic disturbances in heart failure with reduced ejection fraction (HFrEF) have been extensively studied, similar insights into HFpEF are limited. This review collates evidence from both animal and human studies, highlighting metabolic dysregulations associated with HFpEF and its risk factors, such as obesity, hypertension, and diabetes. We discuss how changes in substrate utilisation, oxidative phosphorylation, and energy transport contribute to HFpEF. By delving into these pathological shifts in myocardial energy production, we aim to reveal novel therapeutic opportunities. Potential strategies include modulating energy substrates, improving metabolic efficiency, and enhancing critical metabolic pathways. Understanding these aspects could be key to developing more effective treatments for HFpEF.
Collapse
Affiliation(s)
- John Aaron Henry
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
- Department of Cardiology, Jersey General Hospital, Gloucester Street, St. Helier JE1 3QS, Jersey, UK
| | - Liam S. Couch
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
| | - Oliver J. Rider
- Oxford Centre for Clinical Magnetic Resonance Research, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK (O.J.R.)
| |
Collapse
|
11
|
Meng S, Yu Y, Yu S, Zhu S, Shi M, Xiang M, Ma H. Advances in Metabolic Remodeling and Intervention Strategies in Heart Failure. J Cardiovasc Transl Res 2024; 17:36-55. [PMID: 37843752 DOI: 10.1007/s12265-023-10443-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The heart is the most energy-demanding organ throughout the whole body. Perturbations or failure in energy metabolism contributes to heart failure (HF), which represents the advanced stage of various heart diseases. The poor prognosis and huge economic burden associated with HF underscore the high unmet need to explore novel therapies targeting metabolic modulators beyond conventional approaches focused on neurohormonal and hemodynamic regulators. Emerging evidence suggests that alterations in metabolic substrate reliance, metabolic pathways, metabolic by-products, and energy production collectively regulate the occurrence and progression of HF. In this review, we provide an overview of cardiac metabolic remodeling, encompassing the utilization of free fatty acids, glucose metabolism, ketone bodies, and branched-chain amino acids both in the physiological condition and heart failure. Most importantly, the latest advances in pharmacological interventions are discussed as a promising therapeutic approach to restore cardiac function, drawing insights from recent basic research, preclinical and clinical studies.
Collapse
Affiliation(s)
- Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Shuo Yu
- Department of Anesthesiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Mengjia Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University; State Key Laboratory of Transvascular Implantation Devices; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
12
|
Zhang Z, Sun M, Jiang W, Yu L, Zhang C, Ma H. Myocardial Metabolic Reprogramming in HFpEF. J Cardiovasc Transl Res 2024; 17:121-132. [PMID: 37650988 DOI: 10.1007/s12265-023-10433-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Heart failure (HF) caused by structural or functional cardiac abnormalities is a significant cause of morbidity and mortality worldwide. While HF with reduced ejection fraction (HErEF) is well understood, more than half of patients have HF with preserved ejection fraction (HFpEF). Currently, the treatment for HFpEF primarily focuses on symptom alleviation, lacking specific drugs. The stressed heart undergoes metabolic switches in substrate preference, which is a compensatory process involved in cardiac pathological remodeling. Although metabolic reprogramming in HF has gained attention in recent years, its role in HFpEF still requires further elucidation. In this review, we present a summary of cardiac mitochondrial dysfunction and cardiac metabolic reprogramming in HFpEF. Additionally, we emphasize potential therapeutic approaches that target metabolic reprogramming for the treatment of HFpEF.
Collapse
Affiliation(s)
- Zihui Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Mingchu Sun
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Wenhua Jiang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Chan Zhang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
| | - Heng Ma
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, People's Republic of China.
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
13
|
Wen J, Chen C. From Energy Metabolic Change to Precision Therapy: a Holistic View of Energy Metabolism in Heart Failure. J Cardiovasc Transl Res 2024; 17:56-70. [PMID: 37450209 DOI: 10.1007/s12265-023-10412-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Heart failure (HF) is a complex and multifactorial disease that affects millions of people worldwide. It is characterized by metabolic disturbances of substrates such as glucose, fatty acids (FAs), ketone bodies, and amino acids, which lead to changes in cardiac energy metabolism pathways. These metabolic alterations can directly or indirectly promote myocardial remodeling, thereby accelerating the progression of HF, resulting in a vicious cycle of worsening symptoms, and contributing to the increased hospitalization and mortality among patients with HF. In this review, we summarized the latest researches on energy metabolic profiling in HF and provided the related translational therapeutic strategies for this devastating disease. By taking a holistic approach to understanding energy metabolism changes in HF, we hope to provide comprehensive insights into the pathophysiology of this challenging condition and identify novel precise targets for the development of more effective treatments.
Collapse
Affiliation(s)
- Jianpei Wen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
14
|
Vite A, Matsuura TR, Bedi KC, Flam EL, Arany Z, Kelly DP, Margulies KB. Functional Impact of Alternative Metabolic Substrates in Failing Human Cardiomyocytes. JACC Basic Transl Sci 2024; 9:1-15. [PMID: 38362346 PMCID: PMC10864907 DOI: 10.1016/j.jacbts.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 02/17/2024]
Abstract
Recent studies suggest that metabolic dysregulation in patients with heart failure might contribute to myocardial contractile dysfunction. To understand the correlation between function and energy metabolism, we studied the impact of different fuel substrates on human nonfailing or failing cardiomyocytes. Consistent with the concept of metabolic flexibility, nonfailing myocytes exhibited excellent contractility in all fuels provided. However, impaired contractility was observed in failing myocytes when carbohydrates alone were used but was improved when additional substrates were added. This study demonstrates the functional significance of fuel utilization shifts in failing human cardiomyocytes.
Collapse
Affiliation(s)
- Alexia Vite
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy R. Matsuura
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth C. Bedi
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emily L. Flam
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zoltan Arany
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth B. Margulies
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Nesterov SV, Räty J, Nammas W, Maaniitty T, Galloo X, Stassen J, Laurila S, Vasankari T, Huusko J, Bax JJ, Saraste A, Knuuti J. Short-term effects of sacubitril/valsartan therapy on myocardial oxygen consumption and energetic efficiency of cardiac work in heart failure with reduced ejection fraction: A randomized controlled study. Eur J Heart Fail 2024; 26:117-126. [PMID: 37905338 DOI: 10.1002/ejhf.3072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023] Open
Abstract
AIMS We sought to evaluate the mechanism of angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan therapy and compare it with a valsartan-only control group in patients with heart failure with reduced ejection fraction (HFrEF). METHODS AND RESULTS The study was a phase IV, prospective, randomized, double-blind, parallel-group study in patients with New York Heart Association class II-III heart failure and left ventricular ejection fraction (LVEF) ≤35%. During a 6-week run-in period, all patients received valsartan therapy, which was up-titrated to the highest tolerated dose level (80 mg bid or 160 mg bid) and then randomized to either valsartan or sacubitril/valsartan. Myocardial oxygen consumption, energetic efficiency of cardiac work, cardiac and systemic haemodynamics were quantified using echocardiography and 11 C-acetate positron emission tomography before and after 6 weeks of therapy (on stable dose) in 55 patients (ARNI group: n = 27, mean age 63 ± 10 years, LVEF 29.2 ± 10.4%; and valsartan-only control group: n = 28, mean age 64 ± 8 years, LVEF 29.0 ± 7.3%; all p = NS). The energetic efficiency of cardiac work remained unchanged in both treatment arms. However, both diastolic (-4.5 mmHg; p = 0.026) and systolic blood pressure (-9.8 mmHg; p = 0.0007), myocardial perfusion (-0.054 ml/g/min; p = 0.045), and left ventricular mechanical work (-296; p = 0.038) decreased significantly in the ARNI group compared to the control group. Although myocardial oxygen consumption decreased in the ARNI group (-5.4%) compared with the run-in period and remained unchanged in the control group (+0.5%), the between-treatment group difference was not significant (p = 0.088). CONCLUSIONS We found no differences in the energetic efficiency of cardiac work between ARNI and valsartan-only groups in HFrEF patients. However, ARNI appears to have haemodynamic and cardiac mechanical effects over valsartan in heart failure patients.
Collapse
Affiliation(s)
- Sergey V Nesterov
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
| | - Johanna Räty
- Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Wail Nammas
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Teemu Maaniitty
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| | - Xavier Galloo
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Stassen
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sanna Laurila
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Tuija Vasankari
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | | | - Jeroen J Bax
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Turku, Finland
- Department of Clinical Physiology, Nuclear Medicine and PET, Turku University Hospital, Turku, Finland
| |
Collapse
|
16
|
Su S, Ji X, Li T, Teng Y, Wang B, Han X, Zhao M. The changes of cardiac energy metabolism with sodium-glucose transporter 2 inhibitor therapy. Front Cardiovasc Med 2023; 10:1291450. [PMID: 38124893 PMCID: PMC10731052 DOI: 10.3389/fcvm.2023.1291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Background/aims To investigate the specific effects of s odium-glucose transporter 2 inhibitor (SGLT2i) on cardiac energy metabolism. Methods A systematic literature search was conducted in eight databases. The retrieved studies were screened according to the inclusion and exclusion criteria, and relevant information was extracted according to the purpose of the study. Two researchers independently screened the studies, extracted information, and assessed article quality. Results The results of the 34 included studies (including 10 clinical and 24 animal studies) showed that SGLT2i inhibited cardiac glucose uptake and glycolysis, but promoted fatty acid (FA) metabolism in most disease states. SGLT2i upregulated ketone metabolism, improved the structure and functions of myocardial mitochondria, alleviated oxidative stress of cardiomyocytes in all literatures. SGLT2i increased cardiac glucose oxidation in diabetes mellitus (DM) and cardiac FA metabolism in heart failure (HF). However, the regulatory effects of SGLT2i on cardiac FA metabolism in DM and cardiac glucose oxidation in HF varied with disease types, stages, and intervention duration of SGLT2i. Conclusion SGLT2i improved the efficiency of cardiac energy production by regulating FA, glucose and ketone metabolism, improving mitochondria structure and functions, and decreasing oxidative stress of cardiomyocytes under pathological conditions. Thus, SGLT2i is deemed to exert a benign regulatory effect on cardiac metabolic disorders in various diseases. Systematic review registration https://www.crd.york.ac.uk/, PROSPERO (CRD42023484295).
Collapse
Affiliation(s)
- Sha Su
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiang Ji
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Tong Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yu Teng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Baofu Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiaowan Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Mingjing Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
18
|
Cherry SR, Diekmann J, Bengel FM. Total-Body Positron Emission Tomography: Adding New Perspectives to Cardiovascular Research. JACC Cardiovasc Imaging 2023; 16:1335-1347. [PMID: 37676207 DOI: 10.1016/j.jcmg.2023.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 09/08/2023]
Abstract
The recent advent of positron emission tomography (PET) scanners that can image the entire human body opens up intriguing possibilities for cardiovascular research and future clinical applications. These new systems permit radiotracer kinetics to be measured in all organs simultaneously. They are particularly well suited to study cardiovascular disease and its effects on the entire body. They could also play a role in quantitatively measuring physiologic, metabolic, and immunologic responses in healthy individuals to a variety of stressors and lifestyle interventions, and may ultimately be instrumental for evaluating novel therapeutic agents and their molecular effects across different tissues. In this review, we summarize recent progress in PET technology and methodology, discuss several emerging cardiovascular applications for total-body PET, and place this in the context of multiorgan and systems medicine. Finally, we discuss opportunities that will be enabled by the technology, while also pointing to some of the challenges that still need to be addressed.
Collapse
Affiliation(s)
- Simon R Cherry
- Departments of Biomedical Engineering and Radiology, University of California, Davis, California, USA.
| | - Johanna Diekmann
- Departments of Biomedical Engineering and Radiology, University of California, Davis, California, USA; Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Frank M Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
19
|
Saraste A, Knuuti J, Bengel F. Phenotyping heart failure by nuclear imaging of myocardial perfusion, metabolism, and molecular targets. Eur Heart J Cardiovasc Imaging 2023; 24:1318-1328. [PMID: 37294318 PMCID: PMC10531130 DOI: 10.1093/ehjci/jead128] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023] Open
Abstract
Nuclear imaging techniques can detect and quantify pathophysiological processes underlying heart failure, complementing evaluation of cardiac structure and function with other imaging modalities. Combined imaging of myocardial perfusion and metabolism can identify left ventricle dysfunction caused by myocardial ischaemia that may be reversible after revascularization in the presence of viable myocardium. High sensitivity of nuclear imaging to detect targeted tracers has enabled assessment of various cellular and subcellular mechanisms of heart failure. Nuclear imaging of active inflammation and amyloid deposition is incorporated into clinical management algorithms of cardiac sarcoidosis and amyloidosis. Innervation imaging has well-documented prognostic value with respect to heart failure progression and arrhythmias. Emerging tracers specific for inflammation and myocardial fibrotic activity are in earlier stages of development but have demonstrated potential value in early characterization of the response to myocardial injury and prediction of adverse left ventricular remodelling. Early detection of disease activity is a key for transition from broad medical treatment of clinically overt heart failure towards a personalized approach aimed at supporting repair and preventing progressive failure. This review outlines the current status of nuclear imaging in phenotyping heart failure and combines it with discussion on novel developments.
Collapse
Affiliation(s)
- Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland
- Heart Center, Turku University Hospital and University of Turku, Hämeentie 11, 20520 Turku, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4–8, 20520 Turku, Finland
| | - Frank Bengel
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
21
|
Schweitzer GG, Ditzenberger GL, Hughey CC, Finck BN, Martino MR, Pacak CA, Byrne BJ, Cade WT. Elevated liver glycogenolysis mediates higher blood glucose during acute exercise in Barth syndrome. PLoS One 2023; 18:e0290832. [PMID: 37651450 PMCID: PMC10470866 DOI: 10.1371/journal.pone.0290832] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked recessive genetic disorder due to mutations in the Tafazzin (TAFAZZIN) gene that lead to cardiac and skeletal muscle mitochondrial dysfunction. Previous studies in humans with BTHS demonstrate that the defects in muscle mitochondrial oxidative metabolism result in an enhanced reliance on anaerobic metabolism during exercise to meet energy demands of muscular work. During exercise, the liver normally increases glucose production via glycogenolysis and gluconeogenesis to match the elevated rate of muscle glucose uptake and meet the ATP requirements of working muscle. However, the impact of Tafazzin deficiency on hepatic glucose production and the pathways contributing to hepatic glucose production during exercise is unknown. Therefore, the purpose of this study was to quantify in vivo liver gluconeogenesis and glycogenolysis in Tafazzin knockdown mice at rest and during acute exercise. METHODS Male TAFAZZIN shRNA transgenic (TG) and wild-type (WT) mice completed exhaustive treadmill running protocols to test exercise tolerance. Mice underwent 2H- and 13C-stable isotope infusions at rest and during a 30-minute treadmill running bout to quantify hepatic glucose production and associated nutrient fluxes under sedentary conditions and during acute exercise. Circulating and tissue (skeletal muscle and liver) samples were obtained during and following exercise to assess static metabolite levels. RESULTS TG mice reached exhaustion sooner during exhaustive treadmill running protocols and exhibited higher plasma lactate concentrations after exhaustive exercise compared to WT mice. Arterial glucose levels were comparable between genotypes at rest, but higher in TG mice compared to WT mice during exercise. Consistent with the higher blood glucose, TG mice showed increased endogenous glucose production owing to elevated glycogenolysis compared to WT mice during exercise. Total gluconeogenesis, gluconeogenesis from glycerol, gluconeogenesis from phosphoenolpyruvate, pyruvate cycling, total cataplerosis, and anaplerotic fluxes were similar between TG and WT mice at rest and during exercise. However, lactate dehydrogenase flux and TCA cycle fluxes trended higher in TG mice during exercise. Liver glycogen content in TG was higher in TG vs. controls. CONCLUSION Our data in the Tafazzin knockdown mouse suggest that elevated anaerobic metabolism during rest and exercise previously reported in humans with BTHS are supported by the finding of higher hepatic glycogenolysis.
Collapse
Affiliation(s)
- George G. Schweitzer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Grace L. Ditzenberger
- Doctor of Physical Therapy Division, Duke University School of Medicine, Durham, NC, United States of America
| | - Curtis C. Hughey
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN, United States of America
| | - Brian N. Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michael R. Martino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Christina A. Pacak
- Department of Neurology, University of Minnesota School of Medicine, Minneapolis, MN, United States of America
| | - Barry J. Byrne
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - William Todd Cade
- Doctor of Physical Therapy Division, Duke University School of Medicine, Durham, NC, United States of America
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
22
|
Fan L, Meng C, Wang X, Wang Y, Li Y, Lv S, Zhang J. Driving force of deteriorated cellular environment in heart failure: Metabolic remodeling. Clinics (Sao Paulo) 2023; 78:100263. [PMID: 37557005 PMCID: PMC10432917 DOI: 10.1016/j.clinsp.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Heart Failure (HF) has been one of the leading causes of death worldwide. Though its latent mechanism and therapeutic manipulation are updated and developed ceaselessly, there remain great gaps in the cognition of heart failure. High morbidity and readmission rates among HF patients are waiting to be addressed. Recent studies have found that myocardial energy metabolism was closely related to heart failure, in which substrate utilization, as well as intermediate metabolism disorders, insulin resistance, oxidative stress, and mitochondrial dysfunction, might underlie systolic dysfunction and progression of HF. This article centers on the changes and counteraction of cardiac energy metabolism in the failing heart. Therefore, targeting impaired energy provision is of great potential in the treatment of HF. And shifting the objective from traditional neurohormones to improving the cellular environment is expected to further optimize the management of HF.
Collapse
Affiliation(s)
- Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Correale M, Tricarico L, Croella F, Alfieri S, Fioretti F, Brunetti ND, Inciardi RM, Nodari S. Novelties in the pharmacological approaches for chronic heart failure: new drugs and cardiovascular targets. Front Cardiovasc Med 2023; 10:1157472. [PMID: 37332581 PMCID: PMC10272855 DOI: 10.3389/fcvm.2023.1157472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Despite recent advances in chronic heart failure (HF) management, the prognosis of HF patients is poor. This highlights the need for researching new drugs targeting, beyond neurohumoral and hemodynamic modulation approach, such as cardiomyocyte metabolism, myocardial interstitium, intracellular regulation and NO-sGC pathway. In this review we report main novelties on new possible pharmacological targets for HF therapy, mainly on new drugs acting on cardiac metabolism, GCs-cGMP pathway, mitochondrial function and intracellular calcium dysregulation.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiothoracic, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Cardiothoracic, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Francesca Croella
- Department of Medical & Surgical Sciences, University of Foggia, Foggia, Italy
| | - Simona Alfieri
- Department of Medical & Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesco Fioretti
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Hospital and University of Brescia, Brescia, Italy
| | | | - Riccardo M. Inciardi
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Hospital and University of Brescia, Brescia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, ASST Spedali Civili Hospital and University of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Hua S, Lv B, Qiu Z, Li Z, Wang Z, Chen Y, Han Y, Tucker KL, Wu H, Jin W. Microbial metabolites in chronic heart failure and its common comorbidities. EMBO Mol Med 2023:e16928. [PMID: 37155563 DOI: 10.15252/emmm.202216928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
This study aimed to identify microbial signatures that contribute to the shared etiologies between chronic heart failure (CHF), type 2 diabetes, and chronic kidney disease. The serum levels of 151 microbial metabolites were measured in 260 individuals from the Risk Evaluation and Management of heart failure cohort, and it was found that those metabolites varied by an order of 105 fold. Out of 96 metabolites associated with the three cardiometabolic diseases, most were validated in two geographically independent cohorts. In all three cohorts, 16 metabolites including imidazole propionate (ImP) consistently showed significant differences. Notably, baseline ImP levels were three times higher in the Chinese compared with the Swedish cohorts and increased by 1.1-1.6 fold with each additional CHF comorbidity in the Chinese population. Cellular experiments further supported a causal link between ImP and distinct CHF relevant phenotypes. Additionally, key microbial metabolite-based risk scores were superior in CHF prognosis than the traditional Framingham or Get with the Guidelines-Heart Failure risk scores. Interactive visualization of these specific metabolite-disease links is available on our omics data server (https://omicsdata.org/Apps/REM-HF/).
Collapse
Affiliation(s)
- Sha Hua
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Lv
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan Microbiome Center, Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zeping Qiu
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuojin Li
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyan Wang
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanjia Chen
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanxin Han
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, USA
| | - Hao Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan Microbiome Center, Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei Jin
- Department of Cardiovascular Medicine, Heart Failure Center, Ruijin Hospital and Ruijin Hospital Lu Wan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Li X, Bi X. Integrated Control of Fatty Acid Metabolism in Heart Failure. Metabolites 2023; 13:615. [PMID: 37233656 PMCID: PMC10220550 DOI: 10.3390/metabo13050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Disrupted fatty acid metabolism is one of the most important metabolic features in heart failure. The heart obtains energy from fatty acids via oxidation. However, heart failure results in markedly decreased fatty acid oxidation and is accompanied by the accumulation of excess lipid moieties that lead to cardiac lipotoxicity. Herein, we summarized and discussed the current understanding of the integrated regulation of fatty acid metabolism (including fatty acid uptake, lipogenesis, lipolysis, and fatty acid oxidation) in the pathogenesis of heart failure. The functions of many enzymes and regulatory factors in fatty acid homeostasis were characterized. We reviewed their contributions to the development of heart failure and highlighted potential targets that may serve as promising new therapeutic strategies.
Collapse
Affiliation(s)
| | - Xukun Bi
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| |
Collapse
|
26
|
Burrage MK, Lewis AJ, Miller JJJ. Functional and Metabolic Imaging in Heart Failure with Preserved Ejection Fraction: Promises, Challenges, and Clinical Utility. Cardiovasc Drugs Ther 2023; 37:379-399. [PMID: 35881280 PMCID: PMC10014679 DOI: 10.1007/s10557-022-07355-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is recognised as an increasingly prevalent, morbid and burdensome condition with a poor outlook. Recent advances in both the understanding of HFpEF and the technological ability to image cardiac function and metabolism in humans have simultaneously shone a light on the molecular basis of this complex condition of diastolic dysfunction, and the inflammatory and metabolic changes that are associated with it, typically in the context of a complex patient. This review both makes the case for an integrated assessment of the condition, and highlights that metabolic alteration may be a measurable outcome for novel targeted forms of medical therapy. It furthermore highlights how recent technological advancements and advanced medical imaging techniques have enabled the characterisation of the metabolism and function of HFpEF within patients, at rest and during exercise.
Collapse
Affiliation(s)
- Matthew K Burrage
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Andrew J Lewis
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
| | - Jack J J. Miller
- Oxford Centre for Clinical Cardiovascular Magnetic Resonance Research (OCMR); Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford, UK
- The PET Research Centre and The MR Research Centre, Aarhus University, Aarhus, Denmark
- Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, UK
| |
Collapse
|
27
|
Lee SR, Mukae M, Jeong KJ, Park SH, Shin HJ, Kim SW, Won YS, Kwun HJ, Baek IJ, Hong EJ. PGRMC1 Ablation Protects from Energy-Starved Heart Failure by Promoting Fatty Acid/Pyruvate Oxidation. Cells 2023; 12:752. [PMID: 36899888 PMCID: PMC10000468 DOI: 10.3390/cells12050752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Heart failure (HF) is an emerging epidemic with a high mortality rate. Apart from conventional treatment methods, such as surgery or use of vasodilation drugs, metabolic therapy has been suggested as a new therapeutic strategy. The heart relies on fatty acid oxidation and glucose (pyruvate) oxidation for ATP-mediated contractility; the former meets most of the energy requirement, but the latter is more efficient. Inhibition of fatty acid oxidation leads to the induction of pyruvate oxidation and provides cardioprotection to failing energy-starved hearts. One of the non-canonical types of sex hormone receptors, progesterone receptor membrane component 1 (Pgrmc1), is a non-genomic progesterone receptor associated with reproduction and fertility. Recent studies revealed that Pgrmc1 regulates glucose and fatty acid synthesis. Notably, Pgrmc1 has also been associated with diabetic cardiomyopathy, as it reduces lipid-mediated toxicity and delays cardiac injury. However, the mechanism by which Pgrmc1 influences the energy-starved failing heart remains unknown. In this study, we found that loss of Pgrmc1 inhibited glycolysis and increased fatty acid/pyruvate oxidation, which is directly associated with ATP production, in starved hearts. Loss of Pgrmc1 during starvation activated the phosphorylation of AMP-activated protein kinase, which induced cardiac ATP production. Pgrmc1 loss increased the cellular respiration of cardiomyocytes under low-glucose conditions. In isoproterenol-induced cardiac injury, Pgrmc1 knockout resulted in less fibrosis and low heart failure marker expression. In summary, our results revealed that Pgrmc1 ablation in energy-deficit conditions increases fatty acid/pyruvate oxidation to protect against cardiac damage via energy starvation. Moreover, Pgrmc1 may be a regulator of cardiac metabolism that switches the dominance of glucose-fatty acid usage according to nutritional status and nutrient availability in the heart.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
28
|
Aboumsallem JP, Shi C, De Wit S, Markousis-Mavrogenis G, Bracun V, Eijgenraam TR, Hoes MF, Meijers WC, Screever EM, Schouten ME, Voors AA, Silljé HHW, De Boer RA. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies. J Mol Cell Cardiol 2023; 175:13-28. [PMID: 36493852 DOI: 10.1016/j.yjmcc.2022.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Heart failure (HF) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for more global studies and data mining approaches to uncover its underlying mechanisms. Multiple omics techniques provide a more holistic molecular perspective to study pathophysiological events involved in the development of HF. METHODS In this study, we used a label-free whole myocardium multi-omics characterization from three commonly used mouse HF models: transverse aortic constriction (TAC), myocardial infarction (MI), and homozygous Phospholamban-R14del (PLN-R14Δ/Δ). Genes, proteins, and metabolites were analysed for differential expression between each group and a corresponding control group. The core transcriptome and proteome datasets were used for enrichment analysis. For genes that were upregulated at both the RNA and protein levels in all models, clinical validation was performed by means of plasma level determination in patients with HF from the BIOSTAT-CHF cohort. RESULTS Cell death and tissue repair-related pathways were upregulated in all preclinical models. Fatty acid oxidation, ATP metabolism, and Energy derivation processes were downregulated in all investigated HF aetiologies. Putrescine, a metabolite known for its role in cell survival and apoptosis, demonstrated a 4.9-fold (p < 0.02) increase in PLN-R14Δ/Δ, 2.7-fold (p < 0.005) increase in TAC mice, and 2.2-fold (p < 0.02) increase in MI mice. Four Biomarkers were associated with all-cause mortality (PRELP: Hazard ratio (95% confidence interval) 1.79(1.35, 2.39), p < 0.001; CKAP4: 1.38(1.21, 1.57), p < 0.001; S100A11: 1.37(1.13, 1.65), p = 0.001; Annexin A1 (ANXA1): 1.16(1.04, 1.29) p = 0.01), and three biomarkers were associated with HF-Related Rehospitalization, (PRELP: 1.88(1.4, 2.53), p < 0.001; CSTB: 1.15(1.05, 1.27), p = 0.003; CKAP4: 1.18(1.02, 1.35), P = 0.023). CONCLUSIONS Cell death and tissue repair pathways were significantly upregulated, and ATP and energy derivation processes were significantly downregulated in all models. Common pathways and biomarkers with potential clinical and prognostic associations merit further investigation to develop optimal management and therapeutic strategies for all HF aetiologies.
Collapse
Affiliation(s)
- Joseph Pierre Aboumsallem
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Canxia Shi
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sanne De Wit
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - George Markousis-Mavrogenis
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Valentina Bracun
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Tim R Eijgenraam
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wouter C Meijers
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Elles M Screever
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marloes E Schouten
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Herman H W Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rudolf A De Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Cardiology, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Wang SJ, Liu BR, Zhang F, Li YP, Su XR, Yang CT, Cong B, Zhang ZH. Abnormal fatty acid metabolism and ceramide expression may discriminate myocardial infarction from strangulation death: A pilot study. Tissue Cell 2023; 80:101984. [PMID: 36434828 DOI: 10.1016/j.tice.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Determining myocardial infarction (MI) and mechanical asphyxia (MA) was one of the most challenging tasks in forensic practice. The present study aimed to investigate the potential of fatty acid (FAs) metabolism, and lipid alterations in determining MI and MA. MA and MI mouse models were constructed, and metabolic profiles were obtained by LC-MS-based untargeted metabolomics. The metabolic alterations were explored using the PCA, OPLS-DA, the Wilcoxon test, and fold change analysis. The contents of lipid droplets (LDs) were detected by the transmission scanning electron microscope and Oil red O staining. The immunohistochemical assay was performed to detect CD36 and dysferlin. The ceramide was assessed by LC-MS. PCA showed considerable differences in the metabolite profiles, and the well-fitting OPLS-DA model was developed to screen differential metabolites. Thereinto, 9 metabolites in the MA were reduced, while metabolites were up- and down-regulated in MI. The increased CD36 suggested that MI and MA could enhance the intake of FAs and disturb energy metabolism. The increased LDs, decreased dysferlin, and increased ceramide (C18:0, C22:0, and C24:0) were observed in MI groups, confirming the lipid deposition. The present study indicated significant differences in myocardial FAs metabolism and lipid alterations between MI and MA, suggesting that FAs metabolism and related proteins, certain ceramide may harbor the potential as biomarkers for discrimination of MI and MA.
Collapse
Affiliation(s)
- Song-Jun Wang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Bing-Rui Liu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Fu Zhang
- Forensic Pathology Lab, Guangdong Public Security Department, China.
| | - Ya-Ping Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Xiao-Rui Su
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Chen-Teng Yang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Bin Cong
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China.
| | - Zhi-Hua Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, China; HeBei Chest Hospital, China.
| |
Collapse
|
30
|
Thirumathyam R, Richter EA, Goetze JP, Fenger M, Van Hall G, Dixen U, Holst JJ, Madsbad S, Vejlstrup N, Madsen PL, Jørgensen NB. Investigating the roles of hyperglycaemia, hyperinsulinaemia and elevated free fatty acids in cardiac function in patients with type 2 diabetes via treatment with insulin compared with empagliflozin: protocol for the HyperCarD2 randomised, crossover trial. BMJ Open 2022; 12:e054100. [PMID: 35953245 PMCID: PMC9379482 DOI: 10.1136/bmjopen-2021-054100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is characterised by elevated plasma glucose, free fatty acid (FFA) and insulin concentrations, and this metabolic profile is linked to diabetic cardiomyopathy, a diastolic dysfunction at first and increased cardiovascular disease (CVD) risk. Shifting cardiac metabolism towards glucose utilisation has been suggested to improve cardiovascular function and CVD risk, but insulin treatment increases overall glucose oxidation and lowers lipid oxidation, without reducing CVD risk, whereas SGLT2 inhibitors (SGLT2i) increase FFA, ketone body concentrations and lipid oxidation, while decreasing insulin concentrations and CVD risk. The aim of the present study is to elucidate the importance of different metabolic profiles obtained during treatment with a SGLT2i versus insulin for myocardial function in patients with T2D. METHODS AND ANALYSES Randomised, crossover study, where 20 patients with T2D and body mass index>28 kg/m2 receive 25 mg empagliflozin daily or NPH insulin two times per day first for 5 weeks followed by a 3-week washout before crossing over to the remaining treatment. Insulin treatment is titrated to achieve similar glycaemic control as with empagliflozin. In those randomised to insulin first, glycaemia during an initial empagliflozin run-in period prior to randomisation serves as target glucose. Metabolic and cardiac evaluation is performed before and at the end of each treatment period.The primary endpoint is change (treatment-washout) in left ventricular peak filling rate, as assessed by cardiac MRI with and without acute lowering of plasma FFAs with acipimox. Secondary and explorative endpoints are changes in left atrial passive emptying fraction, left ventricular ejection fraction, central blood volume and metabolic parameters. ETHICS AND DISSEMINATION This study is approved by the Danish Medicines Agency (ref. nr.: 2017061587), the Danish Data Protection Agency (ref. nr.: AHH-2017-093) and the Capital Region Ethics Committee (ref. nr.: H-17018846). The trial will be conducted in accordance with ICH-GCP guidelines and the Declaration of Helsinki and all participants will provide oral and written informed consent. Our results, regardless of outcome, will be published in relevant scientific journals and we also will seek to disseminate results through presentations at scientific meetings. TRIAL REGISTRATION NUMBER EudraCT: 2017-002101.
Collapse
Affiliation(s)
| | - Erik Arne Richter
- Department of Nutrition, Exercise and Sports, Section of Molecular Physiology, Faculty of Science, University of Copenhagen, Kobenhavn, Denmark
| | - Jens Peter Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
| | - Mogens Fenger
- Department of Clinical Biochemistry, Hvidovre Hospital, Hvidovre, Denmark
| | - Gerrit Van Hall
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Kobenhavn, Denmark
- Clinical Metabolomics Core Facility, Clinical Biochemistry, Rigshospitalet, Kobenhavn, Denmark
| | - Ulrik Dixen
- Department of Cardiology, Hvidovre University Hospital, Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Kobenhavn, Denmark
- NovoNordisk Center for Basic Metabolic Research, University of Copenhagen, Kobenhavn, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre Hospital, Hvidovre, Denmark
| | - Niels Vejlstrup
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | - Per Lav Madsen
- Department of Cardiology, Herlev Hospital, Herlev, Denmark
| | | |
Collapse
|
31
|
Yurista SR, Chen S, Welsh A, Tang WHW, Nguyen CT. Targeting Myocardial Substrate Metabolism in the Failing Heart: Ready for Prime Time? Curr Heart Fail Rep 2022; 19:180-190. [PMID: 35567658 PMCID: PMC10950325 DOI: 10.1007/s11897-022-00554-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review the clinical benefits of altering myocardial substrate metabolism in heart failure. RECENT FINDINGS Modulation of cardiac substrates (fatty acid, glucose, or ketone metabolism) offers a wide range of therapeutic possibilities which may be applicable to heart failure. Augmenting ketone oxidation seems to offer great promise as a new therapeutic modality in heart failure. The heart has long been recognized as metabolic omnivore, meaning it can utilize a variety of energy substrates to maintain adequate ATP production. The adult heart uses fatty acid as a major fuel source, but it can also derive energy from other substrates including glucose and ketone, and to some extent pyruvate, lactate, and amino acids. However, cardiomyocytes of the failing heart endure remarkable metabolic remodeling including a shift in substrate utilization and reduced ATP production, which account for cardiac remodeling and dysfunction. Research to understand the implication of myocardial metabolic perturbation in heart failure has grown in recent years, and this has raised interest in targeting myocardial substrate metabolism for heart failure therapy. Due to the interdependency between different pathways, the main therapeutic metabolic approaches include inhibiting fatty acid uptake/fatty acid oxidation, reducing circulating fatty acid levels, increasing glucose oxidation, and augmenting ketone oxidation.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Shi Chen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aidan Welsh
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W H Wilson Tang
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
32
|
Abstract
As a muscular pump that contracts incessantly throughout life, the heart must constantly generate cellular energy to support contractile function and fuel ionic pumps to maintain electrical homeostasis. Thus, mitochondrial metabolism of multiple metabolic substrates such as fatty acids, glucose, ketones, and lactate is essential to ensuring an uninterrupted supply of ATP. Multiple metabolic pathways converge to maintain myocardial energy homeostasis. The regulation of these cardiac metabolic pathways has been intensely studied for many decades. Rapid adaptation of these pathways is essential for mediating the myocardial adaptation to stress, and dysregulation of these pathways contributes to myocardial pathophysiology as occurs in heart failure and in metabolic disorders such as diabetes. The regulation of these pathways reflects the complex interactions of cell-specific regulatory pathways, neurohumoral signals, and changes in substrate availability in the circulation. Significant advances have been made in the ability to study metabolic regulation in the heart, and animal models have played a central role in contributing to this knowledge. This review will summarize metabolic pathways in the heart and describe their contribution to maintaining myocardial contractile function in health and disease. The review will summarize lessons learned from animal models with altered systemic metabolism and those in which specific metabolic regulatory pathways have been genetically altered within the heart. The relationship between intrinsic and extrinsic regulators of cardiac metabolism and the pathophysiology of heart failure and how these have been informed by animal models will be discussed.
Collapse
Affiliation(s)
- Heiko Bugger
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - Nikole J Byrne
- University Heart Center Graz, Department of Cardiology, Medical University of Graz, Graz, Austria, Austria (H.B., N.J.B.)
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (E.D.A.)
| |
Collapse
|
33
|
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxid Redox Signal 2022; 36:844-863. [PMID: 35044229 PMCID: PMC9125524 DOI: 10.1089/ars.2021.0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Ann Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
34
|
Liang S, Yegambaram M, Wang T, Wang J, Black SM, Tang H. Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10020341. [PMID: 35203550 PMCID: PMC8961787 DOI: 10.3390/biomedicines10020341] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressure due to increased pulmonary vascular resistance, secondary to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Work over the last decade has led to the identification of a critical role for metabolic reprogramming in the PAH pathogenesis. It is becoming clear that in addition to its role in ATP generation, the mitochondrion is an important organelle that regulates complex and integrative metabolic- and signal transduction pathways. This review focuses on mitochondrial metabolism alterations that occur in deranged pulmonary vessels and the right ventricle, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, redox homeostasis, as well as iron and calcium metabolism. Further understanding of these mitochondrial metabolic mechanisms could provide viable therapeutic approaches for PAH patients.
Collapse
Affiliation(s)
- Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Manivannan Yegambaram
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Ting Wang
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
| | - Stephen M. Black
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA
- Correspondence: (S.M.B.); (H.T.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- Correspondence: (S.M.B.); (H.T.)
| |
Collapse
|
35
|
Yu Y, Jin C, Zhao C, Zhu S, Meng S, Ma H, Wang J, Xiang M. Serum Free Fatty Acids Independently Predict Adverse Outcomes in Acute Heart Failure Patients. Front Cardiovasc Med 2022; 8:761537. [PMID: 35004879 PMCID: PMC8727366 DOI: 10.3389/fcvm.2021.761537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Perturbation of energy metabolism exacerbates cardiac dysfunction, serving as a potential therapeutic target in congestive heart failure. Although circulating free fatty acids (FFAs) are linked to insulin resistance and risk of coronary heart disease, it still remains unclear whether circulating FFAs are associated with the prognosis of patients with acute heart failure (AHF). Methods: This single-center, observational cohort study enrolled 183 AHF patients (de novo heart failure or decompensated chronic heart failure) in the Second Affiliated Hospital, Zhejiang University School of Medicine. All-cause mortality and heart failure (HF) rehospitalization within 1 year after discharge were investigated. Serum FFAs were modeled as quartiles as well as a continuous variable (per SD of FFAs). The restricted cubic splines and cox proportional hazards models were applied to evaluate the association between the serum FFAs level and all-cause mortality or HF rehospitalization. Results: During a 1-year follow-up, a total of 71 (38.8%) patients had all-cause mortality or HF rehospitalization. The levels of serum FFAs positively contributed to the risk of death or HF rehospitalization, which was not associated with the status of insulin resistance. When modeled with restricted cubic splines, the serum FFAs increased linearly for the incidence of death or HF rehospitalization. In a multivariable analysis adjusting for sex, age, body-mass index, coronary artery disease, diabetes mellitus, hypertension, left ventricular ejection fraction and N-terminal pro-brain natriuretic peptid, each SD (303.07 μmol/L) higher FFAs were associated with 26% higher risk of death or HF rehospitalization (95% confidence interval, 2–55%). Each increasing quartile of FFAs was associated with differentially elevated hazard ratios for death or HF rehospitalization of 1 (reference), 1.71 (95% confidence interval, [0.81, 3.62]), 1.41 (95% confidence interval, [0.64, 3.09]), and 3.18 (95% confidence interval, [1.53, 6.63]), respectively. Conclusion: Serum FFA levels at admission among patients with AHF were associated with an increased risk of adverse outcomes. Additional studies are needed to determine the causal-effect relationship between FFAs and acute cardiac dysfunction and whether FFAs could be a potential target for AHF management.
Collapse
Affiliation(s)
- Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chunna Jin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengchen Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shiyu Zhu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Simin Meng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Ma
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
36
|
Saraste A, Knuuti J. PET imaging in diabetic cardiomyopathy. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00051-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
37
|
Adipose Lipolysis Regulates Cardiac Glucose Uptake and Function in Mice under Cold Stress. Int J Mol Sci 2021; 22:ijms222413361. [PMID: 34948160 PMCID: PMC8703875 DOI: 10.3390/ijms222413361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/04/2023] Open
Abstract
The heart primarily uses fatty acids as energy substrates. Adipose lipolysis is a major source of fatty acids, particularly under stress conditions. In this study, we showed that mice with selective inactivation of the lipolytic coactivator comparative gene identification-58 (CGI-58) in adipose tissue (FAT-KO mice), relative to their littermate controls, had lower circulating FA levels in the fed and fasted states due to impaired adipose lipolysis. They preferentially utilized carbohydrates as energy fuels and were more insulin sensitive and glucose tolerant. Under cold stress, FAT-KO versus control mice had >10-fold increases in glucose uptake in the hearts but no increases in other tissues examined. Plasma concentrations of atrial natriuretic peptide and cardiac mRNAs for atrial and brain-type natriuretic peptides, two sensitive markers of cardiac remodeling, were also elevated. After one week of cold exposure, FAT-KO mice showed reduced cardiac expression of several mitochondrial oxidative phosphorylation proteins. After one month of cold exposure, hearts of these animals showed depressed functions, reduced SERCA2 protein, and increased proteins for MHC-β, collagen I proteins, Glut1, Glut4 and phospho-AMPK. Thus, CGI-58-dependent adipose lipolysis critically regulates cardiac metabolism and function, especially during cold adaptation. The adipose-heart axis may be targeted for the management of cardiac dysfunction.
Collapse
|
38
|
Cade WT, Laforest R, Bohnert KL, Reeds DN, Bittel AJ, de las Fuentes L, Bashir A, Woodard PK, Pacak CA, Byrne BJ, Gropler RJ, Peterson LR. Myocardial glucose and fatty acid metabolism is altered and associated with lower cardiac function in young adults with Barth syndrome. J Nucl Cardiol 2021; 28:1649-1659. [PMID: 31705425 PMCID: PMC7205570 DOI: 10.1007/s12350-019-01933-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Barth syndrome (BTHS) is a rare X-linked condition resulting in cardiomyopathy, however; the effects of BTHS on myocardial substrate metabolism and its relationships with cardiac high-energy phosphate metabolism and left ventricular (LV) function are unknown. We sought to characterize myocardial glucose, fatty acid (FA), and leucine metabolism in BTHS and unaffected controls and examine their relationships with cardiac high-energy phosphate metabolism and LV function. METHODS/RESULTS Young adults with BTHS (n = 14) and unaffected controls (n = 11, Control, total n = 25) underwent bolus injections of 15O-water and 1-11C-glucose, palmitate, and leucine and concurrent positron emission tomography imaging. LV function and cardiac high-energy phosphate metabolism were examined via echocardiography and 31P magnetic resonance spectroscopy, respectively. Myocardial glucose extraction fraction (21 ± 14% vs 10 ± 8%, P = .03) and glucose utilization (828.0 ± 470.0 vs 393.2 ± 361.0 μmol·g-1·min-1, P = .02) were significantly higher in BTHS vs Control. Myocardial FA extraction fraction (31 ± 7% vs 41 ± 6%, P < .002) and uptake (0.25 ± 0.04 vs 0.29 ± 0.03 mL·g-1·min-1, P < .002) were significantly lower in BTHS vs Control. Altered myocardial metabolism was associated with lower cardiac function in BTHS. CONCLUSIONS Myocardial substrate metabolism is altered and may contribute to LV dysfunction in BTHS. Clinical Trials #: NCT01625663.
Collapse
Affiliation(s)
- William Todd Cade
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Richard Laforest
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn L Bohnert
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Dominic N Reeds
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adam J Bittel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Lisa de las Fuentes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Adil Bashir
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Pamela K Woodard
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Barry J Byrne
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | - Robert J Gropler
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda R Peterson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
39
|
Sorice GP, Cinti F, Leccisotti L, D'Amario D, Lorusso M, Guzzardi MA, Mezza T, Cocchi C, Capece U, Ferraro PM, Crea F, Giordano A, Iozzo P, Giaccari A. Effect of Dapagliflozin on Myocardial Insulin Sensitivity and Perfusion: Rationale and Design of The DAPAHEART Trial. Diabetes Ther 2021; 12:2101-2113. [PMID: 34037951 PMCID: PMC8266960 DOI: 10.1007/s13300-021-01083-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/12/2021] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Sodium-glucose co-transporter-2 (SGLT-2) inhibitors have been shown to have beneficial effects on various cardiovascular (CV) outcomes in patients with type 2 diabetes (T2D) in primary prevention and in those with a high CV risk profile. However, the mechanism(s) responsible for these CV benefits remain elusive and unexplained. The aim of the DAPAHEART study will be to demonstrate that treatment with SGLT-2 inhibitors is associated with greater myocardial insulin sensitivity in patients with T2D, and to determine whether this improvement can be attributed to a decrease in whole-body (and tissue-specific) insulin resistance and to increased myocardial perfusion and/or glucose uptake. We will also determine whether there is an appreciable degree of improvement in myocardial-wall conditions subtended by affected and non-affected coronary vessels, and if this relates to changes in left ventricular function. METHODS The DAPAHEART trial will be a phase III, single-center, randomized, two-arm, parallel-group, double-blind, placebo-controlled study. A cohort of 52 T2D patients with stable coronary artery disease (without any previous history of myocardial infarction, with or without previous percutaneous coronary intervention), with suboptimal glycemic control (glycated hemoglobin [HbA1c] 7-8.5%) on their current standard of care anti-hyperglycemic regimen, will be randomized in a 1:1 ratio to dapagliflozin or placebo. The primary outcome is to detect changes in myocardial glucose uptake from baseline to 4 weeks after treatment initiation. The main secondary outcome will be changes in myocardial blood flow, as measured by 13N-ammonia positron emission tomography/computed tomography (PET/CT). Other outcomes include cardiac function, glucose uptake in skeletal muscle, adipose tissue, liver, brain and kidney, as assessed by fluorodeoxyglucose (FDG) PET-CT imaging during hyperinsulinemic-euglycemic clamp; pericardial, subcutaneous and visceral fat, and browning as observed on CT images during FDG PET-CT studies; systemic insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp, glycemic control, urinary glucose output; and microbiota modification. DISCUSSION SGLT-2 inhibitors, in addition to their insulin-independent plasma glucose-lowering effect, are able to directly (substrate availability, fuel utilization, insulin sensitivity) as well as indirectly (cardiac after-load reduction, decreased risk factors for heart failure) affect myocardial functions. Our study will provide novel insights into how these drugs exert CV protection in a diabetic population. TRIAL REGISTRATION EudraCT No. 2016-003614-27; ClinicalTrials.gov Identifier: NCT03313752.
Collapse
Affiliation(s)
- Gian Pio Sorice
- Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Cinti
- Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucia Leccisotti
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Domenico D'Amario
- Dipartimento di Scienze Cardiovascolari, UOC di Cardiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Margherita Lorusso
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Maria Angela Guzzardi
- Istituto di Fisiologia Clinica, Consiglio Nazionale Delle Ricerche (CNR), Pisa, Italy
| | - Teresa Mezza
- Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Camilla Cocchi
- Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Capece
- Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pietro Manuel Ferraro
- Dipartimento di Scienze Mediche e Chirurgiche, UOC di Nefrologia, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Filippo Crea
- Dipartimento di Scienze Cardiovascolari, UOC di Cardiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Giordano
- Dipartimento di Diagnostica Per Immagini, Radioterapia Oncologica ed Ematologia, UOC di Medicina Nucleare, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy
| | - Patricia Iozzo
- Istituto di Fisiologia Clinica, Consiglio Nazionale Delle Ricerche (CNR), Pisa, Italy
| | - Andrea Giaccari
- Dipartimento di Scienze Mediche e Chirurgiche, Centro Malattie Endocrine e Metaboliche, Fondazione Policlinico Universitario A. Gemelli IRCCS-Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
40
|
Oldgren J, Laurila S, Åkerblom A, Latva-Rasku A, Rebelos E, Isackson H, Saarenhovi M, Eriksson O, Heurling K, Johansson E, Wilderäng U, Karlsson C, Esterline R, Ferrannini E, Oscarsson J, Nuutila P. Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: A randomized, placebo-controlled, exploratory study. Diabetes Obes Metab 2021; 23:1505-1517. [PMID: 33625777 DOI: 10.1111/dom.14363] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 12/31/2022]
Abstract
AIM To explore the early effects of dapagliflozin on myocardial function and metabolism in patients with type 2 diabetes without heart failure. MATERIALS AND METHODS Patients with type 2 diabetes on metformin treatment were randomized to double-blind, 6-week placebo or dapagliflozin 10 mg daily treatment. Investigations included cardiac function and structure with myocardial resonance imaging; cardiac oxygen consumption, perfusion and efficiency with [11 C]-acetate positron emission tomography (PET); and cardiac and hepatic fatty acid uptake with [18 F]-6-thia-heptadecanoic acid PET, analysed by ANCOVA as least square means with 95% confidence intervals. RESULTS Evaluable patients (placebo: n = 24, dapagliflozin: n = 25; 53% males) had a mean age of 64.4 years, a body mass index of 30.2 kg/m2 and an HbA1c of 6.7%. Body weight and HbA1c were significantly decreased by dapagliflozin versus placebo. Dapagliflozin had no effect on myocardial efficiency, but external left ventricular (LV) work (-0.095 [-0.145, -0.043] J/g/min) and LV oxygen consumption were significantly reduced (-0.30 [-0.49, -0.12] J/g/min) by dapagliflozin, although the changes were not statistically significant versus changes in the placebo group. Change in left atrial maximal volume with dapagliflozin versus placebo was -3.19 (-6.32, -0.07) mL/m2 (p = .056). Peak global radial strain decreased with dapagliflozin versus placebo (-3.92% [-7.57%, -0.28%]; p = .035), while peak global longitudinal and circumferential strains were unchanged. Hepatic fatty acid uptake was increased by dapagliflozin versus placebo (0.024 [0.004, 0.044] μmol/g/min; p = .018), while cardiac uptake was unchanged. CONCLUSIONS This exploratory study indicates reduced heart work but limited effects on myocardial function, efficiency and cardiac fatty acid uptake, while hepatic fatty acid uptake increased, after 6 weeks of treatment with dapagliflozin.
Collapse
Affiliation(s)
- Jonas Oldgren
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sanna Laurila
- Heart Center, Turku University Hospital, Turku, Finland
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Satakunta Central Hospital, Pori, Finland
| | - Axel Åkerblom
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Aino Latva-Rasku
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Henrik Isackson
- Uppsala Clinical Research Center and Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Maria Saarenhovi
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | | | | | | | | | | | | | - Ele Ferrannini
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Jan Oscarsson
- BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
41
|
Yang H, Li Y, Su X, Li C. Relationship between free fatty acids, body mass index and depressive symptoms in patients with chronic heart failure. Nurs Open 2021; 8:2877-2885. [PMID: 34080794 PMCID: PMC8363406 DOI: 10.1002/nop2.877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/04/2023] Open
Abstract
AIM To explore the prevalence of depressive symptoms among patients with chronic heart failure (CHF) and analyse the relationship between free fatty acids (FFAs), body mass index (BMI) and depressive symptoms among patients with CHF. DESIGN A cross-sectional study. METHODS Questionnaires were distributed to 200 patients with CHF in the department of Cardiology at a tertiary first-class hospital in Shandong province. A total of 195 hospitalized patients completed the survey. Data collected from February 2017-November 2017 were analysed by using Pearson's correlation and multiple linear regression. The depressive status of the patients was assessed by the Zung Self-rating Depression Scale (SDS), and the relationships between FFA, BMI and depressive symptoms were analysed using SPSS 20.0. RESULTS The results showed that 71.28% CHF patients have depressive symptoms. The serum FFA level was significantly higher in CHF patients with depressive symptoms than those without depressive symptoms (p = .003), and FFA level was significantly positively correlated with the SDS score (r = .242, p = .001). The differences in SDS scores were statistically significant between two different BMI groups (p < .01), and BMI was negatively correlated with the SDS score (r = -.139, p = .040). Regression analysis showed that high FFAs (β = 0.184, p = .009) and low BMI (β = -0.116, p = .049) were risk factors for depressive symptoms in CHF patients. Gender, age, FFA and BMI were associated with depressive symptoms, accounting for 7.1% of the variance in depressive symptoms. CONCLUSIONS The prevalence of depressive symptoms in CHF patients is very high, and high FFAs and low BMI are risk factors for depressive symptoms. Targeted interventions to strengthen nutritional support in CHF patients may be benefit to improve depression-related outcomes.
Collapse
Affiliation(s)
- Hua Yang
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Li
- Supply Room of Affiliated Hospital of Shandong, University of Traditional Chinese Medicine, Jinan, China
| | - Xing Su
- Department of Cardiology, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chao Li
- Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
42
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
43
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|
44
|
Long-Chain Acylcarnitines and Monounsaturated Fatty Acids Discriminate Heart Failure Patients According to Pulmonary Hypertension Status. Metabolites 2021; 11:metabo11040196. [PMID: 33810372 PMCID: PMC8066759 DOI: 10.3390/metabo11040196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Defects in fatty acid (FA) utilization have been well described in group 1 pulmonary hypertension (PH) and in heart failure (HF), yet poorly studied in group 2 PH. This study was to assess whether the metabolomic profile of patients with pulmonary hypertension (PH) due HF, classified as group 2 PH, differs from those without PH. We conducted a proof-of-principle cross-sectional analysis of 60 patients with chronic HF with reduced ejection fraction and 72 healthy controls in which the circulating level of 71 energy-related metabolites was measured using various methods. Echocardiography was used to classify HF patients as noPH-HF (n = 27; mean pulmonary artery pressure [mPAP] 21 mmHg) and PH-HF (n = 33; mPAP 35 mmHg). The profile of circulating metabolites among groups was compared using principal component analysis (PCA), analysis of covariance (ANCOVA), and Pearson’s correlation tests. Patients with noPH-HF and PH-HF were aged 64 ± 11 and 68 ± 10 years, respectively, with baseline left ventricular ejection fractions of 27 ± 7% and 26 ± 7%. Principal component analysis segregated groups, more markedly for PH-HF, with long-chain acylcarnitines, acetylcarnitine, and monounsaturated FA carrying the highest loading scores. After adjustment for age, sex, kidney function, insulin resistance, and N-terminal pro-brain natriuretic peptide (NT-proBNP), 5/15 and 8/15 lipid-related metabolite levels were significantly different from controls in noPH-HF and PH-HF subjects, respectively. All metabolites for which circulating levels interacted between group and NT-proBNP significantly correlated with NT-proBNP in HF-PH, but none with HF-noPH. FA-related metabolites were differently affected in HF with or without PH, and may convey adverse outcomes given their distinct correlation with NT-proBNP in the setting of PH.
Collapse
|
45
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
46
|
Ding W, Feng H, Li WJ, Liao HH, Tang QZ. Research Progress on the Interaction Between Autophagy and Energy Homeostasis in Cardiac Remodeling. Front Pharmacol 2020; 11:587438. [PMID: 33328993 PMCID: PMC7734280 DOI: 10.3389/fphar.2020.587438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiac remodeling is a common pathological process in various heart diseases, such as cardiac hypertrophy, diabetes-associated cardiomyopathy and ischemic heart diseases. The inhibition of cardiac remodeling has been suggested to be a potential strategy for preventing heart failure. However, the mechanisms involved in cardiac remodeling are quite complicated. Recent studies have reported a close correlation between autophagy and energy homeostasis in cardiac remodeling associated with various heart diseases. In this review, we summarize the roles of autophagy and energy homeostasis in cardiac remodeling and discuss the relationship between these two processes in different conditions to identify potential targets and strategies for treating cardiac remodeling by regulating autophagy.
Collapse
Affiliation(s)
- Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hong Feng
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wen-Jing Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Hai-Han Liao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi-Zhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
47
|
Watson WD, Timm KN, Lewis AJ, Miller JJJ, Emmanuel Y, Clarke K, Neubauer S, Tyler DJ, Rider OJ. Nicotinic acid receptor agonists impair myocardial contractility by energy starvation. FASEB J 2020; 34:14878-14891. [PMID: 32954525 DOI: 10.1096/fj.202000084rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 11/11/2022]
Abstract
Nicotinic acid receptor agonists have previously been shown to cause acute reductions in cardiac contractility. We sought to uncover the changes in cardiac metabolism underlying these alterations in function. In nine humans, we recorded cardiac energetics and function before and after a single oral dose of nicotinic acid using cardiac MRI to demonstrate contractile function and Phosphorus-31 (31 P) magnetic resonance spectroscopy to demonstrate myocardial energetics. Nicotinic Acid 400 mg lowered ejection fraction by 4% (64 ± 8% to 60 ± 7%, P = .03), and was accompanied by a fall in phosphocreatine/ATP ratio by 0.4 (2.2 ± 0.4 to 1.8 ± 0.1, P = .04). In four groups of eight Wistar rats, we used pyruvate dehydrogenase (PDH) flux studies to demonstrate changes in carbohydrate metabolism induced by the nicotinic acid receptor agonist, Acipimox, using hyperpolarized Carbon-13 (13 C) magnetic resonance spectroscopy. In rats which had been starved overnight, Acipimox caused a fall in ejection fraction by 7.8% (67.5 ± 8.9 to 60 ± 3.1, P = .03) and a nearly threefold rise in flux through PDH (from 0.182 ± 0.114 to 0.486 ± 0.139, P = .002), though this rise did not match pyruvate dehydrogenase flux observed in rats fed carbohydrate rich chow (0.726 ± 0.201). In fed rats, Acipimox decreased pyruvate dehydrogenase flux (to 0.512 ± 0.13, P = .04). Concentration of plasma insulin fell by two-thirds in fed rats administered Acipimox (from 1695 ± 891 ng/L to 550 ± 222 ng/L, P = .005) in spite of glucose concentrations remaining the same. In conclusion, we demonstrate that nicotinic acid receptor agonists impair cardiac contractility associated with a decline in cardiac energetics and show that the mechanism is likely a combination of reduced fatty acid availability and a failure to upregulate carbohydrate metabolism, essentially starving the heart of fuel.
Collapse
Affiliation(s)
- William D Watson
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Kerstin N Timm
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Andrew J Lewis
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Jack J J Miller
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Physics, University of Oxford, Oxford, UK
| | - Yaso Emmanuel
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Stefan Neubauer
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Department of Cardiovascular Medicine, Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
48
|
Huang Y, Zhang K, Jiang M, Ni J, Chen J, Li L, Deng J, Zhu Y, Mao J, Gao X, Fan G. Regulation of energy metabolism by combination therapy attenuates cardiac metabolic remodeling in heart failure. Int J Biol Sci 2020; 16:3133-3148. [PMID: 33162820 PMCID: PMC7645995 DOI: 10.7150/ijbs.49520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cardiac metabolic remodeling is recognized as an important hallmark of heart failure (HF), while strategies that target energy metabolism have therapeutic potential in treating HF. Shen-Fu formula (S-F) is a standardized herbal preparation frequently used in clinical practice and is a promising combinatorial therapy for HF-related metabolic remodeling. Herein, we performed an untargeted multi-omics analysis using transcriptomics, proteomics, and metabolomics on HF mice induced by transverse aortic constriction (TAC). Integrated and pathway-driven analyses were used to reveal the therapeutic targets associated with S-F treatment. The cardioprotective effect and potential mechanism of S-F were verified by the results from echocardiography, hemodynamics, histopathology, and biochemical assays. As a result, S-F significantly alleviated myocardial fibrosis and hypertrophy, thus reducing the loss of heart function during adverse cardiac remodeling in TAC mice. Integrated omics analysis showed that S-F synergistically mediated the metabolic flexibility of fatty acids and glucose in cardiac energy metabolism. These effects of S-F were confirmed by the activation of AMP-activated protein kinase (AMPK) and its downstream targets in the failing heart. Collectively, our results demonstrated that S-F suppressed cardiac metabolic remodeling through activating AMPK-related pathways via energy-dependent mechanisms.
Collapse
Affiliation(s)
- Yuting Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Kai Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, People's Republic of China
| | - Miaomiao Jiang
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jingrui Chen
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Lan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jie Deng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Yan Zhu
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, People's Republic of China
| | - Xiumei Gao
- State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, People's Republic of China
| |
Collapse
|
49
|
Makrecka-Kuka M, Korzh S, Videja M, Vilskersts R, Sevostjanovs E, Zharkova-Malkova O, Arsenyan P, Kuka J, Dambrova M, Liepinsh E. Inhibition of CPT2 exacerbates cardiac dysfunction and inflammation in experimental endotoxaemia. J Cell Mol Med 2020; 24:11903-11911. [PMID: 32896106 PMCID: PMC7578905 DOI: 10.1111/jcmm.15809] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
The suppression of energy metabolism is one of cornerstones of cardiac dysfunction in sepsis/endotoxaemia. To investigate the role of fatty acid oxidation (FAO) in the progression of inflammation‐induced cardiac dysfunction, we compared the effects of FAO‐targeting compounds on mitochondrial and cardiac function in an experimental model of lipopolysaccharide (LPS)‐induced endotoxaemia. In LPS‐treated mice, endotoxaemia‐induced inflammation significantly decreased cardiac FAO and increased pyruvate metabolism, while cardiac mechanical function was decreased. AMP‐activated protein kinase activation by A769662 improved mitochondrial FAO without affecting cardiac function and inflammation‐related gene expression during endotoxaemia. Fatty acid synthase inhibition by C75 restored both cardiac and mitochondrial FAO; however, no effects on inflammation‐related gene expression and cardiac function were observed. In addition, the inhibition of carnitine palmitoyltransferase 2 (CPT2)‐dependent FAO by aminocarnitine resulted in the accumulation of FAO intermediates, long‐chain acylcarnitines, in the heart. As a result, cardiac pyruvate metabolism was inhibited, which further exacerbated inflammation‐induced cardiac dysfunction. In conclusion, although inhibition of CPT2‐dependent FAO is detrimental to cardiac function during endotoxaemia, present findings show that the restoration of cardiac FAO alone is not sufficient to recover cardiac function. Rescue of cardiac FAO should be combined with anti‐inflammatory therapy to ameliorate cardiac dysfunction in endotoxaemia.
Collapse
Affiliation(s)
| | | | - Melita Videja
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | - Reinis Vilskersts
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | | | | | | - Janis Kuka
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Faculty of Pharmacy, Riga Stradins University, Riga, Latvia
| | | |
Collapse
|
50
|
Nguyen TD, Schulze PC. Lipid in the midst of metabolic remodeling - Therapeutic implications for the failing heart. Adv Drug Deliv Rev 2020; 159:120-132. [PMID: 32791076 DOI: 10.1016/j.addr.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023]
Abstract
A healthy heart relies on an intact cardiac lipid metabolism. Fatty acids represent the major source for ATP production in the heart. Not less importantly, lipids are directly involved in critical processes such as cell growth, proliferation, and cell death by functioning as building blocks or signaling molecules. In the development of heart failure, perturbations in fatty acid utilization impair cardiac energetics. Furthermore, they may affect glucose and amino acid metabolism and induce the synthesis of several lipid intermediates, whose biological functions are still poorly understood. This work outlines the pivotal role of lipid metabolism in the heart and provides a lipocentric view of metabolic remodeling in heart failure. We will also critically revisit therapeutic attempts targeting cardiac lipid metabolism in heart failure and propose specific strategies for future investigations in this regard.
Collapse
|